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The standard method for prediction of the absence and presence of pain has

long been self-report. However, for patients with major cognitive or communicative

impairments, it would be better if clinicians could quantify pain without having to rely

on the patient’s self-description. Here, we present a newly pain intensity measurement

method based on multiple physiological signals, including blood volume pulse (BVP),

electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced

by external electrical stimulation. The proposed pain prediction system consists of signal

acquisition and preprocessing, feature extraction, feature selection and feature reduction,

and three types of pattern classifiers. Feature extraction phase is devised to extract

pain-related characteristics from short-segment signals. A hybrid procedure of genetic

algorithm-based feature selection and principal component analysis-based feature

reduction was established to obtain high-quality features combination with significant

discriminatory information. Three types of classification algorithms—linear discriminant

analysis, k-nearest neighbor algorithm, and support vector machine—are adopted during

various scenarios, including multi-signal scenario, multi-subject and between-subject

scenario, and multi-day scenario. The classifiers gave correct classification ratios much

higher than chance probability, with the overall average accuracy of 75% above for

four pain intensity. Our experimental results demonstrate that the proposed method can

provide an objective and quantitative evaluation of pain intensity. The method might be

used to develop a wearable device that is suitable for daily use in clinical settings.

Keywords: feature extraction, feature selection and reduction, pain intensity quantification, physiological signals,

pattern classification

INTRODUCTION

From an evolutionary angle of vision, pain is considered as an unpleasant emotional and sensory
experience that may be associated with a real or potential tissue damage (Hudspith et al., 2006;
Loeser and Treede, 2008). Nowadays, pain is one of the most significant clinical symptoms that can
be utilized to detect the acuteness and degree of a patient’s injury. Moreover, pain is considered as
a warning to danger, and often indicates the site of a lesion; its intensity serves as an indicator
of patient well-being. A precise prediction of pain intensity could provide valuable insights in
situations in which it can be utilized effectively to ultimately determine the position of pain
and accordingly to formulate a reasonable therapeutic schedule. Therefore, pain prediction could
enhance the quality of daily life for patients in the health-related field of rehabilitation, in-home
healthcare and medical emergency services.

As a subjective first-person experience (Loeser and Treede, 2008), pain does not only reflect
perceptual status but would also be substantially affected by psycho-physiological conditions (e.g.,
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fluctuations in attention or alertness) and even psychosocial
contexts (e.g., the age or gender of individuals) (Aslaksen et al.,
2007). In clinical practice, self-description is the gold standard
approach for the determination of the absence, presence, and
intensity of pain (Cruccu et al., 2010; Haanpää et al., 2011),
such as Numeric Pain Rating Scales (NPRS), Verbal Rating
Scales (VRS), and Visual Analog Scales (VAS) (Frampton and
Hughes-Webb, 2011). These self-reported scales are especially
well applied and validated in cancer patients (Caraceni et al.,
2002). In addition, the McGill Pain Questionnaire (MPQ) and
Brief Pain Inventory are also used to assess the wider pain
perception in multidimensional scales (Frampton and Hughes-
Webb, 2011). While self-descripted pain provides important
clinical reference indicators and proves to be a valid method
for the adequate therapy of patients suffered from pain in most
situations (Brown et al., 2011), it would fail to be applied in
certain vulnerable populations. Individuals with communicative
impairments or disturbance of consciousness, including older
adults with dementia and intensive care unit patients in
vegetative state, coma, and minimally conscious state (Herr et al.,
2006; Schnakers and Zasler, 2007), may not be able to provide
effective and credible self-reports of pain (Li et al., 2008). For
those populations, lack or any inaccuracy indicators used to
evaluate pain may lead to suboptimal or inappropriate treatment
of pain, which may bring about various additional clinical issues,
such as the deterioration of chronic pain and psychological
distress or depression (Roulin and Ramelet, 2012). Furthermore,
the self-reported pain is very subjective and unable to be obtained
in real-time.

Recent developments in objective pain assessment have
concentrated mainly on recognition and prediction from human
behaviors, such as vocalizations (Puntillo et al., 2004), body
motions (Young et al., 2006), and facial expressions (Lucey et al.,
2011; Kaltwang et al., 2012; Irani et al., 2015). While behavioral
methods exist, they also may be inapplicable in individuals
with paralysis or other motor disorders affecting behaviors. By
observing the face of an individual, a huge number of features
related with affective state can be extracted, including pain state.
However, facial expression-based pain recognition need track the
special facial regions of the users, which can be very cumbersome
and tedious in the clinical application. Meanwhile, researchers’
effort has been shifted to target toward a physiology-driven pain
prediction that does not rely on individual’s facial or volitional
behaviors (Shankar et al., 2009; Treister et al., 2012). Those
studies have focused on diverse bio-physiological signals, such
as heart rate variability (De Jonckheere et al., 2010, 2012; Faye
et al., 2010; Logier et al., 2010), skin conductance or electro-
dermal activity (Harrison et al., 2006; Treister et al., 2012),
electromyography (Oliveira et al., 2012), electroencephalography
(Nir et al., 2010; Huang et al., 2013), and functional magnetic
resonance imaging (fMRI) (Marquand et al., 2010; Brown et al.,
2011). Recently, pain assessment method implemented by multi-
modality signals has been confirmed to be highly effective, some
even outperforming single-signal mode markedly (Werner et al.,
2014; Kächele et al., 2015). However, the most physiology-driven
pain researches just provide statistically significant correlations
between several bio-physiologic signals and the presence of pain.

