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Abstract—This paper presents a multisensing system with wire-
less communication capabilities embedded on a smart wheelchair
that can measure physiological parameters such as heart rate
and respiratory rate in an unobtrusive way. Ballistocardiography
(BCG) sensors and a three-axis inertial microelectromechanical
system accelerometer are embedded on the seat or in the backrest
of the wheelchair and the acquired data are transmitted by Wi-Fi
to a laptop computer for advanced data processing and logging.
In addition, a 3-D accelerometer with ZigBee communication
capability is used to extract information about the user’s posture.
Considering the static and dynamic use of the wheelchair, an
extended set of measurements for different utilization scenarios
was analyzed. An important part of this paper is focused on
BCG noise and artifacts removal and heart rate and respiratory
rate accurate estimation from BCG signal using wavelet-based
filtering and independent component analysis algorithms. A study
on wavelet-based filtering considering different types of mother
wavelets and different levels of decomposition was also carried out.
In the future, other signals will also be acquired to improve the
system capabilities and flexibility.

Index Terms—Ballistocardiography (BCG), independent com-
ponent analysis (ICA), unobtrusive sensors, wavelet decomposi-
tion, wheelchairs.

I. INTRODUCTION

H EALTH costs reduction leads to challenging problems

in telemedicine, electronic health data logging, and re-

mote monitoring of in-home patients [1]–[3]. With regard to
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physiological parameters and motion status of the assessed

persons in a continuous healthcare context, different solutions,

including portable instruments and wearable sensing systems,

are reported in the literature [4], [5].

Monitoring physiological signs in an unobtrusive way can

significantly reduce the stress impact of apparatus utilization on

patients, particularly to those with a certain degree of physical

limitation. However, up to now, only few devices have been

proposed in the literature. Recent research has been focused on

techniques for using a common flush toilet to monitor health,

including measurements of weight, body fat, pulse, or even

blood pressure [6]. Embedding sensors in office chairs for heart

rate, respiration, and blood pressure monitoring has already

been realized [7]–[9]. Devices for patient movement detection

[10], [11] and vital signs monitoring in bed [12] or installed in

household furniture are reported in the literature [13]. As far as

we know, only one research group works on embedded physio-

logical sensors on wheelchairs [14], [15]. In the referred proto-

type, one seat-type noncontact electromechanical film (EMFi)

sensor was used to obtain the ballistocardiography (BCG) sig-

nal and 3-D accelerometers to help BCG noise removal. Their

studies clearly showed that the BCG signal is seriously affected

by the movement of the patients in the wheelchair, but the work

that they report was focused on the signal acquisition module

implementation using a personal digital assistant (PDA) and a

ZigBee connection.

In this paper, we applied different kinds of algorithms to

extract the information from BCG and acceleration. The noise

removal is based on stationary wavelets transform [16], [17]

multiresolution wavelet decomposition for signal feature ex-

traction [18], [19] and independent component analysis (ICA)

[20]–[22] are nowadays important techniques in biomedical

signal processing, particularly for electrocardiography (ECG)

and electroencephalography (EEG) [23]. The aforementioned

methods were object of the research activity of our group with

regard to BCG signal processing for cardiac and respiratory

activity estimation.

The goal of this paper is to present a measurement system

embedded on a wheelchair for accurate monitoring of the

cardiac and respiration activity for different scenarios such as

a stopped wheelchair, a self-driven hand-operated wheelchair,

and a hand-operated wheelchair pushed by a helper. An im-

portant part of this paper is the experimental study of the

artifacts generated by different mechanical impacts applied to

the wheelchair.

0018-9456/$26.00 © 2010 IEEE
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Fig. 1. Physiological parameters measurement system based on unobtrusive
sensing units embedded on a wheelchair (W-DAQ module, CC&PS condition-
ing circuit, and power supply module, BCG-SP—ballistocardiography primary
sensor, BCG-SS—ballistocardiography secondary sensor).

