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ABSTRACT

PHYSIOLOGICALLY-MOTIVATED FEATURE

EXTRACTION METHODS FOR SPEAKER

RECOGNITION

Jianglin Wang, B.S., M.S.

Marquette University, 2013

Speaker recognition has received a great deal of attention from the speech commu-
nity, and significant gains in robustness and accuracy have been obtained over the
past decade. However, the features used for identification are still primarily rep-
resentations of overall spectral characteristics, and thus the models are primarily
phonetic in nature, differentiating speakers based on overall pronunciation patterns.
This creates difficulties in terms of the amount of enrollment data and complex-
ity of the models required to cover the phonetic space, especially in tasks such as
identification where enrollment and testing data may not have similar phonetic cov-
erage. This dissertation introduces new features based on vocal source characteristics
intended to capture physiological information related to the laryngeal excitation en-
ergy of a speaker. These features, including RPCC, GLFCC and TPCC, represent the
unique characteristics of speech production not represented in current state-of-the-art
speaker identification systems. The proposed features are evaluated through three ex-
perimental paradigms including cross-lingual speaker identification, cross song-type
avian speaker identification and mono-lingual speaker identification. The experi-
mental results show that the proposed features provide information about speaker
characteristics that is significantly different in nature from the phonetically-focused
information present in traditional spectral features. The incorporation of the pro-
posed glottal source features offers significant overall improvement to the robustness
and accuracy of speaker identification tasks.
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Motivation

The task of speaker identification and verification has received a great deal of attention

from the research community in the past decade, and there have been substantial

gains in accuracy as well as in channel and background robustness [1, 2]. However,

the fundamental mechanism of state-of-the-art systems has remained phonetic rather

than physiological in nature, and little progress has been made toward identifying

individually unique speech characteristics that are independent of phonetic content.

Automatic speaker recognition systems have mainly been explored in a single language

or mono-lingual environment, where phonetic content is relatively consistent and

such approaches are sufficient. Performance degrades for tasks such as cross-lingual

speaker recognition, where there are multiple languages, both training and testing,

since the phonetic features used in mono-lingual tasks are less useful in a cross-lingual

or multi-lingual environment. This also limits application of speaker identification to

other similar tasks, such as bioacoustic censusing, where individual identification is

used to count and monitor animal populations within a species [3, 4]. In addition,

the phonetic nature of traditional approaches requires larger amount of training data
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than might otherwise be ready. Given these limitations, there is still a significant need

for identification of unique non-phonetic and speaker-specific features that are more

independent of phonetic content and representative of more underlying physiological

characteristics of the speaker.

The most popular approach for current recognition systems is based on Gaus-

sian Mixture Models (GMM) [5] or GMMs coupled with Support Vector Machines

(GMM-SVM) [6, 7]. Verification is accomplished through likelihood comparison with

appropriate cohort models, as with Universal Background Model (UBM) systems [8].

For the GMM and SVM classifiers, a number of techniques developed within the

speaker recognition area have shown excellent performance. For example, many gen-

erative models, such as Eigenchannels, Eigenvoices and Joint Factor Analysis (JFA),

have built on the success of the GMM-UBM approach. Inspired by the success of

joint factor analysis in speaker recognition [9], Dehak proposed the i-vector approach

which is to find a low dimensional subspace of the GMM supervector space, called the

total variability space that represents both speaker and channel variability. Standard

spectral features such as Mel Frequency Cepstral Coefficients (MFCCs) with energy

and first and second order derivatives are used, typically projected to a lower dimen-

sion through Heteroscedastic Linear Discriminant Analysis (HLDA) [10]. A variety of

feature transformation techniques are used, including Nuisance Attribute Projection

and Latent Variable Analysis [11, 12]. Score normalization techniques such as TNorm
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and ZNorm [13] are also incorporated. In the past few years it has become common-

place to build a large number of diverse system types and integrate them through

various forms of intelligent score fusion. This is seen for example in the NIST speaker

recognition challenges [14, 15], in which the focus is on environmental and channel

variability. In all cases, though, the basic features remain primarily spectral in nature,

relating to vocal tract parameters that are heavily correlated with phonetics.

Environmental, recording, and channel mismatches have also received a great

deal of attention from the research community in the past decade, while spoken

language mismatch has been neglected. In [16], authors presented that language

mismatching scenarios between a target speaker and its world model cause critical

degradations in the accuracy of speaker verification system, especially for Vietnamese

and Mandarin against the native English target speakers. The work by [17] reported

that the speaker verification system shows slight performance discrepancies if the

model was trained on English and Chinese digits/sentences, and tested on English

versus testing on Chinese. Research by Geoffrey and Faundez [18, 19] shows that

there is a decreased accuracy in language-mismatched conditions, but they give no

further insight on how to alleviate the problem. Other research by Hansen and Meng

[20, 21] gives an approach to this problem, but it is necessary to know the possible

languages that will be used and build a corresponding speaker model for each of

them, and this is not always possible. In [22, 23], a multilingual phonetic string
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approach, which is similar to the phone recognition and language modeling method

used for language identification, is applied to speaker recognition. The advantage of

these methods can provide language independence, but extensive training and testing

materials are required, because speaker recognition systems with a small amount of

data are not sufficient to eliminate the impact of language variation. In [24], Campbell

et al. proposed to create corpora to support and evaluate speaker identification

systems on language variation conditions. In [25], the problem of language variability

was investigated on forty-nine bilingual speakers using the Spanish/Catalan corpus.

The author proposed a method with a language-independent and language-dependent

vector quantization codebook to address the problem of language variability. In [26],

a series of listener tests was conducted to demonstrate that language familiarity plays

a significant role in speaker identification. In [27] some short-term prosodic features

were proposed to enhance the language robustness in speaker recognition systems,

although the results are still far from being truly language independent.

In addition to these phonetic model and language mismatch issues, the significant

amount of speech required for speaker model training has also limited the widespread

use of speaker recognition technology in everyday applications. Reducing the amount

of the required speech utterance to train speaker model has been investigated in a

number of recent papers focused on Joint Factor Analysis (JFA) and SVM based
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speaker recognition. These studies have shown that performance dramatically de-

grades with short utterances (< 10s) for both JFA and SVM approaches [28, 29].

Kanagasundaram found that for short duration (< 2s) text-independent speaker ver-

ification, i-vector approaches obtain comparable performance to the classical JFA

approach but don’t provide noticeable improvement [30]. Therefore, tasks with lim-

ited duration training data still represent a serious issue for text-independent speaker

recognition. This is connected to the phonetic nature of speaker recognition models,

because one of the reasons that so much training data is required is that the speech

needs to sufficiently cover the entire phonetic space in order to build robust models.

From the above studies, it is clear that mismatched conditions and limited training

data are not a well solved problem in speaker recognition. In the work introduced

here, novel feature extraction techniques are used to create physiologically motivated

measures to improve system robustness and accuracy across a wide range of such task

configurations.

1.2 Purpose

The objective of this dissertation is to create novel feature extraction methods to

capture speaker-discriminative features from speech utterances, applicable across a

wide range of speaker recognition tasks. A number of new features are introduced

and investigated, including some based on vocal excitation as opposed to vocal tract
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information and some based on temporal variabilities within vocal tract characteris-

tics represented. Following preliminary experimental investigations, three new vocal

source features, Residual Phase Cepstral Coefficients (RPCC), Teager Phase Cepstral

Coefficients (TPCC), and Glottal Flow Cepstral Coefficients (GLFCC) are selected

for continued investigation and evaluation.

The experimental work in this dissertation is designed to test the potential in-

fluence of phonetic differences and evaluate whether the proposed features relate

to physiological rather than phonetic distinctions. A Gaussian mixture model and

universal background model (GMM-UBM) is used to create a baseline speaker recog-

nition framework for this evaluation.

Three experimental paradigms have been introduced for evaluating phonetically-

independent features for speaker identification. These tasks, bilingual speaker identi-

fication and cross song-type avian speaker identification, are each designed to assess

the performance of the proposed features in conditions with mismatched training and

test data. The third task, speaker identification on YOHO corpus, is to verify if

the proposed features are also significant for single language condition. The first of

these has multiple applications, such as forensic speaker recognition, which needs to

be robust across language. The second of these, cross song-type bird recognition, ad-

dresses a key problem in bioacoustic censusing. Current methods for this task require

prior separation by vocalization category, which severely limits its capability for many
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species. The third task demonstrates application of the newly proposed features to

text-dependent speaker recognition evaluation for a broad range of applications.

1.3 Dissertation Overview

The first chapter gives a brief overview of the dissertation and the motivation behind

the research. The second chapter discusses background knowledge and related work

in the field of speaker recognition. The third chapter reviews the state-of-the-art in

features for speaker recognition and introduces the newly proposed feature extraction

methods.

The fourth chapter details the experiments and results of implementing the new

proposed features for cross-lingual speaker identification, cross song-type avian speaker

identification and mono-lingual speaker identification. Recognition results based on

current state-of-the-art baseline methods are also presented for comparison.

The fifth chapter summarizes the major work of this dissertation, highlights the

contribution of the research, and proposes several different possible future research

avenues in this area.
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CHAPTER 2

SPEAKER RECOGNITION SYSTEMS

2.1 Overview

Speaker recognition is highly effective for human-computer interaction, identification

and information retrieval. The required terminal equipment is simple, e.g., a good

performance microphone. Current state-of-the-art recognition rates are very high;

in some cases, automatic recognition performance is better than human. Speaker

recognition can be applied to the use of computers and computer networks, access

control of public security, voice authentication in telephone transactions, telephone

monitoring in the military, access to network resources, and many other emerging

applications. With the rapid development of Internet and network resources, speaker

recognition can be widely applied for voice search in digital library and information

retrieval.

2.2 Historical Achievements

Research in automatic speaker recognition has attracted a great deal of attention

for the past five decades and is still considered an important area for speech signal
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processing. The development of speaker recognition technology parallels the advance-

ment of speech recognition technology.

Research for speaker recognition began in the 1960s, one decade later than that

for speech recognition. Kersta at Bell Labs stimulated the research on speaker recog-

nition by introducing the sound spectrograph from the Sonograph [31]. The spectro-

grams for different speaker could be easily distinguished by specially trained experts,

however, the computer could not directly use the spectrogram for automatic speaker

recognition.

In the mid 1960s, digital signal processing technology was employed in the area

of speech recognition. Its significance was that the task of speech and speaker recog-

nition could be implemented directly by computer, rather than requiring a trained

expert. In 1969, Luck first implemented the Cepstrum for speaker recognition [32]. In

the 1970s, Atal and Itakura proposed to apply the theory of linear predictive coding

for speech signal processing [33, 34]. BS Atal later investigated the Linear Predic-

tive Cepstrum Coefficients (LPCC) for speaker recognition in order to improve the

recognition accuracy of the system.

In the 1980s, Steven B. Davis proposed mel-frequency cepstral coefficients (MFCC)

[35]. MFCC features take into account human auditory mechanisms to obtain better

recognition performance and noise robustness. This method is now widely used in
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almost all speech and speaker recognition systems. At the same time, artificial neu-

ral networks (ANN) and hidden markov models (HMM) were successfully applied in

speech recognition and became the core of speaker recognition methods [36, 37].

In the 1990s, Reynolds presented the Gaussian Mixture Model (GMM)-based

speaker verification system used successfully in several NIST speaker recognition

evaluations [5, 38]. As conducted by NIST in recent years, each speaker recognition

evaluation on conversational telephone speech has involved a corpus with hundreds

of speakers, thousands of conversation sides, and tens of thousands of individual test

trails. Each evaluation test set is dependent on numerous data collection factors

that affect evaluation performance [39]. GMMs promptly became the mainstream

technology of the text-independent speaker recognition because it is simple, flexible,

effective and robust. GMMs can be regarded as a single-state HMM which ignores

the temporal pattern of speech. The state-of-the-art GMM system rapidly became

the main stream technology for the text-independent speaker recognition due to its

simplicity, flexibility and robustness, and further promoted the rapid development of

speaker recognition. In 2000, Reynolds presented a GMM-based speaker verification

system using a universal background model (UBM) for alternative speaker represen-

tation, and maximum a posterior (MAP) adaption method to derive speaker models

from the UBM [40, 41]. The method of UBM-MAP made a significant contribution to

speaker recognition, taking it from the laboratory to practicality. UBM-MAP reduces
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the dependence on the training set for the statistical model of GMM and enhances

the robustness of mismatch conditions for training and testing. In UBM-MAP, only

small amounts of adaptive speech are needed for the training of speaker model.

Currently, various speaker recognition technologies are emerging, such as the appli-

cation of large vocabulary continuous speech recognition (LVCSR) to text-independent

speaker recognition [42], hybrid GMM and support vector machine (SVM) approaches

to speaker recognition [7, 43], using prosodic and lexical information for speaker recog-

nition [44], score normalization of TNorm and ZNorm for text-independent speaker

recognition [13, 45] and latent factor analysis (LFA) for speaker recognition [46, 47].

However, the best text-independent speaker recognition systems are still based on

GMM, in particular, the structure of UBM-MAP [48].

The recent advances in the domain of intersession variability compensations have

been a breakthrough in improvements in error rates. One of these techniques is

known as an i-vector extraction, which consists of mapping a sequence of vectors

for a given speech utterance to a low-dimensional vector space [49–51], referred to

as the total variability space based on a factor analysis technique. The i-vector

extraction can be viewed as a probabilistic compression process in order to represent

speech segments variability in a low dimensionality space. Hence, i-vectors convey

speaker characteristic along with other information, such as acoustic environment,

transmission channel or phonetic content of the speech segment.
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2.3 Speaker Recognition Tasks

Speaker recognition doesn’t focus on the semantic content of the speech signal, but

extracts characteristics of a speaker’s speech pattern to recognize the speaker iden-

tity. Speaker recognition not only seeks to represent the personal characteristics

of a speaker, but also to emphasize the differences between individuals. In contrast,

speech recognition and language recognition emphasize normalization of speaker vari-

ance. The fundamental goal of speaker recognition is to extract the speaker’s char-

acteristics from the speech waveform and use the extracted information for speaker

identification or verification.

