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Abstract

Physiologically based pharmacokinetic modelling is well established in the pharmaceutical industry and is accepted by 

regulatory agencies for the prediction of drug–drug interactions. However, physiologically based pharmacokinetic model-

ling is valuable to address a much wider range of pharmaceutical applications, and new regulatory impact is expected as its 

full power is leveraged. As one example, physiologically based pharmacokinetic modelling is already routinely used during 

drug discovery for in-vitro to in-vivo translation and pharmacokinetic modelling in preclinical species, and this leads to the 

application of verified models for first-in-human pharmacokinetic predictions. A consistent cross-industry strategy in this 

application area would increase confidence in the approach and facilitate further learning. With this in mind, this article aims 

to enhance a previously published first-in-human physiologically based pharmacokinetic model-building strategy. Based on 

the experience of scientists from multiple companies participating in the GastroPlus™ User Group Steering Committee, new 

Absorption, Distribution, Metabolism and Excretion knowledge is integrated and decision trees proposed for each essential 

component of a first-in-human prediction. We have reviewed many relevant scientific publications to identify new findings 

and highlight gaps that need to be addressed. Finally, four industry case studies for more challenging compounds illustrate 

and highlight key components of the strategy.
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1 Introduction

Physiologically based pharmacokinetic (PBPK) models 

represent the body as compartments parameterised based 

on physiology of tissues and organs including composi-

tion, volumes and blood flows [1]. Physiologically based 

pharmacokinetic models integrate this physiological 

description with compound-specific data to predict the 

pharmacokinetics of drugs, allowing simulation of the 

time course of drug concentrations in plasma and tissues. 

Key Points 

Linking of in-silico quantitative structure–property 

relationship models with physiologically based phar-

macokinetic (PBPK) modelling is a powerful emerging 

technique, which is already being employed during early 

drug discovery. Combined with parameter sensitiv-

ity analyses, this can identify the compound properties 

most influencing systemic exposure and thus guide lead 

optimisation.

The quality of first-in-human PBPK predictions is 

greatly improved when measured inputs are available for 

the most critical parameters. PBPK model verification in 

preclinical species, which has not always been included 

in assessments of first-in-human pharmacokinetic predic-

tions, is critical to build confidence and improve accu-

racy.

Uncertainty analysis is a key consideration to obtain 

maximal value from first-in-human PBPK predictions.
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Here, we consider a PBPK model as a whole-body model 

describing systemic disposition linked to a mechanistic 

absorption model such as the advanced compartmental 

absorption and transit (ACAT) model [2]. The origin of 

PBPK modelling can be traced back to Teorell in 1937 [3, 

4], but application of PBPK modelling in drug discovery, 

development and regulation came of age around 2006 [5]. 

The US Food and Drug Administration [6] and European 

Medicines Agency [7] have recently produced guidance 

documents on the appropriate use of PBPK models, and 

PBPK impacts on drug labels are increasingly common 

[8–10].

The majority of regulatory submissions including 

PBPK modelling have focused on drug–drug interactions 

and paediatric modelling [8, 10, 11]. However, a recent 

industry perspective on PBPK applications [12] high-

lighted diverse uses spanning pharmaceutical discovery 

and development from preclinical predictions to simula-

tions of variability in different clinical populations, indi-

cating the potential for expansion of regulatory applica-

tions [8]. At a 2014 meeting on PBPK modelling hosted by 

the US Food and Drug Administration, PBPK modelling 

for first-in-human (FIH) predictions was seen as mainly 

useful for drug developers [13]. However, PBPK mod-

elling is increasingly used for regulatory purposes, and 

has been identified by the European Medicines Agency 

as a useful tool for assessing an appropriate starting dose 

for healthy volunteers [14]. The methods used and cal-

culations on how doses and estimated exposure levels 

are determined, including methods for modelling such as 

PBPK modelling, should be included in the protocol and 

may be summarised in the investigator’s brochure [14].

Physiologically based pharmacokinetic models are a 

systems pharmacology approach that can act as a growing 

repository of knowledge on the pharmacokinetics of a new 

chemical entity or drug candidate [15], evolving to include 

new input data and mechanisms as scientific knowledge 

increases. This is of particular utility in preclinical devel-

opment when PBPK modelling can be applied to predict 

clinical pharmacokinetics prior to FIH studies. A seminal 

paper from Jones et al. [16] first demonstrated that PBPK 

modelling, with verification of predictive performance first 

performed in preclinical species, is superior to empiri-

cal methods for predicting pharmacokinetics. Since then, 

several publications from industry groups have confirmed 

the superiority of PBPK modelling for this application 

[17–19] and many medium and large pharmaceutical com-

panies are now routinely applying the approach as is clear 

from a recent cross-industry perspective [12].

Here, we have updated the strategy of Jones et al. [16] 

to include new knowledge and additional flow diagrams for 

each essential component of a FIH prediction. Although 

some information specific to GastroPlus is included and all 

the examples were conducted using GastroPlus, much of 

the information presented is generally applicable to PBPK 

modelling. The strategy has been updated based on a com-

prehensive review of subsequent publications and on the 

combined knowledge and experience of the authors who are 

all PBPK specialists and members of the GastroPlus User 

Group Steering Committee. Novel insights in the revised 

strategy include the use of quantitative structure–property 

relationship (QSPR) predictions as inputs for PBPK model-

ling prior to experimentation, integrating new Absorption, 

Distribution, Metabolism and Excretion (ADME) knowledge 

within the proposed decision trees and stressing the impor-

tance of considering uncertainty in predictions. The case 

studies described here highlight the application of the strat-

egy and the importance of certain input parameters, such as 

the blood/plasma ratio (BPR), or model components, such as 

the tissue model, for molecules with challenging properties. 

We believe that a consistent PBPK strategy for FIH predic-

tions, based on best practices and experience across compa-

nies, should increase the confidence of regulatory agencies 

in this application.

2  Model Building Strategy

The complexity of PBPK models, which include many 

adjustable parameters, mandates the definition of a con-

sistent model building strategy and best practice guidance. 

Physiologically based pharmacokinetic models are used 

within numerous disciplines and by scientists with diverse 

backgrounds and thus a common approach covering various 

scenarios will facilitate regulatory evaluation.

Along with a consistent strategy, use of consistent physio-

logical parameters and scaling factors allows a fair comparison 

between compounds, and some companies undergo internal 

harmonisation to ensure consistency. As an example of the pos-

sible range for a key parameter, liver blood flow has reported 

values in rats that include 47.2 [20], 55.2 [21] and 80 mL/min/

kg [22]. The default PBPK models available within GastroPlus, 

include species-specific values for physiological parameters 

and scaling factors and thus encourage consistency.

2.1  Compound Assessment Using Quantitative 
Structure–Property Relationship 
plus Physiologically Based Pharmacokinetic 
Models

Although PBPK models require a large number of com-

pound-specific inputs, many may be generated using QSPR 

models, enabling the use of PBPK models in early drug 

discovery before experimentation, potentially for virtual 

compounds. Although accurate prediction of pharmacoki-

netics using many properties predicted from a structure 
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may be possible [23], it is not guaranteed [24] and verifica-

tion with compounds from each chemical class has been 

recommended [25].