The analysis of BCG noise and artifacts removal for accurate

measurement of the heart rate and respiratory rate for different

wheelchair movement scenarios was done using a set of EMFi

sensors and a 3-D accelerometer mounted on the wheelchair

seat and backrest. The signals from the sensors are acquired

using a remote data acquisition unit with Wi-Fi capability that

communicates with a laptop PC. Wavelets algorithms and ICA

software modules developed in LabVIEW were implemented at

the PC level. Elements with regard to the measurement system

power consumption are also included in this paper.

This paper is organized as follows. Section II mainly presents

the unobtrusive multisensing system hardware, highlighting the

sensors’ characteristics and the general design of the smart

wheelchair. Section III is dedicated to BCG signal processing,

including a brief description of wavelets and ICA processing

algorithms. Results obtained for different wheelchair usage

scenarios, and for different data processing, applied algorithms

are presented and discussed in Section IV, followed by a

conclusion and a reference list.

II. UNOBTRUSIVE MULTISENSING SYSTEM

The unobtrusive sensing system includes BCG sensing

(BCG-S) and inertial sensing (INS) units embedded on the

wheelchair’s seat and backrest. The redundancy of BCG-S

units was imposed to extract correlations between the BCG

signals from different parts of the user’s body, which reflects

mechanical activity of the heart and the wave propagation

through the blood vessels. As shown in Fig. 1, the primary and

secondary BCG sensors BCG-SP and BCG-SS are embedded

on the wheelchair seat and backrest, respectively. Because

both sensors are closely placed, the main BCG waves may be

considered synchronous for analysis.

The BCG and acceleration sensors are connected to a signal

conditioning circuit and a power supply module (CC&PS), as

depicted in Fig. 1. The outputs of the conditioning circuit are

connected to a multichannel wireless data acquisition (W-DAQ)

module. In addition, a ZigBee 3-D accelerometer was attached

to the wheelchair user’s chest to record information related to

the user’s posture (tilt angle) and acceleration values that are

correlated with the values measured by the other sensors (wired

accelerometers, BCG-SS, and BCG-SP; see Fig. 2).

Fig. 2. Posture measurement unit based on an inertial-sensor (3-D accelerom-
eter) ZigBee-compatible advanced processing unit (APU).

Fig. 3. BCG-SP and BCG-SS charge amplifier scheme and Wi-Fi—DAQ
connection.

A. BCG-S Unit

The BCG-S is performed by an EMFi sensor (EMFIT

L-3030) that is made of a thin porous polypropylene film

structure, with several layers separated by air voids that are

10–100 µm wide and only a few micrometers high [24]. When

an external pressure is applied on the surface, it will change

the thickness of the air voids, which leads to electrical charges

movement that will originate a voltage at the output of a two-

channel charge amplifier (BCG-QA) [25]. The circuit uses a

1/2 TLC2274 quad low-noise rail-to-rail operational amplifier

(OP), one for each sensor, BCG-SS and BCG-SP, and a parallel

combination of RQ = 10 MΩ, CQ = 20 pF (see Fig. 3). This

operational amplifier is characterized by a high-impedance

(1012 Ω) and low-noise (9 nV/
√

Hz typical at f = 1 kHz).

The BCG-CC output voltage depends on the EMFi sensitivity

[Sq (in picocoulombs per newton)] and the amplitude of the

force applied Fhj (in newtons). It is expected that this force can

somehow express the heart and respiration activity. VBCGj is

given by

VBCGj =
1

C
· Sq · Fhj (1)
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Fig. 4. EMFi response for different impact forces (Fi) when mechanically
preloaded with F1 (39.2 N) and F2 (76.3 N).

where C represents the capacitance value associated with the

charge amplifier scheme, j represents the BCG sensor index,

and j = {1, 2}. According to (1), for the same type of EMFi

sensor that materializes BCG-SP and BCG-SS, better responses

are obtained from the BCG-SP for passive interaction between

the wheelchair user and the sensing system, whereas in the

BCG-SS case, the BCG signal is more representative when the

wheelchair user actively interacts with the sensing component.