Speaker recognition systems can be classified into text-dependent and text-independent

tasks based on the characteristics of the spoken text. A text-dependent recognition

system is trained to recognize specific speakers from pre-defined utterances which

can be either a fixed phrase or a randomly prompted phrase. The text-independent

recognition system doesn’t know the content of the speech utterance, which can be

any words, phrases or sentences. In general, text-independent speaker recognition is

more flexible and applicable, but more difficult to achieve, requiring more training

and testing speech data. In contrast, text-dependent speaker recognition can achieve

higher recognition accuracy with less training and testing data.
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Figure 2.1: The structure of speaker verification.

Speaker recognition systems can also be divided into identification and verifica-

tion tasks. Speaker verification is a binary classification task, determining whether

the unlabeled input utterance belongs to a claimed speaker or not. Thus a speaker

verification system either accepts the utterance as the claimed speaker or rejects it

as an impostor, as shown in Figure 2.1. In contrast, the goal of speaker identification

is to identify the unlabeled input utterance as belonging to one of a set of known

speakers. It is an M-any classification task where the voice is compared against M

speaker models, as shown in Figure 2.2. Speaker identification is usually more difficult

than verification, since the number of decision alternatives of speaker identification

is equivalent to the size of the enrolled speaker set M, and the speaker identification

performance decreases as the size of the speaker increases.

In general, a speaker identification and verification system consists of three main

components, including front-end processing, speaker modeling, and decision-making.

The first step, whether for verification or identification, is front-end processing in
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Figure 2.2: The structure of speaker identification.

order to extract from the speech signal features that convey speaker-dependent infor-

mation. To train the speaker model in text-independent speaker recognition, generally

a universal background model (UBM) with a large number of Gaussian mixture com-

ponents is trained based on a large number of “imposter” speakers. Instead of training

a speaker’s model directly using the corresponding speaker’s utterances, this method

adapts a target speaker model from the UBM by maximum a posteriori (MAP) [40].

The difference between speaker verification and speaker identification lies in the stage

of decision making. In a speaker verification system, the input speech of a claimed

speaker is matched only against the claimed speaker model and universal background

model to calculate the likelihood ratio. Then the ratio is compared to a threshold
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to accept or reject the decision. In a speaker identification system, the test speech

is matched against each speaker’s model to calculate the corresponding likelihood

scores, selecting the corresponding model using a maximum likelihood criterion.

2.4 Evaluation Metrics

Speaker verification systems need to compare the score of the test speech to the

claimed speaker model and verify the result according to certain decision rules. The

basic hypotheses are

• H0: Y is from the hypothesized speaker S

• H1: Y is not from the hypothesized speaker S.

The decision for these two hypotheses is a likelihood ratio test given by

p(Y |H0)

p(Y |H1)

{

≥ θ acceptH0

< θ rejectH1

, (2.4.1)

where p (Y | Hi) is the likelihood of the hypothesis Hi given the observed speech

segment Y , and θ is the threshold for accepting or rejecting H0. The basic goal of

a speaker verification system is to compute values for the two likelihood, p (Y | H0)

and p (Y | H1).

Speaker verification has two types of errors. The false acceptance rate (FA) is

the probability that an impostor is wrongly accepted as the true speaker. The false
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Figure 2.3: The impact of threshold on FA & FR.

rejection rate (FR) is the probability that the true speaker is rejected as an impostor.

Different thresholds will generate different FA and FR rates in an inverse relation-

ship. The relationship between the threshold and FA & FR is shown in Figure 2.3.

Obviously, a higher threshold will make the system less likely to accept an impostor,

but it also makes it more likely to reject the true speaker. In contrast, although a

lower threshold will reduce the probability to reject the true speaker, it also increases

the chance of accepting an impostor. This tradeoff can be also shown completely in

the Receiver Operating Characteristic (ROC) curve, illustrated in Figure 2.4, that

shows the FA & FR performance as the threshold is varied.
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Figure 2.4: The ROC curve with EER identified.

2.4.1 Equal Error Rate (EER)

Figure 2.3 and Figure 2.4 show that FA decreases and FR increases as the threshold

increases. The intersection point of the two curves is called the equal error rate, and

the corresponding threshold value is called the EER. EER is often used as a speaker

recognition system’s evaluation criteria. It is simple and intuitive. However, EER is

limited in that it doesn’t address the tradeoffs between FA and FR costs.
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2.4.2 Detection Cost Function (DCF)

To effectively evaluate the system performance, the National Institute of Standards

and Technology (NIST) has defined an evaluation function-Detection Cost Function,

which is as a weighted sum of FA and FR and computed as follows:

DCF = CFR · PFR · PTar + CFA · PFA · PImp , (2.4.2)

where CFR and CFA are the cost of false rejection of a target speaker and false

acceptance of an impostor. PFR is the probabilities of false rejection, and PFA is the

probabilities of false acceptance. PTar and PImp are the prior probabilities of a target

speaker and impostor speaker, respectively.

The DCF takes into account the costs of the two types of errors as well as the

prior probability of the target speaker and impostor speaker. By incorporating such

costs, the DCF is able to more flexibly meet the needs of different applications. The

NIST evaluation uses CFR = 10, CFA = 1, PTar = 0.01, and PImp = 0.99, which

emphasizes system security.

2.5 Features for Speaker Recognition

In pattern recognition, one of the first tasks is to extract parameters to represent the

feature information. In speaker recognition, the purpose of feature extraction is to
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remove redundant and irrelevant information to efficiently capture the characteristics

of each speaker. In contrast to speech recognition, where the features need to represent

phonetically relevant characteristics of the speech utterance, the features for speaker

recognition focus on capturing the distinctive features of an individual to effectively

distinguish speakers from each other. However, in practice this is not how current

speaker recognition systems work. Current speaker verification and identification

systems focus on uniqueness of pronunciation patterns and phonetics rather than

physiologically speaker-distinctive vocal characteristics. The dominant features used

in speaker recognition are adopted directly from those used for speech recognition,

and primarily capture vocal tract spectrum characteristics of speaker. Although this

is effective, since pronunciation patterns are unique, it is also somewhat non-intuitive

considering the opposite nature of these two tasks.

Speech researchers have been looking for novel features for speaker recognition

since the 1950s without much success. Feature extraction is still a bottleneck to

improve the accuracy of speaker recognition algorithms. In particular, the physio-

logical significance of the vocal source mechanism in speech production as features

for speaker recognition has been significantly under-investigated. This dissertation

strives to demonstrate the possible advantages to be gained by effectively combining

vocal source with vocal tract features to improve the performance of speaker recogni-

tion. Established feature extraction method will be introduced in Section 2.5, while
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the newly proposed features will be introduced in Chapter 3.

2.5.1 MFCC

Mel-Frequency Cepstral Coefficients (MFCCs) are commonly used in most speech

and speaker recognition systems. These approximate the perceptual model of the

human auditory system by warping the linear frequency axis to match the Mel-scale

cochlear frequency map [52]. This filter spacing is approximately linear up to 1 kHz

and logarithmic at higher frequencies as shown in Figure 2.5. The reason for this

warping is that human ears, for frequencies lower than 1 kHz, hear tones with a

linear scale instead of logarithmic scale for the frequencies higher than 1 kHz. The

warping function in equation (2.5.1) transforms linear frequencies to Mel-frequencies,

where Mel is the perceptual frequency and f is the real frequency in Hz.

Mel(f) = 2595 log10

(

1 +
f

700

)

(2.5.1)

MFCCs are usually derived using a triangular shaped Mel-scale filterbank as il-

lustrated in Figure 2.6. It has been found that the energy in a critical band of a

particular frequency influence the human auditory system perception [53]. This crit-

ical band bandwidth varies with the frequency, where it is linear below 1 kHz and

logarithmic above. Mel filterbanks are non-uniformly spaced on the frequency axis,

so we have more filters in the low frequency regions and fewer filters in the high

frequency regions [54].
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Figure 2.5: Relationship between the Hz frequency scale and the mel-scale.

Figure 2.6: Mel-scale filter bank.
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Figure 2.7: MFCC feature extraction process.

The feature extraction approach to MFCC is shown in Figure 2.7. The major

computation steps can be summarized as follows.

1. Preprocessing: This step contains the process of pre-emphasis and windowing.

The pre-emphasis boosts the energy in the high frequencies using a first or-

der filter. The process of windowing is used to divide the speech signal into

successive overlapping frames with minimum effect of the edge discontinuity.

2. The discrete Fourier transform (DFT) converts the windowed speech segment

from the time domain into the frequency domain.

3. Mel-spaced filterbanks are used to group the frequency energy into bins with

spacing that mimics the frequency response of the auditory system.

4. The discrete cosine transform (DCT) decorrelates the spectral coefficients and

transforms the data to the cepstral domain. MFCC features are largely decor-

related and can be modeled with diagonal Gaussian distributions.

Although MFCCs have widely been applied into speech and speaker recognition,

MFCC features also have limitations for certain applications. One of the benefits
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of MFCCs for speech recognition is to eliminate the speaker-specific information for

different speakers [55, 56], and capture the common information of words, phrases,

sentences and semantics. In contrast, MFCC for speaker recognition uses phonetic

characteristics to model speaker-specific information, without truly representing dif-

ferences due to other factors. This limitation illustrates that traditional vocal tract

features such as MFCC are not suitable for tasks such as our target applications, such

as cross-lingual speaker identification and mismatched song-type individual identifi-

cation as shown in Chapter 4, because those tasks contain little phonetic information

across training and test sets.

2.5.2 Greenwood Function Cepstral Coefficients (GFCCs)

For the avian species individual identification task, MFCCs are generalized, with

the frequency warping component adjusted according to the perceptual model of

the target species - in our case, Ortolan buntings. This leads to the Greenwood

Function Cepstral Coefficients (GFCC) [57, 58]. In the mammalian auditory system,

the perceived frequency range differs from that of humans. Greenwood found that

many mammals perceive frequency on a logarithmic scale along their cochlea [59, 60].

Figure 2.8 shows a block diagram of the process for calculating Greenwood function

cepstral coefficients. The first step is to partition the vocalization signal into frames

and then multiply each frame with a hamming window. The Greenwood filterbank
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Figure 2.8: GFCC extraction block diagram.

for ortolan bunting vocalizations is adjusted to the range from 400 to 7400 Hz to

fit the fmin and fmax of this species. A discrete cosine transform (DCT) is used to

convert the filter bank energy into the cepstral domain.

2.5.3 LPC Coefficients

Linear prediction (LP) analysis is a powerful signal processing technique that has

been widely used in the analysis of speech signals. The theory of linear prediction is

closely linked to modeling of the vocal tract system, as linear prediction can be shown

to be equivalent to auto-regressive modeling of the signal spectrum [61]. In the LP

model, the nth speech sample can be predicted by the (n− 1)th to (n− p)th samples

of the speech wave. The predicted value of the nth speech sample is given by

ŝ(n) =

p
∑

k=1

a(k)s(n− k), (2.5.2)
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Figure 2.9: LPC coefficient computation.

where a(k) are the predictor coefficients and s(n) is the nth speech sample. The

prediction coefficients are determined by minimizing the mean square prediction error,

defined as

E(n) =
1

N

N−1
∑

n=0

(s(n)− ŝ(n))2 , (2.5.3)

where summation is taken over all N samples. The set of coefficients a(k) minimizing

the mean-squared prediction error are obtained as the solution of the set of linear

equations
p

∑

k=1

akRxx[n− j, n− k] = Rxx[n, n− j], ∀j = 1, . . . , p. (2.5.4)

Thus, the prediction coefficients a(k) are calculated by solving the recursive equa-

tion (2.5.4) using the Levinson-Durbin algorithm. Typical steps in implementing

linear prediction are summarized in Figure 2.9. Reflection coefficients, log area coef-

ficients and LP residual are also obtained as a byproduct of LP analysis. A detailed

introduction to linear prediction can be found in [61].

2.5.4 Log Area Ratio

Log area ratio (LAR) coefficients are well-known spectral measures, typically derived

from the linear prediction coefficients [61], which characterize the vocal tract of a



26

Figure 2.10: Acoustic tubes speech production model.

speaker. Based on LP analysis, the vocal tract model of a speaker can be regarded

as a non-uniform acoustic tube which is represented by a concatenation of cylindrical

tubes of equal length. The cross-sectional area of each section represents the average

cross-sectional area of the corresponding portion of the vocal tract. As boundary

conditions, it is assumed that the glottis connected to the first tube has zero area,

while the lips connected to the last tube have infinite area. Figure 2.10 illustrates the

acoustic tube model of speech production.

The relationship between the LAR coefficients and the LPC coefficients is:

LARi = log

(

Ai

Ai+1

)

= log

(

1 + αi

1− αi

)

, Ap+1 = 1, (2.5.5)
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where αi represent the parcor coefficients. If we denote α
(k)
i as the ith LPC for a kth

pole linear prediction model, then αi = α
(i)
i , i = 1, · · · , p.

2.5.5 Nuisance Attribute Projection

Nuisance attribute projection (NAP) is an effective technique to compensate the

supervectors, consisting of the stacked means of the mixture components [62], by

removing the dimensions of unwanted session variability before the SVM training

[49, 62]. These dimensions are generally determined through a data-driven approach

using a large background database. The within-class variation can be used a model

of the inter-session variation by examining the differences between examples of the

same speaker in the background population.