Combining QSPR predictions, for properties such as 

lipophilicity, acidity/basicity, clearance, solubility, perme-

ability, binding to red blood cells and plasma proteins, 

with PBPK models for early simulations identifies gaps 

and major sensitivities, enabling a timely definition of 

essential experiments and prioritisation of fit-for-purpose 

resources to support model development and preclini-

cal verification. Physiologically based pharmacokinetic 

modelling can be successfully applied in discovery with 

minimal data [26]. As compounds progress, models should 

be updated with more experimental data. Later, for FIH 

predictions, a comprehensive set of measured input data 

is generally required. Prediction accuracy is optimised 

by considering all available preclinical data [19], filling 

identified data gaps and verifying the preclinical PBPK 

model [18].

After integrating QSPR-predicted parameters into PBPK 

models (Fig. 1) to provide insights into compound proper-

ties and value-added experimentation, the in-vivo impact 

and interplay of compound properties within the physiologi-

cal framework can be investigated via parameter sensitivity 

analysis (PSA). For example, for a basic compound, precipi-

tation in the small intestine and binding to acidic phospho-

lipids in tissues could both be critical. This can be explored 

by assessing the effect of predicted parameters for precipita-

tion rate, intestinal solubility and the BPR, which affects the 

predicted tissue binding and thus the volume of distribution 

at steady state (Vss), on the predicted plasma concentration 

vs. time profile.

An initial QSPR plus PBPK assessment, as when com-

bining ADMETPredictor™ with GastroPlus, will alert the 

modeller to the major challenges of modelling for a specific 

molecule. Thus, if the Biopharmaceutics Classification Sys-

tem (BCS) [27] class is predicted as I and II, mechanistic 

oral absorption modelling predictions may be straightfor-

ward, while class III and IV compounds may be more chal-

lenging [19, 28, 29]. Furthermore, the Extended Clearance 

Classification System framework [30], recently incorporated 

in ADMETPredictor™ Version 9.0, can predict whether a 

compound is predominantly cleared by renal elimination 

or if hepatic transporters may affect elimination. If hepatic 

metabolism by cytochrome P450 (CYP) 3A4 is predicted 

as the major elimination route, then the impact of intestinal 

metabolism on oral bioavailability should be considered and 

reaction phenotyping studies may be performed earlier.

2.2  Metabolism and Elimination

Physiologically based pharmacokinetic modelling requires 

quantitative understanding of the main mechanism(s) of drug 

clearance, and Fig. 2 presents a strategy for incorporating 

Fig. 1  Compound assessment from structure using quantitative struc-

ture–property relationship (QSPR) plus physiologically based phar-

macokinetic (PBPK) modelling [27, 30–32]. BCS Biopharmaceutics 

Classification System, BDDCS Biopharmaceutics Drug Disposition 

Classification System, BPR blood/plasma ratio, Dn dissolution num-

ber (the ratio of small intestine transit time/idealised dissolution 

time), ECCS Extended Clearance Classification System, Fup Fraction 

unbound in plasma, GI gastrointestinal, IVIVE in-vitro in-vivo extrap-

olation. 1[27], 2[31], 3[30], 4[32]
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these routes. Predicting clearance during early discovery 

remains challenging [18, 26]; however, success was recently 

demonstrated by applying QSPR models within a chemical 

series [24, 26].

The Extended Clearance Classification System can be 

a useful guide, and if the major elimination route is pre-

dicted as hepatic metabolism, then confidence in human 

predictions is higher if an in-vitro in-vivo extrapolation 

(IVIVE) can be established in preclinical species. The 

likelihood of a successful IVIVE is higher for compounds 

predominantly metabolised by CYP enzymes while non-

CYP metabolism, although often captured qualitatively in 

hepatocyte models, remains more challenging [33]. The 

involvement of active uptake in hepatic clearance can be 

flagged by the Extended Clearance Classification System, 

and in such cases measurements in hepatocyte models may 

be useful [34] and human clearance predictions may be 

improved with cross-species empirical scaling factors [35]. 

More advanced hepatocyte models are also being explored 

with respect to improved IVIVE for more complex cases 

[36–38]. Renal [39, 40] and biliary [41] elimination 

involving active transport are also challenging to model 

mechanistically from in-vitro data, and, in general, predic-

tion of human pharmacokinetics for transported molecules 

is difficult because absorption, distribution and elimination 

can all be affected [18].

However, there are encouraging developments. For 

renal secretion, measurements in organic anion trans-

porter-transfected human embryonic kidney cells success-

fully predicted renal clearance of 31 diverse drugs [42] 

while a mechanistic model for passive tubular reabsorp-

tion was verified with a large dataset of drugs [43]. For 

hepatobiliary clearance, it was recently demonstrated that 

data from sandwich-cultured hepatocytes and a consistent 

IVIVE approach could predict in humans for 17 diverse 

drugs [44]. Furthermore, mechanistic IVIVE from the 

sandwich-cultured model, utilising transporter expression 

data in-vitro and in-vivo improved prediction for rosuvas-

tatin in the rat [45]. It has also emerged that monkeys are 

a valuable model for the verification of hepatic disposition 

for transported molecules [44] particularly for substrates 

of the organic anion transporting polypeptide transporter 

[35]. Examples of complex PBPK models incorporat-

ing enzyme and transporter kinetics from in-vitro stud-

ies already exist and should become more common in the 

future as models evolve [46].

Irrespective of the mechanism, if preclinical verifica-

tion of the clearance prediction can be demonstrated, this 

builds confidence in FIH pharmacokinetic predictions. 

When IVIVE is not successful in preclinical species it may 

be necessary to use empirical scaling factors for the human 

prediction (as for Compound 1 in Sect. 4.1) [47–49].

Fig. 2  Physiologically based pharmacokinetic modelling strategy for 

elimination [42–44]. CLR renal clearance, CLR,u unbound renal clear-

ance, ECCS Extended Clearance Classification System, Fup fraction 

unbound in plasma, GFR glomerular filtration rate, IVIVE in-vitro in-

vivo extrapolation. 1[42], 2[43], 3[44]
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2.3  Distribution

Understanding tissue distribution is essential for PBPK mod-

elling, and has been facilitated by mechanistic equations [1, 

5]. Figure 3 presents a strategy for the distribution compo-

nent of a PBPK model. GastroPlus defaults to the Luka-

cova [50] Kp (tissue-to-plasma partition coefficient) method, 

which builds on earlier work [51, 52], but other methods 

have been used [18, 24]. Whatever the method employed, 

the use of measured in-vitro input values for log P, pKa,  Fup 

(fraction unbound in plasma), and BPR and verification in 

preclinical species are advisable to ensure accurate predic-

tions (Fig. 3).

For molecules where passive processes dominate, dis-

tribution is often predictable using a standard perfusion-

limited tissue model. See Compound 2 (Sect. 4.2) for an 

example that highlights the impact of measured BPR in pre-

dicting Vss for a basic compound.

However, for large compounds with slow passive dif-

fusion through tissue membranes (as for Compound 4 in 

Sect. 4.4), permeability-limited tissue distribution models 

may be required, potentially including transporter kinet-

ics. In other cases, measured input data for BPR have been 

empirically adjusted to match predictions to observed dis-

tribution [53]. The adjustment of BPR to account for phos-

pholipid binding as well as lysosomal trapping of basic lipo-

philic compounds is currently an empirical fit and exploits 

the observation that acidic phospholipid content is highest 

in tissues with high lysosomal volumes [53]. Equations are 

emerging to describe the incorporation of lysosomal seques-

tration into Kp predictions [54] and may be included in future 

versions of GastroPlus.

When tissue partition equations are not predictive, quan-

titative whole-body autoradiography data, if reflective of 

the parent compound, may be used to estimate Kp values 

and adequately predict human pharmacokinetics from rat 

data [55]. Alternatively, animal Kp values can be scaled to 

human values, assuming unbound Kp values are identical and 

accounting for species differences in plasma protein bind-

ing [17].

