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Abstract: On the world stage, the increase in temperatures due to global warming is already a reality
that has become one of the main challenges faced by the scientific community. Since agriculture is
highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures
are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been
the subject of research by numerous groups worldwide. Initially, these studies were concentrated
on model plants, and, later, they expanded their studies in several economically important crops
such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of
cultivars and the classical genetic improvement process focus, above all, on productivity, historically
leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of
the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently
being sought and adopted in breeding programs to understand the physiological, biochemical, and
molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the
world food security. Moreover, integration of these approaches is bringing new insights on breeding.
We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
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1. Introduction

Nowadays, the increase in temperatures as a result of global warming and other
factors is already a reality. This scenario represents one of the main challenges posed to
the scientific community today. Agriculture is highly dependent on climatic conditions;
therefore, it may suffer a great impact if no measures are taken to adapt and mitigate
agricultural systems. Among the abiotic stresses, drought, salinity, extreme temperatures,
chemical pollutants, nutritional deficiency, and oxidative stress stand out as the main
environmental restrictions modern agriculture faces. These are factors that compromise
development and growth, in addition to influencing the morphological, physiological,
biochemical, and molecular processes of plants [1]. Plant responses to abiotic stresses have
been the subject of numerous studies worldwide. Initially, they were carried out on model
plants and, later, on several economically important crops such as rice, corn, soybeans,
coffee, and others. However, agronomic evaluations for the launching of cultivars and
the classical genetic improvement process focus, above all, on productivity, historically
leaving factors such as tolerance to abiotic stresses in the background. Considering the
importance of the impact that abiotic stresses can have on agriculture, new strategies
have been sought in breeding programs to understand the physiological, biochemical, and
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molecular responses to environmental disturbances in agronomic plants. For example, we
researchers are faced with the growing need to understand the genes present in important
regulatory pathways that can be introgressed in breeding programs, aiming to increase and
help the plant tolerate different abiotic stresses. We will discuss how water deficit, high
temperatures, and salinity exert effects on plants.

2. Response Mechanism to Abiotic Stresses in Plants

Plants are often exposed to different situations of abiotic stresses. In evolutionary
terms, adapted organisms are those that have managed to modulate several response mech-
anisms in favor of their defense in order to overcome such stresses and return to normal
basal metabolism. Importantly, these environmental factors severely limit agricultural
growth and productivity. As an example, the increase in atmospheric CO2 can trigger
changes in the photosynthetic rate of plants, causing changes in the growth rate, which
usually impacts positively overall biomass, but decreasing nutritional quality [2,3]. Plants
respond to stimuli caused by stress with distinct changes related to their development and
physiology. In this context, many mechanisms like photosynthesis and gas exchange [4,5],
cell death, changes in cell wall composition [6], nutrient translocation [7], transcriptional
activity of genes, transposable elements [8], lipid signaling [9], metabolites, proteins [10],
and antioxidant profile [11] can be changed during stresses.

The physiological response mechanism for abiotic stresses occurs from a complex
pathway of responses, starting with the perception of stress, which triggers a cascade of
molecular events, ending at various levels of physiological, metabolic, and developmental
responses [12]. These are summarized in Figure 1.
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Figure 1. Plant response cascade to different abiotic stresses.

With the perception of these imbalances induced by the abiotic stresses listed above,
plants redirect their energy and nutrients to reproduction and defense mechanisms, causing
a decrease in the growth rate that results in lower biomass production.

3. Water Deficit in Plants

Due to the ongoing climate change scenario and the rising human population, water
availability is a crucial issue for agriculture, the world’s largest water user, accounting
for more than 70% of global withdrawals [13]. Irrigated agriculture covers 20% of world
cultivated lands and accounts for 40% of global food output. On average, irrigated agri-
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culture is at least twice as productive per unit of land as rainfed agriculture [13]. Water
normally represents from 50 to 90% of plants’ fresh weight. The majority of water content
(60–90%) is located within cells, and the rest is mainly in cell walls [14]. In this scenario,
the maintenance of growth and crop productivity under adverse environmental stress
conditions such as water deficit represents one of the main challenges of modern agricul-
ture [15]. Water deficit occurs when the plant water requirement cannot be fully satisfied
(e.g., through enough precipitation or irrigation), and the plant’s normal functioning is
affected (e.g., growth, photosynthesis rate, stomatal conductance). In other words, water
deficit occurs when the transpiration rate from the leaf surface is higher than the water
uptake by roots. This imbalance between water uptake and water loss is related to a
lower soil water potential than the roots [16]. Several factors can cause plant water deficit,
including inadequate precipitation, high evaporative demand, decreased groundwater
level, and water retention by soil particles [14,17]. This period of abnormally dry weather,
resulting in soil-water deficit and subsequently plant water deficit, is defined as drought, a
major abiotic stress that negatively influences crop production and yield [18]. The impacts
of drought on agriculture are aggravated due to the depletion of water resources, increased
food demand, and climate changes [19]. These have become the most important limiting
factors to crop productivity and ultimately to food security, increasing the pressure on agri-
culture to use water more efficiently. As such, agricultural water consumption, water use
efficiency (WUE), and the development of drought-tolerant plants are crucial for improving
crops. WUE is defined as the amount of carbon assimilated as biomass or grain produced
per unit of water used by the crop [20]. It determines the plant’s ability to cope with
moderate or severe soil water deficit, representing a major factor in plant survival under
drought stress [21]. Increasing the WUE of crops constitutes a major goal of breeding and
genetic engineering efforts [22]. Using QTL analysis, Damerum et al. (2021) [23] identified
genomic regions controlling WUE in wild and cultivated lettuce under well-watered and
droughted conditions. QTL were detected for carbon isotope discrimination, transpiration,
stomatal conductance, leaf temperature and yield, controlling 4–23% of the phenotypic
variation. Candidate genes such as aquaporins, late embryogenesis abundant proteins,
abscisic acid-responsive element binding protein and glutathione S-transferase were found
in this region associated with WUE [23]. Jia et al. (2021) [24] showed that the overexpression
of MdATG8i-OE (autophagy protein) gene in apple resulted in plants exhibiting higher
WUE than wild-type under long-term moderate drought conditions.