There are two assumptions for this NAP approach. The first assumption is that

the undesired inter-session variability can be thoroughly estimated in a high dimen-

sional feature space using the covariance matrix. The second assumption is that the

corresponding variability lies in a low dimensional subspace spanned by the eigenvec-

tors of the covariance matrix. Based on these two assumptions, the variability can be

suppressed by estimating the low dimensional subspace and then be removed. This

can be accomplished by applying the transform

x′ = Pnx = (I − UnU
T
n )x, (2.5.6)

where I denotes the n× n identity matrix and Un represents the nth direction of the
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variability subspace base U defined by NAP. Pn stands for n × n projection matrix.

Un is trained to capture the principal direction of within-class variability using several

recordings of various speakers. Thus, this approach tries to find the vectors u that

maximize the below criterion

J(u) = uTSwu, (2.5.7)

where Sw is the within-class scatter matrix of the training data, which is equivalent

to determining the set of eigenvectors with the largest eigenvalues satisfying

Swu = λu. (2.5.8)

2.5.6 Latent Factor Analysis (LFA)

Latent Factor Analysis (LFA) is an approach to modeling session variability for text-

independent speaker verification, in which a constrained offset of the speaker’s GMM

supervectors is used to represent the effect of session differences [63]. The method

summarizes the session variability in the high dimensional supervector space into a

low dimensional eigenchannel factor vectors. In the GMM-LFA framework, the speech

signal can be regarded as a normal speech signal corrupted by channel variability.

In this approach, the speaker- and channel-dependent mean supervector, Mk,c, is

decomposed into a speaker dependent component and a session dependent vector Uy,

defined as

Mk,c = Mk + Uy, (2.5.9)
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where Mk is the session-independent GMM supervectors and y is defined to be in-

dependent and Gaussian with zero mean and unit variance. If we consider Mk as

the trained speaker model and Mk,c as the model adapted using the test utterance,

equation (2.5.9) formulates the channel differences between the training and testing

conditions. The data from multiple speakers is used to train the eigenchannel matrix.

In the first step, for each speaker k, k = 1, . . . , K and all utterances j, j = 1, . . . , Jk,

an universal background model (UBM) is adapted to obtain a supervector Mkj. In

the second step, the true supervector of the corresponding speaker is estimated by

averaging all the supervectors from this speaker,

M̃k =

Jk
∑

j=1

Mkj

Jk
, M ′

kj = Mkj − M̃k. (2.5.10)

Following this, all the speakers’ state variability supervectors M ′

kj are concate-

nated into a within variability matrix S with ND rows and J columns (J =
∑K

k=1 Jk),

S = [M ′

11, · · · ,M
′

1J1
, · · · ,M ′

K1, · · · ,M
′

KJK
]. (2.5.11)

The eigenchannel matrix U is given by the R PCA eigenvectors of the within-

speaker covariance matrix (1/J)SSt.

2.6 Speaker Modeling

The feature extraction approaches described above transform the raw speech signal

into feature vectors in which speaker-specific information is extracted and statistical
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redundancies suppressed. By using feature vectors, a speaker model is trained through

the classical modeling methodology. This section describes some of the popular mod-

els, such as GMM-UBM and GMM-SVM, in text-independent speaker recognition.

2.6.1 Gaussian Mixture Models-Universal Background Mod-

els

2.6.1.1 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are the state-of-the-art modeling approach in text-

independent speaker recognition, and are widely accepted in the speech community

[5]. The Gaussian mixture model uses a mixture of multivariate Gaussians to model

the probability density function of observed variables. That is, for a GMM with N

Gaussians, the likelihood of x given the mixture model, λ, is given by

p(xi | λ) =
M
∑

i=1

wipi(xi), (2.6.1)

where xi is the feature vector, and wi is the weight of each Gaussian component under

the constraint
M
∑

i=1

wi = 1. pi(xi) is the ith Gaussian density function, given by

pi(xi) =
1

(2π)d/2|
∑

i |
1/2

exp

{

−(xi − µm)
T
∑

−1
M (xi − µm)

2

}

, (2.6.2)

where d is the dimension of the feature vector, M is the number of Gaussian density,

µi is the mean of the ith Gaussian density function,
∑

i is the ith covariance matrix

and wi is the weight of the ith Gaussian density function. The model parameters of
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GMM are λ = {M,wi, µi,
∑

i}. Since the number of Gaussian density functions M is

often preselected, the estimated model parameters are λ = {wi, µi,
∑

i}.

GMMs describe the statistical distribution of feature vectors of a sound unit,

without regard to temporal sequence information. Because of this, GMMs are able

to reduce the influence between the text content and timing on speaker recognition

performance. GMMs provide an implicit segmentation of phonetic units within the

feature space, without labeling the sound classes. Overall the GMM represents the

speaker-dependent vocalization system’s configurations.

2.6.1.2 GMM-UBM

The GMM-UBM with MAP adaption is the dominant method of modeling speakers in

text-independent speaker recognition [40]. The UBM is a speaker-independent GMM

trained by a large amount of data from different speakers and channel/microphone

conditions. A UBM doesn’t represent the distribution of a particular speaker, but

describes the average distribution of speakers whose speech is distorted by channel and

background noise, so that the model encompasses certain aspects of the variabilities

encountered in the unknown test data.

Typically, the speaker model trained by the speaker enrollment utterances will

have 64-256 mixture components. Higher numbers of mixture will require more ut-

terances, which is often difficult to obtain for a single speaker. A better approach is to
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Figure 2.11: The structure of a GMM-UBM.

derive a speaker model using adaption of UBM parameters. This approach employs

speaker’s enrollment utterance to form a Maximum Posteriori (MAP) estimate [64].

The strategy for adapting target the speaker model is based on the similarity between

the training data of the target speaker and the UBM, using MAP adaption to adjust

the UBM to the speaker. Distributions within UBM which are far from the target

speaker undergo relatively little change as shown in Figure 2.11. To adapt to the

target speaker’s training data O = {o1, o2, . . . , or}, the algorithm first computes the

probabilistic alignment of the training vectors and the UBM mixture components,

Pr(i | xt) =
ωipi(xt)

∑M
j=1 ωipi(xt)

. (2.6.3)

The expectation maximization (EM) algorithm [65] iteratively learns the model
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parameters from the data to compute the weight, mean and variance.

ni =
T
∑

t=1

Pr(i | xt) (2.6.4)

Ei(x) =
1

ni

T
∑

t=1

Pr(i | xt)xt (2.6.5)

Ei(x
2) =

1

ni

T
∑

t=1

Pr(i | xt)x
2
t (2.6.6)

These statistics are used to update the UBM statistics and create new adapted

parameters, including adapted weights, means, and variance given by

ω̂i = [αω
i ni/T + (1− αω

i )ωi]γ, (2.6.7)

µ̂i = αm
i Ei(x) + (1− αm

i )µi, (2.6.8)

σ̂2
i = αv

iEi(x
2) + (1− αv

i )(σ
2
i + µ2

i )− µ̂2
i , (2.6.9)

where γ is the scale factor to ensure all adapted mixture weights sum to unity, and

{αω
i , α

m
i , α

v
i } are the mth adaption scale factors controlling the balance between old

and new estimates, calculated as

αρ
i =

ni

ni + γρ
, ρ ∈ {ω,m, v}, (2.6.10)

where γρ is a fixed relevance factor for parameter ρ(γ = 16). When adaption data has

low probability for the mixing component i, αi becomes low. In this case, estimated

parameters are more affected by UBM’s parameters than by a speaker’s statistics.
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In contrast, when probability of adaption data is high, the estimated parameters are

less affected by the UBM’s parameters.

When a target speaker’s GMM is adapted from the UBM, it is possible to select

whether weights, means and variances of the target speaker’s GMM are all adapted,

or alternatively whether only means are adapted. Numerous speaker verification

experiments [40] have shown that adapting model variances rarely improves accuracy

significantly, so it is common to adapt only mean vectors. Based on this observation,

this dissertation only adjusts the means of the target speaker’s GMM, while the

weights and variances are unchanged.

2.6.2 Gaussian Mixture Models-Support Vector Machines

GMM-UBM is a commonly used generative modeling methodology for text-independent

speaker recognition. Recently, a discriminative modeling methodology, support vector

machines (SVMs), has also been successfully applied to speaker recognition. Based

on the SVM’s discrimination ability between two classes [66, 67], a combination

scheme using GMM and SVM has shown a significant performance applied in a text-

independent speaker recognition task over the standard approach using only GMMs.

In this section, the GMM-SVM modeling technique is described.
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2.6.2.1 Support Vector Machines

Support vector machines are a discriminative approach, well suited to speaker veri-

fication. An SVM [68] is a two-class classifier constructed by the weighted sum of a

kernel function K(·, ·) as follows:

f(x) =
L
∑

i=1

αitiK(x, xi) + d, (2.6.11)

where x is the input data, L is the number of support vectors, αi and d are training

parameters, the vectors xi are support vectors obtained from the training set by an

optimization process [69], and ti are the ideal outputs (either 1 or -1) depending

upon whether the corresponding support vector is in class 1 or class 2, respectively.

A classification decision is based upon whether the value f(x) is above or below a

threshold.

The kernel function K(·, ·) is constrained to have certain properties (the Mercer

condition) so that K(·, ·) can be expressed as

K(x, y) = b(x)tb(y) (2.6.12)

where b(·) is the mapping that converts each data vector x from the input feature

space into a high-dimensional SVM expansion space.

The SVM optimization process creates a hyperplane in the expansion space that

can effectively separate between the two classes with maximum margin. This hyper-

plane is defined by support vectors xi that are identifying boundary points from the
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Figure 2.12: Principle of support vector machine.

training data. Each input vector x is classified to class 1 or 2 according the sign of

f(x) at the evaluation stage. The principle of the support vector machine is illus-

trated in Figure 2.12. As shown in this figure, the decision boundary should be as far

away from the data of both classes as possible in order to maximize the margin m.

2.6.2.2 GMM-SVM

A GMM-SVM system for speaker verification [70] is a combination of the generative

power of GMM-UBM with the discriminative properties of SVM, as shown in Figure

2.13. The GMM-UBM system serves as a means of feature extraction for the SVM

system. The SVM classifier is used to model the target speaker characteristics and to

score the test utterances. Given the SVM of target speaker s, the verification score
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Figure 2.13: GMM-SVM for speaker verification.

of X(c) is given by

SGMM−SVM(X(c)) = α
(s)
0 K(X(c), X(s))−

∑

i∈SV from bkg

α
(s)
i K(X(c), X(bi))+d(s), (2.6.13)

where α
(s)
0 is the Lagrange multiplier corresponding to the target speaker, α

(s)
0 are

Lagrange multipliers corresponding to the background speakers, and X(bi) is the ut-

terance of the ith background speaker. The most popular kernel K(·, ·) in speaker

verification is the GMM-supervector kernel [70]:

K(X(c), X(s)) =
M
∑

j=1

(

√

λj

∑−
1

2

j
µ
(c)
j

)T (

√

λj

∑−
1

2

j
µ
(s)
j

)

, (2.6.14)
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where λj are the mixture weights,
∑

j are the covariances of the UBM, and µ
(c)
j and

µ
(s)
j are the jth mean vectors of the GMM for the speaker s and claimant c.

2.6.3 I-vector Analysis

The GMM-UBM and GMM-SVM techniques have shown reliable performance for

text-independent speaker recognition system [38, 71, 72]. Presently, the i-vector

technique, originating from joint factor analysis (JFA) [73], has improved perfor-

mance further and is quickly becoming a dominant approach. Similar to eigenvoices,

the means of the speaker independent system are stacked together to form a super-

vector m of dimension Nd, where N refers to the number of Gaussian densities in

the model and d is the feature vector dimension. Given an utterance i, the adapted

mean supervector M(i) is obtained by the following equation

M(i) = m+ Tw(i), (2.6.15)

where T is called the total variability matrix of size Nd × R estimated at training

time from a large set of utterance (containing the speaker and channel variability

simultaneously), and w(i) is the resulting i-vector of dimension R corresponding to

the utterance i in the subspace spanned by the columns of T [9]. Since R ≪ Nd,

the i-vector w(i) can be estimated from a single utterance, leading to an adapted

recognition model.

For each observation χ, the aim is to estimate the parameters of the posterior



39

probability of w

p(w | χ) = N(w,wχ, L
−1
χ ). (2.6.16)

The i-vector is the MAP point estimate of the variable w. It maps most of the

relevant information from a variable length observation χ to a fixed and low dimension

vector. The point estimate of the i-vector for a given observation data is given

w0 = L−1
0 T T

∑−1
F̄ , (2.6.17)

where the supervector F̄ is obtained by concatenating F̄c vectors (F̄ = [F̄1; . . . ; F̄C ]).

The covariance matrix w is given as L−1, which is computed as

L0 = I +
C
∑

c=1

NcT
T
c

∑−1
Tc. (2.6.18)

Parameters of the total variability matrix are estimated through EM algorithm.

In the expectation step, accumulators are calculated over all K training utterances

and for all C mixture components as

C̄ =
K
∑

k=1

F̄ kwT
k (2.6.19)

Āc =
K
∑

k=1

Nk
c (L

−1
k + wkw

T
k ). (2.6.20)

In the maximization step, new estimate of the total variability matrix is calculated

as

T̄c = CA
−1
. (2.6.21)
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2.7 Score Normalization

The determination of the likelihood ratio threshold involves two types of data: target

speaker and impostor speaker. For many applications, each target speaker’s data

is very limited and the impostor data is extensive. If a separate threshold for each

target speaker is configured, the performance and robustness of the threshold will

deteriorate. Therefore, it is desirable to have a global threshold for all target speakers,

which can be accomplished using a score normalization technique [13]. The aim of

score normalization is to transform scores from different speakers into a similar range

so that a common verification threshold can be chosen as shown in Figure 2.14. In

the left column of Figure 2.14(a), the score distributions of each target speaker’s

model to the target and impostor data still have bias. This will cause a difference

between the global threshold for all speakers and the true threshold for each individual

target speaker, and make the global threshold unacceptable. Therefore, the output

score needs to be normalized in order to transform the distribution of the output

scores to the similar range so that a global decision threshold can be used for all

speakers, as shown in the right column of Figure 2.14(b). Empirically, the score

distributions of the target and impostor speakers approximate Gaussian distributions.

