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 Introduction 

 The control of second messengers involves a complex 
system of proteins, many or all of which are independent-
ly regulated. One of the most highly studied signal trans-
duction pathways is the intricate control of cyclic AMP 
(cAMP) generation. Biochemical and genetic evidence 
points to roles for cAMP in a vast number of biological 
systems, including but not limited to oogenesis  [1] , em-
bryogenesis  [2] , larval development, hormone secretion, 
glycogen breakdown  [3] , smooth muscle relaxation  [4] , 
cardiac contraction  [5, 6] , olfaction  [7] , and learning and 
memory  [8–10] . Adenylyl cyclase (AC) is an ATP-pyro-
phosphate lyase that converts ATP to cAMP and pyro-
phosphate. Since the cloning of the first AC isoform AC1 
in 1989  [11] , there has been much progress in the cloning, 
characterization, and structural analysis of the individu-
al AC enzymes. Nine mammalian transmembrane ACs 
are recognized, with a tenth ‘soluble’ form that has dis-
tinct catalytic and regulatory properties resembling the 
cyanobacterial enzymes  [12] .

  Numerous strategies have been developed to charac-
terize individual AC isoforms. The assignment of regula-
tory properties to each isoform resulted in large part from 
expression of full-length AC isoforms in mammalian or 
insect cells ( Spodoptera frugiperda , Sf9). The frustration 
from these systems was the lack of large amounts of pure 
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 Cyclic AMP is a universal second messenger, produced by a 
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the catalytic domains of AC have led to the crystal structure 
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protein for detailed biochemical characterization. The 
expression of the two catalytic domains of AC in  Esche-
richia coli  largely solved this issue and resulted in suffi-
cient protein for biochemical, kinetic, and structural 
studies.

  Despite the progress made in the identification and 
biochemical characterization of cellular regulators of 
ACs, there are many questions that still remain unan-
swered. One particularly difficult question is, ‘Why are 
there so many isoforms of AC and what roles do individ-
ual isoforms serve?’ We will briefly review the basic struc-
ture, regulation, and tissue distribution of ACs before ad-
dressing the physiological roles of AC isoforms in the 
brain, olfactory neurons, and heart. The major focus will 
be on the phenotypes of AC knockout and overexpression 
studies. Although no comprehensive answers are yet 
available, we will attempt to address the complex issue of 
why unique regulatory properties of AC isoforms serve 
specific roles in cAMP biology.

  Adenylyl Cyclases: Topology and Structure 

 Mammalian transmembrane ACs share a similar to-
pology of a variable N-terminus (NT) and two repeats of 
a membrane-spanning domain followed by a cytoplasmic 
domain  [11] . The overall topology is very reminiscent of 
the ABC cassette transporter proteins ( fig. 1 ). Pseudo-
symmetry results from the fact that each of the two cyto-
plasmic domains (C1 and C2) contain a region of approx-
imately 230 amino acid residues that are roughly 40% 
identical (C1a and C2a). Together the cytoplasmic do-
mains form the catalytic moiety at their interface, creat-
ing a pseudosymmetrical site that is primed for bidirec-
tional regulation as discussed below. The NT and C-ter-
minal portion of the C1 and C2 domains (C1b and C2b) 
are the most variable regions among the different iso-
forms and can differ even among species.

  The elegance of design, form, and function of AC is 
clearly seen in the crystal structure of the C1a-C2-Gs � -
forskolin complex  [13] . The C1a and C2 domains have 
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  Fig. 1.  Structure of adenylyl cyclase.  a  Crystal structure of cyto-
plasmic domains of AC in complex with GTP � S-Gs � , forskolin 
(FSK) and P-site inhibitor, 2 � 5 � -dideoxy-3 � ATP  [100] . Shown are 
C1 (yellow), C2 (rust), Gs �  (green), FSK (cyan), and P-site inhibi-

tor (dark blue). Membrane spans are modeled from the 12-mem-
brane spanning transporters  [199] .  b  Alternate view from cyto-
plasmic side, showing forskolin and catalytic site more clearly. 
Interaction site of Gi �  with C1 domain is indicated by an arrow.   
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nearly identical tertiary structures, as predicted from 
their sequence similarities, despite the fact that these 
structures were solved with a C1 domain from type 5 AC 
and a C2 domain from type 2 AC. The pseudosymmetry 
creates two related sites along the domain interface, a 
substrate-binding site and a related forskolin site. Both 
pockets are well defined and are structurally related. 
There are notable differences between the C1a and C2 
structures, particularly comparing the regions that play 
an important role in the binding of Gs �  (C2 domain) or 
in the formation of a P-loop structure that binds pyro-
phosphate in the active site (C1 domain). It is of note that 
the active site shares many similarities with DNA poly-
merases, although the surrounding structures are quite 
different  [14] .

  The mammalian soluble AC (sAC) has homology to 
cyanobacterial ACs with several known splice variants 
 [12] . The most studied of these are the full-length ( � 187 
kDa) and the testis splice variant ( � 50 kDa) that contain 
tandem C1 and C2 domains which form the catalytic site 
 [15] . The overall structure of the catalytic core is highly 
conserved with the transmembrane ACs, although there 
are significant differences in primary sequence  [16] . Al-
though sAC is not regulated by G proteins, it is stimu-
lated by calcium and bicarbonate  [17–19] . Our discus-
sions of physiological roles for ACs will focus on the 
transmembrane ACs, although sAC has been implicated 
in sperm motility, fertilization, and neurite outgrowth of 
neuronal cells  [20–22] .

  Classification of Isoforms 

 Membrane-bound ACs are often classified into four 
different categories based on regulatory properties. 
Group I consists of Ca 2+ -stimulated AC 1, 3 and 8; group 
II consists of G �  � -stimulated AC 2, 4 and 7; group III is 
comprised of Gi � /Ca 2+ -inhibited AC5 and 6, while 
group IV contains forskolin-insensitive AC9 ( table 1 ). 
Note that although significant sequence homology ex-
ists within members of groups II and III, members of 
group I are more distantly related  [12] . This is reflected 
in the overall regulatory patterns for the various groups 
as well.