They are qualitative assessments for discriminating the presence
or absence of pain. Few measurements can predict the intensity
of pain as a level indicator. Hence, despite many remarkable
researches, there is no acceptable pain assessment method based
on physiological signals of human.

With the increasing availability of wearable smart devices,
many researchers focus on developing a non-invasive integrated
system for health monitoring. An appropriate interpretation of
the signals recorded by wearable devices equipped with sensors
can help monitor, evaluate and eventually solve health problems
related pain. In this article, the focused goal is the quantitative
measurement of pain intensity from multi-physiological signals
obtained by wearable sensors in the customer market. At
present, only few studies have been carried out the procedure
of automatic recognition of pain intensity from physiological
signals. Olugbade et al. applied electromyography (EMG) and
body motions in combination with Support Vector Machines
(SVM) and Random Forests (RF) as classifiers to recognize
three pain intensity (Olugbade et al., 2015). Kachele et al.
used EMG, skin conductance level (SCL) and electrocardiogram
(ECG) incorporated with unsupervised and semi-supervised
learning to establish a personalized system of continuous
pain intensity recognition (Kachele et al., 2016). However,
these assessment procedures are quite complicated and time-
consuming, especially feature extraction. Moreover, the latter
focuses on a personalization scenario where the recognition
process may not be widely used in the general population.

In this paper, we proposed a convenient and objective method
of pain intensity recognition based on multiple physiological
signals. The technique uses a hybrid of genetic algorithm
(GA) with principal component analysis (PCA) to obtain
optimized feature combination related with pain states. And
three kinds of classification methods are compared to establish
more appropriate recognition models. The presented system
that complements the self-reported pain can thus be adapted to
general persons.

The remainder of this paper is structured as follows. In
Section Dataset and Experimental Protocol, we provide a short
presentation of physiological signals used in pain recognition
and experiment of pain induced by electrical stimulation. Section
Feature Processing elaborates a thorough feature processing
phase, including feature extraction, feature selection, and feature
reduction. In Section Pattern Classification, we present the
three classifiers for pain intensity recognition system. Thorough
experimental results and discussion are described in Section
Experimental Results and Discussion. Section Conclusions and
Outlook provides our findings and ideas for future study in this
field.

DATASET AND EXPERIMENTAL
PROTOCOL

Subjects
Six subjects (4 males and 2 females, numbered 1–6) aged 22–25
years (standard deviation [SD]= 3.0) were recruited in this study.
All participants were healthy, without any history of medical
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illness, neurological or psychopathological disorders, and none
had a history of chronic pain. All the experimental protocols
of this study were approved by the ethics committee of China
Medical University. Moreover, all subjects were fully informed
about the procedures, risk, and benefits of the study, and written
informed consent was obtained from all subjects before the study.

The algorithm design and performance validation in this
pain intensity measurement were implemented for the databases
constructed from physiological signals of each subject. The
signals were obtained with the procedure described in Section
Physiological Signals and Preprocessing and Pain Induction
Protocol. Moreover, we continuously collected 1-week data from
the same participant, thus generating a 7-day dataset. For the
database of each subject, we randomly chosen 75% of the samples
as the training set, and the rest as the testing set. For the 7-
day database, data from six randomly chosen days were used
as the training set, and the rest were used as the testing set
(leave-one-out method).

Physiological Signals and Preprocessing
Acquisition of high-quality physiological data is of utmost
importance for the pain intensity recognition system. The
selection of available physiological signals that are used as input
is the first consideration in the pain detection system. It is
expected that the physiological signals reflect the effect of pain
on the activity level of the nervous system. However, unlike self-
reporting or facial recognition of pain, where the truth class labels
of pain intensity for a given sample are self-evident, a high-
confidence physiological signal in an underlying pain intensity is
not easy to be acquired. Furthermore, it is difficult to determine
whether the variability of the physiological signals is specific to
pain or whether they represent a general response to factors such
as thought, cognition, emotion and environment.

Since we were decided to exploit a practical quantitative
and convenient system, there was a limitation on the selection
of available signals. Though facial electromyograms and
electroencephalograms would be expected to be useful, the
attachment of electrodes to the face and scalp is complicated
and not suitable for practical application. In our study, the
selected physiological signals were blood volume pulse (BVP),
electrocardiogram (ECG), and skin conductance level (SCL).
These signals reflect the activity level of the autonomic nervous
system, which is connected with the secretory activity of cardiac
muscles and internal organs. As a wearable device, we use the
Infiniti 3000A platform developed by Thought Technology Ltd.,
Quebec, Canada. The Infiniti 3000A apparatus is a compact
sensing platform with 10 isolated channels for recording
signals. It is small enough to attach to a portable computer
and integrates to commercial sensors via custom cabling.
The sampling frequency was fixed at 256 Hz for all the three
channels.