2.4  Oral Absorption

Because oral absorption is a multifactorial process, pre-

clinical verification of predictions is important to build 

confidence for FIH models. To focus on the accuracy of 

the absorption model when modelling preclinical spe-

cies, intravenous data should be used to ensure the accu-

racy of disposition modelling. This can be achieved with a 

calibrated systemic PBPK model or a fitted compartmental 

pharmacokinetic model. It is also essential to have measured 

solubility data and, unless aqueous solubility is high enough 

to ensure complete and rapid dissolution, biorelevant media 

should be employed. For FIH, the use of in-vitro permeabil-

ity data from an assay with an established conversion to in-

vivo permeability is recommended [24]. Figure 4 provides a 

Fig. 3  Physiologically based pharmacokinetic modelling strategy for 

distribution [17, 50, 53, 55]. BPR blood/plasma ratio, Fup fraction 

unbound in plasma, Kp tissue-to-plasma partition coefficient, SpecP-

Stc specific in-vivo diffusional clearance per millilitre of tissue cell 

volume. 1[50], 2[55], 3[17], 4[53]
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framework for assessing the various components impacting 

oral absorption.

For lipophilic compounds, absorption is likely to be sen-

sitive to the bile salt solubilisation ratio (BSSR) and thus 

minimally fasted-state simulated intestinal fluid (FaSSIF) 

and fed-state simulated intestinal fluid (FeSSIF) solubility 

data should be used to predict a BSSR, which can then be 

verified/optimised with oral data from preclinical species. 

The current GastroPlus model for bile salt solubilisation 

estimates the increase in in-vivo solubility relative to aque-

ous buffer solubility based only on the concentration of bile 

salts in the fasted and fed state media. If different BSSR 

estimates result from the use of either FaSSIF or FeSSIF 

data, this may indicate that effects other than simple bile 

salt solubilisation are involved [56]. In such cases, in-vivo 

verification in preclinical species should be used to assess 

the relevance of the BSSR estimates. Use of deconvoluted 

biorelevant gut solubility based on modelling in preclinical 

species is supported by good predictions for a compound 

set, including all BCS/Biopharmaceutics Drug Disposition 

Classification classes [19].

Generally, physiological parameters should not be fit-

ted and default GastroPlus ACAT models should be used, 

although minor adjustments may occasionally be supported. 

For example, there is significant uncertainty associated with 

some model parameters such as the amount of fluid in the 

gastrointestinal tract [57]. For Compound 1 (BCS Class II), 

the inclusion of known variability in gastrointestinal tract 

fluid volumes and realistic formulation-specific particle 

size data was important for predicting absorption. Other 

examples of appropriate ACAT model adjustments include 

stomach transit time (which exhibits large inter-occasion 

variability), stomach pH (for patients taking proton pump 

inhibitors) or modification of effective permeability using 

built-in interspecies correlations. A thorough evaluation of 

species-specific verified ACAT models has yet to be pub-

lished, although adjustment of the species-specific absorp-

tion scale factor has been reported with the use of the theo-

retical surface area-to-volume ratio (SA/V) model for dogs 

and the use of the Opt-logD SA/V Version 6.1 model with a 

colonic permeation rate set to match the small intestine for 

humans [58].

Ideally, preclinical oral pharmacokinetic data should 

cover human-relevant doses and formulations [19], so that 

confidence can be derived by the verification of formulation-

specific models at relevant doses. The effect of food can be 

investigated pre-clinically and predicted for humans [59].

If a compound is thought to be metabolised by enzymes 

known to be active in the gut wall [63], then Fig. 5 pro-

vides a framework for assessing the impact on oral exposure. 

The aim of this diagram is to understand the potential risk 

of gut wall metabolism reducing exposures by leveraging 

Fig. 4  Physiologically based pharmacokinetic modelling strategy for 

oral absorption [57, 58]. ASF absorption scale factors, BSSR bile salt 

solubilisation ratio, MPT mean precipitation time. a Other processes” 

transporters: efflux transporters can be incorporated in GastroPlus 

models with a simple method (e.g. adjusting permeability based on 

preclinical observations or in-vitro data) to more complex methods 

(e.g. specifically incorporating effects of transporters) [60–62]. 1[57], 
2[58]
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data already generated for hepatic metabolism. High per-

meability may offset gut wall metabolism, and this can be 

investigated via a PSA. Initial studies of predicting intestinal 

metabolism focused on CYP3A4, possibly because of the 

utility of grapefruit juice studies in generating data to assess 

predictions [64]. An approach in GastroPlus incorporates 

metabolism into each compartment of the ACAT model. For 

compounds predominantly metabolised by CYP3A4, liver 

microsomal in-vitro clearance values were used to estimate 

the CYP3A4-mediated intestinal metabolism [65]. A simi-

lar strategy might prove useful for compounds metabolised 

by non-CYP gut wall enzymes such as UDP glucuronosyl-

transferases and sulfotransferases. However, such predictions 

for non-CYP enzymes are complicated by limited intestinal 

enzyme abundance data and in-vivo estimates of intestinal 

extraction, which are needed for verification of the approach. 

The strategy proposed in Fig. 5 tends towards under-predic-

tion of the fraction of drug escaping gut wall metabolism 

and thus, when relevant gut wall extraction is predicted, 

alternative approaches to evaluate gut wall metabolism may 

be used in parallel to support decision making. Such an 

evaluation may include applying the strategy proposed by 

Peters et al. [63], which suggests factoring observations of 

gut wall metabolism in animal species, relevant in-vitro data 

on human intestinal metabolism and biopharmaceutical clas-

sification of the compound into evaluation of risk for a low 

fraction of drug escaping gut wall metabolism. In addition, 

compounds affected both by metabolism and active transport 

in the gut wall may benefit from empirical calibration of 

IVIVE scaling factors for metabolism and transport [62].

2.5  Uncertainty and Variability Analyses

While single simulations for the FIH dose prediction are 

often made, this approach limits the value achieved through 

PBPK modelling as it ignores uncertainty of inputs and 

variability in the simulated population. Considering both 

uncertainty and variability is important, particularly from a 

regulatory perspective [7]. When using PBPK for FIH dose 

projection, exploration of uncertainty is critical because of 

unknown factors at this stage, as highlighted with Com-

pound 3 (Sect. 4.3).

A PSA can be used to determine the implications of key 

uncertainties [10], whether owing to limited data, lack of 

mechanistic understanding, inability to predict saturation 

of metabolism or absorption mechanisms, or a disconnect 

between in-vitro and in-vivo data. The European Medi-

cines Agency encourages PSA to characterise the level of 

uncertainty in PBPK models [7, 66].

Uncertainties can be translated into PBPK model results 

and determine limits on what might be expected for clini-

cal pharmacokinetics. Sometimes, focusing on a single 

critical model parameter is valuable. For example, clear-

ance is often a sensitive parameter not known with great 

Fig. 5  Physiologically based pharmacokinetic modelling strategy for 

assessing gut wall metabolism [65]. CLint hepatic intrinsic clearance, 

Fg fraction of drug escaping gut wall metabolism, Km concentration 

of substrate at half Vmax, Vmax maximum velocity or rate of enzyme 

catalyzed reaction. Note: Gut wall metabolism is often saturable, and 

thus if Vmax and Km parameters are available, evaluate saturation rela-

tive to dose
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confidence, e.g. owing to disagreement between predicted 

clearance scaled from microsomes and hepatocytes, or 

between in-vitro and in-vivo clearance in preclinical spe-

cies. One could give a range of predictions around the 

uncertain model parameter, or present a perceived most 

likely estimate and a worst-case scenario. It is important 

to clearly communicate what the range represents so that 

the information can be used appropriately.