  Regulation by Heterotrimeric G Proteins 

 All isoforms of transmembrane ACs are stimulated 
by the GTP-bound  �  subunit of Gs (Gs � ). The splice 
variants of Gs (short, long and XL)  [23, 24]  activate AC 
to a similar extent in vitro, although some variations in 
receptor-mediated activation have been reported  [25] . 
Golf, �  is highly homologous to Gs �  and also stimulates 
AC  [26] . Golf is mainly expressed in the olfactory sys-
tem but can be found in other tissues, particularly in 
striatum  [26–29] . In both olfactory neurons and stria-
tum, it is the Golf, �  subunit that predominates over 
Gs �   [29] . These G proteins interact with AC mainly 
through their switch II  �  helices, which are conforma-

Table 1. Regulatory properties of transmembrane adenylyl cyclase (AC) isoforms

AC isoform G protein regulators Protein kinases Calcium RGS2 Other

stimulatory inhibitory stimulatory inhibitory

Group I
AC1 Gs� G� i, z, o, G�� PKC� (weak) CaMK IV d CaM PAM
AC8 Gs� G�� d CaM PP2A
AC3 Gs� G�� PKC� (weak) CaMK II d CaM* f

Group II
AC2 Gs�, G�� PKC�
AC4 Gs�, G�� PKC�
AC7 Gs�, G�� PKC� PAM

Group III
AC5 Gs�, G�� G� i, z PKC (�, �) PKA f free Ca2+ f PAM, Ric8a
AC6 Gs�, G�� G� i, z PKA, PKC (�, �) f free Ca2+ f PAM, Snapin

Group IV
AC9 Gs� PKC f via calcineurin
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tional sensors for the  � -activation state  [30] . The major 
binding site for Gs �  on AC is located on the C2 domain 
in the cleft formed by  � 2 �  and  � 3 �  helices ( fig. 1 b)  [13] . 
Lesser contacts are observed with the N-terminal seg-
ment of C1.

  The  �  subunits of Gi (1, 2, 3), Gz, and Go can inhibit 
select AC isoforms  [31–33] . The calmodulin-stimulated 
state of AC1 is inhibited by all three of these Gi family 
members, whereas Gs � - or forskolin-stimulated forms 
of AC1 are only weakly inhibited or not at all  [32] . AC5 
and 6 are inhibited by Gi �  (1, 2, 3) and Gz � , most po-
tently at reduced levels of activation  [34] . All other ACs 
are insensitive to Gi � . Mutagenesis studies show that 
Gi �  binds to a cleft in the C1 domain  [35] , analogous to 
the Gs � -binding site in C2, and acts in opposition to 
Gs � .

  The  �  �  subunit of heterotrimeric G proteins can be 
either stimulatory or inhibitory depending on the AC iso-
form. G �  �  is inhibitory for all group I ACs which include 
AC 1, 3, and 8  [36–38] . In the case of AC1, inhibition by 
G �  �  is more potent than that of Gi �  family members, 
which would presumably be also contributing G �  �  sub-
units  [32] . When G �  �  is released upon activation of Gs-
coupled receptors, the inhibition by G �  �  is reported to 
negate AC1 and AC8 stimulation by Gs �  in some cell 
types, although Gs stimulation is still synergistic with 
Ca 2+ /CAM for AC1 but not AC8  [39] .

  The hallmark of the AC2 family (or group II) is the 
conditional stimulation by G �  � . Gs � -stimulated activity 
of AC2, 4 and 7 is enhanced by  � 5- to 10-fold by G �  � , 
although there is no effect of G �  �  alone  [36, 40–43] . The 
binding site of G �  �  on AC2 has been mapped to several 
regions that include the C2 domain and the PFAHL mo-
tif in the C1b domain  [38, 44] . It is likely that G �  �  works 
through a two-site interaction mechanism to regulate 
AC2 activity  [45] .

  Although overexpression of G �  �  has been reported 
to lower cAMP levels in cells transfected with AC5 or 6 
 [46] , the direct effect of G �  �  on these isoforms is stimu-
lation. G �  �  binds directly to the NT of AC5 and 6 to 
increase Gs � -stimulated activity by approximately 2-
fold  [47] . In fact, it is the G �  �  that is released upon Gs 
activation by isoproternol that is responsible for the full 
activation of AC6  [47] . Whereas for AC2 or AC7, it has 
been traditionally thought that G �  �  released from Gi-
coupled receptors could synergistically stimulate AC 
activity in the presence of activated Gs � , representing a 
form of crosstalk between G protein-coupled receptors 
 [40] .

  Other Modes of Regulation 

 Ca 2+  and Calmodulin 
 Calcium-bound calmodulin is an important regulator 

of the group I ACs. AC1 and AC8 are directly stimulated 
by calmodulin  [48, 49] . The calmodulin-binding sites for 
AC1 have been mapped to the C1b and C2 domains; 
whereas the sites on AC8 reside within the NT and C2 
domain  [50, 51] . AC3 activity is conditionally stimulated 
by calmodulin, requiring the presence of Gs �  or forskolin 
 [48] . However, the more relevant regulation of AC3 in 
vivo may be a calmodulin-dependent inhibition via regu-
lation by calmodulin kinase II (CaMK II)  [52] . CaMK II 
directly phosphorylates AC3 on ser 1076 and inhibits 
AC3 activity  [53] . This serves as an important feedback 
mechanism in the olfactory system (discussed in detail 
later). AC1 is also subject to feedback inhibition via CaMK 
IV which phosphorylates AC1 within C1b and inhibits 
calmodulin-stimulated activity  [54] . Thus both AC1 and 
AC3 regulation by calcium-calmodulin is tightly con-
trolled in neuronal signaling. AC8 is not subjected to reg-
ulation by either CaMK II or IV  [54] .

  All AC isoforms are inhibited by high, non-physiolog-
ical concentrations of Ca 2+ , via competition for magne-
sium at the active site. However, AC5 and 6 are inhibited 
by submicromolar concentrations of free Ca 2+   [55] , which 
may have important physiological implications in gener-
ating oscillating Ca 2+  and cAMP signals  [56] . Curiously, 
these ACs respond primarily to elevations in calcium by 
capacitative- or store-operated calcium entry (CCE), as 
opposed to global increases in calcium that may be elic-
ited by ionomycin or agonists that stimulate calcium re-
lease from the endoplasmic reticulum [for review see,  57 ]. 
Thus, ACs and CCE channels are presumed to be in close 
proximity on the plasma membrane. Studies using AC6 
linked to the fluorescent calcium sensor aequorin are 
suggestive that this is indeed the case  [58] . However, the 
identity of the CCE channels that are responsible for 
cAMP regulation has remained elusive. The recent iden-
tification of Stim1 and Orai1 make these channels an ex-
citing possibility for regulating AC5 and 6 by calcium 
 [59–62] .

  Regulation by Protein Kinases 
 Most ACs are regulated by either protein kinase (PK) A 

or C. PKA serves as a feedback inhibitor for AC5 and 6 by 
phosphorylating these isoforms on a serine near the end 
of the C1b domain  [63] . PKC regulation can be either stim-
ulatory or inhibitory. Stimulation by conventional PKCs is 
often highly synergistic with other forms of regulation; 
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this is particularly true for AC2 and 5  [64–66] . The novel 
PKC �  isoform also displays synergy with Gs �  in activat-
ing AC7  [67, 68] . Atypical forms of PKC can also stimulate 
AC5  [65] . PKC �  is an atypical PKC which can be stimu-
lated by the product of phosphoinositide-3 �  kinases, phos-
photidylinositol-3,4,5-triphosphate. Stimulation of ACs 
by PI3K/PKC �  can produce temporal effects, prolonging 
cAMP production and creating biphasic time courses to 
further enhance transcriptional responses  [69, 70] .