Thus, straightforward score normalization method can be used to normalize the score

into a normal distribution with mean 0 and variance 1. After normalization, the



41

Figure 2.14: The bias of LLR score ranges for different speaker models.

global threshold can be easily determined.

Another reason for score normalization is to compensate for channel, environ-

mental, and intra-speaker variabilities. These variabilities are caused by different

environmental conditions, different microphones or headsets, different transmission

conditions, and varying phonetic content across utterances. These variabilities can

lead to mismatch between training and test, which can in turn cause score mismatch.



42

Hence, score normalization can also be used to minimize these variabilities at a score

level. Common normalization techniques include using a set of impostor models to

map score distributions, using methods such as zero normalization (Z-Norm) and test

normalization (T-Norm). These will be discussed in the following sections.

2.7.1 Z-Norm

The Z-Norm method normalizes the score distribution using target-specific statistics

SZNorm =
log(P (λ | O))− µi

σi

, (2.7.1)

where µi and σi are respectively the mean and standard deviation of the scores,

and log(P (λ | O)) is the target speaker model against a set of impostor utterances.

As seen in Figure 2.15, this approach compensates for inter-speaker variability, with

normalization parameters estimated from scoring a set of imposter utterances through

each speaker model.

The advantage of the Z-Norm method is that the normalization parameter calcula-

tion can be done offline, with the parameters calculated in the training stages. There

is almost no additional computation during recognition. However, differing back-

ground and channel conditions between training and testing utterances will reduce

the normalization performance.
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Figure 2.15: The Z-normalization technique.

2.7.2 T-Norm

T-Norm is a popular score normalization method in which the normalization param-

eters are estimated using scores derived at test time from a set of imposter speaker

models. As shown in Figure 2.16, a set of imposter speaker models are scored in

parallel with the target speaker model. The mean and standard deviation of the

imposter scores are used to adjust the target speaker score as

STNorm =
log(P (λ | O))− µi

σi

, (2.7.2)

µi =
1

n

n
∑

i

log ΛIi , (2.7.3)

σi =

√

√

√

√

1

n− 1

n
∑

i

(log ΛIi − µi). (2.7.4)
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Figure 2.16: The T-normalization technique.

Compared to Z-Norm, T-Norm only requires the test utterance without need of

additional imposter utterances, and thus avoids mismatched conditions between the

training and testing utterance. However, T-Norm is an online method in which each

test utterance is scored against a set of impostor models, increasing the calculation

time of parameters.
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CHAPTER 3

NOVEL SOURCE-BASED FEATURES FOR

SPEAKER RECOGNITION

3.1 Introduction

The purpose of feature extraction is to parameterize a speech waveform into a se-

quence of feature vectors that are effective for modeling and recognition. In general,

differences in speech characteristics among different speakers can be broadly cate-

gorized according to two main aspects, differences in vocal organs and differences

in pronunciation habits. Organic physiological differences are caused by variations

of sizes and shapes of the vocal tract components, including the larynx, pharynx,

tongue, teeth, and the oral and nasal cavities. These organic differences show up

in the frequency structure, reflecting both the characteristics of the spectral enve-

lope caused by the vocal tract shape as well as the vibration pattern of the vocal

fold. Beyond this, differences in learned pronunciation habits lead to variations in

acoustic-phonetic characteristics as well as unique dynamics of the vocal tract during

coarticulation and formant transition. To extract informative features of a speech

signal for speaker recognition, it is important to fully understand the mechanism of

speech production.
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Based on the above separation of speech production systems, features for speaker

recognition can be divided into two distinct types, vocal tract and vocal source

related features. The former represent the shape of the spectral envelope derived

from a spectral analysis of the speech waveform resonances. The latter capture the

time/frequency characteristics of the glottal pulse waveform of a speaker’s larynx.

This chapter focuses on the mechanisms of speech production and the corresponding

feature extraction approaches for extracting both vocal tract and vocal source related

features for speaker recognition, with the goal of identifying under-utilized informa-

tion in the vocal signal to create novel features for physiologically-driven speaker

identification.

3.2 Speech Production Model

Speech production mainly results from the activity of three functionally distinct sys-

tems: the subglottal lungs, the larynx, and the supra-laryngeal vocal tract. Based on

this, this process can be divided into three stages: respiration, phonation and articu-

lation. Respiration provides the primary source of air during speech. Phonation then

changes the steady airflow from the lungs into a quasi-periodic pulsating signal which

then moves into the vocal tract. Articulation modulates the signal from the larynx

into its temporal and spectral structure, generating different types of sounds. The

schematic representation of speech production is shown in Figure 3.1. This section
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Figure 3.1: Schematic representation of speech production.

will give an introduction to the three distinct phases of speech production [74, 75].

3.2.1 The Sub-glottal Respiratory System

The sub-glottal component produces an airstream which provides the generative

power of the speech production process. During inspiration, muscular force is used

filling the lungs. The lungs expand, causing the air to flow from the mouth to the

lungs with the glottis relatively open. During expiration, this energy will be spon-

taneously released, as the lungs contract, pushing the air from the lungs toward the

mouth.
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3.2.2 The Larynx

The larynx is used to convert an airstream into audible sounds. This refers to pro-

ducing acoustic energy which serves as an input to the vocal tract. The larynx, par-

ticularly the action of the vocal folds, determines the phonation types, whose major

types are voiceless, whisper and voiced. During whispering and voiceless phonation,

the vocal folds are apart from each other, and the airstream passes through the open

portion, the glottis. The difference between whispering and voiceless phonation is a

function of the degree of the glottal opening. In voiceless speech, the glottal area is

larger and the airstream is slightly turbulent when it enters the vocal tract. In whis-

pering, the glottal area is smaller. This will create a more turbulent noise airstream.

Voicing phonation is more complex than whispering and voiceless speech. The

adductor muscles are activated to produce sound, providing resistance to exhaled air

from lungs. Air then bursts through the closed vocal folds. The vocal folds move

outward and the glottis opens. As the air rushes through the vocal folds, the pressure

between the vocal folds drops, sucking them back together. This is known as the

Bernoulli Effect, as shown in Figure 3.2. This vibration is repeated hundreds or even

thousands of times per second, producing what we perceive as vocal pitch. This

periodically repeated opening and closing of the glottis is the response to subglottal

air pressure from the trachea. The rate of opening and closing of the vocal folds in

the larynx is called the fundamental frequency and abbreviated F0. An example of
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Figure 3.2: The Bernoulli effect.

the spectrum of such glottal air flow is shown at the leftmost column of Figure 3.3.

Note that there is energy at the fundamental frequency (F0=100 Hz and 200 Hz)

and at the harmonics of the fundamental, and that the amplitude of the harmonics

gradually decreases.

Fundamental frequency differs among males, females and children. This results

from anatomical differences. Females usually have a high F0 than males because

females have smaller vocal folds than males. Children have even smaller vocal folds.

F0 also contributes directly to the perception of pitch (the semi-musical rising and

falling of voice tones) in speech. It is noted that F0 is defined only for voiced phonation
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Figure 3.3: Acoustic output energy spectrum as a combination of laryngeal source
excitation coupled with vocal tract function.

and is undefined for all unvoiced phonation.

3.2.3 The Supralaryngeal Vocal Tract

The action of the vocal folds classifies speech as voiced or unvoiced, while the vocal

tract composed of the oral and the nasal cavities and airways transforms those sounds

into intelligible speech. The vocal tract can be viewed as a time-varying acoustic filter

that amplifies and filters the sound energy and shapes its frequency spectrum. Those

frequencies at which there is maximum energy and the air vibrates with maximum
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amplitude are called formants, and they are determined, in part, by the overall shape,

length and volume of the vocal tract. The detailed shape of the filter function is

determined by the whole vocal tract serving as an acoustically resonant system that

includes losses due to the radiation at the lips. An idealized filter function is shown in

the center of Figure 3.3. This idealized filter function has formant frequencies at 500,

1500 and 2500 each with a bandwidth of 100Hz. The rightmost column of the figure

shows the energy spectrum resulting from filtering the laryngeal source spectrum at

the leftmost figure with the filter function shown in the center of the figure.

3.2.4 The Linear Time-invariant Source-filter Model

As described above, the speech production system is usually modeled as two separate

and independent processes: the sound generation in the larynx (source) and the

acoustic filtering of the speech sounds in the vocal tract (filter). In summary, the

glottal source excitation is produced by the vibratory behavior of the vocal folds

and is modulated by the resonances of the vocal tract and radiated through the lips

and/or nostrils to form the speech signal. This process can be modeled by a source-

filter model as shown in Figure 3.4 [76, 77], in which a vocal tract model V (z) and a

radiation model R(z) are excited by a glottal excitation signal u(n).

Glottal excitation u(n) includes voiced and unvoiced excitation, according to the

action of the vocal folds. Unvoiced excitation is modeled as random Gaussian noise.
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Figure 3.4: Acoustic model for speech production.

Voiced excitation is regarded as an impulse sequence exciting a time-varying filter

G(z) to produce a glottal source waveform g(n). Generally, G(z) can be considered

as an all-pole model, e.g., a two-pole model,

G(z) =
1

[(1− g1z−1)(1− g2z−1)]
. (3.2.1)

The vocal tract, consisting of both the oral and nasal airways, can be represented

as a concatenation of N lossless tubes with constant cross-section areas and equal

length, as discussed in Section 2.5.4 [78]. In source-filter modeling, the vocal tract
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can be represented by an all-pole model with transfer function

V (z) =
1

1−
P
∑

i=1

ai · z−i

. (3.2.2)

The poles appear as conjugate pairs, with each pair generating a formant in the

speech spectrum. The lip radiation model, which models the coupling of the vocal

tract to the surrounding air volume, is approximated as a first order difference

R(z) = R0(1− z−1). (3.2.3)

Thus, the acoustic characteristics of speech are usually modeled as a sequence of

source, vocal tract filter, and radiation characteristics

S(z) = AVG(z)V (z)R(z). (3.2.4)

For different speakers, the excitation source and vocal tract vary significantly. The

physical size and shape of a speaker’s larynx, vocal folds and vocal tract determine the

range of the sounds that can be produced by the speaker. Since each speaker has their

own vocal characteristics and most of them remain essentially unchanged, features

based on vocal source characteristics are highly informative for speaker recognition.

3.2.5 Nonlinear Speech Production Models

The linear source-filter model introduced in the previous section assumes that the

airflow propagates in the vocal tract as a plane wave. This pulsatile flow is considered
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Figure 3.5: Nonlinear model of sound propagation along the vocal tract.

the source excitation of speech production [79]. However, studies by Teager [80] show

that the air flow is actually separate and that concomitant vortices are distributed

throughout the vocal tract, as depicted in Figure 3.5 [81]. Teager suggested that

the actual source of speech production is nonlinear vortex-flow interactions. This

observation is also supported by the theory of fluid mechanics [82].

Based on this, human speech production can also be modeled nonlinearly. To
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characterize speech production in this way, the airflow pattern in the vocal tract is

modeled decomposing the speech production model’s characteristics for both vocal

fold movement and vocal tract structure. In nonlinear modeling, the resulting airflow

properties serve to excite those models which a listener will perceive as a specific

speaker’s voice [80, 81]. Although the airflow pattern shown in Figure 3.5 is closer

to the real speech production process, there has been no single mathematical model

to quantify this nonlinear speech production process, because complete solutions of

airflow require accurate boundary conditions versus time. Teager [80] developed an

energy tracking operator called the Teager Energy Operator (TEO) to reflect the

instantaneous energy of the nonlinear vortex-flow interaction. Kaiser [83] introduced

a simple and elegant form of this TEO as

Ψc[x(t)] =

(

d

dt
x(t)

)2

− x(t)

(

d2

dt2
x(t)

)

= [ẋ(t)]2 − x(t)ẍ(t), (3.2.5)

where Ψ is the Teager energy operator, and x(t) is a continuous speech signal.

The operator in the discrete-time form is

Ψ[x(n)] = x2(n)− x(n+ 1)x(n− 1), (3.2.6)

where x(n) is the sampled speech signal.

This TEO is typically applied to a band-pass filtered speech signal since its purpose

is to reflect the energy of this nonlinear energy flow within the vocal tract for a single

resonant frequency. Thus, the corresponding TEO profile can be used to decompose
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a speech signal into its amplitude modulation (AM) and frequency modulation (FM)

components within a certain frequency band by

f(n) ≈
1

2πT
arccos

(

1−
Ψ[y(n)] + Ψ[y(n+ 1)]

4Ψ[x(n)]

)

, (3.2.7)

| a(n) |≈

√

√

√

√

√

Ψ[x(n)]
[

1−
(

1− Ψ[y(n)]+Ψ[y(n+1)]
4Ψ[x(n)]

)2
] , (3.2.8)

where y(n) = x(n) − x(n − 1) is the time domain difference signal, Ψ[·] is the TEO

operator as shown in (3.2.6), f(n) is the FM component at sample n, and a(n) is the

AM component at sample n.