Since the last century, several attempts have been made to improve and/or generate
drought-tolerant plants. To achieve this goal, different techniques have been used, from
plant breeding to the production of transgenic lines, as well as the use of precise genome
editing methods and omics approaches.

The employment of plant breeding methods has an enormous potential to accelerate
drought-tolerant plant production, and considerable progress has been made in this di-
rection in different crops such as barley [25,26] soybean [27], popcorn [28,29], rice [30,31],
wheat [32,33]. However, developing drought-tolerant plants through breeding is restricted
by a narrow genetic pool, low heritability of drought tolerance/resistance, the complexity
involved in tolerance, and the extent of environmental interactions [34].

In contrast, identifying and characterizing drought-related molecules by omics tech-
niques (i.e., genomics, transcriptomics, proteomics, and metabolomics) has opened great
opportunities for crop improvement. By combining molecular and physiological analysis,
Chevilly et al. (2021) [35] characterized the drought response of two broccoli cultivars
(drought-sensitive and drought-tolerant). The authors found increased levels of methio-
nine and abscisic acid in drought-tolerant cultivars while urea, quinic acid, and gluconic
acid lactone levels decreased. In a multi-omics and functional characterization analysis
Mehari et al. (2021) [36] found that the gene Gh_A06G1257 (GhALDH7B4), belonging to
the aldehyde dehydrogenase family, plays a role in drought tolerance. The authors also
found that the amino acids valine, glutarate, proline, glutamate, and tryptophan were the
most significant metabolites playing roles in drought stress tolerance [36]. Nevertheless,
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in practical terms, generating genetically modified plants is an arduous and demanding
task requiring complex and expensive laboratory methods [17]. Drought is a multidimen-
sional stress factor, and its effects on plants are complex. As a result, there are still many
gaps at the molecular and physiological levels regarding the molecular-to-physiological
mechanisms underlying plant responses to drought.

3.1. Strategies to Combat the Water Deficit

As sessile organisms, plants are exposed to several adverse factors in natural envi-
ronments. Water deficit, for example, can trigger a negative impact on plant growth and
development, compromising its yield. Plants have evolved numerous adaptation and accli-
mation strategies at different levels, ranging from morphology and anatomical structures
to physiological and biochemical reactions, aiming to preserve their hydric status [37].
The extension of plant responses depends on the length and severity of water deficiency
and its species, age, and developmental stage. Regardless of the temporary nature of the
stress, the plant’s set of properties and vital functions gradually decrease according to its
duration [38]. Moderate water deficit causes significant morphological and physiological
alterations, while severe deficit may lead to plant death [39]. Drought resistance refers to
the ability of plants to survive or grow in a harsh environment caused by drought stress
conditions. This capability is a sophisticated trait related to adaptations at different levels,
which allow plants to adapt to specific habitats for the benefit of their growth and develop-
ment [38]. Drought resistance mechanisms in plants can be classified into four categories:
avoidance, tolerance, escape, and recovery [40]. Drought avoidance is characterized by
the maintenance of high plant water potentials in the presence of water limitation. It is
responsible for rearrangements in plant morphology as well as in cellular metabolism (e.g.,
development of deeper root systems, stomatal closure, and leaf rolling, wax accumulation
on the leaf surface [41,42]. Drought tolerance relies on the ability of plants to sustain physi-
ological activities under severe drought stress conditions through the remodeling of gene
regulation and metabolic pathways to reduce or repair the resulting stress damage [40,42].
Drought escape refers to the synchronization of the plant growth period, life cycle, or
planting time to prevent the growing season from encountering drought [42]. Drought
recovery refers to the plant capacity to regenerate metabolism after the cessation of severe
drought, which causes the complete session of growth, turgor loss, and leaf desiccation [43].
Prolonged drought conditions are associated with drought escape or avoidance, whereas
short but severe drought periods induce drought tolerance [42]. As mentioned above,
plants have adapted to water limitation using different strategies at different levels, from
anatomical to molecular changes.

3.2. Physiological Strategies for Increasing Productivity under Water Deficit Conditions

Water limitation impairs normal plant growth, disturbs water relations, and reduces
water-use efficiency. To cope with this condition, plants have evolved a series of morpho-
logical, physiological, and biochemical responses, including changes in photosynthesis,
respiration, ion exchange, transpiration, osmotic regulation, activation of drought-induced
proteins, and antioxidant enzymes.