The BVP signal is derived from a photoplethysmographic
(PPG) sensor that monitors blood volume in capillaries and
arteries by emitting an infrared light through the tissues.
Vasomotor activity, which controls blood vessel diameter, is
regulated by the sympathetic nervous system (Babchenko et al.,
2001). Hence, changes in BVP amplitude reflect instantaneous

sympathetic activation. Most PPG sensors can be placed
anywhere on the body, with the finger as the most common
location for recording a BVP signal. In this study, A BVP-
Flex/Pro sensor was placed against the palmar surface of the
middle finger of the right hand with an elastic strap or a short
strip of adhesive tape to acquire BVP signals (Figure 1A). In the
preprocessing phase, a 4-order Butterworth bandpass filter with
gain 3, cutoff frequencies [30, 200]Hz was applied to eliminate
the bursts in the BVP signal.

The ECG, an electro-physiological signal that is associated
with the electrical activity of the sinuatrial node, reflects the
cardiovascular activity. Additionally, ECG responses to external
stimuli (such as pain stimuli and stress) can produce large
variability in a given subject’s physiological signal (Sriram et al.,
2009). Therefore, we can employ ECG signal to extract universal
information about pain state or intensity. The ECG signal was
measured from both surface of upper arms with the two-
electrode method based on lead I in our experiment (Figure 1A).
For the preprocessing of the ECG trace collected by using non-
invasive surface electrodes, a typical high-pass and moving-
average filter (Milanesi et al., 2008; Sidek et al., 2014) were used
to remove a low frequency baseline drift due to electrode contact
noise, respiratory effects, and motion artifacts. Otherwise, we
employed an adaptive linear interpolation algorithm to perform
baseline correction before feature extraction.

The SCL is another signal that can easily be acquired from the
body surface. It reveals variance in the electrical properties of the
skin due to the secretory activity of the perspiratory glands. As
it is directly regulated by the sympathetic nervous system, it is
a good indicator of psychological or physiological arousal level
due to external stimuli. Changes in the SCL signal induced by a
painful stimulus were validated to be used as a tool to monitor
nociceptive stimulation and pain (Harrison et al., 2006; Storm,
2008). The SCL signal was traced from two Ag/AgCl electrodes
attached to the tip of the index and ring fingers on the palm-side
of the right hand in this study (Figure 1A). In the preprocessing
phase, a moving average smoothing was carried out to subtract
artifacts. Furthermore, the raw SCL data was down-sampled by a
factor of 1/2 to reduce the computational complexity in feature
extraction phase.

Pain Induction Protocol
As in many pain researches, there are variety ways that can be
used to induce pain, such as thermal or cold pain stimulation
(Appelhans and Luecken, 2008; Kachele et al., 2016), mechanical
pain elicitation (Matsunaga et al., 2005; Shankar et al., 2009),
and electrical shock (Oliveira et al., 2012; Zhang et al., 2016).
In our study, pain was induced by an electrical stimulator
(MotionStim8; Medel GmbH, Hamburg, Germany), which can
generate a current square wave with a certain pulse width. The
amplitude and frequency of the current are adjustable. The value
of the pulse amplitude can be used as an objective index of pain
intensity. In the experiment, the frequency of MotionStim8 was
set to 2 Hz. In order to avoid interference of the stimulator with
the sensors, especially the ECG sensor, the stimulation electrodes
were placed on the tibialis anterior muscle of the right leg, as far
away as possible from the sensors (Figure 1A).
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FIGURE 1 | (A) Pain recording scenario. Positioning of sensors and electrical stimulation electrodes: (1) BVP-Flex/Pro sensor, (2) EKG-Flex/Pro sensor, (3)

SC-Flex/Pro sensor, and (4) Electrical stimulation electrodes. (B) Pain induction protocol. The stimulus levels are represented by current intensity L1 to L3. The

features are extracted from the green window of length 30 s.

Before stimulation phase, the current intensity was calibrated
according to the subjects’ self-reports. An electrical stimulus
with 20 mA induced the sensation of pain was as pain starts
(threshold). An electrical stimulus with 40 mA induced intense
pain was as barely bearable pain (tolerance). Then, we divided
the range between threshold and tolerance into 3 equally spaced
intervals, 20-mA stimulus (stim20, L1), 30-mA stimulus (stim30,
L2), and 40-mA stimulus (stim40, L3) with additional pre-
stimulus (baseline, L0). During the stimulation experiment,
each of the different current intensity was proceed for 1 min
followed by a recovery period of 1.5–2min (Figure 1B). To
eliminate stimulation adaptability and time correlations, the
sequence of stimuli and duration of the recovery period were
randomly designed. Pain elicitation was executed 30 sessions for
each of the 3 calibrated intensities (L1–L3) in the same day.
With the addition of baseline phase, a total number of 120
stimulation trials were obtained for each subject. Each session
took approximately 15min. To minimize motion artifacts, the
participants were requested to be as relaxed as possible during
the stimulation phase. Moreover, the recording scenario that led
to the multi-day dataset was continuously carried out 7 days for
one person in the same condition. Figure 2 shows physiological
traces from a participant in the four pain states.

