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Abstract
We show that a mobile phone can serve as an accurate monitor for several physiological variables,
based on its ability to record and analyze the varying color signals of a fingertip placed in contact
with its optical sensor. We confirm the accuracy of measurements of breathing rate, cardiac R-R
intervals, and blood oxygen saturation, by comparisons to standard methods for making such
measurements (respiration belts, ECGs, and pulse-oximeters, respectively). Measurement of
respiratory rate uses a previously reported algorithm developed for use with a pulse-oximeter,
based on amplitude and frequency modulation sequences within the light signal. We note that this
technology can also be used with recently developed algorithms for detection of atrial fibrillation
or blood loss.

Index Terms
non-invasive monitoring; telemonitoring; heart rate variability (HRV); breathing rate; oxygen
saturation
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I. Introduction
There is a need for low-cost physiological monitoring solutions that are easy to use,
accurate, and can be used in the home or ambulatory settings. Smart phones are becoming
more popular, more powerful and have a variety of sensors available to capture information
from the outside world, process the data in real-time, and transfer information remotely
using wireless communications. These factors make smart phones an ideal option as a “take-
anywhere” physiological monitor without the need for additional hardware, and their
potential has been explored for many medical telemonitoring applications [1, 2].

Optical video monitoring of the skin with a digital camera contains information related to
the subtle color changes caused by the cardiac signal and can be seen to contain a pulsatile
signal [3, 4]. Given illumination of the area with a white LED mobile phone flash, this type
of imaging can be described as reflection photoplethysmographic (PPG) imaging. Jonathan
et al. showed the potential to extract the heart rate (HR) signal from a sequence of video
images [4, 5], and Pelegris et al. compared HR measurements using a mobile phone with
those made using a standard pulse-oximeter [6]. An application currently exists on the
Android Market to obtain HR using the optical video recordings [7]. The potential of
monitoring the dynamics in the HR signal and extracting additional vital physiological
parameters from the optical recordings has not been fully explored. It is known that the
dynamics of the HR signal that can be captured by PPG contain information that can be used
to detect such physiological conditions as atrial fibrillation, blood loss, and cardiac
autonomic function [8–12].

In the present letter, we explore the potential that the color change signal detected by a
mobile phone has for non-invasively assessing physiological parameters other than HR. We
first look at whether the dynamics in the continuous HR signal are representative of those
found by standard electrocardiogram (ECG) measurements. We then examine whether the
breathing rate can be estimated from the dynamics of the optically recorded pulse signal
using a previously published algorithm [13]. Finally, we investigate whether changes in
oxygen saturation (SpO2) impact the mobile phone optical measurements by comparing with
measurements obtained using a commercial pulse-oximeter.

II. Methods
A. Data Collection

All experiments were approved by the Institutional Review Board of Worcester Polytechnic
Institute. Spontaneous finger color changes were recorded using a Motorola Droid®
(Motorola Mobility, Inc.) mobile phone. The palmar side of the left index finger was placed
over the camera lens with the flash turned on. Subjects were instructed to rest a finger on the
camera lens without pressing down with additional force, and to keep their finger still to
reduce any motion artifacts. Videos were recorded with 720×480 pixel resolution at a
sampling rate of 24.99 fps in 3gpp file format. The 3gpp videos were converted to Audio-
Video Interleave (AVI) format at 720×480 pixel resolution and 25 fps using Pazera Free 3gp
to AVI Converter 1.3 (http://www.pazera-software.com/). All further analysis was
performed on the AVI videos in Matlab R2010b (The Mathworks Inc.) as described in II.B.

Experiment to detect heart rate and respiration rate—ECG recordings were made
with an HP 78354A acquisition system using a standard 5-lead electrode configuration. A
respiration belt was attached around a subject’s chest to monitor breathing rate (Respitrace
Systems, Ambulatory Monitoring Inc.). Respiratory and ECG recordings were saved using
LabChart software (ADInstruments) at a sampling rate of 400 Hz.
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Data were recorded during spontaneous breathing for a single subject. Data collection was
initiated as follows: (1) initiate mobile phone video recording, (2) start recordings of ECG
and respiration trace 10 seconds after initiation of mobile phone recording, and (3) set
mobile phone down and place subject’s left index finger over camera lens. This procedure
allowed for alignment of data from the video, ECG, and respiratory trace to within 1 second
of the start of the video.

Metronome breathing experiments were performed on a single subject with rates set at 0.2,
0.3, and 0.4 Hz (12, 18, and 24 Beats per Minute (BPM)). The subject was asked to inhale
with each beat of the metronome. Metronome recordings were made for 2 minutes at each
rate.