An alternative nonlinear speech signal model has been proposed by Maragos [84]

as

s(t) =
M
∑

m=1

rm(t), (3.2.9)

where

rm(t) = am(t) cos

(

2π

(

fcmt+

∫ t

0

qm(τ)dτ

)

+ θ

)

(3.2.10)

is a combined AM and FM structure representing a speech resonance at the mth

formant with a center frequency Fm = fcm. In the above equation (3.2.10), am(t) is

the time-varying amplitude and qm(τ) is the frequency modulation signal at the mth

formant.
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3.3 Vocal Source Measures

3.3.1 LP Residual

Using the Linear Predictive Coding analysis discussed in Section 2.5.3, the linear

prediction (LP) residual is defined as the prediction error e(n) obtained from the

difference between the predicted speech sample ŝ(n) and the current sample s(n)

[61]. This is given by

e(n) = s(n)− ŝ(n) = s(n) +

p
∑

k=1

a(k)s(n− k). (3.3.1)

In the frequency domain, equation (3.3.1) can be represented as,

E(z) = S(z) +

p
∑

k=1

(akS(z))z
−k. (3.3.2)

By this we obtain

A(z) =
E(z)

S(z)
= 1 +

p
∑

k=1

(ak)z
−k. (3.3.3)

Hence, we can obtain the LP residual signal by filtering the speech signal with

A(z) as indicated in Figure 3.6.

After LP analysis has estimated the vocal tract information from the speech signal,

inverse filtering leaves a whitened LP residual signal that possesses abundant informa-

tion about the excitation source of the speaker, including speaker-unique characteris-

tic information in both the time and frequency domains. Some useful features, such
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Figure 3.6: Computing the LP residual by inverse filtering.

as pitch, residual energy and residual cepstrum, have been previously investigated for

speaker recognition [85–88]. Features related to excitation signals have contributed

relatively good performance. However, these features are mostly based on power spec-

tra of the excitation, where phase information of the residual signal has been removed.

It has been shown that the phase spectrum can also contribute significantly to speech

perception and speech recognition, perhaps even as much as the magnitude spectrum

[89, 90]. Here, the question of whether phase spectrum of residual signal provides any

useful information for speaker recognition will be investigated, as discussed in detail

in Section 3.4.

3.3.2 Fundamental Frequency

Fundamental frequency (F0) represents the rate of vibration of the vocal folds in the

larynx during the production of speech. Average fundamental frequency contains

significant speaker specific information, and several studies have demonstrated that

fundamental frequency relates directly to anatomical differences [91].



59

Fundamental frequency can be described by the following equation [92, 93]

F0 =
1

2Lm

√

σc

ρ
, (3.3.4)

where Lm is the length of the vocal cords, σc is the longitudinal tension of the cords

divided by the cross sectional area of the vibrating tissue and ρ is the density of

vocal cord. The relationship between F0 and the length of the vocal folds is inversely

proportional. A speaker with a long vocal fold corresponds to a low F0, while a

speaker with a short vocal fold has a high F0.

There are several approaches to estimating the fundamental frequency, for example

[94], one analysis method involves determination of the average length of several

successive periods. This approach is implicitly implemented by algorithms that use

short-term analysis, such as auto-correlations. Another reliable approach is to use

the cepstrum, a Fourier analysis of the logarithmic amplitude spectrum of the signal

and turning the spectrum inside-out. An estimate of the fundamental frequency is

obtained by searching for a peak from the cepstrum.

3.3.3 Jitter

Jitter is the relative evaluation of the period-to-period variability of the pitch within

a frame [95]. The terminology was given by Lieberman [96] when he displayed speech

waveforms on an oscilloscope and showed that no two periods were exactly alike. The

fundamental frequency appeared “jittery” because of this period variation.
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Figure 3.7: Jitter measurement.

The jitter in a frame is defined as

Jitti =

∣

∣

∣
T

(i)
0 − T

(i+1)
0

∣

∣

∣

1
N

N
∑

i=1

T
(i)
0

, (3.3.5)

where T
(i)
0 , i = 1, 2, . . . , N is the extracted pitch period of the ith frame and N is the

total number of voiced frames in the utterance, as shown in Figure 3.7.

3.3.4 Shimmer

Shimmer is the relative evaluation of the period-to-period variability of the peak-to-

peak amplitude [97]. It is defined as the short term variation in the amplitude of

the vocal-fold vibration due to perturbation in the amplitude of the glottal pressure

waveform. Shimmer reflects the transient change of the utterance’s energy.

The shimmer of each frame is calculated by

Shimi =

∣

∣A(i) − A(i+1)
∣

∣

1
N

N
∑

i=1

A(i)

, (3.3.6)
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Figure 3.8: Shimmer measurement.

where A(i), i = 1, 2, . . . , N is the extracted peak-to-peak amplitude and N is the total

number of voiced frames in the utterance, as shown in Figure 3.8.

3.3.5 Epoch Location

The epoch location of the source waveform is the instant of glottal closure of the

vocal tract system during speech production. Although the excitation source for

voiced speech is a sequence of glottal pulses, the most significant excitation takes place

around the instant of glottal closure, defined as the epoch. The accurate estimation of

the epoch locations within a glottal pulse is useful for many speech analysis situations.

For instance, the measurement of epoch locations is beneficial to accurately estimating

the fundamental frequency. After the glottal closure, the glottal airflow becomes zero.

As a result, the supralaryngeal vocal tract system can be acoustically decoupled from

the trachea [98]. Thus, the speech signal within the closed region represents the free

resonances of the vocal tract system. The characteristics of the vocal source can
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also be determined by an analysis of the speech signal within a glottal pulse using

the epochs. In [99], the excitation features extracted from the regions around the

epoch locations provide complementary speaker-specific characteristics to the spectral

features.

These glottal closure instants throughout the glottal cycles play important roles

in a speaker’s ability to vary source characteristics [100]. The calculation of epoch

locations relies on the residual signal derived by performing linear prediction analysis

of the speech signal. The energy of the residual signal is computed in small frames

(∼ 1 − 2ms), and the point with maximum energy is hypothesized as the instant of

significant excitation [34].

3.3.6 Glottal Flow

Glottal flow is the airflow arising from the trachea and passing through the vocal

folds. The air flow through vibrating vocal folds serves as the excitation of the speech

production mechanism. Glottal flow characteristics are highly speaker specific. The

principal features of the glottal flow can be described by a number of parameters

given in Figure 3.9. The parameters describing the glottal volume velocity waveform

are T0 (duration of the pitch period), t1 (beginning of the airflow), t2 (instant of the

maximum glottal flow amplitude), t3 (moment of the glottal closure and maximum

change of glottal flow) and t4 (instant of complete glottal closure) [101]. As shown in
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Figure 3.9: Schematic description of a glottal flow Ug and its derivative.

Figure 3.9, the glottal flow increases from t1 to t2, and decreases from t2 to t4 because

of the opening and closing motions of the vocal folds.

Two important representations of the glottal flow are the open quotient (OQ) and

the speed quotient (SQ), which are defined as

OQ =
t4 − t1
T0

, (3.3.7)

SQ =
t2 − t1
t4 − t2

, (3.3.8)

where OQ is the ratio between the amount of time the vocal folds are open and the

entire pitch period duration, and SQ is the ratio of rise and fall time of the glottal
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flow. The open quotient represents the duty ratio of the glottal airflow. This is highly

correlated to physiological constraints because a change of the duty ratio substantially

changes the spectrum of an excitation. The speed quotient indicates the asymmetry

characteristics of the glottal pulse. Based on the research of Rothenberg [102], the

glottal flow is skewed to the right, that is, the decrease of the airflow is faster than its

increase. Therefore, the glottal flow plays an important role in the analysis of speech

and is different for every individual phonation type.

3.3.7 Envelope and Fine Structure

The time waveform of signals can be mathematically described as a slowly vary-

ing envelop (modulation) with rapidly varying fine-time structure (Carrier) [103], as

shown in Figure 3.10. Envelope, reflecting changing amplitude of a signal, traces the

crests and troughs of a periodic signal. Fine structure reflects spectral components

of sounds in the sound waveform and periodicity. From this perspective, all waves

can be considered as being generated by multiplying an envelope function against a

carrier signal. The calculation of a signal envelope and fine structure can be derived

by the Hilbert transform as described in Section 3.4.2.1. In this work, the envelope

and fine structure is used to measure the vocal source characteristics.
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Figure 3.10: The envelope and fine structure of a signal.

3.4 Unused Information Residing in the Vocal Tract

and Vocal source

The articulators are the parts of the vocal tract which are actively controlled to

generate different types of sounds, including primarily the tongue, teeth and lips.

Features extracted from the vocal tract carry important characteristic information for

speech recognition. Different speakers have their own styles of vocal tract articulation,

which generate unique variations in the speech spectrum. The habit of articulation is

uniquely associated with individual speakers, and features derived from the spectrum

of speech have thus proven to be effective in speaker recognition.
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The vocal source contains much of the unique physiological properties of a speaker’s

speech production. The vocal source signal represents the musculature and tension

of the vocal folds, and the associated glottal pulse parameters, including the rate of

the closing phase and the degree of the opening. The vibratory pattern of the vocal

folds not only produces a voicing source for speech production, but also characterizes

unique personal patterns for each speaker. The quasi-periodic motion of relevant vo-

cal organs brings periodicity to the excitation signal, while the pulse-like epoch shapes

vary among speakers as well. These characteristics are unique to a given speakers

speech production system. Hence, features derived from the vocal source can also

provide significant information for speaker recognition.

Feature extraction methods for capturing the vocal tract characteristics of speakers

have been investigated for many years. These features for speech recognition can ac-

curately characterize the vocal tract configuration of a speaker, and can achieve good

performance in current speech and speaker recognition system. However, the useful-

ness of vocal source excitation related features is still significantly under-investigated.

Thus a detailed exploration to create the speaker-specific information present in the

vocal source excitation is necessary, which is the motivation for this research.

The above sections have introduced the mechanisms of linear and non-linear speech

production models and the unique information residing in vocal tract and source. In

the following sections, novel proposed features related to both vocal tract and vocal
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source are introduced with the goal of utilizing this unique information.

3.4.1 Proposed Vocal Tract Features

3.4.1.1 Spectral Shimmer

The definition of shimmer in Section 3.3.4 can be modified to calculate the shimmer

of spectral features. Spectral shimmer features represent the short term variation in

the amplitude of spectral features.

LAR shimmer measures fluctuations of the peak-to-peak value of the log area ratio

within each frame, given by

ShimLARi =

∣

∣LAR(i) − LAR(i+1)
∣

∣

1
N

N
∑

i=1

LAR(i)

, (3.4.1)

where LAR(i) is the log area ratio in the ith frame.

Similarly, LPC shimmer measure fluctuations of the peak-to-peak value of linear

prediction coefficients within each frame, given by

ShimLPCi =

∣

∣LPC(i) − LPC(i+1)
∣

∣

1
N

N
∑

i=1

LPC(i)

, (3.4.2)

where LPC(i) is the linear prediction coefficients in ith frame.

Cepstral shimmer measures fluctuations of the peak-to-peak value of mel-frequency
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cepstral coefficients (MFCC) within each frame, given by

ShimCEPi =

∣

∣CEP (i) − CEP (i+1)
∣

∣

1
N

N
∑

i=1

CEP (i)

, (3.4.3)

where CEP (i) is the mel-frequency cepstral coefficients in ith frame.

3.4.1.2 Average Harmonic Amplitude Difference

It is known that the amplitude difference of the first two harmonics (HA1-HA2)

is related to the glottal open quotient [104]. Research by Chen [105] showed that

the measurement of HA1-HA2 contains discriminative information for gender classi-

fication. This definition is extended here as a new feature, the Average Harmonic

Amplitude Difference (AHAD), defined as the following function of the amplitudes of

the harmonics of the fundamental frequency of a given frame

AHAD =

N
∑

i=1

|HAi −HAi+1|

N − 1
, (3.4.4)

where HAi, i = 1, 2, . . . , 6, are the first six harmonic amplitude values of the funda-

mental. Figure 3.11 illustrates the definition of the harmonic amplitude difference.

Another new feature related to the glottal open quotient is the Harmonic Am-

plitude Shimmer (ShimHA), defined as the fluctuations of the peak-to-peak value of

harmonic amplitude within each frame

ShimHAi =

∣

∣HA(i) −HA(i+1)
∣

∣

1
N

N
∑

i=1

HA(i)

, (3.4.5)
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Figure 3.11: Harmonic amplitude difference.

3.4.2 Proposed Vocal Source Features

Many feature extraction methods have been developed to represent the vocal tract

configurations of a speaker including those discussed in Chapter 2 and Section 3.4.1.

However, features related to excitation patterns are rarely used in automatic speech

or speaker recognition. In particular, the usefulness of excitation-based features for

automatic speaker recognition has not been thoroughly studied. Here, several novel

features based on this idea will be introduced.

3.4.2.1 Residual Phase Cepstrum Coefficients (RPCC)

The dominant features for speech and speaker recognition are extracted from the

magnitude spectrum of the speech signal, which represents vocal tract characteris-

tics. However, the human ear is not “phase-deaf”. Many phase changes are clearly
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audible. The importance of phase information in human speech recognition has been

well-established. Research in [106] investigated the role of phase information for hu-

man perception of intervocalic plosives. The authors concluded that the short-time

amplitude spectra cannot exclusively specify a stop consonant. Moreover, their results

indicate that the perception of voicing in stops relies strongly on phase information.

It is shown in [90] that the phase spectrum can contribute as much as the magnitude

spectrum to speech intelligibility if the shape of the window function is properly se-

lected. In [107], the authors analyze the effects of uncertainty in the phase of the

speech signals on the word recognition error rate of human listeners. Their results in-

dicate that a large amount of phase uncertainty has a significant effect on the human

speech recognition rate. Therefore, the phase is very important in automatic speech

and speaker recognition.

The LP residual, directly related to vocal source excitation, contributes little to

linguistic distinguishing of phonemes. However, the source excitation signal carries

abundant speaker discriminative characteristics. Unfortunately, it is difficult to thor-

oughly exploit the useful information from the amplitude spectrum of LP residual

for speaker recognition, as illustrated in Figure 3.12, because the LP residual signal

has a flat magnitude spectrum and only the pitch harmonics can be observed. This

also suggests that significant information from LP residual is contained in its phase

spectrum.
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Figure 3.12: Amplitude spectrum of the LP residual.