FEATURE PROCESSING

The overflow of the proposed pain intensity estimation system
can be seen in Figure 3. The pipeline consists of raw signal input,
independent preprocessing according to Section Physiological
Signals and Preprocessing, feature processing, and finally pain
intensity recognition. In this section, the proposed feature
processing phase is introduced, including feature extraction,
Section Feature Selection and Feature Reduction.

Feature Extraction
From the Figure 2, we can see that the amplitude of physiological
signals obviously varied according to the level of electrical
stimulus. Based on this observation, we gathered a variety of basic
statistical features to evaluate the response to the pain-inducing
stimuli, such as maximum, minimum, median values of data.

Furthermore, these features can easily be calculated in an online
way, which makes them more suitable for real-time recognition
system of pain intensity.

The statistical features can be calculated for each of the
signal channels as follows. Let the three preprocessed signals—
the digitized BVP, ECG and SCL waveforms from any one of
the four pain states segments—be designated by Xi, i = 1, 2, 3
respectively. Let Xi

n represent the value of the nth sample of the
ith signal, where n = 1, 2, ...,N with N in range of 3,840 to 7,680.
Let X̃i

n refer to the normalized signal (zero mean, unit variance),
formulated as:

X̃i
n =

Xi
n − µi

σ i
i = 1, 2, 3 (1)

where µi and σ i are the means and standard deviations of Xi as
presented below. Let f ij represent the j

th features of the ith signal.

• The means of the signals: f i1:

µi =
1

N

N
∑

n=1

Xi
n i = 1, 2, 3 (2)

• The standard deviations of the signals: f i2:

σ i =

(

1

N − 1

N
∑

n=1

(Xi
n − µi)

2

)1/2

i = 1, 2, 3 (3)

• The means of the absolute values of the first differences of the
signals: f i3:

θ i1 =
1

N − 1

N−1
∑

n=1

∣

∣Xi
n+1 − Xi

n

∣

∣ i = 1, 2, 3 (4)

• The means of the absolute values of the first differences of the
normalized signals: f i4:

θ̃ i1 =
1

N − 1

N−1
∑

n=1

∣

∣X̃i
n+1 − X̃i

n

∣

∣ =
θ i1

σ i
i = 1, 2, 3 (5)
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FIGURE 2 | Physiological signals of a subject at baseline, stim20, stim30, and stim40. From top to bottom: blood volume pressure (BVP; percent reflectance),

electrocardiogram (ECG; microVoltage), and skin conductance (SCL; microSiemens). Each graph shows 10 s of response. The segments shown here are visibly

different for the four states.

• The means of the absolute values of the second differences of
the signals: f i5:

θ i2 =
1

N − 2

N−2
∑

n=1

∣

∣Xi
n+2 − Xi

n

∣

∣ i = 1, 2, 3 (6)

• The means of the absolute values of the second differences of
the normalized signals: f i6:

θ̃ i2 =
1

N − 2

N−2
∑

n=1

∣

∣X̃i
n+2 − X̃i

n

∣

∣ =
θ i2

σ i
i = 1, 2, 3 (7)

• The minimum: f i7:

Min = minimum(Xi
n) i = 1, 2, 3 (8)

• The maximum: f i8:

Max = maximum(Xi
n) i = 1, 2, 3 (9)

• The minimum ratio: f i9:

minRatio =
Min

N
(10)

Here, N represents the length of the signal.
• The maximum ratio: f i10:

maxRatio =
Max

N
(11)

Here, N represents the length of the signal.
• The range of the signal: f i11:

range = Max−Min (12)

Besides, we also calculated the median value of the signal
as f i12. Hence, each channel was characterized by 12 features.
Considering the time lag of pain reaction, we selected 30 s signal
for feature analysis in the 1-min data. For obtaining the subtle
changes of the signals in a trial, we segmented the 30 s signal by a
sliding window with 3 s sliding step (the window length was 3 s)
to obtain the feature windows. Hence, a sample dataset of 40× 36
can be obtained for each experiment session consisted of 4 trials.
For single subject with 30 sessions, the size of sample dataset was
1,200 with 36 feature dimensions.

The BVP, ECG, and SCL are dependent on each participant’s
initial physiological level. Even when these signals are measured
from the same person, they are likely day-dependent due to
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FIGURE 3 | Processing pipeline of the pain intensity recognition system.

variations in mental state affected by emotion, variations in
physiology caused by sleep or diet, or variations in the sensor’s
connectivity with skin (Sun et al., 2010). To eliminate the intra-
subject and day-to-day variation factor, a normalization stage for
each feature was applied in feature vector set F. Refer to (13), the
first was to subtract the minimum value from each feature. Then,
the features are divided by the range to make all the values lie
between 0 and 1.

F(m)norm =
F(m)− Vmin(m)

Vmax(m)− Vmin(m)
(13)

where, Vmin(m) = min{Fn(m)}, Vmax(m) = max{Fn(m)},
∀n ∈ |F|.