Experiment to measure oxygen saturation—Breath holding experiments were
performed to assess the impact of reduced oxygen saturation on the optical recordings of
two subjects. A commercial reflectance pulse-oximeter (Radical SET™, Masimo) was
placed on the left ring finger to record SpO2 at a sampling rate of 1 Hz. The mobile phone
camera lens was placed underneath the subjects’ left index fingertip. A black cloth was
placed around the finger on the camera lens to isolate the sensor from light emanating from
the commercial pulse-oximeter. The data files were aligned by starting the data logging of
the pulse-oximeter by verbal command after the mobile phone recording started and using
the audio file to determine the initiation time point.

Subjects were asked to breathe normally for approximately 30 seconds, exhale, and then to
hold their breath until they felt discomfort. Two breath holding periods were recorded for
each subject.

B. Parameter Extraction
For experiments assessing HR, heart rate variability (HRV), and respiration rate, only the
green band from the RGB video recordings was used. A 50×50 pixel average of a region on
the green video signal at each frame was made for the green band. This signal is from here
on referred to as GREEN.

R-wave peak detection from the ECG signal and beat detection from the GREEN signal
were performed using custom algorithms. Beat-beat intervals were computed, and resampled
to 4 Hz by fitting a cubic spline to obtain the continuous HR for each signal (HRECG and
HRGREEN). The power spectral density (PSD) of HR was computed using the Welch
periodogram method.

True respiration rate was found by computing the PSD of the respiration trace signal and
finding the frequency at the maximum amplitude. Respiration rates from the GREEN signals
were found using the Variable Frequency Complex Demodulation (VFCDM) method for
respiration rate detection, described in detail in [13].

Relative SpO2 measurements were made by comparing the red and blue bands, where the
blue band is representative of the infrared wavelength used in traditional pulse-oximeter
SpO2 calculations [14]. The standard deviations of the red and blue bands at each time point
were used as the AC signals. The DC components were computed as the red and blue band
mean intensities at each time point. A 10 sec moving average window was then applied to
the AC and DC components. Relative oxygen saturation was then computed as in eq. (1):

(1)
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We estimated the A and B parameters for each subject by setting SpO2 in (1) to the
commercial pulse-oximeter SpO2 value and finding the best-fit linear equation with the
Matlab Curve Fitting Toolbox.

III. Results
A. Heart Rate and Heart Rate Variability Analysis

A section of an example GREEN signal obtained during spontaneous breathing is shown in
Fig. 1a. The pulse signal is similar to a traditional PPG signal obtained from a pulse-
oximeter. Peak detection was performed to identify the HR signal, shown in Fig. 1b along
with that obtained from an ECG after R-wave peak detection. The mean±SD was 92.2±5.3
for HRECG and 92.3±5.9 for HRGREEN.

The dynamics of the HR signals shown in Fig. 1.b were assessed by frequency analysis (Fig.
1c). The dominant peak on both signals is seen to be at a low frequency <0.1 Hz. A second
peak is seen on both signals in the range usually associated with variations in sympathetic
stimulation of the heart (0.04 – 0.15 Hz), and a third peak at approximately 0.2 Hz is
representative of the respiration rate. Additional high frequency components are seen in
HRGREEN compared to HRECG, possibly caused by the low sampling frequency of the
mobile phone recording resulting in suboptimal beat detection.

B. Respiration Rate Detection
Amplitude modulation (AM) and frequency modulation (FM) sequences were extracted as
described in [13] and used to estimate the breathing rate (Fig. 2a&b). Breathing rates were
confirmed by taking the PSD of the respiration trace during 3 periods of metronome
breathing recorded with the metronome set at 0.2, 0.3, and 0.4 Hz. Breathing rates from the
respiration trace and GREEN signal using the FM sequence were estimated at the three
metronome rates as 0.18 and 0.16, 0.30 and 0.32, and 0.40 and 0.38 Hz, respectively. The
PSDs of the FM sequence and respiration trace for the three breathing rates are shown in
Fig. 2c.

C. Oxygen Saturation Monitoring
The ratio of RED and BLUE in eq. (1) was computed and the A and B parameters were
estimated for each subject using the commercial pulse-oximeter SpO2 values as a reference.
It can be observed in Fig. 3a&b that our computed SpO2 value obtained from the mobile
phone recording appears to correlate with SpO2 decreases monitored with the commercial
pulse-oximeter. For the subject in Fig. 3a, a minimum SpO2 level of 84% was recorded from
the commercial pulse-oximeter and a minimum of 86% was computed from the optical
recording using eq. (1) after linear curve fitting. For the subject in Fig. 3b, a minimum SpO2
level of 77% was reached from the commercial pulse-oximeter and a minimum of 81% was
computed with eq. (1).

IV. Discussion
We have shown that the technology available in a standard mobile phone camera has the
potential to be used as an accurate multi-parameter physiological monitor. Estimation of HR
and breathing rates using intensity changes in the green band of the video signal provided
results that were accurate compared to their respective standards. Breathing rates were
monitored over a normal physiological range of 12 – 24 BPM. HRV measurements derived
from an ECG and the mobile phone were also shown to agree favorably. Decreases in
oxygen saturation from the breath holding test (verified with a commercial pulse-oximeter)
led to similar decreases in our SpO2 computation from the mobile phone data using eq. (1),
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demonstrating proof-of-concept for obtaining SpO2 measurements from a mobile phone
digital camera.