Sometimes it may be important to convey uncertainty for 

multiple parameters, e.g. when both clearance and absorption 

predictions are uncertain. In this case, a three-dimensional 

PSA, the third dimension being the predicted pharmacoki-

netic parameter, presents the simulation results in a helpful 

manner to enable key decisions in the light of uncertainty.

For predicting variability, the population simulator tool 

in GastroPlus can be used to simulate a clinical trial by 

varying multiple (often physiological) model parameters 

within ranges defined by their estimated variability distri-

butions. This powerful technique has been used for applica-

tions such as determining the implications of specific P450 

genotypes/polymorphisms, understanding the range of 

expected drug–drug interactions, and simulating the effect 

of disease on pharmaokinetics in patients. However, sim-

ple approaches to understanding variability, e.g. comparing 

predicted pharmacokinetics in the fasted vs. fed state for a 

typical patient, or comparing predicted pharmacokinetics 

in a typical healthy subject and patient, can also be useful. 

Variability predictions may be most useful after human data 

are available to improve the PBPK models “top-down”.

For Compound 1 (see Sect. 4.1), a more thorough assess-

ment of uncertainty and potential variability could have 

helped avoid a clinical protocol amendment to add addi-

tional sampling times. Figure 6 provides a checklist of input 

parameters that should be considered for uncertainty assess-

ment. Only a subset of parameters from Fig. 6, dependent 

on compound properties, will be important (sensitive) in 

each specific PBPK model. Additionally, we have identi-

fied areas of opportunity (Table 1) that, if addressed, will 

improve PBPK modelling FIH predictions; these should also 

be considered in the context of uncertainty assessment.

3  Materials and Methods

Simulations were conducted using GastroPlus (Simulations 

Plus Inc., Lancaster, CA, USA), and ADMETPredictor™ 

(Simulations Plus, Inc.) was used to predict physicochemical 

Fig. 6  Physiologically based pharmacokinetic modelling strategy 

for a potentially useful parameter sensitivity analysis (PSA) to be 

driven by the molecule properties and uncertainty evaluation. 3D 

three-dimensional, ADME Absorption, Distribution, Metabolism 

and Excretion, APL acidic phospholipid, ASF absorption scale fac-

tors, BCS Biopharmaceutics Classification System, BPR blood/

plasma ratio, BSSR bile salt solubilisation ratio, Capt concentration of 

acidic phospholipids in tissue, CLint hepatic intrinsic clearance, FIH 

first-in-human, Fup fraction unbound in plasma, Km concentration of 

substrate at half  Vmax, MPT mean precipitation time, PSA parameter 

sensitivity analysis, Peff effective permeability, SI small intestine, 

SolFactor solubility factor, Vmax maximum velocity or rate of enzyme 

catalyzed reaction
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and biopharmaceutic properties. Software versions are 

recorded in Table 2 and specific settings within each case 

study. Input parameters necessary for a quality PBPK model 

for FIH PK prediction are summarised in Table 2.

The compounds have been selected to illustrate the appli-

cation of the strategy and/or to highlight key components of 

the strategy, with their distinctiveness being stated in their 

respective titles. Compounds 1–3 are industry predictions 

and Compound 4 was based on literature data.

4  Case Studies

4.1  Compound 1: Empirical Physiologically Based 
Pharmacokinetic Model Factors from Preclinical 
Species Enable First-in-Human Prediction

Compound 1 is neutral and highly lipophilic (clogP > 5). 

The free fraction in plasma (< 0.1%) and aqueous solubil-

ity (< 1 µg/mL) were both too low for accurate quantifica-

tion. These properties meant it was challenging to verify an 

IVIVE. However, medicinal chemistry had failed to identify 

active molecules with lower logP and preclinical in-vitro and 

in-vivo pharmacology was promising. Therefore, extrapo-

lation of pharmacokinetics to estimate a clinical dose was 

conducted.

Similar Vss (between 1.5 and 3 L/kg) was seen in rats, 

dogs and monkeys and the predicted volumes using the 

Lukacova method [50] based on the physicochemical prop-

erties and assuming a  Fup of 0.1% for all species, were in 

reasonable agreement with the observed data and predicted 

Vss of 3.2 L/kg in humans.

4.1.1  In-Vitro In-Vivo Extrapolation for Clearance Using 

Empirical Scaling Factors Veri�ed with Preclinical 

Data

Scaling of in-vitro data to predict clearance should account 

for differences in binding in-vitro and in-vivo [70]. For 

Compound 1, binding could not be measured, and assuming 

that in-vitro free fraction was equivalent to  Fup [25] resulted 

in a large over-prediction of clearance in the rat (~10-fold). 

Therefore, human clearance was predicted using an empiri-

cal scaling factor derived from the rat. To build confidence 

in this approach, in-vivo and in-vitro rat data for seven-lead 

optimisation compounds from the same structural class as 

the clinical candidate were used. Measured renal clearance 

was negligible for these compounds and it was assumed that 

the in-vivo systemic clearance, ranging from <1 to 35 mL/

min/kg, represented hepatic metabolic clearance. Using the 

well-stirred liver model, compound-specific scaling factors 

were derived for both microsomal and hepatocyte intrinsic 

clearances. These scaling factors were then used to predict 

human clearance from intrinsic clearance values generated 

in human microsomes and hepatocytes. Predicted human 

hepatic clearances from hepatocytes and microsomes were 

in close agreement for all seven compounds (Fig. 7).

The empirical scaling factor for Compound 1 was further 

verified by scaling of hepatocyte intrinsic clearances meas-

ured in dogs and monkeys. Predicted clearances of 0.6 mL/

min/kg in the dog and 2.0 mL/min/kg in the monkey com-

pared well with observed in-vivo values of 1.5 mL/min/kg 

and 1.8 mL/min/kg, respectively. Finally, scaling of human 

hepatocyte intrinsic clearance values predicted a mean hepatic 

clearance of 0.5 mL/min/kg (range: 0.2–0.7 mL/min/kg).

4.1.2  Solubility was Low and Absorption was Dose 

and Formulation Dependent

Predicting absorption for Compound 1 was challenging 

because of low solubility. Preclinical data showed decreas-

ing bioavailability with increasing doses in the rat with 

an influence of formulation and feeding status. Absorp-

tion modelling for potential clinical dosage forms was 

supported by data from a formulation screening study in 

dogs, in which bioavailability ranged from 7% for a micro-

nised tablet formulation in fasted dogs to 52% for a nano-

suspension in fed dogs. Although the aqueous solubility 

was low (< 1 µg/mL), solubility was enhanced in biore-

levant media, with a value of ~10 µg/mL in FaSSIF and 

~35 μg/mL in FeSSIF. GastroPlus dog models for these 

formulations were developed by incorporating measured 

biorelevant solubility values and then optimising the dog 

Table 1  Opportunities 

in physiologically based 

pharmacokinetic modelling 

methodology work

CYP cytochrome P450, UGT  UDP glucuronosyltransferases, Vss volume of distribution at steady state

Metabolism and 

elimination

Ability to predict clearance when transporters are involved (e.g. for biliary excretion 

or uptake-limited hepatic clearance)