  Inhibition by PKC can occur by either conventional or 
novel PKCs. PKC �  inhibits Gs � -stimulated AC4, but has 
no effect on basal or forskolin-stimulated activity. The 
novel PKC �  and  �  isoforms inhibit AC6  [66, 71] . Not sur-
prisingly, the sites of PKC phosphorylation on ACs differ 
greatly between these different isoforms. PKC phosphor-
ylation sites within the C-terminus of AC2 stimulate the 
enzyme  [72, 73] , whereas phosphorylation of several sites 
within the NT of AC6 mediate inhibition  [74, 75] .

  The regulation of AC9 by phosphorylation is more 
complex. At least 12 sites of phosphate incorporation have 
been detected on AC9  [76] . The mouse AC9 isoform can 
be inhibited by the calcium-activated protein phosphatase 
calcineurin (or protein phosphatase 2B)  [76–78] . PKC can 
also inhibit AC9 activity  [78–80] ; however, it is unknown 
whether the effects by calcineurin or PKC are direct.

  Additional kinases have been reported to regulate 
ACs. Raf1 can stimulate phosphate incorporation and ac-
tivity of AC6 via activation of receptor tyrosine kinases 
 [81] . Serines within the C1b region and the loop between 
membrane spans 8 and 9 are required for activation by 
Raf1  [82, 83] . Tyrosine kinases such as the EGF receptor 
can also indirectly stimulate AC5 activity by the phos-
phorylation of Gs �   [84–86] . Phosphatases would also be 
predicted to regulate AC activity and as such AC8 serves 
as a scaffold for PP2A  [87] .

  Forskolin and P-Site Inhibitors 
 Forskolin is a diterpene derived from the root of the 

plant  Coleus forskohlii   [88] . It highly activates all the 
membrane-bound AC isoforms except AC9  [89, 90] . A 
single forskolin molecule binds at the interface of the C1 
and C2 domains, in the pocket structurally related to the 
AC active site  [13, 91] . AC9 is missing a key residue with-
in this forskolin-binding pocket that when mutated can 
restore forskolin sensitivity  [92] . AC2, 4, 5, 6, and 7 are 
synergistically activated by Gs and forskolin, while the 
effect on AC1, 3 and 8 is additive. Although tantalizing to 
speculate about, no mammalian forskolin analogs have 
been identified that might regulate ACs via the forskolin-
binding pocket.

  P-site inhibitors are adenosine analogs that are typi-
cally noncompetitive or uncompetitive with respect to 
substrate ATP  [93–95] . These inhibitors are more potent 
on activated forms of AC versus the basal state  [96–98] , 
and form a product-like transition state with pyrophos-
phate  [13, 99] . More potent inhibitors, such as adenosine 
3 � -polyphosphates (i.e. 2 � ,5 �  dideoxy 3 � ATP), bind in the 
absence of pyrophosphate since the 3 � -phosphates bind in 
the pyrophosphate pocket, increasing the affinity of these 
inhibitors by 100- to 1,000-fold  [95, 100] . In general, P-
site inhibitors are not greatly isoform specific with the 
exception of AC9, which is largely insensitive to 2 � -deoxy-
3 � -AMP  [101, 102] .

  Additional Regulators 
 Several additional regulators and binding partners of 

ACs exist that do not fall into any of the above categories, 
including the regulator of G protein signaling (RGS2), the 
protein associated with Myc (PAM), Snapin, Ric8a, and 
the A-kinase-anchoring protein (AKAP79). RGS2 inhib-
its the activities of AC3, 5 and 6  [103, 104]  and directly 
interacts with C1 domain of AC5  [105] . The PAM serves 
to inhibit Gs �  stimulation of AC1, 5, 6 and 7 and interacts 
with the C2 domain of AC5  [106, 107] . Snapin is a mem-
ber of the SNAP-25/Snare complex that physically inter-
acts with AC6 in hippocampal neurons, preventing PKC-
mediated inhibition of AC6  [108] . Ric-8 is a guanine nu-
cleotide exchange protein for heterotrimeric G proteins. 
Ric-8a-8 binds to AC5 and inhibits activity, possibly via 
the activation of Gi  [109] . Finally, AC5 can also bind to 
the PKA scaffolding protein, AKAP79, which facilitates 
PKA-mediated inhibition of AC5  [110] . AKAP79 may 
link cAMP production more closely with PKA substrates 
such as the NMDA receptor, bound within the same com-
plex  [111] . The regulation of AC5 and 6 by various regula-
tors including PAM, RGS2, Snapin, and nitric oxide has 
recently been reviewed in depth  [112] .

  Mechanism(s) of Regulation: Interactions with 

Catalytic Core versus N-Terminus 

 The key to regulation of AC is the interface between 
the C1 and C2 domains which forms a single ATP-bind-
ing site  [13, 91] . Thus, many of the regulators discussed 
above bind to these domains to modulate enzymatic ac-
tivity. The relative affinity between these domains is 
weak in the absence of any activators, as measured by in-
teractions between the purified domains  [113–115] . How-
ever, both forskolin and Gs �  increase the affinity be-
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tween the C1 and C2 domains by  � 10-fold; a 100-fold 
increase in affinity is observed upon synergistic stimula-
tion by both regulators  [113–115] . Forskolin binds at the 
interface, thus it is easy to visualize its affects on domain 
interactions since both C1 and C2 contribute residues for 
binding. However, Gs �  binds at a cleft that is on the op-
posite side of AC from the catalytic site. Comparisons 
with an inactive C2 homodimer suggest that Gs �  and 
forskolin may induce a 7° rotation of the two domains 
with respect to each other  [13, 116] . This movement would 
bring key residues in the active site closer to the 3 � -hy-
droxyl group of ATP, creating a conformation more fa-
vorable for catalysis  [13] . Binding of Gi �  to the C1 do-
main directly opposes the actions of Gs �  that is bound to 
the pseudosymmetical site in C2  [35] . Gi �  decreases the 
affinity of the C1 and C2 domains for one another and 
inhibits catalytic activity  [117] . Thus, where Gs �  facili-
tates closure of the active site around ATP, Gi �  would 
hinder this change and stabilize a more open inactive 
conformation. G �  �  interacts with multiple domains of 
AC2 that would also facilitate conformational changes to 
cooperatively stimulate the enzyme  [45] . In the full-
length enzyme the membrane spans bring together the 
two domains, thus the changes in relative affinity that are 
observed between the two domains upon stimulation 
likely represents these conformational changes at the do-
main interface.

  Metal ions such as Ca 2+  and Mn 2+  also have effects on 
the catalytic site. Similar to the mechanism for DNA 
polymerases, AC catalyzes phosphoryl transfer by a two 
metal ion mechanism, which generally uses Mg 2+   [118, 
119] . Manganese can bind to the ‘B’ metal site to stimulate 
the enzyme, while calcium likely binds to the ‘A’ metal 
site to inhibit the enzyme, similar to the inhibition ob-
served with Zn 2+   [119, 120] .