Given the ability to monitor cardiac dynamics from a mobile phone video recording allows
the application of other algorithms that have been developed for pulse-oximeter or HR
signals. We have demonstrated this potential by respiration rate detection with the VFCDM-
FM method [13] and HRV analysis. Assessment of R-R intervals has recently been shown to
be an accurate way of detecting episodes of atrial fibrillation [8], and the VFCDM method
has recently been shown to be capable of detecting significant levels of blood volume loss
from a PPG signal [9, 10]. In the present letter, the proof-of-concept we have shown opens
the door to implementing these algorithms on a mobile phone platform using simply the
optical recordings of the phone. One of the advantages of mobile phone monitoring is that it
allows patients to make baseline measurements at any time, building a database of normal
cardiac function that could allow for improved detection of disease states.

A low camera sampling rate may be a limitation for accurate measurements. It has
previously been stated that heart rate variability measurements should be made with a
sampling rate of 400 Hz, and the maximum sampling rate we can achieve with the Motorola
Droid camera used in this study was ~25 Hz. Previous studies using built-in computer
cameras at 15 Hz were resampled to 250 Hz to perform HRV analysis [15]. We performed
the same analysis after resampling to 250 Hz, but found insignificant differences in the
results compared to the non-resampled data (not shown). Our final measures still compare
favorably with traditional ECG and pulse-oximeter derived measurements made at higher
sampling rates.

For analysis of the pulse signal dynamics we utilized only the green band in this report. This
is because there is high absorption by hemoglobin in the green range, and it has been
demonstrated to give a stronger cardiac pulse signal than the red or blue bands during
remote PPG imaging [16]. Previously, Maeda et al. showed the utility of using the green
band for wearable PPG monitoring [17]. We found that the red and blue bands also
contained the pulse signal, but in general the green band had stronger pulse amplitude and
decreased noise. Optimization of the pixel averaging region could lead to an improved pulse
signal.

We have shown that decreases in SpO2 values affect the mobile phone optical recording, but
work remains to take the camera specifications into account to obtain a more accurate
quantifiable measure. It will be necessary to calibrate the recordings to determine the
coefficients A and B that would be required for real-time SpO2 monitoring. Traditional
pulse-oximeters compute SpO2 using the ratio of red and infrared wavelengths, where the
red wavelength is significantly affected by changes in oxygenated hemoglobin, but the
infrared wavelength is less so and is used as a reference [14]. In the present study we have
only broad red, green, and blue bands. We used the red band assuming it would be affected
in the same way as a red LED and used the blue band as a reference. To take into account
effects of motion and camera variance we used the standard deviation of the images as the
AC component.

Motion artifacts can affect the results since there is no physical device ensuring a stable
connection as is the case with pulse-oximeter clips or ECG electrodes. Therefore, it is
important for the user to keep his or her finger as stationary as possible on the camera lens
while measurements are being made. Recent advances in motion artifact detection in pulse-
oximeter signals could be applied in real-time monitoring to ensure that only results from a
quality signal are reported [18].
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Although here we performed offline analysis, given the current processing power available
in mobile phones (1GHz dual-core processors) the ability to perform this analysis directly on
a mobile phone is conceivable.

V. Conclusion
The pulse-oximeter has become one of the most common physiological monitors used in
hospitals today. Moreover, algorithms have been reported to detect atrial fibrillation, blood
loss, and autonomic nervous system disorders, in addition to traditional vital sign
measurements of heart rate, respiration rate, and oxygen saturation from the dynamics in a
pulse-oximeter signal. We have shown that mobile phone cameras have the potential to
monitor the pulsatile PPG signal. Current mobile phone technology extends beyond simply
monitoring and measuring with ease for a patient; it could also be used to relay the
information to medical professionals. This gives a patient the ability to carry an accurate
physiological monitor anywhere, without additional hardware beyond what’s already
included in many consumer mobile phones.
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Fig. 1.
(a) Example green band PPG signal obtained after averaging a 50×50 pixel region. (b)
Example HRECG (thin black line) and HRGREEN (thick blue line) during spontaneous
breathing. (c) Example HRV plots from ECG (thin black line) and GREEN (thick blue line).
Additional high-frequency noise (>0.4 Hz) is present in the GREEN signal.
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Fig. 2.
(a) AM and (b) FM sequences obtained from time-frequency analysis of the GREEN cardiac
signal. (c) PSD of FM sequence (thick lines) and respiration trace signal (thin dashed lines)
during metronome breathing at 0.2 (black), 0.3 (red), and 0.4 (blue) Hz.
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Fig. 3.
Oxygen saturation measured by a commercial pulse-oximeter (thin black line) and computed
using the model shown in eq. (1) from RED and BLUE band signals obtained from a mobile
phone camera (thick black line) for two subjects.
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