The definition of residual phase is the cosine of the phase function of the analytic

signal [108]. The analytic signal is derived from the LP residual of a speech signal.

In this dissertation, the residual phase coefficients are modified by using a discrete

cosine transformation to de-correlate the feature vectors, since the HMM recognition

system usually assumes independence between the feature vector components. The

calculation of RP is

r(n) = s(n)− ŝ(n) = s(n) +

p
∑

k=1

aks(n− k), (3.4.6)

where p is the order of prediction and ak are the linear prediction coefficients obtained

from LPC analysis.
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Figure 3.13: Calculation of analytical signal from a real signal.

The analytical signal ra(n) is given by

ra(n) = r(n) + jrh(n), (3.4.7)

where rh(n) is the Hilbert transform of r(n) and is given by

rh(n) =















IDFT [−jR(ω)], 0 < ω < π

−IDFT [−jR(ω)], −π < ω < 0

0, ω = 0, π

(3.4.8)

where R(ω) is the discrete Fourier transform of r(n) and IDFT denotes the inverse

discrete Fourier transform. The generation of an analytical signal from a real signal

is shown in Figure 3.13.

The cosine of the phase information is calculated by the following equation:

ResidualPhase =
Re(ra(n))

|ra(n)|
(3.4.9)

The above calculation of residual phase can be explained as the calculation of

the fine structure of the LP residual signal, as shown in Figure 3.14. The residual

signal is transformed into an envelope (right upper panel) and temporal fine structure
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Figure 3.14: The Hilbert transform.

(right lower panel). The original residual signal can be reconstructed by multiplying

the envelope with the fine structure. The envelope effectively codes speech. The fine

structure contains temporal pitch and timbre information and is the primary source

of interaural timing information (differential arrival time of a sound between the two

ears). From this point of view, the residual phase provides useful information about

the fine structure of the LP residual for speaker recognition.

The rest of the processing is similar to the calculation of the cepstrum of residual

phase. The final DCT step is to de-correlate the feature vectors,

RP = DCT (cos(θn)). (3.4.10)

The feature extraction process of residual phase cepstrum coefficients (RPCC) is
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Figure 3.15: Calculation of residual phase cepstrum coefficients.

shown in Figure 3.15. The residual phase was introduced in [108] and directly imple-

mented as a complementary feature to MFCCs in a speaker recognition system. Here,

a mel-spaced cepstral analysis is first implemented on the residual phase. The mag-

nitude spectrum of the residual phase is computed and warped to the Mel frequency

scale, followed by the usual log and DCT to obtain RPCC. Compared to residual

phase, this novel feature represents the spectral shape of residual phase more com-

pactly and provides significant information about a speaker with fewer parameters.

3.4.2.2 Teager Phase Cepstrum Coefficients (TPCC)

Most features for speaker recognition are derived from a linear source-filter speech

production model, assuming that the airflow propagates in the vocal tract as a plane

wave. According to research by Teager as discussed in Section 3.2.5 [80], however, the

air flow actually consists of separate and simultaneous vortices distributed through-

out the vocal tract. The Teager energy operator (TEO) provides an advantage over
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Fourier analysis methods in capturing the characteristics of nonlinear systems, be-

cause it measures the energy in the system that generated the signal rather than the

energy of the signal itself. The underlying concept of TEO is that while the vocal

tract articulators do move to configure the vocal tract shape, the resulting airflow

properties serve to excite those models, which a listener will perceive as a particular

phoneme. Hearing can then be viewed as the process of detecting the energy. In this

nonlinear approach, the energy required by a speech production system to generate a

signal at high frequencies is expected to be much higher than the energy required by

the system to generate a signal at low frequency. This energy is potentially related

to the pitch information of different speakers.

The relevant amplitude-frequency modulation patterns in speech resonances are

investigated by the research of Teager [80]. Work by Maragos [84] also introduces

this method as an appropriate tool for speech analysis. TEO is applicable to analyze

and estimate the characteristics of the existing amplitude and frequency modulation

patterns in a vocal excitation signal. This is intuitively a favorable approach for

investigation of the vibration characteristics yielded by the vocal folds for potential

speaker-specific features.

The Teager energy operator (TEO), described in Section 3.2.5, was introduced by

Teager and extended by Kaiser [83]. It measures the energy required to generate a

signal in the human speech production system. In this dissertation, features derived
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Figure 3.16: Calculation of Teager phase cepstrum coefficients.

from the TEO are proposed to reflect properties of the speech production process that

are not covered by features derived from the linear model of speech production. Figure

3.16 shows a block diagram of the proposed Teager Phase Cepstrum Coefficients

(TPCC). In this feature extraction method, the excitation energy to generate the

speech signal is calculated through the Teager energy operator. Then the fine energy

structure is obtained by a Hilbert transformation, and the cepstrum of the fine energy

structure is computed and warped to the Mel frequency scale followed by the usual

log and DCT, to obtain TPCC.

3.4.2.3 Glottal Flow Cepstrum Coefficients (GLFCC)

As introduced in Section 3.3.6, phonation type strongly influences the properties

of a generated sound, with a unique glottal flow characteristic for every individual

phonation type [79]. Videos of vocal fold vibration [109] show large variations in the

movement of the vocal folds from one speaker to another. For some individuals the

vocal folds never close completely (soft voice) and in other cases vocal folds close
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completely and rapidly (hard voice). The manner and speed of vocal fold closing

during voicing is also speaker dependent. The closure of vocal folds for some individ-

uals shows a zipper-like pattern, while others close along the length of the vocal folds

about the same time. The spectral content of the glottal source is determined by the

speed of glottal closure, since a fast glottal closure acts like an impulse and generates

a source with a wide bandwidth. A slow glottal closure will cause less energy to be

present at higher harmonics compared to the fundamental.

Additionally, the configuration of the area of the opening shows differences for

different individuals [101, 110]. The glottal opening for some individuals is approxi-

mately equal in width along the length of the glottis, such as pressed phonation. This

leads to both ends of the vocal folds being held close together, creating an opening

shaped like a football. For some individuals, a more triangle shaped opening will

occur, according to their own anatomical vocal fold structure.

The duration of vocal fold opening and closing, the glottal closing instants (GCIs)

and glottal opening instants (GOIs), and the shape of the glottal flow vary signifi-

cantly across speakers. These variations correspond to the variations in the glottis,

and then are reflected in the glottal flow. Therefore, the glottal flow contains speaker

distinctive information and features derived from glottal flow are expected to be useful

for speaker recognition.

The accurate estimation for the glottal flow has been a target of speech research
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Figure 3.17: Structure of the IAIF algorithm for computing glottal flow.

for several decades, and many different methods have been developed. Among these

methods, Pitch Synchronous Iterative Adaptive Inverse Filtering (PSIAIF) [111] has

been shown to be an efficient method in the estimation of the glottal flow. A flow

diagram of PSIAIF method is shown in Figure 3.17.

The block diagram of the IAIF algorithm is displayed in Figure 3.17, detailed as

follows:
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1. High-pass filtering of the speech signal s(n) removes the low frequency fluctua-

tions captured by the microphone.

2. LPC analysis of order 1 models the gross effect of the glottal source by G1(z).

3. The estimated glottal effect is eliminated by filtering shp(n) through G1(z).

4. The first estimate of the vocal tract is computed by applying LPC analysis of

order p1 (8 ∼ 14).

5. The effect of the vocal tract is eliminated from the signal shp(n) by inverse

filtering.

6. The lip radiation effect is removed by integration in order to obtain the first

estimate of the glottal excitation g1(n).

7. LPC analysis of order p2 (2 ∼ 4) models the glottal source by G2(z).

8. Filtering of the speech signal by the inverse of G2(z) leads to a signal containing

the effect of the vocal tract.

9. The final model of the vocal tract is obtained by applying LPC analysis of order

p1 (8 ∼ 14).

10. The effect of the vocal tract is eliminated from speech by filtering shp(n) through

V2(z).
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Figure 3.18: A diagram of glottal inverse filtering.

11. The final glottal waveform estimate g2(n) is obtained by cancelling the lip ra-

diation effect by integration.

The Iterative Adaptive Inverse Filtering (IAIF) algorithm is used to estimate the

glottal waveform of speech signal by filtering the original speech signal using an inverse

model of the vocal tract filter, modeled as an all-pole system [111]. An example of

glottal inverse filtering is shown in Figure 3.18. The upper figure is a speech signal,

the middle is the LP residual and the lower is the IAIF output.

The GLFCC feature introduced here performs mel-spaced cepstral analysis on

glottal flow as shown in Figure 3.19. The IAIF method helps in separating the
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Figure 3.19: Computation of glottal flow cepstrum coefficients.

source and filtering related information. The magnitude spectrum of the glottal flow,

similar to the process of RPCC feature extraction, is computed and warped to the

Mel frequency scale followed by the usual log and DCT to obtain the GLFCC.
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CHAPTER 4

SPEAKER RECOGNITION EXPERIMENTS

We have described in Chapter 3 the details of several feature extraction methods

for speaker recognition. We also argued that features captured from the LPC resid-

ual and excitation waveform can be expected to be useful features, capturing unique

characteristics of a speaker. In this chapter, speaker identification systems are devel-

oped to evaluate the effectiveness of the proposed features. Section 4.1 describes a

cross-phoneme experiment paradigm designed to test for features that identify phys-

iological rather than phonetic characteristics of speakers. Section 4.2 describes the

experimental results of a cross-language speaker identification using those same novel

feature sets. Section 4.3 describes the experimental results of a cross song-type avian

individual identification experiment, again using these novel feature sets. Section 4.4

assesses the effectiveness of proposed feature set in mono-language environment.

4.1 Preliminary Cross-phoneme Speaker Identifi-

cation Experiments

This preliminary experiment describes a unique cross-phoneme speaker identification

experiment, using deliberately mismatched phoneme sets for training and testing. The
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purpose is to identify features that represent broad individually unique characteris-

tics rather than those that represent phonetic differences. The proposed features for

this experiment include log area ratio (LAR), fundamental frequency, jitter, shimmer,

shimmer of the LAR (ShimLAR), shimmer of the LPC coefficients (ShimLPC), har-

monic amplitude difference (HAD), average harmonic amplitude difference (AHAD),

RPCC, TPCC, GLFCC and some statistical feature calculations. Of these, RPCC,

TPCC, GLFCC, HAD, AHAD, ShimLAR, and ShimLPC have not been previously

investigated for speaker identification. The baseline features used for comparison are

MFCCs.

4.1.1 Data Corpus

The TIMIT corpus contains recording of phonetically-balanced prompted English

speech [112]. It was recorded using a close-talking microphone at a 16 kHz sampling

rate with 16 bit resolution. This corpus contains a total of 6300 sentences, consist-

ing of 10 phonetically-rich sentences spoken by each of 630 speakers representing 8

major divisions of American English. All sentences were manually partitioned into

the phoneme level. This speech corpus has been a standard database for speech

community for several decades and is still widely used for both speech and speaker

recognition experiments.

In order to support the goal of evaluating phonetically-independent features for
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speaker identification, a cross-phonetic experimental paradigm has been designed.

The data used in this experiment was extracted from the TIMIT database. In this

experiment, using the well-known vowel triangle in the F1/F2 feature space, vowel

sets with minimal spectral similarity were selected for training and testing sets. The

phoneme set is divided primarily on the basis of the overall vowel height (i.e. primarily

correlated with formant F1). For training low vowels {/ae/, /aa/, /ah/, /eh/, /ao/}

are used, while the phoneme set for testing includes the high vowels {/iy/, /ih/, /er/,

/ow/, /uh/, /uw/}. A subset of 25 speakers within the same dialect region from the

TIMIT corpus is used for evaluation, leading to an overall data set consisting of 1621

phoneme utterances. Phonemes with fewer than 700 samples are discarded in order

to ensure accuracy of fundamental frequency related and statistical features.

4.1.2 Experimental Setup

In this speaker identification system under investigation, each speaker enrolled in the

system is represented by 128 Gaussian mixture components in the training phase,

as discussed in Section 2.6.1.1. In the testing phase, the log-likelihood scores of the

incoming sequence of feature vectors are computed from each speaker model by

L(X,GS) =
M
∑

t=1

P (~xt|GS), (4.1.1)

where X = {~x1, ~x2, · · · , ~xM} is the sequence of speaker feature vectors, and M is the

total number of feature vectors. The GMM generating the highest L(X,GS) score is
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selected as the most likely target speaker. The programming toolkit HTK 3.4.1 from

Cambridge University is used for all training and testing implementations [113].

4.1.3 Experimental Results

Each individual feature was evaluated for identification accuracy, in comparison to

a baseline using a 22-dimensional MFCC feature vector. Various combinations of

feature sets were then implemented to assess the impact of using these features in

combination.

The results of each individual feature are shown in Table 4.1, while the results of

different feature combinations are shown in Table 4.2. Individually, the best overall

feature is the LAR feature at 39.5% accuracy, followed by GLFCC at 26.9%, which

is also the highest non-spectral feature.

The highest total accuracy of 56.1% is obtained by a combination of all the pro-

posed features, with a feature dimension of 63. This compares to a 26.0% accuracy

obtained using the baseline MFCC features, with an absolute accuracy increase of

28.1%. In all combinations, there is improvement in accuracy as a result of adding

TPCC, RPCC and GLFCC.
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Table 4.1: Classification accuracy on cross-phoneme experiment.

Feature Category Individual Feature(Dimension) Accuracy(%)

Vocal Tract Features

ShimLAR(1) 6.0

ShimLPC(1) 6.3

AHAD(1) 9.0

HAD(6) 17.2

MFCC(baseline)(22) 26.0

LAR(22) 39.5

Vocal Source Features

Shimmer(1) 8.9

TPCC(22) 11.5

Jitter(1) 14.6

F0(1) 16.6

RPCC(22) 22.4

GLFCC(22) 26.9
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Table 4.2: Classification results for different feature combinations.