  Although the C1 and C2 domains have received much 
of the attention, the NT clearly interacts with a number 
of regulators to control activity. The sequence of the NT 
is highly divergent, even among AC family members, and 
thus provides additional regulatory specificity. Studies 
with AC6 suggest that the NT may contact the C1 domain 
to modulate Gi � -mediated inhibition  [121] . Phosphoryla-
tion of the NT of AC6 by PKC �  and  �  serves to also in-
hibit the enzyme  [71, 74, 75] , whereas binding of the 
SNAP25-binding protein Snapin to the NT blocks PKC 
inhibition  [108] . In addition, the NTs of both AC5 and 
AC6 bind G �  �  to conditionally stimulate the enzyme 
 [47] . The NT of AC5 also interacts with the G protein-ex-
change factor RiC8a to suppress AC activity, possibly by 
modulating Gi activity  [109] . Finally, the NT of AC8 binds 

protein phosphatase 2A (PP2A)  [87] , and forms part of 
the CaM-binding site to regulate activity  [51] . The 
mechanism(s) for N-terminal regulation of ACs is un-
known, but certainly opens another interesting chapter 
in the complex regulation of these enzymes.

  Physiological Roles for Individual AC Isoforms 

 The question arises as to why multiple isoforms of ACs 
are needed and what specific functional roles are regu-
lated by each isoform. Tissue distribution defines much 
of the specificity observed with respect to AC function. 
Due to the low abundance of AC expression and the poor 
antibodies available, most of the data for tissue distribu-
tion rely on PCR or Northern blotting ( table 2 ). In many 
cases these patterns of expression have also been verified 
by functional assays based upon their differential regula-
tory properties. However, it is clear that most cells express 
two or more AC isoforms and nearly all AC isoforms are 
expressed in the brain. Some putative roles for ACs were 
initially assigned according to localization. For example, 
AC1 and 8 (primarily expressed in the brain) were as-
cribed roles in learning and memory; AC3 (most abun-
dant in the olfactory epithelium) in olfaction, and AC5 
and 6 (dominant in the heart) for cardiac contractility. 
Additional complexity arises in the expression patterns 
of GPCRs, G proteins, and other regulators. Due to a lack 
of isoform-specific inhibitors, homozygous knockout or 
overexpression studies of ACs have been used primarily 
to identify specific isoform functions. Although ACs reg-
ulate processes in all tissues, we will focus on recent stud-
ies performed in the brain, heart, and olfactory system.

  Synaptic Plasticity, Long-Term Potentiation, and 

Memory 

 Synaptic plasticity is the ability of specialized connec-
tions between two neurons (i.e. synapse) to change 
strength. Long-term potentiation (LTP) is the long-last-
ing enhancement in communication between two neu-
rons that results from stimulation. Since neurons com-
municate via synapses and memory is believed to be 
stored in synapses, LTP and long-term depression are 
widely considered the major cellular mechanisms that 
underlie learning and memory  [8, 9] . The hippocampus 
plays a critical role in the formation of new memories and 
all of the major synaptic pathways in the hippocam-
pus exhibit LTP, including the perforant, mossy fiber
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and Schaffer collateral, although the mechanisms may 
differ.

  Early studies in Drosophila and Aplysia led to the hy-
pothesis that AC is involved in learning and memory. The 
mutant flies,  dunce  (phosphodiesterase activity deficient) 
and  rutabaga  (deficient in Ca 2+ /CAM-stimulated cyclase 
activity) fail a number of different learning tasks, includ-
ing learning to avoid a neutral odor  [8] . The sequence of 
the  rutabaga  gene was most closely related to AC1  [122] . 
AC1 is primarily expressed in the brain, particularly in 
the hippocampus, neocortex, entorhinal cortex, cerebel-
lar cortex, olfactory bulb and pineal gland  [123, 124] . 
Hence it became a likely candidate for learning and mem-
ory in mammalian systems.

  To further explore this notion, AC1 knockout mice 
(AC1 (–/–) ) were generated in 1995 by Wu et al.  [10] . Mutant 
mice had normal growth, motor coordination, and lifes-
pan. No abnormalities were observed at anatomical or 
morphological levels in the brain, except for a lack of bar-
rel patterning in the sensory motor cortex  [125] . How-
ever, AC1 (–/–)  mice had decreased Ca 2+ -stimulated AC ac-

tivity ( � 40–60%) in the cerebellum, cortex and hippo-
campal regions, in addition to attenuated developmental 
expression of Ca 2+ -stimulated activity  [10, 126] . The de-
crease in Ca 2+ -stimulated cAMP correlated with a de-
crease in CA1/CA3 hippocampal and cerebellar LTP,
and a deficiency in spatial memory  [10, 127] . The hippo-
campal defect was displayed in the early phases of LTP 
( � 50%), suggesting a contribution to synaptic plasticity.

  A role for AC1 in learning and memory has been sup-
ported by additional studies in cultured anterior cingular 
cortex neurons, where AC1 is essential for induction of 
LTP induced by Theta burst stimulation or forskolin 
 [128] . Overexpression of AC1 in the forebrain enhanced 
recognition memory and LTP due to an enhancement of 
ERK/MAPK signaling  [129] .

  AC1 (–/–)  mice also have impaired mossy fiber LTP, al-
though perforant path LTP in the dentate gyrus and long 
lasting LTP at the Schaffer collateral are normal  [130] . 
The impairment in mossy fiber LTP could be reversed by 
forskolin, indicating that the abnormality is due to an ab-
sence of AC1 activity and not a loss of downstream sig-

Table 2. Tissue distribution and physiological functions of individual mammalian isoforms

AC isoforms Site of expression Availability of Physiological functions

knockout overexpression

AC1 Brain, adrenal medulla Yes Learning, memory, synaptic plasticity, opi-
ate withdrawal

AC2 Brain, lung, skeletal muscle, heart

AC3 Olfactory epithelium, pancreas, brain, 
heart, lung, testis, BAT

Yes Olfaction, sperm function

AC4 Widespread

AC5 Heart, striatum, kidney, liver, lung, 
testis, adrenal, BAT

Yes Yes1 Cardiac contraction, motor coordination, 
opiate dependency, pain responses

AC6 Heart, kidney, liver, lung, brain, testis, 
skeletal muscle, adrenal, BAT

Yes Yes1 Cardiac contraction and calcium sensitivity

AC7 Widespread Yes1 Ethanol dependency

AC8 Brain, lung, pancreas, testis, adrenal Yes Yes1 Learning, memory, synaptic plasticity, opi-
ate withdrawal

AC9 Widespread Yes2

sAC Testis and detected in all tissues Yes Sperm capacitation, fertilization

Sites of expression for all mammalian isoforms of AC have previously been expertly reviewed in detail [57, 176]. Expression pat-
terns of ACs in developmental stages of mouse brain are found in Visel et al. [137].