Ability to predict clearance for extrahepatic metabolism

Translation of enterohepatic circulation between species

Distribution Improved methods for predicting Vss when protein binding is too high to be measured

Validation of predicted tissue concentrations including when transporters play a role

Oral absorption Verification of predictions of intestinal metabolism for enzymes expressed in the gut 

besides CYP3A4 (e.g. UGT1A1 or UGT2B7)
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absorption models to match exposure data for the formula-

tions with two adjustments. First, the percentage of water 

in small and large intestine compartments was reduced to 

10 and 0.1%, respectively, and second, the particle size 

was adjusted to 1 µm for the nano-suspension and 80 µm 

for the tablets. Regarding the change to the percentage 

water, such physiological model parameter changes (sys-

tem parameter changes) made to match exposures for a 

particular drug are not recommended best practice. How-

ever, there is considerable uncertainty and ongoing debate 

over the relevant parameterisation of intestinal water vol-

umes [71–73] and the parameterisation of the colonic 

model compartments is uncertain [74]. These optimised 

values were then transferred to the human absorption 

model to simulate possible clinical scenarios. Simulated 

fraction absorbed was only 11% for a 50-mg tablet in the 

fasted state, but increased to 41% in the fed state. Because 

of the predicted food effect, the first clinical study was 

conducted in the fed state.

4.1.3  Clinical Data show Importance of Conveying 

Uncertainty in Predicted Pharmacokinetics

In Fig. 8, the simulation for a 25-mg tablet dosed in the 

fed state is compared to clinical plasma exposures meas-

ured in the first six subjects dosed. Although maximum 

concentration was well predicted, there was more than 

a two-fold under-prediction of the area under the curve, 

and the observed half-life (10–14 days) was longer than 

Table 2  Key physicochemical/pharmacokinetic properties used as 

inputs for the first-in-human predictions presented in each case study 

(all models were advanced compartmental absorption and transit 

plus systemic physiologically based pharmacokinetic [PBPK]). Note: 

Properties are measured unless stated

BPR blood/plasma ratio, CLint intrinsic clearance, ECCS Extended Clearance Classification System, FaSSIF fasted-state simulated intestinal 

fluid, FuP fraction unbound in plasma, IV intravenous, Kp tissue-to-plasma partition coefficient, Peff effective human jejunal permeability, PStc 

tissue-specific permeability-surface area product, QSPR quantitative structure–property relationship

Parameter Compound 1 Compound 2 Compound 3 Compound 4

logP or  logD7.4 logP = 5.2 (predicted) logP = 4.2 logP = 5.0 (predicted) logP = 2.48 (predicted)

Ionisation type (pKa) Neutral Base: 8.96, 4.12, 2.8 Acid: 3.4 (predicted) Acid: 3.93, 9.73, 10.35, 11

Base: 7.87, 8.52 (predicted)

FuP (%) < 0.1 in all species Rat: 37

Rabbit: 34

Dog: 31

Monkey: 4

Minipig: 20

Human: 17

< 0.1 in all species Human: 58.5 [67]

Rat: 46.9 [68]

Blood/plasma ratio Human: 0.64

Rat: 0.83

Rat: 1.8

Rabbit: 1.3

Dog: 1.1

Monkey: 0.8

Minipig: 0.9

Human: 0.6

Assumed to be 0.7 across 

species

Human: 0.68 (predicted)

Clearance mechanism 

(method)

Metabolic (in-vitro data) Metabolic (ECCS) Metabolic (in-vitro data) Renal (ECCS)

In-vitro CLint ~ 2 µL/min/106 human 

hepatocytes

0.6 mL/min/g liver (human 

microsomes)

4.6 mL/min/kg (scaled 

human from human 

hepatocytes)

0 (renally cleared)

Preclinical species with 

in-vivo data

Rat, dog, monkey Rat, rabbit, dog, monkey, 

minipig

Rat, dog, monkey Rat

Kp prediction method Lukacova [50] Lukacova [50] Lukacova [50] adjusted 

(see text)

Poulin-extracellular (equa-

tion 4 in [69])

Human Peff (cm/s ×  10−4) 1.8 scaled from PAMPA 1.48 (predicted) 3.3 (adjusted from in-vitro 

data, see text)

0.0747 (predicted)

Solubility Aqueous solubility < 1 

µg/mL

Not applicable as model-

ling IV data

< 0.05 μg/mL at pH = 1;

~ 50 µg/mL in FaSSIF

0.26 mg/mL at pH = 8.17 

(predicted)

QSPR plus PBPK sensitive 

parameters

CLint,  FuP and solubility BPR FuP and solubility PStc

ADMETPredictor™ ver-

sion

5.5 8.1 Not applicable 8.1

GastroPlus™ version 6.0 9.5 6.1 9.5
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expected (~3 days). Later in development, an intravenous 

microdose study was conducted; at 25 mg, the observed 

absolute bioavailability (30–40%) and Vss (3.7 L/kg) were 

close to the predicted values. However, systemic clearance 

at 0.18 mL/min/kg was slightly less than the predicted 

range of 0.2–0.7 mL/min/kg.

Despite the challenging properties of Compound 1, 

the pharmacokinetic prediction was good. However, as 

the phase I protocol had been designed considering only 

the mean prediction with a 3-day half-life, the planned 

sampling times did not allow adequate characterisation 

of pharmacokinetics, necessitating a protocol amendment. 

Consideration of uncertainty in clearance would have 

avoided this amendment, thus illustrating the importance 

of conveying uncertainty in predictions.

4.2  Compound 2: Impact of Blood/Plasma Ratio 
in Predicting Volume of Distribution at Steady 
State for a Basic Compound in a Retrospective 
Analysis

Based on QSPR and PBPK assessments, Compound 2 is a 

lipophilic base with high solubility and permeability (BCS 

Class I), metabolic elimination (ECCS) and a high Vss driven 

by binding to tissue acidic phospholipids. For bases, the 

BPR, used to estimate the association constant with acidic 

phospholipids, is likely to be a key input parameter for 

Fig. 7  Consistency in human hepatic clearances scaled from human 

microsomal and hepatocyte intrinsic clearance when applying empiri-

cal scaling factors derived from rats. A modified well-stirred liver 

model (equation shown) with plasma and blood binding incorporated 

into an empirical scaling factor (SF) was used to scale the intrinsic 

clearances in microsomes and hepatocytes to in-vivo hepatic clear-

ance (CL_rat) in rat. The compound-specific SF was estimated for 

microsomes (SF_m) and hepatocytes (SF_h). These SFs were then 

applied to scale intrinsic clearances measured in human microsomes 

and hepatocytes. The predicted hepatic clearances for the seven mol-

ecules were well correlated

Fig. 8  Predicted mean plasma 

concentrations (Plasma Conc.)

for a 25-mg tablet (solid line) 

compared to measured concen-

trations in six healthy volunteers 

(symbols). The inset shows the 

same data on a log scale with 

measurements extending up to 

60 days. The solid black line 

represents a mean clearance of 

0.5 mL/min/kg, while the dotted 

lines show the range of clear-

ance (0.2–0.7 mL/min/kg)
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PBPK models. Using the Lukacova method for a 30-year-

old 70-kg human, with QSPR compound-specific predicted 

inputs including BPR = 0.91, the predicted Vss is 3 L/kg. The 

PSA illustrated the sensitivity of BPR; for BPR = 0.55 (i.e. 

1-haematocrit) the predicted Vss was 0.27 L/kg, and for an 

assumed higher BPR = 2, it was 13.1 L/kg.