Combined Feature(Dimension) Accuracy(%)

Jitter + Shimmer + F0 + ShimLPC & ShimLAR
29.3

+ AHAD + HAD + Statistic Features(19)

Jitter + Shimmer + F0 + ShimLPC & ShimLAR
48.5

+ AHAD + HAD + Statistic Features + LAR(41)

Jitter + Shimmer + F0 + ShimLPC & ShimLAR
49.1

+ AHAD + HAD + Statistic Features + LAR + TPCC(63)

Jitter + Shimmer + F0 + ShimLPC & ShimLAR
55.0

+ AHAD + HAD + Statistic Features + LAR + GLFCC(63)

Jitter + Shimmer + F0 + ShimLPC & ShimLAR
56.1

+ AHAD + HAD + Statistic Features + LAR + RPCC(63)

Jitter + Shimmer + F0 + ShimLPC & ShimLAR

54.1+ AHAD + HAD + Statistic Features + LAR +

+ RPCC + GLFCC + TPCC(107)

Jitter + Shimmer + F0 + ShimLPC & ShimLAR

46.9+ AHAD + HAD + Statistic Features + LAR

+ RPCC + TPCC + GLFCC + MFCC(129)
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4.1.4 Experimental Summary

It is interesting to observe that, despite the fact that training and testing sets were

deliberately chosen to minimize phonetic similarity, the basic spectral measures of

MFCCs and LARs still outperform excitation measures. One key observation is

that LARs seem to be a substantially better spectral feature for the purposes of

phonetically-independent speaker identification, and that the excitation-related mea-

sures are at least able to contribute to an overall increase in accuracy when combined

with LAR and the proposed feature set. Of the excitation-related measures, TPCC,

RPCC and GLFCC clearly have the strongest individual component because of their

complimentary characteristics to other features. These features are selected based on

their strong performance for further investigation.

4.2 Cross-language Speaker Identification Experi-

ments

A great many speaker recognition tasks, such as forensic, military and intelligence

applications, involve speech material from more than one language. It is difficult

to reliably identify speakers if the training and testing utterances represent different

language conditions [114]. This scenario deteriorates the performance of speaker

recognition system unless properly compensated, since the current feature vectors are
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composed of acoustic parameters that are derived from the resonance characteristics

of vocal tract cavities. These traditional acoustic feature vectors mainly represent the

characteristics of phonetic context. This causes significant concern because the cross-

language speaker identification task has a phonetic mismatch between the training

and testing data.

In order to address the degradation of speaker identification performance under

a mismatched language scenario, one potential compensation approach is to focus

on speaker-discriminative features such as vocal source features, in conjunction with

traditional acoustic type features such as those introduced in Chapter 3, to rapidly

capture the vocal source characteristics of the speaker. Hence, the goal of this cross-

language experimental configuration is to evaluate the effectiveness of our proposed

vocal source features for this purpose.

4.2.1 Data Corpus

The NIST SRE 2004 corpus considered some of the factors affecting performance of

text-independent speaker recognition system when designing its speech corpus col-

lection [115]. This allows investigation of the effects of language, transmission type,

and handset type on the recognition performance. The evaluation was designed for

all trials to involve the use of different handsets in the training and test segment

data. The training and testing segments in this corpus are continuous conversational



90

excerpts, with no prior removal of silence intervals.

For the cross-language speaker identification experiment, bilingual speaker data

were extracted from 2004 NIST SRE corpus. Since 2004, a special effort has been

made to recruit bilingual speakers who can speak Arabic, Mandarin, Russian or Span-

ish in addition to English. Hence a considerable percentage of the calls from the

bilingual speakers are in a language other than English. This corpus was originally

collected to evaluate the effect of language, particularly differences between training

and testing language, on speaker recognition systems, although the main task of the

2004 NIST SRE corpus involves speaker verification. In this work, the data of twenty-

four bilingual speakers were extracted from this corpus and used as the basis for a

cross-language speaker identification experimental framework, in order to evaluate

the effectiveness of the discriminatively vocal source features proposed here.

4.2.2 Experimental Setup

The classification framework in this dissertation is based on a Gaussian Mixture Model

and Universal Background Model (GMM-UBM) approach [40], commonly used in

the speech processing community to perform speech and speaker recognition. This

approach has advantages in its flexibility and robustness to duration and temporal
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Figure 4.1: Block diagram of the GMM-UBM SlD system.

alignment differences between training and testing examples. The UBM is a speaker-

independent GMM trained with speech samples from a large set of speakers to repre-

sent general speech characteristics. The hypothesized speaker model is derived from

the UBM using Maximum A Posteriori (MAP) adaptation with the corresponding

speech samples from a particular enrolled speaker. The strategy of adapting the tar-

get speaker model is based on the similarity between the enrollment data of target

speaker and UBM, adjusting the UBM to the speaker training data. During adapta-

tion, the distributions of the UBM which are far from the feature of target speaker

remain almost unchanged. The block diagram of a speaker identification system based

on GMM-UBM is showed as Figure 4.1.
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In this experiment, a UBM is trained using data from all twenty-four non-English

speakers in the NIST corpus, representing 8 Arabic speakers, 7 Mandarin speakers,

6 Russian speakers, and 3 Spanish speakers. The total number of samples for initial

training is 262, with an additional 260 samples from the target speakers used for

identification. There is an average of 8 speech samples per speaker, with an average

length of about two minutes. Each target speaker’s model is adapted from the global

model using the individual English language speech samples, and the identification is

performed using their alternative language speech samples.

For comparison, MFCCs are used as the baseline feature. The analysis window

size is 12.5ms with an overlap of 6.25ms. Twenty MFCCs are calculated and an

LPC order of 22 is used to calculate the residual phase. The LPC residual is used to

calculate RPCC features as described in the previous section, with a matching RPCC

dimension of twenty.

Two comparison experiments have been implemented. The first experiment fo-

cuses on evaluating the performance of each individual feature as a function of the

number of mixture components. The second is to evaluate the effectiveness of the

baseline feature in conjunction with the proposed source features, also against an

increasing number of mixture components. By considering performance as a function

of model complexity, this experiment is intended to reveal whether the proposed vo-

cal source features have a more direct relationship to physiological distinctiveness, as
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opposed to the relatively large complexity associated with phonetic differences.

4.2.3 Experimental Results

4.2.3.1 Accuracy of individual feature versus increasing number of mix-

tures

Figure 4.2 shows the classification accuracy of each individual feature as a function

of an increasing number of mixtures. The proposed source features give higher per-

formance for all low complexity models up to 8 mixture components. Above that,

the MFCC features give better performance, suggesting that once there is sufficient

model complexity the amount of total information in the MFCC features relevant to

speaker is higher than that of RPCC and TPCC. GLFCC, in particular, performs

better than MFCC across all numbers of mixtures. These experimental results sup-

port the idea that the proposed features are more compact with less dependence on

phonetic content, needing a smaller number of model parameters to represent the

information for each speaker.

4.2.3.2 Accuracy of combined features versus increasing number of mix-

tures

Figure 4.3 shows the performance of the combined feature versus the increasing num-

ber of mixture components. The results clearly show the deterioration of performance

using MFCC features with a lower model complexity, since the MFCC features need
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Figure 4.2: SID performance on a cross-lingual NIST task using individual features
and varying number of Gaussian mixture components.

more coverage of phonetic feature space. Comparing Figure 4.2 and Figure 4.3, it

is also clear that the vocal tract and source features appear to be complementary.

This suggests that a speaker identification system which combines both vocal tract

and source features will offer further improvements. This effect is most likely due to

an under-representation of the intra-speaker variance using standard MFCC features

with a lower model complexity.

The proposed vocal source features in conjunction with the traditional MFCC

features outperform MFCC features alone, with maximal improvement at 8 mixtures

converging to relatively small improvement with a larger model, as shown in Table
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Figure 4.3: SID performance on cross-lingual NIST task using the combined features
and a varying number of Gaussian mixture components.

4.3 and Table 4.4. From Table 4.3, we can see the large difference in system per-

formance using all of the combined features under relatively low model complexity.

This observation is significant for many practical applications of speaker identification

where data is limited. A negligible deterioration of system performance is observed

as the model complexity increases to 128 mixtures. It is interesting to note that the

combination with the greatest increase in accuracy at 8 mixtures is given by the same

combination of features with the least impact at 128 mixtures, the TPCC/MFCC

combination.

Another important observation is that the performance difference between the

baseline feature and combination feature set decreases gradually as the number of
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Table 4.3: Accuracy improvement with 8 mixtures.

Feature Combinations Accuracy Differential

MFCC+RPCC 13.5

MFCC+GLFCC 11.9

MFCC+TPCC 16.9

MFCC+RPCC+GLFCC+TPCC 17.7

Table 4.4: Accuracy improvement with 128 mixtures.

Feature Combinations Accuracy Differential

MFCC+RPCC 1.93

MFCC+GLFCC 1.2

MFCC+TPCC -0.38

MFCC+RPCC+GLFCC+TPCC 1.5

mixture components increases. This is due to the fact that MFCC features gradually

become dominant components on the combined feature set with increasing model

complexity, slowly building a more comprehensive and accurate speaker model based

on phonetics. This demonstrates that combined vocal source/vocal tract feature sets

are significantly more robust to data size and data variation.

4.2.4 Experimental Summary

The experimental results confirm that the proposed vocal source feature set provides

discriminative information about speaker characteristics that is significantly different
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in nature from the phonetically-focused information present in traditional speaker

identification features such as MFCCs. These new features give better identification

accuracy with lower model complexities, and also provide complementary informa-

tion to the traditional acoustic feature that can improve overall system performance.

The fact that these new features are less dependent on the phonetic content of the

speaker makes them useful for practical speaker identification application, in which

the computational model complexity and efficiency is an important indicator.

4.3 Individual Identification Experiments in Cross

Song-type Avian Data

Current approaches to automatically analyzing and classifying animal vocalizations

are based on integrating successful models and ideas from the field of speech pro-

cessing and recognition into bioacoustics. One significant application in this domain

is that of bioacoustic censusing based on individual identification [116–118]. The

performance of this automated methodology largely depends on successful extraction

of relevant call-independent features that give information about identity without

dependence on knowledge of call repertoires. Traditional features based on cepstral

coefficients [119] typically need a large amount of data to train an individually so-

phisticated identification model in order to cover the wide vocalization content of
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the species, just as with humans. In addition, prior knowledge of the vocalization

repertoire categorization is necessary for individual and species identification, but

these are not well established or understood for all species. Hence, features need to

be less dependent on the vocalization categories of the species to be useful for tasks

of bioacoustic censusing, where speaker identification is used to count and monitor

animal populations within a species.

In this work, the proposed vocal source feature extraction methods include RPCC,

GLFCC and TPCC, which capture characteristics from speakers’ excitation rather

than vocal tract characteristics and are more compact across a wide range of vocal-

ization conditions. The goal of these alternative features is to rapidly capture the

characteristic physiological features of a species, requiring less complex models and

greatly increasing the efficiency and performance for cross song-type identification

tasks. The features proposed here are mainly based on the human speech produc-

tion system. However, the vocal organ that birds use to produce the vast majority

of vocalizations is different in location and anatomy structure from that of humans.

The primary sound source mechanism in birds is called the syrinx, and contains two

independently controlled sound sources located in the cranial end of each primary

bronchus. Air from the main anterior air sacs is forced through the syrinx, where it

vibrates the tympaniform membranes on either side of the syrinx. Sound is generated

by the vibration of the air column as it passes through the narrow passageways of



99

the syrinx. Syringeal muscles control the fine details of the syrinx action during song

production by changing the air pressure, the tension of the membranes and the shape

of the syrinx. The syrinx contains two independent halves. Thus, birds can produce

two complex song-types simultaneously. The two sources can also be coupled together

to form a single complex sound. Although the avian anatomy is different from the

human, the avian song production can also be considered as a source-filter model,

similar to humans. On this basis, the proposed features can also be implemented as

a species-distinctive feature for avian species.

4.3.1 Data Corpus

The ortolan bunting, Emberiza hortulana, is classified as an endangered migratory

passerine distributed from Western Europe to Mongolia [120], which has undergone

a major population decline both in individual number and in their distribution. The

species occurs in easily accessible agricultural areas where they nest on raised peat

bogs, clear-cut forest on poor sand, and cleared farmland and forest burn [121].

The ortolan bunting vocalizations in this study were collected from County Hed-

mark, Norway in May of 2001 and 2002. All recordings were sampled at 48 kHz with

16 bit quantization. This species vocalizes in a frequency range between 1.9 kHz and

6.7 kHz, and has a relatively simple song and a repertoire size of typically 2-3 song-

types for each individual. Songs are categorized in terms of their syllables, song-types
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Figure 4.4: Waveform and spectrogram for song-type ab.

and song variants. In total, the data corpus contains 63 different song types and 234

different song variants, composed of 20 different syllables. In this dissertation, the

most frequent song-types within the studied population were selected for the experi-

ment, with the ‘ab’ call type used for training and the ‘cd’ call type used for testing.

Example waveforms and corresponding spectrograms of the song-type ‘ab’ and ‘cd’

are shown in Figure 4.4 and Figure 4.5.
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Figure 4.5: Waveform and spectrogram for song-type cd.
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Table 4.5: Data for cross song-type speaker identification.