At the morphological level, the responses of roots and leaves are crucial to reduce
water loss and promote WUE. The root system plays a critical role in response to water
deficit stress. Its length, weight, volume, and density are important features associated
with crop drought resistance [40]. Leaf rolling is a drought-adaptive trait induced by turgor
pressure that reduces water consumption under water stress. Stomata are pores allowing
gas exchange between plant and environment, ensuring maximum absorption of CO2
for photosynthesis, and meanwhile controlling the optimal transpiration [40]. Plants first
recognize water deficit in the soil by root cells; then, abscisic acid (ABA) is synthesized.
Subsequently, ABA triggers signals to other organs and tissues through vascular bundles,
causing morphological/anatomical alterations such as leaves senescence, stomatal closure,
reduction of the leaf surface, induction of root to shoot ratio, and enhancing plant water
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uptake from soil by reducing the water potential contrary to the water-limiting environ-
ment through osmotic adjustments [44–46]. The ABA signaling pathway involves a cascade
of receptors, phosphatases, kinases, G-proteins, proteins in the ubiquitin pathway, and
transcription factors (TFs) [47]. Zhu et al. (2021) [48] found that the transcription factor ipa1
(ideal plant architecture 1) significantly improved rice drought tolerance at seedling stage
mainly through activating ABA pathway. The authors have used a pair IPA1 and ipa1-near
isogenic lines to obtain ipa1 plants that had a better-developed root system and smaller leaf
stomatal aperture. Stomatal closure mediated by ABA can be considered a quick short-term
response to water limitation. However, ROS, nitric oxide (NO), and calcium ion (Ca2+) are
known as secondary messengers involved in ABA-signaling, which can promote events that
facilitate plants’ long-term adaptation against biotic and abiotic stress (e.g., osmolyte accu-
mulation, up-regulation of adaptive genes, hypersensitive response (HR), and programmed
cell death (PCD)) [47]. Despite morpho-anatomical traits promoted by drought, physio-
logical and biochemical limitations might have a greater impact on plant performance.
Photosynthesis and respiration, the hubs of energy metabolism in plants, are negatively
impacted by drought. Photosynthesis is one of the main processes affected by water stress
as the photosynthetic and transpiration rates drop with the decrease of soil relative water
content. Stomatal closure decreases leaf CO2 influx, limiting carboxylation and internal
CO2 levels [49]. This lower CO2 diffusion from the environment to the carboxylation site is
considered the major reason behind decreased photosynthetic rate during mild to moderate
drought stress [50]. Water limitation also alters the electron transport chain (ETC), which
further enhances reactive oxygen species (ROS) (e.g., superoxide, hydrogen peroxide, and
hydroxyl radicals) within cell organelles, negatively affecting PSI and PSII photosystems
and causing disruption of thylakoid structures. To deal with drought-induced damage on
the photosynthetic apparatus, plant responses include changes in thermal dissipation of
light energy, photo destruction of the D1 protein of PSII, dissociation of the light-harvesting
complexes from photosynthetic reaction centers, and others [16]. Drought tolerance is a
costly phenomenon for plants, as they expend an enormous amount of energy to cope with
it. The root is a major consumer of carbon fixed in photosynthesis, with is used for growth
and maintenance in addition to dry matter production.

Plant growth is determined by the ratio between photosynthetic CO2 assimilation and
respiratory CO2 release. Modulation of the carbon metabolism of plant cells depends on the
balance between photosynthesis and respiration. The respiration rate is regulated by pro-
cesses that use respiratory products (adenosine triphosphate—ATP, nicotinamide adenine
dinucleotid—NADH) and intermediates from the tricarboxylic acid cycle (TCA), which
together contribute to plant growth. Although photosynthesis can become completely
impaired under severe drought, the respiration rate may increase [51] or decrease [38].
Reduced rates of photosynthesis are likely to reduce substrate supply to mitochondria,
resulting in a lower rate of foliar respiration. Alternatively, drought might increase the
demand for respiratory ATP to support cellular metabolism [52].

Under drought conditions, ROS are produced in plants’ mitochondria and might
damage cellular components [53]. The plant mitochondrial ETC includes a non-energy-
conserving terminal oxidase called alternative oxidase (AOX). This pathway, as well as
photorespiration, can be used by plants exposed to water deficit to maintain cell functioning
by preventing ROS accumulation [54]. The TCA cycle pathway can also be modified to pre-
vent the generation of excess reductants through the γ-aminobutyric acid (GABA) synthesis.
Its accumulation occurs during stress conditions and may constitute a stress adaptive re-
sponse [55,56]. The TCA cycle pathway can also be modified to prevent the generation of
excess reductants through the γ-aminobutyric acid (GABA) synthesis. Its accumulation oc-
curs during stress conditions and may constitute a stress adaptive response [55,56]. Xu et al.
(2021) [57] found that GABA does not initiate changes in stomatal pore aperture, rather it
antagonizes changes in pore size and, the authors proposed that cytosolic GABA signals
modulate stomatal opening, WUE and drought resilience transduced through negative
regulation of the ALMT9 (aluminum-activated malate transporter 9) activity.
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Plant hormones, secondary metabolites, inorganic acids, carbohydrates, amino acids,
and polyamines play crucial roles in stress tolerance mechanisms. The accumulation
of these compounds in plants reduces the osmotic potential and improves cell water
retention in response to water stress. Their increased levels represent the plant biochemical
responses to water limitation by altering membrane stabilization, osmoregulation, and ROS
scavenging, reducing leaf area and ion leakage, and promoting root development [58]. An
example is the amino acid proline, a key signaling moiety against drought stress, which
acts as an osmoprotectant [59]. Its accumulation helps plants maintain membrane integrity
through decreased lipid peroxidation by defending cell redox potential and declining
ROS levels. Other amino acids have been found to have a role in drought tolerance. [35]
found that drought tolerant broccoli plants presented higher levels of methionine [35]. In
cotton, valine, glutarate, glutamate, tryptophan and proline accumulated under drought
stress [36]. Recently, studies have indicated that exogenous application of various plant
growth regulator (PGRs), such as hormones, polyamines, organic acids, antioxidants,
osmoprotectants, and others improved drought resistance in crops [60–62]. These studies
reported that the application of PGRs enhance parameters such as photosynthetic capacity,
relative water content (RWC), gas exchange attributes and accumulation of osmolytes and
antioxidants. Such priming treatment is a very promising strategy in modern crops for the
development of drought resistance plants. As an example, Xie et al. 2021 [63] identified
that exogenous application of citric acid in tobacco plants resulted in higher chlorophyll
content, net photosynthesis, relative water content, abscisic acid content and lower stomatal
conductance, transpiration, and water loss under drought conditions.