1 Tissue-directed overexpression.
2 Unpublished results [76].
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naling molecules such as PKA, ion channels, or secretory 
machinery. However, it is clear that AC1 is not the only 
AC isoform important in these activities. Other AC iso-
forms must be present that respond to forskolin to reverse 
LTP defects. In addition, impairments in hippocampal 
and mossy fiber LTP are not complete. The most likely 
candidate to share overlapping functions with AC1 is the 
Ca 2+ /CAM-stimulated AC8. AC8 is also highly expressed 
in numerous brain regions, including the hippocampus, 
olfactory bulb, thalamus, habenula, cerebellar cortex and 
hypothalamic supraoptic and paraventricular nuclei  [49, 
131] .

  AC8 (–/–)  mice show decreased Ca 2+ -stimulated AC ac-
tivity in the hippocampus, hypothalamus, thalamus, and 
brainstem, and exhibit little or no mossy fiber LTP  [132, 
133] . Short-term plasticity is also impaired in AC8 (–/–)  
mice. Double knockouts of both AC1 and AC8 also ex-
hibit a nearly complete loss of mossy fiber LTP  [133] . 
Thus, both AC1 and AC8 contribute to mossy fiber LTP. 
In addition, AC1 and AC8 are functionally redundant for 
long-term memory and fear-associated memory forma-
tion  [134] . The individual AC1 and AC8 knockouts ex-
hibit normal L-LTP and fear-associated memory, but 
double knockouts were significantly impaired  [134] . In-
fusion of forskolin in the CA1 region of the hippocampus 
restored normal long-term memory. Either AC1 or AC8 
can generate cAMP needed for transcription-dependent 
long-term LTP  [134] .

  Despite many overlapping functions, there are differ-
ences in the pathways that AC1 and AC8 control. AC1, 
but not AC8, is required for homeostatic plasticity during 
activity deprivation  [135] . AC8 (–/–)  mice show abnormal 
anxiety behavior under stress  [132] . The latter phenotype 
may relate to the high expression of AC8, in the thalamus, 
habenula, and hypothalamus, regions involved in re-
sponses to stress. AC1 is not highly expressed in these 
regions  [123] . Thus, AC8 is more involved in synaptic 
plasticity related to anxiety.

  The various forms of hippocampal LTP require in-
creases in Ca 2+  either postsynaptically through NMDA 
receptors or presynaptically via voltage-sensitive Ca 2+  
channels. Perforant and Schaffer LTP are dependent on 
NMDA receptor activation, whereas mossy fiber/CA3 
LTP likely relies on presynaptic changes in Ca 2+   [136] . 
AC1 and AC8 are expressed both presynaptically and 
postsynaptically  [133] . The increase in Ca 2+  stimulates 
AC1 and AC8 to generate cAMP, which in turn activates 
several signal transduction pathways, including PKA and 
Erk/MAPK via Rap-1. Erk/MAPK activates Rsk2, the 
major kinase for CREB. The activation of CREB/CRE 

transcriptional pathways leads to expression of genes re-
quired for LTP and long-term memory.

  In summary, AC1 and AC8 are not necessary for sur-
vival, but play major roles in learning and memory. Al-
though nearly all AC isoforms are expressed in the brain 
(AC4 is expressed only in the brain blood vessels)  [137, 
138] , there are clear differences in their physiological 
functions. Both AC1 and AC8 are members of the Ca 2+ /
CAM-stimulated family of ACs, but display differences 
in regulatory patterns. AC1 has a 5-fold lower EC 50  for 
Ca 2+  (150 n M ) than AC8 (800 n M ) and stimulation of 
AC1, but not AC8, by Ca 2+ /CAM is synergistic with Gs 
activation  [39] . In addition, AC1 activity is enhanced by 
PKC  [139] , which is also activated during LTP  [140] . Thus, 
AC1 is stimulated by multiple routes for stronger syn-
apses and in turn adapted for roles in learning and mem-
ory. But it also has several check points like inhibition by 
CaMK IV and Gi-coupled receptors to keep cAMP levels 
optimal. AC8 gene expression can be increased by CREB 
activation  [141] , but is a low-affinity Ca 2+  detector with 
few inhibitory controls  [39] . It should be mentioned that 
AC9 is also highly expressed in the brain, particularly the 
hippocampus  [137] . However, genetic deletion of this iso-
form is embryonically lethal and thus a true assessment 
of the role for AC9 in brain function is not available at 
this time  [76] .

  Synaptic Plasticity Associated with Pain 

 Pain perception is a complex trait involving periph-
eral and central processing, and dramatic alterations in 
neuronal properties induced by inflammation and inju-
ry. A clear role for cyclic AMP has been established in the 
sensitization of nociceptors and pain projection neurons 
in the spinal cord after noxious stimulation and inflam-
mation [for review see,  142, 143 ]. However, the AC iso-
forms that contribute to these processes have only recent-
ly been studied.

  AC1, but not AC8, knockout mice have significantly 
reduced behavioral nociceptive (pain transmission) re-
sponses of the intermediate and late phases of acute mus-
cle pain (induced by formalin injections)  [144] . In AC1 
and the AC1/8 double knockouts, chronic muscle inflam-
matory pain (induced by carrageenan injections) was also 
significantly reduced but could be rescued by microinjec-
tions of forskolin in the spinal cord  [144] . In addition, 
injection of a novel AC1 inhibitor also significantly re-
duced behavioral responses in both acute and chronic in-
flammatory muscle pain. Thus, AC1 plays an important 
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role in acute and chronic muscle pain, although clearly 
additional ACs are present that can rescue impaired ef-
fects.

  AC5 also has strong effects on acute and chronic pain 
responses. AC5 (–/–)  mice have attenuated pain responses 
in acute thermal and mechanical pain tests  [145] . They 
display hypoalgesic responses to inflammatory pain and 
inflammatory visceral pain (induced by injection of sul-
fate or acetic acid)  [145] . AC5 (–/–)  mice display strongly 
attenuated mechanical and thermal allodynia (an exag-
gerated response to normal stimuli) in neuropathic pain 
models. The question still remains as to where AC iso-
forms are exerting their effects. Pharmacological studies 
support the spinal cord as a major site of action  [142] ; 
AC1 and 5 are expressed in the spinal cord in addition to 
AC2, 6, and 8  [146] . Although AC1 and 5 display strong 
differences in their regulation, both are inhibited by 
PAM. PAM is upregulated in the spinal cord in response 
to nociceptive stimulation  [146]  and produces a sus-
tained inhibition in response to sphingosine-1-phos-
phate  [147] , a regulator of neuronal cell survival  [148] . In 
summary, these studies support roles for AC1 and 5, but 
not AC8 in synaptic plasticity related to different forms 
of pain.