EMFi sensors present high sensitivity to perpendicular forces,

because they lead to a variation of the sensor’s thickness while

showing very low sensitivity to tangential forces [26].

According to [27], the dynamic response characteristic of

EMFi sensors is dependent on preload conditions. Thus an

experimental procedure was set up to evaluate their behavior

by preloading them first with a static force (F1prel = 39.2 N,

and F2prel = 76.3 N) and then additionally applying an impact

force in the form of an object in free fall. The impact forces

were calculated as Fi = {1.85, 2.44, 2.87, 3.27, 4.72} [N], as-

suming that Fi = mig for objects with a uniform mass distribu-

tion mj that fall from a height of 30 cm to the preloaded sensor.

The obtained results are presented in Fig. 4.

The voltage signals delivered by the BCG-CC (VBCG-SP

and VBCG-SS) are acquired using the W-DAQ (NI WLS-9215)

acquisition module, which presents the following characteris-

tics: four simultaneously sampled analog inputs, up to 100 kS/s

acquisition rate, and 16-bit resolution (see Fig. 5). The acquired

data are wireless transmitted to the laptop PC, where they

are digitally filtered to estimate the respiration and heart rates

(based on the I or J peaks detection of the BCG-wave).

Fig. 5 presents an example of the signals obtained from

BCG-SP and BCG-SS after being digitally filtered. The signals

show a maximum variation of about ±30 mV and correspond

to the direct output of charge amplifier without amplification.

An additional amplification stage can be included as part of

the conditioning circuit. The gain must, however, be moderate

to avoid amplifier saturation due to the high sensitivity of the

sensor to the user’s higher amplitude movements and to impacts

between the wheelchair and different objects during motion.

B. INS Unit

The INS unit is expressed by a three-axis accelerometer

LIS3LV02DQ (STMicroelectronics ) that delivers a set of ana-

log voltages, Vx, Vy, and Vz, that reflect the wheelchair motion

state, impacts, and quick motions of the user, respectively.

The accelerometer is embedded in the wheelchair seat, and

Vx, Vy, and Vz are connected to the available input channels

of W-DAQ. The W-DAQ four input channels are thus used to

acquire the voltage from one BCG-S channel and the voltages

from one of the 3-D accelerometer at a time. The acquired

signals are wireless transmitted to the processing unit and used

as inputs for BCG artifacts removal processing blocks.

C. Tilt Sensing Unit

To extract the correspondence between the user’s postures

resting on the wheelchair and BCG acquired signals, a set of

accelerometers was included. The obtained information can be

used to increase the accuracy of the algorithms associated with

respiration rate and heart rate measurement based on BCG sig-

nal processing. The tilt angle associated with the user’s posture

while resting on the wheelchair is measured using ZSTAR3

3-D digital accelerometer sensor MMA7456L (Freecom) that

communicates through the ZigBee protocol, with the receiving

node connected by a Universal Serial Bus (USB) to the laptop

PC. Based on the information delivered from the transmission

node attached to the chest of the user, the tilt values are

calculated by the ZSTAR3 software installed in the PC. One

example of the variation of the tilt angle in the scenario of the

user who is resting on the wheelchair is presented in Fig. 6.

The obtained results highlight that, when the wheelchair user

is resting, the tilt angle variation is small, and thus, low-level

artifacts will affect the BCG signals. In contrast, a motion

wheelchair scenario can conduct to a high level of tilt variation

that strongly affects the BCG signals, making signal processing

tasks more difficult.

III. BCG SIGNAL PROCESSING

Using the aforementioned system, the BCG signal samples

are received by the laptop PC, where several signal processing

modules are implemented. The main tasks performed are given

as follows: 1) noise and artifacts removal from the BCG signal;

2) physiological parameters estimation, including heart rate and

respiration rate estimation; and 3) wheelchair motion status

estimation and wheelchair obstacle detection.