Feature Selection and Reduction
Note that not all of these features are independent. Some features
are a linear combination of other features (e.g., θ̃ i1 and θ̃ i2)
or a non-linear property. To obtain high-quality features with
significant discriminatory information, a hybrid combination of
genetic algorithm (GA) and principal component analysis (PCA)
was proposed. This combinationwasmotivated by the roles of the
two algorithms: GA selects from a feature set to remove useless
and redundant features, while PCA linearly transforms a feature
set. Since feature selection is non-linear, the hybrid of these two
ways could provide a more powerful separation than either alone.

The GA is a biologically inspired stochastic algorithm based
on some optimization criterion that mimics natural evolution.
The GA is naturally applicable to feature selection since the
problem has an exponential search space (Oh et al., 2004).
Furthermore, the distinct specialty of this algorithm is that
it always maintains a set of solutions (called chromosomes
or individuals) in a population. To simulate the biological
evolution, the GA selects fitter chromosomes at each generation
by some genetic operations, such as crossover and mutation.
The traditional procedures of steady-state GA are described
below.

1. Initialize population P;
2. Repeat {
3. select two parent chromosomes p1 and p2 from P;
4. offspring= crossover (p1, p2);
5. mutation (offspring);
6. replace (P, offspring);

7. fitness (offspring);
8. } until (stopping condition);

For the feature selection problem, a finite bit string with d binary
digits is usually used to represent chromosomes. A binary digit
represents a feature. A value of 1 or 0 in the chromosomes
means that the corresponding feature is selected or removed,
respectively. For example, a chromosome 10100010 means that
the first, third and seventh features are selected. Since we wanted
to improve recognition rate, the classification accuracy from the
classifiers was directly used as the fitness function to evaluate
a chromosome (Lin et al., 2015). Based on the initial fitness
evaluation, the chromosome for the next generation was selected
by a selection mechanism that ensures fitter chromosomes have
a higher probability to survive. In our design, a traditional
roulette wheel selection strategy was applied. We also used the
standard two-point crossover operator to obtain the offspring
and Gaussian mutation operations at probability on each of
the offspring produced from crossover. The crossover rate and
mutation rate were set to 0.8 and 0.01, respectively. Besides, the
size of population and the maximum generation in GA were set
to 100 and 30, respectively. These parameters are tunable to be
suitable for a specific dataset to improve performance.

The principal component analysis (PCA) is a well-known
statistics method of multi-variable analysis and used orthogonal
transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated
variables (Karamizadeh et al., 2013), also known as principal
components. Moreover, PCA is a tool to reduce dimensionality
by searching a linear projection matrix of the dataset to a
feature space with lower dimensions while retaining most of
the information. This linear projection matrix is a meaningful
basis to filter out the noise and reveal hidden information in
the original feature space. The key advantages of the PCA are
the decreased requirements for memory and capacity, it low
noise sensitivity, and increased efficiency in a lower dimension.
By solving the covariance matrix, a series of eigenvalues with
the corresponding eigenvectors are computed and rank-ordered
descendingly by quantifying how “principal” each variance is.
The k largest eigenvalues are selected and the corresponding
eigenvectors (k principal components) are used to construct the
linear projectionmatrix. Then, a feature space withN dimensions
is transformed to a space of k dimensions by this reduction
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matrix. For a detailed description of the PCA algorithm about
mathematical derivation, the reader is referred to Bro and Smilde
(2014).

A hybrid GA with PCA method is proposed, evaluated
and implemented for comparison. As mentioned above, the
GA algorithm provides a subset of features selected from
raw features. Instead of feeding the PCA algorithm with all
possible features, we used the selected subset of features as
the input to the PCA. Note that the PCA algorithm is applied
here for transforming features into a linearly uncorrelated
space.

PATTERN CLASSIFICATION

The features undergo processing were feeding to classifiers to
identify a subject’ pain intensity. We used three types of learning
methods to train and investigate the performance of classifiers,
including linear discriminant analysis (LDA), k-nearest neighbor
(KNN) algorithm, and support vector machine (SVM). We
evaluated classification performance for single-signal datasets
andmulti-signal datasets, as well as for multi-subject datasets and
multi-day datasets.

The LDA is a commonly used statistical method that uses
a linear discriminant function to classify a new data points.
In the calculation process of the algorithm, a hyperplane is
constructed by finding a linear combination of features to
separate or characterize two classes of objects or events. The
optimal linear combination or projection in a classical LDA
is constructed by minimizing the within-class distance and
maximizing the between-class distance simultaneously, thereby
achieving maximum class separation (Yan et al., 2014). Since a
LDA algorithm is a linear binary classifier, it is not suitable in
multi-class situations. In our pain study, the classes are three pain
intensity levels and the baseline state. Thus, we need a multi-task
method to inference pain states. A one-vs.-rest strategy was used
to address multi-class problems. For each class l, an independent
LDA classifier was trained to separate data of class l and the rest
class. In this paper, four trained LDA classifiers were applied
in the test set. For a test sample, the recognition result was
determined by selecting the class with the highest output value.
Moreover, the classification accuracy of LDA was used as the
fitness in the GA.