Bird ID Song-type No. of Songs Song-type No. of Songs

for Training for Testing

1 ab 31 cd 57

2 ab 59 cd 45

3 ab 95 cd 35

4 ab 110 cd 80

5 ab 95 cd 41

Total 390 258

4.3.2 Experimental Setup

The goal of this experiment is to measure the impact of song-type on an avian speaker

identification system and evaluate the proposed features for this task. The main idea

of this experiment configuration is similar to cross-language human speaker recogni-

tion. The enrollment model is trained on one song type, while verification is done on

another different song type. Table 4.5 shows the data used for this cross song-type

individual identification. For this cross song-type speaker identification task, the call

type ‘ab’ is used to train the statistical model of each individual, and the call type

‘cd’ is employed to test.
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4.3.3 Experimental Results

4.3.3.1 Accuracy versus increasing number of mixtures (GFCC & RPCC)

Figure 4.6 shows classification accuracy as a function of an increasing number of

mixtures using all available training data. This result also supports the idea that

RPCC features are more compact, needing a smaller number of model parameters

to represent the information for each speaker. The RPCC features show a good

performance for all small model sizes up to 128 mixtures. Overall, the GFCC features

give better performance, suggesting that once there is sufficient model complexity

and training data the amount of total information in the GFCC features relevant

to speaker identification is higher than that of RPCC. However, the combination of

GFCC and RPCC shows the best performance. This suggests that RPCCs provide

complimentary feature information on each individual’s vocal source to the vocal tract

related feature GFCC.

4.3.3.2 Accuracy with increasing amount of training time (GFCC & RPCC)

Figure 4.7 shows the classification accuracy of GFCC and RPCC features against an

increasing amount of training time with 128 mixtures. Results give a similar result to

the previous experiment in that RPCC features are more compact with less depen-

dence on phonetic content, showing higher accuracy in the 1 to 15 second conditions.

GFCC features show better performance with increasing amount of data, indicating
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Figure 4.6: Accuracy versus increasing number of mixtures (GFCC & RPCC).

that the additional spectral information contained in the GFCC gives better overall

discriminability once enough information is available to train the models.

4.3.3.3 Accuracy versus increasing number of mixtures (GFCC & TPCC)

A comparison of the classification accuracy between the baseline GFCC, and the

proposed feature TPCC is shown in Figure 4.8. GFCCs show better performance

than TPCCs, while the combination of GFCCs and TPCCs gives substantially better

results than using them individually.
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Figure 4.7: Accuracy versus duration of enrollment data (GFCC & RPCC).
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Figure 4.9: Accuracy versus duration of enrollment data (GFCC & TPCC).

4.3.3.4 Accuracy with increasing amount of training time (GFCC & TPCC)

The accuracy versus duration of enrollment data between GFCC and TPCC is shown

in Figure 4.9. The accuracy of TPCC shows good performance even with a short

duration (1-15 seconds data) of training data.

4.3.3.5 Accuracy versus increasing number of mixtures (GFCC & GLFCC)

The accuracy versus an increasing number of mixtures for GFCC and GLFCC features

both individually and in combination is shown in Figure 4.10. The proposed GLFCC

feature shows better performance with an increasing number of mixtures compared to

the baseline GFCC features. GLFCCs, in particular, have good accuracy even with
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Figure 4.10: Accuracy versus increasing number of mixtures (GFCC & GLFCC).

lower model complexity (small number of mixtures).

4.3.3.6 Accuracy with the increasing amount of training time (GFCC &

GLFCC)

Figure 4.11 shows the accuracy versus duration of enrollment data between GFCCs

and GLFCCs. Results in Figure 4.11 above show a similar pattern to that of RPCC

and TPCC features in Figure 4.7 and Figure 4.9, except that the overall accuracy of

the GLFCC features is somewhat higher. This indicate that the proposed GLFCC

features are more compact with less dependence on phonetic content, because the

short duration of data is sufficient to capture the speaker-specific characteristics in

order to achieve a good performance.
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Figure 4.11: Accuracy versus duration of enrollment data (GFCC & GLFCC).

4.3.4 Experiment Summary

The experimental results confirm that the proposed features provide information

about species characteristics that is significantly different in nature from the spec-

trally focused information present in traditional vocalization features such as GFCCs.

Those new features give better results with smaller amounts of enrollment data and

lower model complexities, and also provide complementary information that can im-

prove overall system performance even for larger amounts of data. The fact that these

new features are less dependent on the vocalization content of the species makes it

useful for tasks of bioacoustic censusing.
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4.4 Speaker Identification Experiments on YOHO

Corpus

We have demonstrated that vocal source features can be shown to significantly im-

prove identification accuracy in cross-condition scenarios, as these discriminative fea-

tures have more power to differentiate speakers based on physiologically-motivated

characteristics. In particular the proposed source features result in a better classifi-

cation rate than the baseline features with lower model complexity. In this section,

speaker identification performance is evaluated using a standard speaker identifica-

tion task, the YOHO database, in order to further assess the usefulness of proposed

features in a matched single language condition.

4.4.1 Data Corpus

The YOHO corpus was collected by ITT under a US government contract and was

designed for speaker recognition systems in office environments with limited vocab-

ulary [122]. This database was recorded using a telephone handset in a real office

environment and sampled at an 8 kHz sampling frequency with 16 bits per sample.

This corpus consists of 138 speakers each with 24 training utterances and 40 test

utterances recorded in different sessions. The vocabulary consists of 56 two-digit

numbers, ranging from 21 to 97 spoken continuously in sets of three (e.g., 32-56-68)
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Table 4.6: YOHO corpus description.

No. of Speakers 138 (106 Males/32Females)

No. session/speaker 4 enrollments, 10 verifications

Type of speech Prompted digit phrases

Microphones Fixed high-quality in handset

Channels 3.8 kHz/clean

Acoustic environment Office

in each utterance. In this work, all the utterances identified as enrollment data were

used to train the model, and utterances in the verification data set were used for

testing. Each enrollment session consists of 24 phrases and each testing utterance is

a single example. There are about 6 minutes of speech used for training each speaker,

and 2.4 seconds of speech for testing. The description of YOHO corpus is shown in

Table 4.6.

4.4.2 Experimental Setup

A GMM-UBM framework speaker identification system is also used in this work,

as shown in Figure 4.1. Initially, a universal background model is trained using

the training utterances from all 138 speakers. Following this each speaker’s model is

adapted from the corresponding training utterance using the MAP adaption approach

as described in Section 2.6.1.2. The identification experiments were conducted on

the YOHO database as the number of mixtures is increased. This experimental
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configuration is designed to evaluate if the proposed features can rapidly build an

accurate model with lower model complexity.

The speech utterances were analyzed using 32ms frames with a 50% frame over-

lap, and twelve coefficients of each feature (MFCC, RPCC, GLFCC and TPCC) are

derived from each frame. The first experiment uses individual features alone to assess

their individual performance respectively, and then proposed features are appended

to the baseline MFCC in order to evaluate their complimentary characteristics to the

baseline feature.

4.4.3 Experimental Results

4.4.3.1 Accuracy of individual feature versus increasing number of mix-

tures

The accuracy versus increasing number of mixtures for the baseline feature MFCC

and the proposed feature is shown in Figure 4.12. At low model complexity, RPCC

and GLFCC features show better performance than the baseline feature MFCC. Of

more significance is that GLFCC in particular performs better than the traditional

MFCC features across all model configurations.
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Figure 4.12: SID performance on YOHO with an increasing number of Gaussian
mixture components.

4.4.3.2 Accuracy of combined features versus increasing number of mix-

tures

Figure 4.13 shows classification accuracy using MFCC features combined with the

proposed source features versus increasing model complexity. The main trend visible

in the figure is that appending more source features gives significantly better perfor-

mance than using the traditional acoustic MFCC features alone. There is a significant

difference in performance between the MFCC features and all combined features.

The performance across all model complexities clearly shows the robustness of
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Figure 4.13: SID performance of combined features on YOHO with an increasing
number of Gaussian mixture components.

combining the baseline features with the proposed vocal features. At low model com-

plexities the improvement is very significant, for example, 60% (combined) vs. 30%

(MFCC) at 4 mixtures and 75% (combined) vs. 45% (MFCC) at 8 mixtures. Table

4.7 shows the final system performance, which still indicates significant improvements.

Table 4.7: Accuracy of the final system with 256 mixtures.

Feature Combinations Accuracy

MFCC + Proposed features 94.3

MFCC 87.3
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4.5 Summary of All Experiments

The usefulness of vocal source features has been confirmed by several well-designed

experimental paradigms. Taken as a whole across all 3 experimental paradigm in-

vestigated in this chapter, it is clear that the incorporation of the proposed vocal

source features offers significant overall improvement to the robustness and accuracy

of speaker identification tasks.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter summarizes the main contributions of this dissertation, highlights the

major conclusions, and suggests several potential directions for further work.

5.1 Summary of Work

This dissertation has concentrated on front-end processing for speaker recognition

applications with the aim of extracting speaker-discriminative feature parameters. By

doing so, we have expanded the applicability of speaker recognition system towards

challenging scenarios with mismatched conditions.

In this work a significant number of novel vocal tract and vocal source features

have been introduced. New vocal tract features include primarily those based on

spectral variability patterns such as LPC shimmer, LAR shimmer, cepstral shimmer,

average harmonic amplitude difference (AHAD), and AHAD shimmer. New vocal

source features include Residual Phase Cepstral Coefficients (RPCC), Teager Phase

Cepstral Coefficients (TPCC), and Glottal Flow Cepstral Coefficients (GLFCC), all

of which introduce different ways of capturing information related to the laryngeal

excitation energy of a speaker.
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The usefulness of these physiologically-motivated features for supplementing the

vocal tract features in speaker identification has been evaluated by several carefully

chosen experimental paradigms. Each experimental paradigm represents a practi-

cal application of speech technology that has mismatched phonetic characteristics

and could be expected to benefit from more physiologically motivated features. For

instance, cross language scenario represents how language difference factors deteri-

orate the performance of human speaker recognition systems, while the cross song-

type individual avian identification experiment represents the limitation of missing

prior knowledge of the vocalization repertoire categorization in bioacoustic censuing.

Taken as a whole across all experimental results, we have seen that the proposed vocal

source features offers significant overall improvement to the robustness and accuracy

of speaker identification tasks. In particular, the improved performance with lower

model complexity shows clearly that vocal source features outperform vocal tract fea-

tures in terms of representative compactness. Furthermore, the performance across all

model complexities demonstrates the robustness of combining the vocal tract features

with the proposed vocal source features. Overall, these discriminative features signif-

icantly improve identification accuracy and have more power to differentiate speakers

based on physiologically-motivated characteristics.
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5.2 Summary of Contribution

This research has pushed forward relevant research in the following aspects:

First, a novel cross phoneme, language and song-type experimental paradigm has

been introduced for evaluating phonetically-independent features for speaker recog-

nition, using deliberately mismatched datasets for training and testing. By using

this paradigm while increasing the duration of training data and mixture complex-

ities we are able to evaluate the speaker-specific features in detailed ways. These

experimental paradigms provide a new approach to identify features that represent

broad individually unique characteristics rather than those that represent phonetic

differences.

Second, it is shown in this research that the phase, glottal airflow and the energy

contour of nonlinear speech production models in speech signal can be employed as

speaker representative information that is effective for discriminating different speak-

ers. Using these signal extraction methods to capture the physiological characteristics

of the laryngeal source excitation will offer researchers new directions to extract useful

features for speaker recognition.

Finally, the most important contribution of this work is that these novel vocal

source features have been shown to signicantly improve identification accuracy even

with cross-condition scenarios, as these discriminative features have more power to
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better differentiate speakers based on their underlying physiological characteristics

rather than the difference in pronunciation patterns. Moreover, the proposed source

features have a better classification rate than the baseline features with lower model

complexity. In practical applications, this lower model complexity offers several ad-

vantages, including improved computational efficiency as well as reduced demands for

training and enrollment data, each of which has great significance in many real-world

recognition, identification, and verification tasks. Over all, the proposed vocal source

features have the potential to impact the practical applications in human speaker

recognition and bioacoustic censusing.

5.3 Future Work

The research discussed in this dissertation suggests a number of avenues for future

work as outlined below:

1. This work suggests that fusion of vocal source and tract information merits

further research. Future work could involve investigation of more sources of

information and the efficient fusion of features.

2. The effectiveness of utilizing vocal source excitation features to complement

vocal tract features has been demonstrated in this work. To further improve

the performance, it may be valuable to investigate new reliable and accurate
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techniques for estimating vocal source signal characteristics.

3. Throughout the experiments, we have used the state-of-the-art GMM-UBM

based speaker modeling because the main concentration of this work is to extract

the speaker distinctive features rather than the novel modeling technique. The

proposed features should be evaluated using other modeling techniques as well,

in particular the Gaussian Mixture Model Support Vector Machines (GMM-

SVM) since it is considered as the current dominant discriminative modeling

technique. In addition, it may be important to investigate whether the i-vector

approach, which has been very successful recently and is quickly becoming a

dominant approach as well, can be integrated with these new features.

4. The currently state-of-the-art of spectral features contain a mixture of linguistic

and speaker-related factors, which are not easily separated. Traditional spectral

features such as MFCCs in reality work far better for a task such as speaker

recognition than would be expected based on the information they represent.

In order to understand better what makes up these individual characteristics

in speech, it would be valuable to investigate this question in detail from both

a practical and a theoretical perspective. This also has significant implications

for automatic speech recognition, which benefits from removing such speaker-

specific information from recognition features.
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5.4 Conclusions

This dissertation has introduced several physiologically motivated features for speaker

identification based on vocal source characteristics. These features, including RPCC,

GLFCC and TPCC, represent information about unique aspects of speech produc-

tion not represented in most state-of-the-art identification systems. The experimental

results show competitive and in some case superior accuracy compared to baseline

MFCC spectral features. With lower amount of training data and lower model com-

plexity, these features give substantial improvement over MFCCs. The incorporation

of these proposed glottal source features combined with traditional features offers sig-

nificant overall improvement to the robustness and accuracy of speaker identification

tasks. Since these proposed features are less dependent on the underlying phonetic

content, they are broadly applicable to many speaker ID tasks, especially those with

limited availability of enrollment data or mismatch between training and testing en-

vironments. Overall, this work enforces the need for investigation of vocal tract and

vocal source features for robust speaker identification.
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