3.3. Difficulties and Advances in the Development of Drought-Tolerant Cultivars

Drought tolerance is not a qualitative trait, but a complex quantitative polygenic
trait controlled by a large number of genes, each contributing to a small effect [64]. Fur-
thermore, drought-tolerant cultivars suffer from high interactions between genotype and
environment (G × E), low heritability, and difficulty in mass screening of plant traits and
genes [64,65]. This complexity explains the difficulty of understanding the molecular
mechanisms triggered by drought as well as the slow progress in yield improvement
in drought-prone environments. Conventional plant breeding has achieved genetically
improved drought-tolerant lines/cultivars of some selected crops [66]. However, this
approach is highly time-consuming and labor- and cost-intensive [67]. In recent decades,
crop physiology, marker-assisted breeding, and omics have led to insights into drought
tolerance mechanisms providing new knowledge and tools for plant improvement. Some
of the new technologies rely on marker-assisted selection (MAS), genome-wide selection
(GWAS), gene editing strategies, and omics approaches (genomics, transcriptomics, pro-
teomics, metabolomics). Phenomics is another important strategy that has been used to
improve the detection of drought-related traits by linking plant physiology with genomics
through image analysis, machine vision, robotics, and computing to widen the scope of
plant biology [68].

Despite the relevance of quantitative trait loci (QTL) and GWAS analysis in the iden-
tification of genomic regions for selecting drought-related alleles and identifying genetic
variants associated with drought-related traits, the candidate genes through which the
identified genetic variants exert their effects on traits are remained largely unknown [69].
In this respect, integrating a suite of modern breeding techniques with multi-omics plat-
forms and high-throughput phenotyping can greatly improve the current knowledge about
drought stress response in crops.

4. Salinity

In agriculture, land salinization has been shown to be a limiting factor in the last
half-century [70]. Currently, about one-third of the world’s arable area is suffering from
salinization, significantly reducing crop production and yield [71]. Soil salinization is
further aggravated at the global level due to poor irrigation practices, inappropriate agro-
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chemical usage, and industrial pollution [72]. In the meantime, salt concentrations, in
general, can cause changes in physiological and biochemical functions, restricting the
growth and development of both the aerial part and the root system of the plants. Salt
causes two types of stress in plants: osmotic and ionic. High salt concentrations in the soil
reduce the soil water potential, leading to reduced water uptake by plant roots [73]. On the
other hand, an excessive accumulation of ions as Na+ and Cl– in cells results in toxicity on
the plant or nutritional disorders [74]. In this sense, it is necessary to improve management
techniques to reduce the damage caused by this phenomenon and intensify studies and
plant improvement programs aimed at increasing tolerance to salt stress. Agricultural land
salinization poses a significant challenge for the future, given the predictions of climate
change and population growth.

4.1. Response Mechanisms to Saline Stress

In plants subjected to salinity, an osmotic adjustment mechanism is initiated to main-
tain the turbidity of the cells, resulting in the slow growth of stressed plants. In the
meantime, when plants are induced by salt stress, the changes triggered by it may vary
according to management and genotype, developmental stage, intensity, and duration of
stress [75]. Plants can trigger different physiological and biochemical mechanisms to deal
with the resulting stress (Figure 2), which include: changes in morphology, anatomy, water
relations, photosynthesis, hormones, ion distribution, and biochemical adaptation [76].
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The response of plants to salinity comprises two main steps: (i) the first is considered
rapid and is described as the osmotic phase, as the salt reaches the roots decreasing the
osmotic potential of the soil–plant relationship, triggering a reduction in shoot growth
due to reduced water potential.; (ii) the second is described as slow, and consists of
absorption and signaling of toxic ions, such as Na+ [77]. The main ions involved in
salt stress signaling are cations, such as Na+, Ca2

+, Mg2
+, and K+, and anions, such as

Cl−, SO4
−, HCO3

−, CO3
2− and NO3

−, as it is through the interaction of these ions that
cell homeostasis occurs. Plants under extreme salinization conditions limit the entry of
Na+ or accumulate this ion in their older tissues, providing the formation of a “stock”
environment, which will later be eliminated. Plants that, throughout evolution, have
shown characteristics and mechanisms adaptable to the saline environment are described
as halophyte plants. Several comprehensive reviews have been published on various
aspects of halophyte physiology [78,79]. Halophyte plants have developed three main
strategies to adapt to saline soils stress: uptake of high-concentration ions and store in
vacuoles, removal of absorbed salts by special cells, and restriction of salt uptake by stem
cells [80]. Salinity-sensitive plants (glycophytes) can accumulate minimal amounts of Na+

and Cl−. Glycophytes are more sensitive to the accumulation of these ions in their tissues
due to improper salt compartmentation, harming development and productivity [60]. The
roots are usually the first organ to sense the salt signal after plants are exposed to saline
conditions [81]. The root architecture modifications in response to salinity are mediated
by the suppression of cell division, initiation, elongation, or growth redirection away
from salt [82]. In addition, to adapt to stressful conditions, plants can acquire tolerance
by modifying root developmental processes that require metabolic alterations. In this
sense, Chun et al. (2019) [83] showed that in callus suspension, salt-adapted cell cultures
from Arabidopsis roots accumulated higher levels of sugars, amino acids, and intermediary
metabolites in the shikimate pathway, such as coniferin. Moreover, adapted cells acquired
thicker cell walls with higher lignin contents, suggesting the importance of adjusting
physical properties during adaptation to high-saline conditions. Another typical response
to salt stress is an increase in the root–shoot ratio, associated with water stress, rather
than a specific effect of salt [80]. A greater root proportion under salt stress can favor the
retention of toxic ions in this organ, controlling their translocation to the aerial parts [84].
Furthermore, a high spatial distribution of roots under salt stress can favor water absorption
due to plants’ increased soil exploration [81]. These responses may constitute a typical
plant resistance mechanism in saline conditions.