Considering that, in the BCG signal case, the useful informa-

tion is in a frequency band of 0–30 Hz, a set of IIR Butterworth

digital low-pass filters (LPFs) characterized by fc = 30 Hz,

N = 20 (N-filter order) were implemented as part of the signal

processing software. Thus, in the first processing stage, VBCG1,

VBCG2, Vx, Vy, and Vz signals are acquired at a 1-kS/s sam-

pling rate and are digital filtered. For the utilization of 1 kS/s

as a sampling rate, we considered the possibility of performing

offline, or even online, processing of the BCG to estimate the

heart rate variability by using the time intervals between two

successive peaks (I-I, J-J) of the BCG waves [7]. We also
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Fig. 5. BCG waves obtained from BCG-SP and BCG-SS after digital filtering.

Fig. 6. Tilt angle variation with the user in the resting position seated on the wheelchair (60 samples/s).

took into account the Task Force Standard recommendations

with regard to the used acquisition rate for accurate heart

rate variability estimation from ECG signals [26]. However,

the noise (that can be generated by muscle movements) and

artifacts (that can be generated by wheelchair motion) are still

present in the BCG signals. A set of advanced signal processing

software modules for enhancing the quality of the BCG signals,

i.e., stationary wavelet filtering (WF) with soft thresholding,

were designed and implemented [16] and ICA.

A. Wavelet Filtering

Two digital filtering stages (WF1 and WF2) based on wavelet

algorithms were implemented. WF1 is based on discrete sta-

tionary wavelet transform (SWT) combined with soft thresh-

olding techniques, whereas the second stage (WF2), which

receives the processed signal from WF1, is based on the discrete

wavelet transform (DWT), and it is used for cardiac and respira-

tory activity signal estimation through heart rate and respiration

rate calculation. WF2 is implemented as a digital filter bank

that consists of pairs of digital high-pass filters (HPFs) and

LPFs organized in a tree structure. Thus, the VBCG−SS and

VBCG−SP signals are decomposed at each scale (e.g., the j
scale) into details coefficients (dj) as a result of HPF and

approximation coefficients (aj) as a result of LPF. Thus, the

wavelet coefficients can be expressed by the following inner

products:

dj(k) = 〈x(l),Ψj,k(l)〉 (2)

aj(k) = 〈x(l), φj,k(l)〉 (3)

where Ψj,k(l) and φj,k(k) are, respectively, the scaled and

translated versions of the basis functions (e.g., Daubechies-

type) associated with the HPF and LPF impulse response, i.e.,

Ψj,k(l) = 2−j/2Ψ(2−j l − k) (4)

φj.k(l) = 2−j/2φ(2−j l − k). (5)

Different decomposition levels (j = 4 to 10) were considered

in this paper for accurate estimation of the considered respira-

tion or heart activity by the processing of the BCG signals.

Daubechies db4, db5, . . ., db8 mother wavelets were used for

representation of the respiratory and heart signals (Resp(n) and

Heart(n)) in digital form, i.e.,

Resp(n) = aJ (n) =
∑

k∈Z

aJ(k)φj,k(n) (6)

Heart(n) =
∑

k∈Z

dm(k)Ψm,k(n) +
∑

k∈Z

dp(k)Ψm,k(n). (7)
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Applying the advanced peak detection functions from

LabVIEW, the Resp(n) and Heart(n) acquired waves were

processed to extract the values for respiration rate and heart rate

values that were compared with those obtained using reference

measurement equipment (a photoplethysmograph from Medlab

and a spirometer from ADInstruments).

B. Independent Component Analysis

According to their morphology in the time domain, the com-

ponents that result from the ICA of the BCG signals received

and stored in the laptop PC level can roughly be divided

into three categories: 1) normal BCG (normal BCG from the

seat and normal BCG from the backrest); 2) continuous noise

(associated with muscle activity and body movements); and

3) abrupt changes (wheelchair—obstacle impact). The ICA

model is defined by

X = A · S (8)

where the vector S represents m independent sources, the

matrix A represents the linear mixing of the sources (mixing

matrix), and the vector X is composed on m observed signals.