4.2.1  High Volume of Distribution at Steady State 

and Species-Dependent Blood/Plasma Ratio

Pharmacokinetic data following intravenous administration 

were available in rats, rabbits, dogs, monkeys, minipigs and 

humans. These data enabled a retrospective isolation and 

assessment of the impact of BPR on predicted Vss. The com-

parison of simulated and observed profiles was made using 

the observed clearance from each species as input for the 

PBPK models. The Vss was predicted using the Lukacova 

method [50] with appropriate measured inputs for all species.

Compound 2 partitions more into the cellular fraction of 

blood than plasma for rats, rabbits and dogs (Table 3). The 

blood Vss, determined via a non-compartmental analysis from 

measured blood pharmacokinetics following intravenous 

administration is high in all species, but does not appear to 

be perfectly correlated with BPR, suggesting that Vss is driven 

by multiple processes. Fraction unbound in plasma is high 

across preclinical species except in monkeys, indicating spe-

cies differences.

4.2.2  Tissue-to-Plasma Partition Coe�cient Predictions 

for Physiologically Based Pharmacokinetic Models

Compound 2 lipophilicity was measured by two chromato-

graphic methods: Chromatographic Hydrophobicity Index 

[75] using a C18 stationary phase and Immobilised Artifi-

cial Membrane [76] using chemically bonded phosphatidyl-

choline to a silica surface. Both of these measurements can 

be converted to octanol/water logP equivalents and used as 

compound-specific inputs for the Lukacova method. The 

mean value of 4.2 from Chromatographic Hydrophobicity 

Index (2.9) and Immobilised Artificial Membrane (5.5) val-

ues was used. Measured basic pKa values of 8.96, 4.12 and 

2.8 were the other compound-specific inputs.

For each species, PBPK models were built using actual 

bodyweights. Measured haematocrit values from the BPR 

assays were used if available, although values were consist-

ent with default values in GastroPlus. Measured species-

specific BPR and  Fup were used in each PBPK model.

4.2.3  Assessment of Volume of Distribution at Steady-State 

Predictions

Using consistent lipophilicity and pKa values with species-

specific BPR and  Fup as inputs for the Lukacova method pre-

dicted the Vss within 60% of the observed values in all species 

except monkeys, where the Vss prediction error was approxi-

mately three-fold (Table 3). The same strategy successfully 

predicted the distribution in human (~ 20% overestimated).

The QSPR plus PBPK PSA for Compound 2 highlighted 

that BPR was a critical input parameter in the prediction of 

systemic distribution, which is likely owing to the interaction 

of the basic group with tissue acidic phospholipids. The Vss 

is large in all species, with the highest distribution in species 

with the highest BPR. This was adequately predicted using 

the Lukacova method with measured BPR as an input. The 

predicted distribution in monkeys was not predicted within the 

generally accepted two-fold range, illustrating the current real-

ity of PBPK modelling within discovery, wherein a weight-

of-evidence approach is needed. If most preclinical species 

(four out of five in this example) are accurately predicted, then 

this gives confidence in the human predictions and time is not 

spent attempting to determine why one species is an outlier. 

However, it is uncommon to have pharmacokinetic data in 

five preclinical species; smaller data sets may require further 

investigation of species discrepancies.

Table 3  Measured blood/

plasma ratio (BPR), fraction 

unbound in plasma  (Fup) 

and intravenous volume of 

distribution at steady state (Vss) 

[observed and predicted] for 

Compound 2

Note: Human pharmacokinetics were measured in plasma and GastroPlus predicts plasma pharmacokinet-

ics; only for preclinical species where observed pharmacokinetics were measured for blood was it neces-

sary to convert blood Vss to plasma Vss using species-specific BPR for comparison to GastroPlus outputs

Fold error Vss = − Observed Vss/Predicted Vss if Observed Vss > Predicted Vss

Fold error Vss = + Predicted Vss/Observed Vss if Predicted Vss > Observed Vss

Species BPR FuP (%) Observed Vss 

(L/kg) [blood]

Observed Vss  

(L/kg) [plasma]

GastroPlusTM 

predicted Vss (L/kg) 

[plasma]

Fold error Vss

Rat 1.8 37 9.1 16.4 14.7 − 1.1

Rabbit 1.3 34 8.0 10.4 7.2 − 1.4

Dog 1.1 31 8.5 9.4 5.7 − 1.6

Monkey 0.8 4 7.3 5.8 2.0 − 2.9

Minipig 0.9 20 5.0 4.5 4.9 + 1.1

Human 0.6 17 – 2.6 3.0 + 1.2
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4.2.4  Power of Blood/Plasma Ratio

It is important to consider the BPR when studying phar-

macokinetic properties [77]. The Lukacova method uses 

the BPR to estimate the association constant for bases with 

acidic phospholipids for each species, and thus predicts a 

range of association constants across the species owing to 

differences in BPR. Tissue-specific acidic phospholipid 

concentration data are only available for rats, dogs and 

humans [51, 78], which will have an impact on the predic-

tions, although variability within species can be greater than 

between species.

In humans, tissue binding of Compound 2 is predicted 

to be driven solely by the interaction of the compound with 

neutral lipids and phospholipids, and modelling indicates 

the larger Vss measured in preclinical species is the result 

of additional binding to acidic phospholipids. Although 

the plausibility of species-specific differences in binding 

to acidic phospholipids has not been investigated for Com-

pound 2, this example highlights the impact and thus the 

requirement of measuring BPR for compounds with basic 

centres to inform PBPK models. A recent publication, 

although critiquing some assumptions behind PBPK mod-

els, stated that Kps for bases are well predicted, possibly 

because of the use of BPR to calculate acidic phospholipid 

binding constants [79].

4.3  Compound 3: Challenging Lipophilic Weak Acid

Compound 3 is a lipophilic (clogP ~5) weak acid with low 

solubility, particularly in stomach acid (Table 2), present-

ing a challenge to in-vitro assays. Although Compound 3 

is eliminated metabolically mainly through CYP3A4, the 

human clearance prediction was challenging because of 

its high metabolic stability. Physiologically based phar-

macokinetic modelling was conducted prospectively to 

understand the compound’s pharmacokinetic properties 

and support the decision to move the compound into clini-

cal development.

4.3.1  Low Clearance Expected in Humans but Uncertainty 

in Actual Estimate

Predicting clearance for acidic compounds by scaling in-

vitro data is often challenging, and consideration of bind-

ing is important [70]. Hepatocytes provided one estimate of 

human clearance, but given the limitations of the in-vitro 

assays, single-species scaling based on monkeys [80] was 

also used for a range of predicted human clearance (i.e. 

0.86–4.6 mL/min/kg, Table 4). Although the clearance pre-

diction was uncertain, given the significant overestimation 

in two of three preclinical species using hepatocytes, there 

was confidence that human clearance would be low because 

of low clearance across preclinical species and stability in 

human hepatocytes.