The increase in the concentration of soluble organic compounds in the cytoplasm
of cultivated plants subjected to salt stress is a mechanism used by plants to balance the
osmotic potential between the cytosol, vacuole, and external environment [85]. In addition,
these compounds prevent damage to the enzymatic systems and stabilize the structures of
the enzyme [86]. The osmotic adjustment can be performed by some compounds that plants
often produce and/or accumulate in stress situations, including quaternary derived from
amino acids such as proline, glycine, glycine betaine, β-alanine, and complex sugars such as
raffinose [87]. For example, in kiwi plants (glycophyte species) subjected to 0.3% and 0.6%
sodium chloride (NaCl), an increase in proline levels was observed in all genotypes [88].
In salt stress conditions, there was also an increase in the proline content and growth
rate in Zea mays [89]. The accumulation of proline in the cell wall can reduce the effects
of external disturbances on plants and increase the salt tolerance in Glycine max L. [90].
Plazek et al. (2013) [91] describe that, in halophytes, this osmolyte can act directly on
the osmotic pressure, while in glycophytes, proline can play two roles, playing both an
osmotic function and acting in the stabilization of the tertiary structure of proteins. In
addition to this osmoprotective function, these osmolytes help in the redox balance within
the cell and maintain the provision of energy, carbon, and nitrogen in plants [92]. Analyses
performed on C. arabica leaves under salt stress (150 mM NaCl) showed changes in cell
wall polysaccharides and increased monolignol content, which confers a barrier for salt
entrance [93].
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The photosynthetic process is involved in productivity and nutrient flows in plants.
Salinity affects the physiological activity of the leaf, particularly photosynthesis, which is
the main cause of reduced plant productivity [94]. Exposure to salinity leads to stomatal
closure, which reduces the photosynthesis ratio due to a decrease in stomatal conductance,
which restricts the access of CO2 for the Calvin-Benson cycle [95]. In addition, the effects of
salinity on photosynthesis may involve inhibition of electron transport and inactivation of
the photosystem II (PSII) reaction centers [96], destroying the oxygen-evolving complex
(OEC), and impairing the electron transfer capacity on the donor side of PSII [97]. The
salinity led to a decrease in photosynthetic rate, leaf osmotic potential, electron transport
rate, and CO2 concentrations in the chloroplasts of rice leaves [98]. PSII is damaged by
salinity. This was observed in cultivars of wheat, in which the total chlorophyll contents
and quantum yield of PSII significantly decreased due to salt stress (150 mM) [99]. Exposure
to 300 mM NaCl caused a decrease in stomatal conductance from day three and a reduction
in water potential, CO2 assimilation, and in the maximum quantum yield of photosystem
II (Fv/Fm) from day nine in leaves of Portulaca oleracea L. [100]. In addition, a decrease in
chlorophyll content is a commonly reported phenomenon under salt stress. Some studies
propose that chlorophyll concentration can be used as a possible indicator of the cellular
metabolic state [101]. In rice leaves, the reduction of the chlorophyll a and b content of
the leaves was observed after treatment with NaCl (200 mM NaCl, 14 days), where the
chlorophyll b content of the leaves (41%) was affected more than the content of chlorophyll
a (33%) [102].

Salinity induces oxidative stress in plants at the subcellular level [80,103]. ROS are
formed due to the reduction of oxygen by reducing molecules. Their concentration in-
creases due to environmental stress, and the stomata close to reduce water losses. The
CO2 in the leaves is reduced so that the reducing power of NADPH, or reduced ferre-
doxin, is conveyed to oxygen, which is, therefore, reduced in its radical forms, superoxide
(O2 •−), hydrogen peroxide (H2O2), and hydroxyl radical (HO˙) [104]. This increase in
ROS level in plant tissues results in oxidative damage of membrane lipids, proteins, and
nucleic acids [105]. To scavenge high ROS levels, plants develop an efficient system of
non-enzymatic and enzymatic antioxidants [106]. Non-enzymatic antioxidants include
reduced ascorbate (ASC), glutathione (GSH), phenolics, flavonoids, and tocopherols [107].
Enzymatic antioxidants responsible for detoxifying ROS accumulation include superoxide
dismutase (SOD; EC 1.15.1.1), peroxidase (POX; EC 1.11.1.7), catalase (CAT; EC 1.11.1.6),
and the enzymes of the ascorbate (ASC)–glutathione (GSH) cycle: GSH reductase (GR),
ASC peroxidase (APX; EC 1.11.1.11), monodehydroascorbate dehydrogenase (MDHAR;
EC 1.6.5.4), and dehydroascorbate reductase (DHAR; EC 1.15.1.1) [105,108].

Up-regulation of antioxidants was observed in different cultivated plants like rice,
wheat, maize, soybean, and tomato [98,99,105,109,110]. Salt-tolerant cultivars demonstrated
that the increased resistance to salinity is associated with the alleviation of oxidative
damage is often correlated with an efficient antioxidative system. In addition, many studies
have demonstrated the role of enzymatic and non-enzymatic antioxidants in medicinal
plants as Lonicera japonica L., Hyssopus officinalis L., Melissa officinalis L., and Curcuma longa
L. [111–114]. This evidences the role of antioxidants in alleviating salt stress-induced
oxidative damage.

Among the changes arising from the excess of these ions, one of great importance is
the decrease in water absorption by the plant, which ion toxicity can cause a reduction in
nutrient absorption. In this way, salt stress induces a potassium (K) deficiency with an
increase in salinity. In salt, stress incurs the accumulation of Na+, which is accompanied
by a sharp decrease in K+ content [105,110,115]. This inverse relationship is due to the
competition between Na+ and K+ uptake in the roots. For example, in wheat cultivars
under salt stress (150 mM), the growth and yield were reduced due to a decline in plant
water status, limited uptake of macronutrients (N, P, and K), and reduced K+/Na+ ratio [99].
In addition, salinity can interfere with the acquisition and use of nitrogen (N) by plants,
influencing the different steps of N metabolism: absorption, assimilation, and synthesis
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of proteins. Li et al. (2019) [116] showed that salt stress significantly inhibited the N
assimilation process in cucumber leaves. In this sense, the nutrient imbalance contributes
to reducing growth rate under stressful salinity conditions.