  Excitotoxicity and Neurodegeneration 

 Excitotoxicity is the pathological process by which 
nerve cells are damaged and killed by glutamate or simi-
lar substances. When NMDA or AMPA receptors are 
overactivated, neuronal death ensues via an influx of 
Ca 2+  leading to apoptosis. Knockout of AC1 significantly 
attenuated neuronal cell death induced by intracortical 
injections of NMDA, but deletion of AC8 had no such ef-
fect  [149] . Thus, Ca 2+ -stimulated AC1 modulates neuro-
nal responses to excitotoxicity and may serve as a novel 
target for treatment of neuronal excitotoxicity in stroke 
and neurodegenerative disease.

  Ethanol can also induce neurodegeneration in the 
brains of neonatal mice, which can be mimicked by 
NMDA receptor antagonists or potentiators of the 
GABA receptor. Genetic deletion of AC1, AC8 or both 
isoforms enhanced ethanol- or phenobarbital-induced 
neurodegeneration, but not cell death due to hypoxia/
ischemia  [150] . Therefore AC1 alone controls neuronal 
death in response to NMDA-dependent excitotoxicity, 
while both AC1 and 8 may play important roles in neu-
rodegeneration induced by activity blockade in the neo-
natal brain.

  Motor Functions 

 The striatum is the region of brain important for the 
planning and programming of voluntary movements, as 
well as some cognitive functions. These functions involve 
dopamine receptor signaling. AC1 and 8 have no effects 
on motor coordination  [144] . However, AC5 is highly en-
riched in the striatum and genetic ablation of AC5 shows 
a reduction in forskolin-stimulated activity in the stria-
tum ( 1 80%), cerebral cortex ( � 27%), and cerebellum 
(40%)  [151] . Only 10% of dopamine D1-stimulated AC ac-
tivity and 16% of adenosine A2A-stimulated AC activity 
remain in the striatum of AC5 (–/–)  mice, while the dopa-
mine D2 inhibition of AC activity mediated by Gi is com-
pletely absent  [138, 151] . General motor behavior is nor-
mal in AC5 (–/–)  mice; however, these mice show loss of 
neuroleptic responsiveness towards the D2 antagonist 
class of antipsychotic drugs  [151] . Other AC5 (–/–)  models 
exhibit Parkinson-like motor dysfunction, displaying ab-
normal coordination, bradykinesia, and locomotor im-
pairment  [138] . Motor coordination can be restored by 
D2 stimulation, while bradykinesia was largely restored 
by either D1 or D2 stimulation of residual striatal AC ac-
tivity. Although AC6 and AC1 (the other Gi-inhibited 
ACs) are present in the striatum, they cannot fully com-
pensate for AC5 function  [138] . AC5 is the physiological 
isoform coupled to dopamine D2 receptors and plays an 
important role in the response to antipsychotic drugs. 
AC5 provides a site of convergence for both D1 and D2 
dopaminergic signals and the inhibition of AC5 by Gi �  
is a crucial regulatory property for cAMP-dependent mo-
tor control.

  Drug Dependence (Morphine, Ethanol) 

 Morphine 
 Opiate-induced analgesia is mediated by the activa-

tion of Gi-coupled  � , and to a lesser extent by  � -opioid 
receptors. Their analgesic properties are related to the in-
hibition of AC, inhibition of voltage-gated Ca 2+ , and ac-
tivation of inward rectifying K +  channels by Gi  [152, 153] . 
The inhibition of AC has been linked to long-term adap-
tations by opiates. Long-term morphine use causes an up-
regulation of AC signal transduction components (AC, 
PKA, or CREB) in regions of the brain associated with 
drug reinforcement and withdrawal  [153] . In cell culture 
systems, AC supersensitization can be measured after 
treatment with Gi-coupled ligands (such as morphine, 
muscarinic agents, and somatostatin). The increase in AC 
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activity is long-lived, appears to require G �  �  subunits 
(although not in a direct regulatory role of AC), and is 
specific for the AC1, 5, 6, and 8 isoforms  [154–156] .

  AC1 and 8 are upregulated by long-term exposure to 
morphine, and genetic deletion of AC1 and 8 caused a 
significant reduction in withdrawal behaviors including 
reduced shakes and forepaw tremors after naloxone in-
jection  [157] . The AC1/8 knockout mice had less mor-
phine-induced hyper-locomotion and conditioned place 
preference; although the latter effect may be due to im-
pairments in learning and memory. CREB activation in-
duced by morphine was not evident in the AC1/8 double 
knockout mice in the ventral tegmental area. Gene ex-
pression patterns after chronic morphine administration 
in AC1 or 8 knockouts were only partially overlapping in 
the locus coeruleus (a region critical for opioid withdraw-
al), providing additional evidence that these AC isoforms 
have distinct functions during chronic morphine expo-
sure  [158] . Ca 2+ -stimulated cyclases (AC1 and 8) are im-
portant mediators of morphine responses but not the 
only required AC isoforms.

  AC5 has also been reported to be an essential mediator 
of morphine action within striatum  [159] . The  � -opioid 
receptors are at their highest level in the striatum and 
implicated in reward mechanisms  [160] . AC5 is the pri-
mary AC effector for  � - and  � -opioid receptors in the 
striatum, with deletion of AC5 resulting in a loss of opi-
oid-induced inhibition of AC activity in the striatum 
 [159] . All the major behavioral effects of morphine, in-
cluding locomotor activation, analgesia, tolerance, re-
ward and physiological dependence, and withdrawal 
symptoms, were attenuated in AC5 KO mice. These be-
havioral effects were selective for  � - and  � -opioid recep-
tor agonists;  	 -dependent locomotor activity was unaf-
fected.

  The roles of cAMP in morphine dependence have 
been further evaluated by overexpression of AC7 in the 
mouse brain, resulting in the enhancement of acute and 
chronic actions of morphine  [161] . In this model, toler-
ance to morphine develops more rapidly than in wild-
type mice. Thus it is clear that cAMP signaling is impor-
tant in opioid dependency with AC1 and 8 playing roles 
in withdrawal, hyper-locomotion, and the learned re-
sponses to morphine; whereas AC5 is involved in all ma-
jor behavioral effects of morphine, including analgesia, 
locomotor, reward, tolerance, and withdrawal.

  Ethanol 
 As discussed previously, ethanol acts as a neuroactive 

agent by antagonizing NMDA or potentiating the effects 

of GABA. Both in drosophila and mice, the sedative ef-
fects of ethanol are due to a decrease in cAMP signaling. 
AC1 knockouts or the knockout of both AC1 and 8 dis-
play enhanced sensitivity to the sedative but not ataxic 
effects of ethanol  [162] . The effect on sedation was mini-
mal for the deletion of AC8 alone, but AC8 (–/–)  had de-
creased voluntary ethanol consumption that was not ob-
served in the AC1 (–/–)  mice.