The aim of ICA application is to recover the original sources

(e.g., the heart’s mechanical activity expressed on the BCG

signal) by assuming that they are statistically independent. The

implemented ICA algorithm is related to the matrix U, U =
A−1, to undo the mixing effect; thus

Se = U · X (9)

where Se represents an estimate of sources. To solve this

problem, different algorithms are known. One of them is

FastICA [27], which minimizes mutual information between

sources, and estimates individual independent components as

projection pursuit directions. To ensure easy integration of the

ICA processing module on the system software, the LabVIEW

Advanced Signal Processing Toolkit (Time-Series Analysis

Tool) was used [28]. Thus, the signals acquired from one of

the BCG-S channel and from the 3-D accelerometer were

processed using a set of statistical analysis functions, including

ICA. To ensure optimal noise removal, the kurtosis (Kurt)

values (10) are calculated for time segments (e.g., 10-s time

segments) associated with independent source signals obtained

by applying a fast ICA algorithm. For a Kurt module value

less than an imposed threshold (e.g., 0.5), the independent

source signal associated the ICA component is considered

a continuous noise and will be multiplied by 0 before the

reconstruction of the BCG and accelerometer signals using the

calculated mixing matrix

Kurt(x) =

N
∑

i=1

(xi − x)4

(N − 1) · σ4
(10)

σ =

√

√

√

√

1

N
·

N
∑

i=1

(xi − x)2 (11)

where x represents the arithmetic mean, σ the standard devia-

tion, and N represents the number of samples.

Fig. 7. Volunteer age, weight, and height distribution.

Fig. 8. Wheelchair-driving path (a) and the corresponding tilt angle variation
during one course registered with a free scale accelerometer mounted on the
user’s chest (b).



POSTOLACHE et al.: PHYSIOLOGICAL PARAMETERS MEASUREMENT BASED ON WHEELCHAIR EMBEDDED SENSORS 2569

Fig. 9. BCG wave evolution for straight and 30◦ tilt angle for a volunteer with a height of 188 cm and a weight of 81 kg seated on the wheelchair.

Referring to the ICA-based artifact removal, the variance

index (var = σ2) is used. After noise removal (associated with

Kurt calculation), the remaining ICA components are divided

into N nonoverlapping time segments. The variances of the

N segments are calculated, and for an imposed threshold, it

can be identified as the time segments that correspond to the

artifacts. The component whose variance is above a predeter-

mined threshold is marked as an abrupt change component and

is multiplied by 0. The signal reconstruction is done using mix

matrix A, as in the noise removal case, and the resulting signals

are used to obtain the physiological parameters using wavelets

algorithms as described on Section III-A.

IV. RESULTS AND DISCUSSIONS

The designed and implemented system was tested using eight

volunteers whose age, weight, and height are represented in

Fig. 7.

With regard to the imposed conditions during the wheelchair

tests, the subjects were kept seated for 15 min and were told to

relax. Considering that the user’s position and movements when

seated on the wheelchair during motion can induct important

changes on the BCG waves, different tests were carried out. A

volunteer’s tilt angle was measured when the wheelchair was

driven along a predefined path. The used path and the values

of tilt angle for a wheelchair user are presented in Fig. 8(a)

and (b).

The influence of path profile on tilt angle and on BCG waves

was analyzed in order to estimate the wheelchair user’s posture.

The BCG acquired signals are shown in Fig. 9 for two tilt angles

of the user who is resting on the wheelchair. The comparison

of the BCG waves profile acquired when the tilt angle was

less than 30 degrees has shown no significant differences that

underlines the robustness of BCG measurement.

Using BCG-SP and BCG-SS measurement channels con-

nected to the W-DAQ module, different signals for the static

and dynamic conditions were wirelessly received by the laptop

PC. Figs. 10 and 11 present examples of the acquired signals

for the aforementioned time interval from BCG-S units for two

new scenarios: a) the user rests on the wheelchair and b) a self-

driven manually operated wheelchair.