The KNN is a simple multi-class technique that operates
by finding the k objects in the training set which are closest
to the test sample by some metrics, such as measures based
on distance (Weinberger et al., 2005). In order to classify an
instance of the test set into a class, KNN calculates the distance
between each instance of the training set and this test sample.
Then, a prediction is determined as the most common class
among this set of nearest neighbors, with each neighbor’s vote
being assigned a weight inversely proportional to that neighbor’s
distance from the test sample. The performance of a KNN
classifier is primarily determined by the choice of k as well as
the distance metric applied (Xiao and Chaovalitwongse, 2016).
By effectively using prior knowledge such as distribution of the
features, Euclidean distances were applied as the distance metric
in our KNN classifier. In addition, the configurable parameter

k of the k-nearest neighbor algorithm was set to 3 by multiple
testing.

The SVM is a supervised learning algorithm by finding a high-
dimensional discriminant hyperplane to separate observations
into two class with a maximum margin, generally a soft margin
(Vapnik, 2005). A regularization parameter was applied in the
soft margin to penalize misclassification. By using the “kernel
trick” to map the testing data points into a higher dimensional
space, a support vector machine can construct an optimized
separation hyperplane and make the mapped data easier to be
separated. For pain recognition, randomization was executed
using a computer-based list randomizer to construct the training
data set for each subject. The preferential kernel function was
the Gaussian or Radial Basis Function (RBF) kernel in this study.
The SVM model was trained by cross-validation method with a
grid search to find the optimal parameters of regularization and
kernel. In this study, the SVM is optimal with a regularization of
5 and a Radial Basis Function kernel with width of 2.58.

In both of the KNN and SVM methods applied in pain
recognition, the processed features were uniformed to zero mean
and unit variance. Accordingly, the effect of feature variations in
distance-based inference algorithms was reduced.

EXPERIMENTAL RESULTS AND
DISCUSSION

Initial Results—Single-Signal Analysis
Previous studies have performed qualitative analyses of pain
based on a single physiological signal. For example, Harrison
et al. revealed SCL as a promising indicator to predict the
presence or absence of pain in hospitalized infants during painful
and non-painful medical procedures (Harrison et al., 2006).
However, in this study, we applied pattern recognition techniques
to quantify pain intensity based on a set of physiological signals.
Since there was not yet a priori knowledge of pain recognition,
we originally established a quantitative model for pain intensity
from individual’s single physiological signal. For each signal,
we extracted 12 statistical features to construct three types of
feature set, including BVP-features, ECG-features, and SCL-
features. The classification accuracy of the LDA algorithm was
evaluated by using these three types of feature set. Figure 4
presents the recognition results gained with LDA algorithm for
each physiological signal in each of the six study subjects.

From the Figure 4, the experimental results provide evidence
to support our hypothesis that a single signal can be used
to quantify pain intensity in some degree, with the average
classification accuracy of 50% above. Furthermore, since the
BVP and SCL signal were highly affected by the intensity of
pain stimuli in our experiment, the classification accuracies
were even higher than that of ECG signal alone. Especially,
the average classification accuracy of SCL signal was 68.39%
(±2.32%), and that of ECG signal was 53.01% (±3.40%). Unlike
ECG, it can be observed that even the original SCL signal
already presents an obvious variance with the pain stimulation
in Figure 2. As the experimental results suggest, the extracted
SCL features are a good indicator to identify the pain intensity.
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FIGURE 4 | The classification accuracy of the LDA algorithm for each

physiological signal in each of the six subjects.

This is particularly suitable when it comes to integrate the
proposed methods into wearable device. Since the SCL sensors
are less intrusive and more convenient attached than BVP or
ECG sensors, it can be easily embedded into wearable devices.
Although the performance of LDA model for a single signal is
considerable, the correct classification rate is relatively low. For
improving the classification performance and obtaining better
models, we considered applying multiple physiological signals
with all-feature combination to quantify pain intensity. The
idea was inspired to take full advantages of pain information
contained in various signals.

Results of the Multi-Signal Model
Since we used multiple signals (BVP, ECG, and SCL), the total
number of extracted features per sample was 36 (12 features per
signal). We also selected the LDA algorithm as the classifier.
The recognition accuracies of running 10 trials LDA are shown
in Figure 5. The average accuracy of the LDA model was
42.49% (±14.31%) for subject 1, 53.78% (±20.84%) for subject
2, 65.12% (±16.57%) for subject 3, 51.07% (±20.52%) for subject
4, 54.30% (±13.62%) for subject 5, and 55.52% (±11.43%) for
subject 6, respectively. The maximum classification accuracy of
10 trials LDA algorithm in the condition of multiple signals
was approximately 90% (such as subjects 2 and 3). However,
the variation of classification accuracy was large, ranging from
19.64% (subject 1) to 87.61% (subject 3). This finding indicated
that the robustness of the multi-signal model established by LDA
was insufficient. This may be because some extracted features
are not independent and may be correlated. Furthermore, some
features do not contribute or contribute little to the performance
of the classification. A poor feature combination may greatly
degrade the performance of the classifier. Hence, feature selection
was needed to select a subset of good features.