  An increase in cAMP (by overexpression of AC7) re-
sulted in high levels of phosphorylated DARPP32 (a do-
pamine- and cAMP-regulated phosphoprotein) which 
has been implicated in the motivational effects of ethanol 
 [163] . AC7 is indirectly stimulated 2- to 3-fold by ethanol 
or morphine, but the role of AC7 in alcohol dependence 
may be more prominent in platelets rather than in the 
brain where AC7 is expressed at lower levels (mainly the 
cerebellar granule layer)  [164] . In fact, AC7 activity in 
platelets has been proposed to be a trait marker for alco-
holism  [165, 166] .

  Olfactory Signaling 

 Odorants interact with G protein-coupled receptors to 
stimulate AC via Golf. Cylic AMP directly binds to cyclic 
nucleotide gated channels (CNG) causing an influx of 
cations (largely Ca 2+  and some Na + ) and a small depolar-
ization of olfactory neurons. Ca 2+  influx opens Ca 2+ -ac-
tivated chloride channels, to further polarize the neuron, 
triggering an action potential. The olfactory system is 
composed of two subsystems: the main olfactory epithe-
lium (responsible for odorant detection) and the vomero-
nasal system (responsible for pheromone detection). Al-
though AC2, 3 and 4 are expressed in the olfactory sys-
tem, AC3 is the predominant isoform  [7] . AC3, Golf, and 
CNG channels have not been detected in the vomerona-
sal system; instead AC2 predominates  [167] .

  Genetic deletion of AC3 confirms a role in olfaction 
 [7] . AC3 (–/–)  mice were initially runts but later gained 
weight comparable to their wild-type littermates. The 
initial growth defect is likely due to the fact that AC3 (–/–)  
mice do not detect mouse milk  [168] . Deletion of AC3 had 
major effects on odorant-induced signaling. Responses to 
cAMP- or IP3-inducing odorants were completely ablat-
ed in AC3 (–/–)  mice as measured by electro-olfactograms, 
and olfactory epithelial membranes lacked stimulation to 
the mouse pheromone, 2-heptanone. However, some vol-
atile odorants could be detected by the vomeronasal sys-
tem, independent of AC3  [169] , consistent with a role of 
AC2 or another AC in this system.



 Physiological Roles for Adenylyl Cyclases Neurosignals 2009;17:5–22 15

  Deletion of AC3 also gave rise to impairments in olfac-
tory-dependent learning and olfaction-based behavioral 
tests, signifying a critical role for AC3 and cAMP in these 
processes. In addition, AC3 (–/–)  mice do not detect mouse 
urine or pheromones and inter-male aggressiveness and 
male sexual behavior is absent  [168] . AC3 also appears to 
be responsible for spermatozoa function and male fertil-
ity  [170] . In general the vomeronasal organ is thought to 
be responsible for pheromone detection; however, it is 
clear that the olfactory epithelium and AC3 are also as-
sociated with these activities.

  Finally, the absence of AC3 perturbed the peripheral 
olfactory projections in mice and the establishment of 
mature glomerular  [171] . AC3 represents a pivotal ele-
ment in odorant-mediated axonal guidance, sorting, and 
identity, and its deletion results in a modified olfactory 
bulb topographical map and prevents expression of the 
major axon guidance molecule, neuropilin-1  [172] .

  AC3 regulatory patterns are adapted for a role in olfac-
tion. AC3 is strongly stimulated by Golf and displays 
feedback regulation from CaMKII and RGS2. CAMKII 
is activated in response to increased CNG-dependent 
Ca 2+  influx and mediates a rapid feedback inhibition of 
AC3  [173] . RGS2 negatively regulates odorant-evoked in-
tracellular signaling of olfactory neurons  [103] , and may 
give rise to a longer adaptation since it is upregulated in 
response to cAMP and Ca 2+   [174, 175] .

  Cardiac Function 

 Sympathetic stimulation in the heart leads to an in-
crease in AC activity, resulting in PKA activation and the 
phosphorylation of numerous effectors including L-type 
Ca 2+  channels, phospholamban, and troponin-I. These 
PKA substrates are involved in cardiac contractility, Ca 2+  
uptake, and cardiac relaxation. Heart expresses all iso-
forms except AC8  [57, 176]  (AC1 is only in the sino-atrial 
node  [177] ). AC5 and 6 are the major isoforms expressed 
in cardiac myocytes and have been the focus of several 
deletion and overexpression studies outlined below.

  Two independent strains of AC5 (–/–)  mice have been 
generated with similar decreases in AC activity. The dis-
ruption of the AC5 gene leads to decreased basal and 
stimulated (isoproterenol and forskolin) activity ( � 35–
40%) in cardiac membranes and isolated myocytes  [5, 
178] . However, differences have been reported between 
the strains in terms of cardiac function. Okumura et al. 
 [5]  reported no change in basal cardiac function in
AC5 (–/–)  (with intravenous isoproterenol), but the isopro-

terenol-stimulated left ventricular (LV) ejection fraction 
was significantly decreased  [5] . In a second AC5 (–/–)  mod-
el by Tang et al.  [178] , basal contractile function was in-
creased in isolated perfused hearts, but with decreased 
sensitivity to a  �  1 -adrenergic receptor agonist although 
the maximal levels were unchanged. However, a signifi-
cant reduction in Gs �  protein ( � 60%) was reported in 
the latter model  [178] , whereas no differences in G pro-
tein, receptor, or AC levels were reported by Okumura et 
al.  [5] .

  The greatest effect of AC5 deletion is on parasympa-
thetic regulation of cAMP. Deletion of AC5 results in a 
complete loss of acetylcholine-mediated (Gi) inhibition 
and a significant reduction in Ca 2+ -mediated inhibition 
of cAMP production  [5] . This corresponded with a re-
duction in the effects of muscarinic agonists on LV ejec-
tion fraction and heart rate in AC5 (–/–)  mice. Baroreflexes 
were also attenuated. These effects on parasympathetic 
regulation of cardiac function may partially explain the 
odd increase in basal heart rates observed in AC5 (–/–)  
mice  [5, 178] .

  Chronic activation of cAMP signaling by overexpres-
sion of  � -AR, Gs � , or PKA results in cardiomyopathy 
 [179–181] . Thus limiting cAMP under stress conditions 
should be beneficial. Certainly the use of  � -blockers for 
the treatment of congestive heart failure is consistent 
with this notion. Similarly, disruption of AC5 under 
stress conditions (pressure overload by thoracic banding) 
is protective against heart failure, potentially by increas-
ing Bcl-2 and reducing myocardial apoptosis  [182] . AC5 
disruption protects against other forms of stress as well. 
AC5  (–/–)  mice have increased lifespan ( � 30%) and are 
protected against age-induced cardiac myopathy (which 
includes hypertrophy, apoptosis, fibrosis, and reduced 
cardiac function)  [183] . AC5 disruption leads to a stimu-
lation of the Raf/MEK/ERK pathway and an upregula-
tion of superoxide dismutase, which may play roles in ex-
tending lifespan and resistance to oxidative stress  [183] .