With regard to signal processing, different steps are carried

out according to the various scenarios. Thus, when the user rests

on the wheelchair (static test), the acquired signal is directly

processed using digital filtering and wavelets, whereas in the

self-driven operated wheelchair, the artifact removal based on

the ICA algorithm is followed by digital filtering and wavelets

decomposition to extract the information about heart rate and

respiration rate.

To extract the respiration signal, the WF algorithm, expressed

by multiresolution wavelet decomposition, is applied. A study

with regard to the optimal WF (DWT decomposition) that per-

mits to estimate the respiratory signal Resp(n) and respiration

rate from the BCG signals was carried out. Different types

of mother wavelets (Daubechies db2, db3, db4 to db8) and

different decomposition levels (7, 8, 9, and 10) of the cardiac

signal were considered for an accurate respiratory rate and

heart rate estimation based on the peak detection procedure

followed by detected peaks count for periods of 1 min. The

respiration signals obtained for the particular case of db4 and

level 9 of wavelet decomposition is presented in Fig. 12. As

it can be observed, both sensing units BCG-SP and BCG-

SS provide useful and coherent information for respiration

rate estimation [RespR = 18 (BCG-SP case) and RespR = 17
(BCG-SS case)]. Based on wavelet decomposition details, the

HR information was also obtained.

A study with regard to the heart rate estimation error was

carried out for different mother wavelets and for different levels

of decomposition. A graphical representation of the respiration

signal obtained as a tenth-wavelet approximation and of the

cardiac signal reconstructed from D8, D9, and D10 details is

presented in Fig. 13. Based on an implemented peak/valley de-

tector, the heart rate is estimated. The capabilities of the imple-

mented heart rate estimation algorithm that combines wavelet
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Fig. 10. Normalized values of BCG signals acquired from the BCG-SP and BCG-SS units when the user rests on the wheelchair (scenario a).

Fig. 11. Normalized values of BCG signals acquired from the BCG-SP and BCG-SS units in the scenario b)—self-driven hand-operated wheelchair.

decomposition, wavelet reconstruction, and peak/valley detec-

tion were estimated using a Medlab (P-100X) physiological

parameter measurement system that calculates the heart rate

from ECG and plethysmogram signals. For validation of the

respiration rate estimation, a Spirometer system (ML311 and

Power Lab from ADInstruments) was used.

The algorithm capabilities were evaluated using two parame-

ters: 1) false positives (FPs) and 2) false negatives (FNs). The

total number of FPs represents a detector error of BCG J-wave

that is not presented in the analyzed signal, whereas the total

number of FNs represents a detector error of missed BCGJ-

waves detection in the analyzed signal. Thus, the error rate is

defined by e[%] = ((FP + FN)/total number of beats)100[%].

The values calculated by a set of BCG processed signals were

less than 1% for an acquisition time of less than 60 s.

Considering scenario b), when the user who is seated self

drives the wheelchair, the BCG signals are characterized by an

important quantity of artifacts that are sensed by the three-axis

accelerometer (see Fig. 14).

Based on the correlations between the acceleration signals

(Vx, Vy, and Vz) and the BCG signal acquired from the BCG-

SP unit, a fast ICA algorithm is applied for noise and artifact

removal. The signals from the measurement channels acquired

for 120–150 s at 1 kS/s were used in the first step to calculate

two statistic parameters, Kurt and variance index, whose values

express the noise or artifacts in the acquired signal. Fig. 15
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Fig. 12. Respiration signal estimation based on wavelet filtering of the BCG signals acquired from the BCG-SP and BCG-SS units in scenario a)—the user rests
on the wheelchair.

Fig. 13. Respiration signal and cardiac signal as a result of tenth-wavelet decomposition for db5 mother wavelets in scenario a)—the user rests on the wheelchair.

shows the evolution of Kurt for ICA1, ICA2, ICA3, and ICA4

resulting from the implemented fast ICA algorithm based on

the TSA ICA LabVIEW Function [28].

Four ICA components were calculated for the signals pre-

sented in Fig. 5 and correspond to wheelchair motion. Low

values of Kurt (Fig. 15) reveal a region characterized by noise.