4.2. Molecular Approachs to Salt Stress

The decoding of genome sequences of diverse major food crops provides useful
genomic information related to structural, functional, and comparative genomics for novel
trait discovery and genetic enhancement of cultivated crops [117]. For example, to increase
crop production in saline soils, identifying quantitative trait loci (QTLs) associated with
salt tolerance is an essential step for improving varieties of salt-tolerant plants [118]. In
this way, different QTLs associated with salt tolerance have been identified in cultivated
crops: soybean [119,120]; maize [121] and rice [122,123] (Supplementary Table S1). The
QTLs were mainly identified for various agronomic traits, including physiological and
agronomic traits involved in salinity tolerance, yield and yield contributing factors, and
root architecture (Supplementary Table S1).

By integrating diverse omics approaches, it is possible to understand what changes
occur in the gene expression, proteins, and metabolites, in response to salt stress. Studies
from genomics, transcriptomics, proteomics, metabolomics, and epigenomics have been
developed to understand the salt stress tolerance process and its possible use to increase
salinity tolerance in plants. With the development of several advanced technologies,
including CRISPR/Cas9, which can be used for target-site genome editing to gain salt-
tolerant cultivars. Some recent examples were developed for rice [124,125] and tomato [126].
Other examples of molecular approaches used to understand and to develop salt-tolerant
plants are also reported in Supplementary Table S1.

Salinity tolerance can trigger and alter the expression of numerous genes, divided
into different functional groups, responsible for minimizing the effects of excess salt [61].
These genes are involved with photosynthetic proteins, proteins linked to transport the
vacuole, synthesis of osmolytes, membrane channels, and activation of protectors against
ROS, and signaling/regulatory elements, including TFs. According to a study carried out
by Roy et al. (2014) [127], overexpression of genes involved in ROS removal resulted in
decreased cell damage, maintenance of photosynthetic energy, and an improvement in root
growth under saline conditions. The same also occurs in the overexpression of H+ and
potassium antiport channels, which allow the greatest accumulation of biomass associated
with greater tolerance to salinity [128].

Among TF, the major TFs are bZIP, DREB, MYC, MYB, NAC, and WRKY, which
strongly correlate with salinity and are identified with great potential in promoting crop tol-
erance against salt stress. Wang et al. (2021) [99] showed that overexpression of ThNAC12
TF enhanced salt tolerance through modulation of ROS scavenging via direct regulation
of ThPIP2;5 expression in Tamarix hispida. In transgenic rice, the SiMYB19 overexpression
promotes abscisic acid (ABA) accumulation and upregulates the ABA synthesis gene Os-
NCED3 and the ABA signal transduction pathway-related genes OsPK1 and OsABF2 [129].
Under salt stress, the overexpression technology combined with the CRISPR-Cas9 system
shows that GmNAC06 TF could cause the accumulation of proline and glycine betaine to
alleviate or avoid the negative effects of ROS; similarly, it could control the Na+/K+ ratios
in hairy roots to maintain ionic homeostasis in G. max. In this way, GmNAC06 plays a role in
response to salt stress and could be useful in generating salt-tolerant transgenic crops [130].
The development of these new methodologies will generate new avenues for harnessing
and exploring these tools to improve agriculture traits.

5. Heat Stress

In the near future, global warming will provide a challenge for crops in maintaining
their development, growth, reproduction, and yield [131]. To minimize the effects of
heat stress, plants have evolved a series of mechanisms, including molecular responses
and changes in their physiology and biochemistry, to try to defend against the damage
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caused by temperature elevation [132,133]. These changes have damaged agricultural
production [134]. Plants are subject to heat stress when: (i) the air temperature is high, and
plants receive energy through sensible heat transfer; (ii) solar radiation incident on the soil
surface raises the temperature above the air temperature; and (iii) in leaves, substantial
heating caused by solar radiation and inability to dissipate heat can result in leaves heating
very quickly (up to 15 ◦C above air temperature), so leaves with low transpiration rates are
often subjected to high temperatures [135].

The exposition to thermal stress can cause enormous damage to the cell membrane
and the protein conformation, leading to ROS production, triggering oxidative stress. In
addition, heat stress decreased protein synthesis, transcription, and translation of heat
shock proteins (HSPs), production of phytohormones and antioxidants, and changes in the
organization of cell structures leading to alterations in hormonal homeostasis [136,137].

5.1. Response Mechanisms to Heat Stress

To bear heat stress, plants change their morphology by increasing the root system,
reducing the stomatal number and conductance while the leaf curls, folds, and decreases
its area, becoming thinned to avoid water loss by evapotranspiration [138,139]. Previously,
Lima et al. (2013) [140] studied the cell wall structure of coffee plants subjected to heat
stress (37 ◦C), which showed changes related to cell wall stiffening, as well as an increase
in the structural size of the wall polysaccharides and in the lignin content. Regarding
structure, the period of thermal stress led to a decrease in the content of starch granules,
changes in the organization of internal membranes, and a decrease in the general size of
the mesophyll cells, especially in the palisade parenchyma [140].

Abiotic factors such as high temperatures combined with water shortage affect the
growth and development of many plants, decreasing crop productivity. Heat stress causes
numerous disturbances to plants, altering the stability of membranes and proteins, disor-
ganizing the metabolism of nucleic acids and proteins, degenerating membrane structure,
inhibiting photosynthesis, among other adverse effects (Figure 3).
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Heat stress causes physiological adjustments in plants. The photosynthetic apparatus
is usually damaged, decreasing transpiration due to stomatal closure and CO2 content,
inhibiting photosynthetic enzymes and ATP synthases rates, reducing leaf expansion,
and accelerating senescence; as a consequence, plant development is hampered [141–143].
To mitigate the effects of heat stress, the metabolism of carbon assimilation is altered,
remobilizing plants’ starch reserve in chloroplasts by releasing energy, sugars, and derived
metabolites to survive stress periods and prevent further damage [144,145].

The ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco) enzyme, central to
carbon fixation, usually works efficiently between temperatures of 20 and 30 ◦C. Above
these conditions, photosynthetic rates tend to be reduced [146]. Throughout evolution,
plants have developed different metabolic strategies that have allowed them to react to
adverse conditions. The C4 and CAM photosynthetic mechanisms present structures for
concentrating CO2 that provide the Rubisco with greater photosynthetic efficiency, even
under extreme high-temperature conditions, except in C3 plants [146]. However, most
crops have a C3 metabolism, comprising species which usually fix less carbon under high
temperatures, as they do not have optimized mechanisms for CO2 concentration [147].

Heat stress interferes with redox homeostasis, leading to ROS production, harming the
elimination mechanisms of these toxic forms of O2 in different cell compartments, causing
oxidative stress. The increase in ROS produces molecule oxidation, membrane decom-
position, enzyme inactivation, and changes in gene expression [133]. ROS-scavenging
enzymes such as SOD, CAT, APX, monodehydroascorbate reductase (MDHAR), DHAR,
and glutathione reductase (GR) play a role in detoxifying the excess of ROS produced by
cells under stress conditions [148], as well as non-enzymatic mechanisms (ascorbate—ASA,
glutathione—GSH, α-tocopherol, and flavonols). Oxidative stress also leads to epigenetics,
including histone modifications regulating the gene expression [149,150]. Manipulation of
photosynthesis through rubisco activase and enzymes functioning in the detoxification of
reactive oxygen species is a suitable approach for generating heat-tolerant crop plants [151].

Plants can perceive changes in temperature through sensors in different cellular com-
partments. Chloroplasts that house the photosynthetic apparatus, the most damaged by
heat, are considered sensors of heat stress because they change the dynamics in response
to ROS/redox changes at the cellular level [152]. The signals generated by these differ-
ent sensors rapidly trigger a specific signal transduction network that involves calcium
fluxes, calmodulin, CDPKs, mitogen-activated protein kinases (MAPKs), phosphatases,
and transcriptional regulators [149].

One of the best-known means of responding to potential damage caused by high tem-
peratures is through the synthesis of HSPs, a group of protective proteins including Hsp100,
Hsp90, Hsp70, Hsp60, small Hsps, and some MAPKs [149,153,154]. Heat stress-responsive
genes are regulated by a series of TFs, including heat stress TFs (HSFs), NAC, MYB, WRKY,
RAV, bZIP, AP2/ERF, and ZAT that regulate the expression of stress-responsive genes. The
transcription is activated by binding the cis-elements (ARE, CORE, W-box, GCC box, as-1
like) in the promoters of such stress-inducible genes [133]. Genes responsive to heat stress
such as NADPH oxidases (Rboh), dehydration-responsive element-binding protein 2A
(DREB2A), heat shock (HsfA2, HsfA7a, HsfBs), multiprotein bridging factor 1C (MBF1C),
and MAPK are regulated by such HSFs. Additionally, TFs, epigenetic regulators, and small
RNAs also regulate heat stress-responsive genes [149].

Plants under heat stress also increase the biosynthesis of several hormones to regulate
their response to stress. Temperature elevation stimulates the biosynthetic pathways
of hormones such as auxins, salicilic acid (SA), ABA, brassinosteroids (BRs), cytokinin
(CK), jasmonate (JA), and ethylene (ET), resulting in higher accumulation in plant cells
as a manner to tolerate heat stress [137]. The overexpression TaNAC2L transcription
factor activated the expression of heat-related genes in the transgenic Arabidopsis plants,
suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-
responsive genes [155]. However, the overexpression of NAC transcription factor (SlJA2)
reduced the accumulation of SA in transgenic tobacco, resulting in increased susceptibility
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to heat stress [156]. In this way, the transcription factors binding genes from hormone
biosynthesis pathway should be analyzed whether they work as positive or negative
regulators to genetic engineering plants to improve heat stress tolerance.

5.2. Approaches to Generate Heat-Tolerant Plants

Conventional breeding to develop heat stress tolerance genotypes is very difficult,
since this trait is usually complex, being controlled by several genes present at multiple
QTL. Moreover, germoplasm evaluation is time-consuming and costly [157]. Although it
is challenging, QTLs associated with heat tolerance have been identified in recent years,
for example, in the wheat [128,158–163], barley [164], chickpea [165], cotton [165,166],
tomato [167,168], and rice [169], among other crops (Supplementary Table S1).

Whenever these characteristics are found in commercial or wild relatives, conventional
breeding, mainly assisted by molecular tools, can be used to improve heat tolerance in
commercial genotypes [170]. However, it is necessary to keep in mind that an undesirable
portion of the genome, mainly from wild relatives, could be transferred to the target
genotype by crosses [168,171].

Metabolome has been a valuable tool for understanding how plants behave un-
der heat stress. In response to high temperatures, plants change their metabolism to
accumulate assimilates, mainly sugars, amino acids, and carbohydrates [145,172–178]
(Supplementary Table S1).