  The deletion of AC6 results in a somewhat different 
phenotype from that of AC5. Both isoforms are expressed 
equally at birth but in adult heart AC5 is dominant  [184, 
185] . Deletion of type 6 AC  [186]  resulted in no change in 
cAMP levels under basal conditions but cAMP levels 
were reduced by  � 60% in left ventricular homogenates 
and by  � 70% in cardiac myocytes under stimulated con-
ditions. In addition, cardiac myocytes from AC6 (–/–)  show 
reductions in PKA activity (40%), Akt activity (60%), 
phospholamban phosphorylation (45%), and  � AR-stim-
ulated LV contractile function ( � 80%). The more severe 
decreases in AC activity and cAMP signaling compared 
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to AC5 (–/–)  are likely due to a dramatic decrease in AC5 
protein levels by proteosomal degradation, although AC5 
mRNA levels were unchanged. Thus these animals rep-
resent a functional double knockout of AC5 and AC6. 
Conclusions can still be made about roles for AC6 from 
these animals, particularly in regard to calcium han-
dling. Deletion of AC6 decreased the Ca 2+  affinity of 
SERCA2a by 3.5-fold and reduced caffeine-stimulated 
Ca 2+  transients by 50%. These properties cannot be at-
tributed to the decrease in AC5, since a small increase 
(not decrease) in Ca 2+  uptake was observed in AC5 (–/–)  
 [178] .

  Overexpression of AC5, 6 and 8 has been examined in 
the heart with somewhat differing results. Overexpres-
sion of AC5 in wild-type mice led to increased basal 
cAMP, PKA activity, phosphorylated phospholamban, 
and baseline heart rates, without an enhancement of  � -
adrenergic receptor signaling or changes in global car-
diac function  [187, 188] . While in mice overexpressing 
AC6, basal heart rate and contractile function were un-
changed, but cardiac responsiveness to  � 2-adrenergic
receptor stimulation was increased  [189] . In pigs ,  intra-
coronary delivery of an adenovirus expressing AC6 in-
creases global LV contractile function with increased  �  2 -
adrenergic receptor responsiveness and LV contractile 
function  [190] . What is unclear in these overexpression 
models is whether the differences observed between AC5 
and 6 point to abnormal coupling of these isoforms to 
various signaling pathways or an enhancement of their 
physiological roles in the heart.

  Overexpression of AC8 enhanced AC activity 7- to 8-
fold in cardiac membranes, increased basal PKA activity, 
and displayed Ca 2+ -stimulation  [191] . Ca 2+ -stimulated 
AC8 is not normally expressed in the heart, yet AC8 over-
expression had no deleterious effects on global cardiac 
function. Basal contractile rates and cardiac function (as 
measured by echocardiography) were unchanged despite 
elevated cAMP  [188, 191] . However, recordings using car-
diac catheterization or in isolated perfused hearts, mea-
sured a 2-fold increase in cardiac contractility under bas-
al conditions  [188, 191, 192] , but no response to  �  2 -adren-
ergic receptor stimulation  [191] . AC8 overexpression 
resulted in an increased Ca 2+  sensitivity to cardiac con-
traction and faster SR uptake of Ca 2+ , but no increase in 
L-type Ca 2+  whole cell current  [192] . These changes like-
ly mediate the increased exercise capacity on treadmill 
testing by mice overexpressing AC8.

  Paradoxically, overexpression studies paint a very dif-
ferent picture concerning the roles of cAMP in heart fail-
ure. Although AC5 deletion is protective against heart 

failure (in thoracic banding models), overexpression of 
AC5 or 6 improves survival rates in Gq-overexpression 
models. Overexpression of Gq is a cardiomyopathy mod-
el and leads to a decrease in cardiac responsiveness to 
catecholamines, reduced LV function, and decreased sur-
vival rates. Overexpression of AC5 or 6 improves these 
markers of heart failure, restoring basal cardiac AC activ-
ity, cardiac contractility, cardiac responsiveness to cate-
cholamine stimulation, and survival rates  [187, 193–195] . 
During congestive heart failure in pigs, AC6 overexpres-
sion increases LV function and attenuates deleterious LV 
modeling  [196] . These studies suggest a beneficial role for 
AC5 and 6 in the pathogenesis of heart failure which is in 
contrast to the AC5 knockout.

  In summary, AC5 and 6 are very closely related AC 
isoforms in terms of stimulation by Gs �  and G �  �  and 
inhibition by Ca 2+  and PKA. The differences in Gi �  reg-
ulation are subtle in that basal activity of AC5, but not 
AC6, is inhibited by Gi �   [34] . Both isoforms are more 
sensitive to Gi �  inhibition when weakly stimulated by 
Gs � ; with increasing activation resulting in decreased 
Gi �  inhibition. The other major difference is in PKC reg-
ulation. AC5 is stimulated by PKC ( �  and  � ), while AC6 
is inhibited by PKC ( �  and  � ). Thus both isoforms are 
highly regulated with numerous inhibitory inputs to 
carefully control cAMP levels. Cyclic AMP produced by 
endogenous AC5 may be harmful under stress conditions 
such as heart failure or aging; however, both AC5 and 6 
overexpression can mitigate harmful effects of Gq over-
expression. Clearly the heart has many ways to finely con-
trol the production and utility of cAMP.

  Conclusions 

 Although AC expression patterns dictate much of the 
observed specificity in controlling physiological func-
tions, clearly the regulation of individual AC isoforms is 
also an important factor. Another manner in which 
cAMP production may be fine-tuned for specific signal-
ing pathways is by the creation of cAMP microdomains 
 [197]  or the formation of higher-order signaling complex-
es  [111] . The latter strategy likely involves the use of A-
kinase anchoring proteins to directly tether cAMP pro-
duction to downstream effector molecules. This has
recently been shown for AC5 and AKAP79, where com-
plexes have been detected in rat brain tissue  [110] . This 
complex facilitates phosphorylation of AC5 and sets up a 
negative feedback loop for cAMP production. Several 
strategies have been proposed for the creation of cAMP 
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microdomains or gradients, including diffusional barri-
ers for cAMP, enzymatic barriers created by phosphodi-
esterases, or buffering of cAMP by PKA  [57, 198] . Finally, 
the lipid composition of the plasma membrane itself may 
guide the formation of specific complexes either within 
or excluded from regions of high cholesterol and sphin-
golipids; all but AC2, 4, and 7 have been found within 
lipid rafts [for review see,  57 ]. Finally, the question of 
overlapping functions of ACs is still difficult to deter-
mine. The very nature of knockout and overexpression 
studies leads to the possibility of compensation at many 

levels. Without isoform-specific AC inhibitors and/or 
high quality specific AC antibodies, there are many open 
questions left to answer with regard to the physiological 
roles for distinct AC isoforms.
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