4.3.2  Pragmatic Prediction of Distribution

Prediction of distribution was challenging as Vss exhibited 

18-fold variability across preclinical species (0.25–4.5 L/

kg). The Lukacova method [50] underestimated Vss across all 

preclinical species and this was mainly owing to an in silico-

predicted acidic pKa value. A PSA showed that removing 

this acidic pKa from the calculation allowed the calculated 

Vss to be sensitive to other parameters, enabling improved 

consistency with observed data (Table 4). Consistent with 

Table 4  Compound 3 

intravenous pharmacokinetic 

results and predictions

CL clearance, Vss volume of distribution at steady state
a When the acidic pKa was used in the estimation of tissue-to-plasma partition coefficient values, Vss was 

underestimated in all species and not sensitive to protein binding. Therefore, the acidic pKa was left out of 

the tissue-to-plasma partition coefficient calculation
b For humans, CL was also predicted using single-species scaling based on the monkey (method using the 

percent of liver blood flow [80]), which is the lower number in the range. This method was chosen because 

of the reasonable predictions achieved by this method when compared with other allometric scaling meth-

ods, and to get a lower CL estimate, given that CL was significantly overestimated by hepatocytes in two 

out of three species

Parameter Rat Dog Monkey Human

Dose, mg/kg 2.5 1.25 1.25 –

Vss, L/kg 4.47 0.25 0.59 –

CL, mL/min/kg 17.9 1.21 1.62 –

Predicted Vss, fu = 0.01% or 0.1%a 0.15 0.14 0.14 0.12

Predicted Vss, fu = 0.1%, pKa  removeda 2.4 3.7 4.0 3.6

Predicted Vss, fu = 0.01%, pKa  removeda 0.36 0.46 0.52 0.48

Predicted CL based on hepatocytes, mL/min/kg 11.6 19.6 7.17 0.86–4.6b
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the QSPR prediction of high binding, the in-vitro  Fup was < 

0.1% across species but could not be precisely determined 

in-vitro. It seemed likely that species differences in Vss were 

related to  Fup differences. To determine Vss values consist-

ent with observed values, a range of  Fup = 0.01–0.1% was 

assumed. Thus, human Vss values from 0.48 to 3.6 L/kg were 

explored for human simulations.

4.3.3  In-Vitro vs. In-Vivo Di�erences in Biopharmaceutics 

Classi�cation System Classi�cation

The approach for Compound 3 included all species (rat, dog, 

and monkey), but for absorption modelling the focus was 

on the monkey because the formulation was similar to the 

one administered to humans. As expected from the in-silico 

pKa, solubility for the compound was low in simulated gas-

tric fluid at a pH of 1 (< 0.05 µg/mL), but it was also low 

in FaSSIF (4.7 µg/mL). The microprecipitated bulk powder 

(MBP) formulation used in humans had improved solubil-

ity (~50 µg/mL in FaSSIF) (Table 2). Absorption modelling 

for monkey elucidated the importance of FaSSIF solubility 

data for the MBP formulation, without which the exposures 

at higher doses would have been significantly underesti-

mated. Because of experience with the MBP formulation 

and its resulting supersaturation and improved formulation 

performance, solubility was not considered a key source of 

uncertainty in simulations for Compound 3 pharmacokinet-

ics from the MBP formulation at the clinically relevant dose 

level.

The measured in-vitro permeability was low, but given 

the good absorption seen pre-clinically, the high in-silico 

permeability and the limitations of in-vitro data from low 

solubility, this in-vitro permeability was thought to be mis-

leading. Therefore, the permeability for human pharma-

cokinetic predictions was increased based on comparison 

of simulations with rat and dog Oral pharmacokinetic data. 

Oral pharmacokinetic curves in the monkey initially over-

estimated observed exposures. A PSA was used to explore 

whether incomplete absorption through low permeability 

or gut extraction was more likely to be responsible for the 

over-predictions; the conclusion, supported by in-vitro reac-

tion phenotyping data indicating CYP3A4 metabolism for 

Compound 3, was that gut extraction likely caused reduced 

Oral pharmacokinetic exposures in the monkey. Absorp-

tion modelling revealed that although this compound was a 

BCS Class IV based on in-vitro data, in-vivo behaviour of 

the enabling MBP formulation was consistent with that of a 

BCS Class I drug at clinically relevant doses.

For Compound 3, intestinal metabolism had to be consid-

ered because it is a CYP3A4 substrate in humans (Fig. 5). 

For the monkey, including intestinal metabolism in the 

PBPK model was important for predicting the pharmacoki-

netics. Because of its relatively high in-vivo permeability 

and metabolic stability, it was determined that gut extraction 

would be minimal in human. Intestinal metabolism due to 

CYP3A can be significant in the monkey, yet not relevant or 

less relevant to humans [81, 82]. GastroPlus was not used for 

the prediction of intestinal metabolism for this example, but 

its utility for this purpose has been demonstrated in preclini-

cal species [83] and humans [65].

4.3.4  Importance of Verifying Physiologically Based 

Pharmacokinetic Models in Preclinical Species

First-in-human PBPK modelling can be applied without the 

important step of verifying the model in preclinical species, 

but confidence is lower. Assessing the in-vitro inputs against 

in-vivo pharmacokinetic profiles in preclinical species, and 

determining alternative parameters when in-vitro data were 

inconsistent with observed data, allowed a reasonably accu-

rate human pharmacokinetic prediction for Compound 3 

(Fig. 9).

4.3.5  Uncertainty Assessment

For this example, clearance and Vss seemed uncertain, and 

high and low estimates were determined for each. However, 

running simulations for all possible combinations would 

have resulted in an unhelpfully large range of possible phar-

macokinetic predictions. Additionally, it seemed likely that 

both clearance and Vss were linked to  Fup (which could not 

be measured), given that Vss and CL were both high in the 

rat, and both low in the dog and monkey (Table 4). There-

fore, two combinations of parameters were explored. Case 1 

explored the combination of low clearance and low Vss due 

to a lower  Fup (0.01%). Case 2 explored the combination 

of high clearance and high Vss due to a higher  Fup (0.1%). 

Cases 1 and 2 are represented by the high and low curves 

in Fig. 9, respectively. Pharmacokinetic simulations for the 

two cases explored here approximately bracket the observed 

pharmacokinetic profiles, suggesting that for humans the 

actual fu value may be between the values of 0.01 and 0.1. 

Importantly, the PSA allowed exploration of a reasonable 

range of predictions, providing improved understanding of 

uncertainty and expected human pharmacokinetics along 

with increased confidence that efficacious exposures would 

be achieved in the clinic.

4.4  Compound 4: High Molecular Weight 
Compound with Expected Slow Passive 
Di�usion through Membranes

Based on the QSPR and PBPK assessments, Compound 4 

has high molecular weight (> 1000 Da), reasonable solu-

bility and low permeability (BCS Class III), and is mainly 
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cleared by renal elimination (ECCS). It has moderate lipo-

philicity but owing to its large size and large number of 

ionisable groups, it is expected to have permeability-limited 

tissue distribution. A verified method for the prediction of 

tissue-specific permeability-surface area product (PStc) 

model parameters has not yet been established. For Com-

pound 4, the specific PStc (PStc per milliliter of tissue cell 

volume) implemented in GastroPlus was determined from 

pharmacokinetic data in the rat and subsequently used to 

predict the FIH pharmacokinetics.

4.4.1  Determining Physiologically Based Pharmacokinetic 

Model Structure Based on Preclinical Studies

Compound 4 PK data following intravenous administra-

tion were available in the rat including concentrations in 

plasma [68, 84] and kidney homogenate [68]. These data 

were used to fit the specific PStc value and verify the pre-

diction of systemic clearance from  Fup and the glomeru-

lar filtration rate. The specific PStc was then used, along 

with physiological cell volumes in each tissue, to calculate 

PStc values for the remaining tissues. Active transport was 

not included in the model; only passive glomerular filtra-

tion and passive membrane diffusion were incorporated to 

account for tissue distribution and renal elimination. No 

other clearance mechanism was included.