Transgenic approaches have also been of great interest for generating abiotic stress-
tolerant plants in recent years. Heat stress factors and DREB2A genes have been identified
to engineer transgenic plants tolerant to heat [148,179]. Genes coding to molecular chaper-
ons (HSP, EF-Tu), osmolytes (glycine betaine), sugars (trehalose-6-phosphate synthase (TPS)
and trehalose-6-phosphate phosphatase (TPP), antioxidant enzymes (peroxisome-located
ascorbate peroxidase (APX), glutathione peroxidase gene, Cu/Zn superoxide dismutase)
and transcriptions factors (AP2/EREBP, WRKY, NAC, MYB and basic leucine zipper (bZIP))
have been proved to increase tolerance to heat stress by transgenic approaches [180]. In ad-
dition to such genes, plant nucleoside diphosphate kinase 2 (NDPK2), CBF3, antioxidative
enzyme 2-cysteine peroxiredoxin (2-Cys Prx), have been assayed in Solanum tuberosum to
increase heat tolerance [181]. The overexpression of heat shock protein 70 (AsHSP70) and
101 (AtHSP101), pyrophosphate-energized vacuolar membrane proton pump 1 (AVP1),
and Arabidopsis SUMO E3 ligase (OsSIZ1) genes in cotton proved to increase heat tolerance
of this plant [182].

However, the overexpression of HSFs could affect developmental and stress responses
in an undesirable way [183]. For the overexpression of such genes, tissue-specific and stress-
inducible promoters should be preferable to decrease the impact on plant growth [181,184].
Manipulation of photosynthesis through Rubisco activase and enzymes functioning in ROS
detoxification are also candidate genes to generate heat-tolerant crop plants.

Modification of the cell wall structure in plants, leading, for example, to increased
levels of expansin, can help to increase tolerance to high temperatures through the loosening
and relaxation of the cell wall. In this sense, the overexpression of the expansin gene PpEXP1
in the grass Poa pratensis improved heat tolerance (35 ◦C), with less structural damage to
the cells [185]. In the thale cress Arabidopsis thaliana, it was shown that the production of
enzymes involved in the biosynthesis of oligosaccharides of the raffinose family, as well as
the accumulation of these carbohydrates, play crucial roles in tolerance during heat stress,
possibly acting as an osmoprotectant [186].

Although transgenic approaches are suitable for engineering heat-stress-tolerant
plants, public concern and regulatory issues regarding the release of such GMO culti-
vars present difficulties to the process [182]. On the other hand, the genome edition (GEd)
approach has become the most used system to modify plants by disrupting genes (knockout)
or inserting fragments (knock-in) or regulatory elements to genes’ promoters to modulate
gene expression [187,188]. The most recent technique used to edit plant genomes is clus-
tered regularly interspaced short palindromic repeats (CRISPR) associated with protein9
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nuclease (Cas9). To obtain heat-tolerant plants, CRISPR-Cas can be used to either active
or repress genes in a very specific way. For example, positive gene regulators associated
with HSPs and stress-related TFs can be activated, or negative regulators can be silenced by
the CRISPR-Cas system [189]. The advantage of GEd is that in cases of gene disruption or
silencing, the plants could be considered transgene-free in some countries, facilitating the
development of new varieties.

Similarly, plant microRNAs (miRNAs) function as positive or negative regulators,
which have been studied as targets for genetic engineering tolerance to heat stress [190,191]
by transgenesis or genome editing approaches [192]. For instance, the overexpression
of miR156 in Arabidopsis increased tolerance to heat stress [149]. Several miRNAs were
differentially regulated in two contrasting rice genotypes under different heat stress treat-
ments, suggesting that the tolerant cultivar was more efficient in its use of molecular and
physiological machinery at the reproductive stage than the susceptible one after heat stress,
making it a candidate for genetic engineering [155] Supplementary Table S1.

6. Conclusions and Future Outlook

The scientific community emphasizes the importance of increasing yield crop farming
due to food demand and population increase. However, there is a certain neglect regarding
how to correctly use biotechnological tools to minimize the adverse effects caused by abiotic
stresses in morphological, physiological, biochemical, and molecular processes. Given such
a problem with which our agriculture has been confronted, the big questions are what and
how to correctly apply the information generated by these techniques to really mitigate
these adversities?

Bearing this in mind, we aggregated the main mechanisms involved in the stresses
of greatest impact in recent decades for agriculture. With this approach, we want to im-
prove and increase the understanding of these processes. Advances in molecular genomic
tools including MAS, QTL mapping, high-throughput DNA sequencing (including long
read technologies), RNA sequencing (RNA-seq), chromatin immunoprecipitation sequenc-
ing (ChIP-seq), genome-wide association study (GWA study), genomic selection (GS),
proteomics and metabolomics approaches, and CRISPR technologies are of fundamental
relevance to understanding the complex mechanisms of abiotic stresses in plants and devel-
oping new resilient cultivars [136,145,157,193,194]. Although a myriad of new approaches
have emerged in the last 20 years, it is probable that the integration of such analyses, rather
than new techniques, will deliver the best approaches for plant breeding for abiotic stresses
throughout this decade.
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Abbreviations

WUE water use efficiency
ABA abscisic acid
ETC electron transport chain
ROS reactive oxygen species
ATP adenosine triphosphate
NADH nicotinamide adenine dinucleotide
TCA tricarboxylic acid cycle
AOX alternative oxidase
GABA γ-aminobutyric acid
NO nitric oxide
HR hypersensitive response
PCD programmed cell death
MAS marker-assisted selection
GWAS genome-wide selection
QTL quantitative trait loci
PSII photosystem II
RWC relative water content
PGRs plant growth regulator
OEC oxygen-evolving complex
ASC ascorbate
GSH glutathione
SOD superoxide dismutase
POX peroxidase
CAT catalase
GSH glutathione
APX ascorbate peroxidase
MDHAR monodehydroascorbate dehydrogenase
DHAR dehydroascorbate reductase
K potassium
N nitrogen
HSPs heat shock proteins
GR glutathione reductase
SA salicilic acid
BRs brassinosteroids
CK cytokinin
JA jasmonate
ET ethylene
CuZn-SOD copper-zinc superoxide dismutase
Ged genome edition
RNA-seq RNA sequencing
ChIP-seq chromatin immunoprecipitation sequencing
GWA genome-wide association
GS genomic selection
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