In this study, we applied the genetic algorithm technique
to seek and identify the potential informative features

combinations, which contribute most to the performance
of the classification. From other researches, it is obvious that
the best accuracy of the LDA by using cross-validation method
is considered as the indicator of the fitness function. Table 1
provide the experimental results of GA selection. The GA was
run 15 times; each row lists the results from the corresponding
run. In Table 1, the column “Best generation” indicates the
generation number in which the optimal set of features was
selected. And the average number of selected features was
roughly 18. The performance of LDA was significantly improved
with average accuracy of 72% above. In detail, the feature f i2, f

i
3, f

i
4,

f i5, f
i
6, and f i7 computed from the three physiological signals were

almost repeatedly selected by each running of the GA, yielding
18 features: µi, σ i, θ i1, θ̃

i
1, θ

i
2, θ̃

i
2, i ∈ (BVP,ECG, SCL). It means

that these features are the more robust feature combination
than those that are rarely selected in the context of this pain
experiment.

Although the trend of the feature combination proves their
efficacy in distinguishing pain intensity, the 18 features selected
by GA are not the best informative features for classification.
This is because the genetic algorithm cannot easily eliminate the
linear features. To solve this problem, we applied the feature
reduction technique. Figure 6 shows samples of 18-dimension
feature space projected onto the first three features from subject
1. The selected feature vectors from the same class aggregated
a cluster with a large amount of variation, whereas the feature
vectors from the different classes overlapped dramatically. Then,
a PCA method was applied to reduce the redundant linear
features. After data transformation, the feature vector samples
within same class were clustered more compactly than did
samples before transformation, and the feature vector samples
from different classes are farther away from one another (see in
Figure 7).

After the feature processing stage by using the hybrid GA with
PCA, the samples were fed to the LDA classifier to investigate
the performance. In addition, we also tested the KNN and
SVM algorithms for comparison. The corresponding recognition
accuracy is presented in Figure 8. Using the optimized feature set,
the average classification accuracy of three classifiers reached 80%
or higher. Particularly, the performance of LDA algorithm was
better than the other two algorithms, with 98% average accuracy.
Those results prove that the proposed feature processing
method is effective. And, the LDA classifier is more suitable in
physiology-based pain intensity recognition for a single-subject
scenario.

Results of the Multi-Subject Model
In addition to discussing the recognition model of a single
subject, we also analyzed samples constructed from multiple
subjects. A sample set of multiple subjects was generated based
on the six participants. Similarly, GA-based feature selection and
PCA-based dimension reduction technique were carried out on
the sample set comprising multiple subjects. The LDA, KNN, and
SVM algorithms were implemented to train the corresponding
models. Figure 9 shows the pain intensity recognition accuracy
of running 10 times for the multi-subject model. The average
categorize accuracy was 84.28, 83.94, and 96.47% for LDA,
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FIGURE 5 | The classification accuracy of running ten times LDA for all 36 features in each subject.

TABLE 1 | Experimental results of 15 runs of the GA.

Runs Best generation Number of features Features selected Best accuracy (%)

BVP ECG SCL

1 20 16 100110100100 111011000010 011110000100 77.80

2 15 17 111011000010 001111000001 111011000001 84.20

3 10 17 011111000000 100110001000 111111100001 86.89

4 25 19 110111100100 011011000100 111011001100 79.95

5 17 20 111011000101 111011000001 111111001000 82.38

6 13 20 101101101000 011111001001 111011010010 75.38

7 19 18 110111000100 111011001100 101111000000 88.89

8 22 18 111011010010 010100100100 011111001001 84.28

9 18 19 011111001001 111100000100 111011100010 85.25

10 27 20 101111101101 010100110010 011011010010 72.30

11 19 17 111011100000 001111100001 111011000000 82.10

12 15 18 110111000100 100110001100 111100001110 75.35

13 22 17 111001000100 010111110000 011111100000 80.82

14 15 20 101110010001 111011110000 101111110000 79.08

15 25 20 011110001110 010111000110 110111100100 84.27

KNN and SVM, respectively. Overall, these three algorithms
effectively identified pain intensity. The relevant multi-subject
models established by LDA, KNN and SVM are feasible and
appropriate. Besides, the multi-subjects model gained from SVM
algorithm was better than the other two models. Every time
we used the training SVM model to test the rest samples, the
predicted accuracy was 92% or higher. Therefore, the trained

SVM model can be used as a general model to quantify pain
intensity for a multiple-subject scenario.

Meanwhile, between-subjects’ experimental validation was
conducted by using the LDA, KNN, and SVM in a leave-one-
subject-out cross-validation method, which is standard when
dealing with multiple subjects. Here, the recognition modes
were trained with dataset from randomly selected six subjects
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FIGURE 6 | An example sample set from subject 1 before dimension

reduction projected onto the first three features.