Imposing a Kurt threshold of 5, noise removal will be done by

multiplying by 0 the ICA3 and ICA4 samples associated with

2–11 time segments (2 ≤ Nts ≤ 11) and reconstructing the

BCG and acceleration signals using the mixing matrix already

calculated.

To identify the time segments characterized by artifacts,

the variance index is calculated. Fig. 16 presents the variance

values for the aforementioned Nts time segments.

High values of the variance index signify the presence of arti-

facts. In this case, ICA1 and ICA2 present relatively high values

of variance for Nts ≥ 12. For these values of Nts, ICA1 and

ICA2 are multiplied by 0. The signals reconstruction was done

using ICA3 and ICA4 and the mixing matrix. For the particular

case of Nts = 13, some results are presented in Fig. 17.

This figure shows that additional processing, which is based

on wavelets, might be used to eliminate the large artifacts

associated with the wheelchair motion. The utilization in

the present application of a Wi-Fi-compatible (IEEE802.11g)

W-DAQ makes the measurement possible when the wheel-

chair is in motion, which represents the main strength of the

implemented solution. Considering the IEEE802.11g indoor

wireless communication range (about 200 m) and the data

communication rate (54 Mbps), the used solution represents

a better choice compared with a Bluetooth-based solution.

However, the Wi-Fi communication protocol is characterized

by intensive power consumption, which limits the autonomy
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Fig. 14. BCG signal provided by the BCG-SP unit for 140 s when the
wheelchair is in motion and subject to strong artifacts.

Fig. 15. Evolution of Kurt for a set of ICA components and for a number Nts
of 10-s time segments.

of the system. To evaluate the system’s autonomy when a

12-V/7-Ah battery is used, different tests were carried out.

Part of the results are presented in Fig. 18. The figure shows

the current, voltage, and power variation during the operation

for an ad hoc implemented architecture. Two kinds of opera-

tion status were considered: 1) Wi-Fi connection between PC

and W-DAQ without data communication (no acquisition) and

2) Wi-Fi connection between PC and W-DAQ with data com-

munication (the acquisition of the voltage from the BCG and

Fig. 16. Evolution of variance index for a set of ICA components and for a
number Nts of 10-s time segments.

Fig. 17. BCG signal reconstruction from ICA components for 10-s segment.
(a) All of ICA components were used. (b) Two ICA components were used
according to the noise removal criteria. (c) Two ICA components were used
according to the artifact removal criteria.

acceleration measurement channel is carried out). With re-

gard to the power consumption, it can be underlined that the

Wi-Fi communication is the main contributor (3.1 W, in stand-

by mode, and no data transmission), because data transmission

and remote acquisition are responsible for only about 0.2 W

(3.3 W, overall).
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Fig. 18. W-DAQ voltage, current, and power consumption evolution with
(b) and without (a) sensor data wireless acquisition.

V. CONCLUSION

This paper has presented an unobtrusive way of recording

vital signs from a user seated on a wheelchair. The proposed

system can significantly reduce the stress caused by the usual ap-

paratus, therefore improving the quality of health care services

and allowing continuous patient monitoring. The multichannel

sensing units of BCG and acceleration provide signals that are

acquired by a data acquisition module with wireless capabilities

(Wi-Fi) and then transmitted to the advanced processing unit

expressed by a laptop PC. The usage of two BCG channels

materialized by EMFi sensors placed on the seat and on the

backrest of the wheelchair ensures high reliability and sensi-

tivity of the system and also permits fusion of the information

to extract the physiological information in an unobtrusive way

for different scenarios of usage of this smart wheelchair. With

regard to BCG and acceleration signal processing, wavelets

and ICA algorithms were implemented in software using

LabVIEW and Advanced Signal Processing Toolkit (Time-

Series Analysis Tool). Good results of heart rate and respiration

rate were obtained by calculating the wavelet decomposition

of the acquired BCG signals using Daubechies mother

wavelets. To ensure artifacts removal, an ICA algorithm was

implemented, and a set of the obtained results was presented.
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