Different strategies were explored to simulate distribu-

tion in the rat. A PBPK model with all perfusion-limited 

tissues (Kp values calculated with Poulin-extracellular 

method, equation  4 in [69]) reasonably simulated the 

plasma concentrations and matched the low Vss. This 

prediction assumed compound distribution only to extra-

cellular tissue space with no diffusion through cell mem-

branes. Although it provided a reasonable match to plasma 

Fig. 9  Comparison of observed 

and predicted plasma concentra-

tions (Cp) as a function of time 

for Compound 3. Open symbols 

represent values for individual 

subjects, closed x’s represent the 

median values, and the simula-

tions are for the low clearance, 

low volume of distribution and 

high clearance, high volume of 

distribution cases for the first 

two dose levels (given in mg)
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concentrations, concentrations in kidney tissue were sig-

nificantly under-predicted. Changing the model to all 

permeability-limited tissues and fitting the specific PStc 

enabled matching the compound concentrations in both 

plasma and kidney tissue (Fig. 10).

4.4.2  Predicting Human Pharmacokinetics

Under the assumption that cell membrane composition is 

similar in different species, the specific PStc value (9.15 

×  10−5 mL/s/mL cell volume) fitted against rat data was 

used with human physiology to accurately predict pharma-

cokinetics in humans [85] (Fig. 11). For comparison, human 

pharmacokinetics were also simulated using a perfusion-lim-

ited model (Kps from Poulin-extracellular method). Similar 

to the rat, a reasonable simulation of plasma concentrations 

was achieved. However, simulations of predicted kidney 

concentrations and the amount of drug secreted in urine 

were inaccurate with this simpler model. The simulated ratio 

of kidney and plasma concentrations after the ninth dose 

(1-hour infusions twice daily) was 0.12 for the perfusion-

limited model but ranged from 12 to 153 across the dosing 

interval for the permeability-limited model. A measured 

Kp of 45.8 was reported in one subject with normal renal 

function following multiple-dose intravenous administra-

tion [86]; although the sampling time was not reported, 

Fig. 10  Plasma (black solid 

line, solid circles) and kidney 

(green dashed line, open 

triangles) concentrations for a 

5-mg/kg (top) [84] and 100-mg/

kg (bottom) [68] intravenous 

bolus injection simulated 

with a physiologically based 

pharmacokinetic model with 

all perfusion-limited (left) and 

all permeability-limited (right) 

tissues compared to measured 

concentrations (symbols) in 

the rat

Fig. 11  Plasma (black solid 

line, solid circles) and kidney 

(green dashed line) concen-

trations for a 1000-mg dose 

administered as 1-h intrave-

nous infusion every 12 h [85] 

predicted with physiologically 

based pharmacokinetic models 

with all perfusion-limited (left) 

and all permeability-limited 

(right) tissues compared to 

measured plasma concentrations 

in healthy volunteers
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the observed value falls within the range predicted by the 

permeability-limited model.

The amount of drug excreted in urine after a 1-hour 

1000-mg intravenous infusion in healthy volunteers was 

85% within 24 hours and 91% within 72 h [87]. The perfu-

sion-limited model predicted 100% of the dose secreted in 

urine within 24 hours, while the permeability-limited model 

predicted urinary elimination of 69% within 24 hours and 

83% within 72 hours. Although total urinary elimination 

predicted by the permeability-limited model is lower than 

observed, the consistency with the observed trend for pro-

longed renal elimination suggests that mechanisms of distri-

bution and elimination are captured more closely with this 

model.

5  Discussion and Conclusion

The case studies shown here illustrate the value of PBPK 

modelling to integrate multiple sources of data to improve 

the mechanistic understanding of the pharmacokinetic 

properties of a drug prior to FIH. For example, it can be 

challenging to parse the multiple mechanisms leading to 

incomplete bioavailability, and PBPK modelling has been a 

valuable tool for moving the scientific basis for this forward. 

If the input parameters are variable or uncertain, caution 

is required when interpreting results [88]. Physiologically 

based pharmacokinetic modelling allows the assessment of 

the implications of limitations in model inputs. The mecha-

nistic basis of these models enables exploration of mecha-

nistic questions such as whether co-administration with food 

or a CYP inhibitor is expected to increase exposures [89].

Many companies use PBPK modelling to predict human 

pharmacokinetics as their preferred method, and only resort 

to empirical approaches when PBPK modelling is not pos-

sible for some reason. Physiologically based pharmacoki-

netic modelling has been shown to be superior to empirical 

scaling [16, 18], but the benefits of the PBPK approach go 

beyond the accuracy of the prediction to include an improved 

mechanistic understanding. Physiologically based pharma-

cokinetic modelling, routinely applied for FIH pharmacoki-

netic predictions within pharmaceutical companies, requires 

an appropriate set of measured inputs that we define herein. 

The examples shown here were generated by different scien-

tists working for different companies, and therefore reflect a 

diversity of methodologies. If more consistency can be used 

across the industry, the science of PBPK modelling may be 

advanced and confidence in the results may be improved

Physiologically based pharmacokinetic performance 

for human predictions was evaluated by the Pharmaceuti-

cal Research and Manufacturers of America [90] and they 

did not find a high degree of accuracy, especially for oral 

administration. However, this analysis suffered from severe 

limitations such as the use of in-vitro data from diverse 

company assays, use of a bespoke PBPK platform, and, 

importantly, no preclinical verification of compound-spe-

cific PBPK models prior to human predictions. Given the 

importance of assessing the ability to predict a compound’s 

pharmacokinetic properties in preclinical species and for 

appropriate mechanistic studies to inform model develop-

ment as appropriate, it is not surprising that the Pharmaceu-

tical Research and Manufacturers of America application 

of PBPK modelling resulted in poor predictions, particu-

larly in comparison to other assessments that used industry 

best practice [16, 18]. Predicting human pharmacokinetics 

a priori is challenging, and if it is not possible to verify a 

compound-specific PBPK model in preclinical species then 

the confidence in the human pharmacokinetic predictions 

will be low.

A recent evaluation of bottom-up PBPK prediction by the 

Oral Biopharmaceutics Tools (OrBiTo) project highlighted 

that challenges still remain, and predictive performance 

declines with each layer of complexity from intravenous 

through oral solution to tablet [88]. This evaluation high-

lighted an increase in the uncertainty of predictions for mod-

ellers with < 5 years’ experience [88]. The proposed PBPK 

strategy herein for FIH pharmacokinetic predictions, based 

on a comprehensive review of recent literature and knowl-

edge and best practices of experienced GastroPlus users, 

provides flow diagrams guiding through the layers of ADME 

complexities. Combining QSPR predictions with PBPK 

models from compound structure allows the assessment of 

risks based on compound type/properties [91], guides think-

ing and enables prioritisation of fit-for-purpose resources to 

support model development.

Applying the proposed PBPK strategy with integrated 

ADME PBPK decision trees across pharmaceutical com-

panies will enable a true evaluation of PBPK modelling in 

drug discovery, overcoming the limitations of earlier analy-

ses [88] while increasing the confidence of regulatory agen-

cies in PBPK modelling for FIH pharmacokinetic predic-

tions. The strategy uses an established PBPK platform and 

includes preclinical verification of PBPK models. To max-

imise the value achieved through PBPK modelling, PSAs are 

critical to explore uncertainties. Case studies for challenging 

compounds, with lipophilicity and  Fup at the extremes of a 

previously published representative dataset [92], highlight 

the value that appropriate use of PBPK modelling can add 

to FIH predictions.
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