FIGURE 7 | An example sample set from subject 1 after dimension

reduction projected onto the first three features.

to predict the pain intensity of the remaining subject. It was
repeated until all of the subjects had been part of the testing
dataset. For a given between-subject scenario, we repeated
20 times and calculated the average accuracy for each pain
intensity, respectively (see Figure 10). In detail, the average
recognition accuracy of pain intensity with baseline, stim20,
stim30, stim40 was 78.01, 90.10, 82.35, 82.90%, respectively.
This is a more realistic condition in which the distribution of
the training dataset and the testing dataset are dissimilar due
to inter-individual variability. Moreover, the SVM algorithm
was performed better than the KNN and LDA, with average
accuracy of 91.18, 76.14, and 82.83%, respectively. These results
demonstrate that the SVM classifier outperforms the other
two classifiers for a between-subject scenario. Furthermore, the

FIGURE 8 | The classification accuracy of three classifiers (KNN, SVM

and LDA) after feature processing in each of the six subjects.

FIGURE 9 | The classification accuracy of running ten times three

classifiers (KNN, SVM and LDA) for a multiple-subject scenario.

proposed system in the context of pain prediction would mitigate
the inter-personal variance while preserving precise scalability.

Results of the Multi-Day Model
Furthermore, we also conducted experimental evaluation by
using the three types of classifiers in a multi-day scenario. For
one person, we continuously carried out the pain induction
experiment of 7 days and collected a seven-day dataset. A leave-
one-day-out cross-validation method was applied to obtain the
pain intensity of one person. The results of multi-day model are
given in Figure 11. The average recognition rate was 71.02, 81.39,
and 76.93% for KNN, SVM, and LDA, respectively. It implied
that the trained SVM model seemed to be more suitable as a
special model to quantify pain intensity of multiple days for one
subject. In addition, the overall accuracy was roughly reduced
from 87% of 1-day scenario to 70% of multi-day scenario. This
may be mainly because that the signals measured from the
same person are likely day-dependent. The quality of signals
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FIGURE 10 | Pain intensity recognition of three classifiers (KNN, SVM

and LDA) for a between-subject scenario.

FIGURE 11 | Pain intensity recognition of three classifiers (KNN, SVM

and LDA) for a multi-day scenario.

is affected by the intro-individual variance in mental state and
environmental factor. However, our proposed pain intensity
system is relatively fitted for practical applications of continuous
and long-term pain monitoring.

CONCLUSIONS AND OUTLOOK

In this paper, we proposed a physiological signal-based method
for convenient quantification of pain intensity induced by the
external electrical stimulation. The proposed measurement
provides a valid, physiology-based substitution of self-reported
pain. The newly developed pain intensity measurement system
consists of signal acquisition and preprocessing, feature
extraction, GA-based feature selection and PCA-based feature
reduction, and three types of pattern classifiers, including LDA,
KNN, and SVM. Using the hybrid feature processing of GA

with PCA, the training samples can be optimized to obtain
a higher recognition accuracy while simultaneously reducing
computational complexity as unrelated features are removed,
such as maximum, minimum, median, et al.

In various experimental validations, our method was tested
and the performance of three classifiers were evaluated, including
single-signal analysis, multi-signal model, multi-subject scenario,
and multi-day scenario. For a LDA model trained by a single
signal, the SCL signal seems to provide a better result than that
of the BVP or ECG signal. Moreover, after a series of feature
process, the performance of LDA classifier was significantly
improved for multi-signal model. And, the LDA classifier is
more suitable in physiology-based pain intensity recognition
for a single-subject scenario compared to the KNN and SVM.
For the samples constructed from multiple subjects, the KNN,
LDA, and SVM could categorize pain intensity with 83.94,
84.28, and 96.47% accuracy, respectively. We also compared
the performance of the three classifiers for a between-subject
scenario. It seems that the performance of SVM algorithm
was slightly better. Therefore, the trained SVM model can be
used as a general model to quantify pain intensity for other
unseen population. Furthermore, the three classifiers could also
reach high accuracy for a multi-day scenario. These findings
suggest that the proposed pain intensity measurement method
can be suitable for practical applications of continuous pain
monitoring. From Figures 10, 11, we can see that the recognition
accuracy of different pain intensities was different. Especially,
the recognition rate at baseline was relatively low. This could
be caused by the large amount of variation of physiological
signals for various subjects and various days at baseline. There
are numerous causes that may influence the physiological
baseline signals, such as cognition, physical movement, and
even physical or psychological status. These factors may also
affect the model selection and even deteriorate the recognition
ratio. In summary, our system was able to predict well above
chance level between three levels of pain intensity with respect
to previous researches (Olugbade et al., 2015; Kachele et al.,
2016).

For our future work, an online recognition experiment of pain
intensity based on multi-physiological signals will be conducted.
Then, a system of continuously pain monitor will be developed.
Eventually, we expect that the sensors of our proposed system
would be executed as a wearable device that is suitable for daily
use in clinical settings. In the case of online recognition, the
input signal cannot be preprocessed and standardized in advance.
A large amount of signal from previous offline experiments in
various populationmust be collected before using to deal with the
online prediction of unseen samples. Besides, the latency of the
online system must be considered. The final prediction system is
to provide a trade-off between lower latency and higher accuracy.
Since the dataset generated in the current study was obtained by
artificial electrical stimulation to induce different intensities of
pain, this procedure is not appropriate for an online prediction
system. Hence, more ways should be investigated in order to
predict and quantify pain intensity perceived by a person. We
furthermore plan to research variousmethods of feature selection
to access to a comparison result.
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