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Physiologically relevant reconstitution of iron-sulfur
cluster biosynthesis uncovers persulfide-
processing functions of ferredoxin-2 and frataxin
Sylvain Gervason1,7, Djabir Larkem 1,7, Amir Ben Mansour1,7, Thomas Botzanowski2, Christina S. Müller3,

Ludovic Pecqueur 4, Gwenaelle Le Pavec1, Agnès Delaunay-Moisan1, Omar Brun5, Jordi Agramunt 5,

Anna Grandas 5, Marc Fontecave 4, Volker Schünemann3, Sarah Cianférani2, Christina Sizun 6,

Michel B. Tolédano1 & Benoit D’Autréaux1

Iron-sulfur (Fe-S) clusters are essential protein cofactors whose biosynthetic defects lead to

severe diseases among which is Friedreich’s ataxia caused by impaired expression of frataxin

(FXN). Fe-S clusters are biosynthesized on the scaffold protein ISCU, with cysteine desul-

furase NFS1 providing sulfur as persulfide and ferredoxin FDX2 supplying electrons, in a

process stimulated by FXN but not clearly understood. Here, we report the breakdown of this

process, made possible by removing a zinc ion in ISCU that hinders iron insertion and

promotes non-physiological Fe-S cluster synthesis from free sulfide in vitro. By binding zinc-

free ISCU, iron drives persulfide uptake from NFS1 and allows persulfide reduction into sulfide

by FDX2, thereby coordinating sulfide production with its availability to generate Fe-S clus-

ters. FXN stimulates the whole process by accelerating persulfide transfer. We propose that

this reconstitution recapitulates physiological conditions which provides a model for Fe-S

cluster biosynthesis, clarifies the roles of FDX2 and FXN and may help develop Friedreich’s

ataxia therapies.
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I
ron-sulfur (Fe-S) clusters are highly conserved and ubiquitous
prosthetic groups of proteins, made of iron and sulfide (S2−)
ions, of which the [2Fe2S] and [4Fe4S] clusters are the most

common in biology1–4. Organisms from the three life kingdoms:
archea, bacteria, and eukaryota have exploited the versatile
properties of Fe-S clusters to perform essential biological func-
tions, including ATP production, Krebs cycle, protein synthesis,
and maintenance of genome integrity5,6. The defects in Fe-S
cluster biosynthesis lead to severe human pathologies, which
underscores the importance to unravel the mechanism of their
assembly2,7–12. Fe-S clusters are biosynthesized de novo by spe-
cialized multi-protein machineries via a process conserved from
bacteria to eukaryotes1,3,4,6,13. In mitochondria, Fe-S clusters are
assembled by the Iron Sulfur Cluster assembly machinery (ISC),
which encompasses the scaffold protein ISCU, the NFS1-ISD11-
ACP complex containing the cysteine desulfurase NFS1, a
pyridoxal-phosphate (PLP) enzyme that generates a precursor of
sulfide in the form of a cysteine-bound persulfide (Cys-SSH) by
desulfurization of L-cysteine, ferredoxin 2 (FDX2) and its cognate
reductase (FDXR) which together deliver electrons provided by
NADPH and frataxin (FXN) which is required for efficient Fe-S
cluster biogenesis1–4,9. However, how the ISC machinery operates
is not clearly understood and thereby, the biochemical roles of
FDX2 and FXN are not established1,3,9. Fe-S clusters biosynthesis
is thought to rely on confined production of sulfide in the
proximity of iron to promote formation of the iron-sulfide bond
while preventing toxic diffusion of iron and sulfide ions, but no
data have documented such a confined synthesis1,3.

Several reconstitutions of both, bacterial and eukaryotic ISC
machineries have attempted to address these questions14–21.
Bacterial ISC reconstitutions indicate that the homologue of
NFS1, IscS, transfers several persulfides to multiple cysteines on
the ISCU homologue, IscU, which suggests that sulfide produc-
tion takes place on the scaffold protein22,23. In mammals too,
persulfides are transferred to ISCU, but only one of its cysteines
becomes persulfidated14,24. These reconstitutions have, however,
not answered the question of the physiological reductant of the
persulfide and whether its reduction is coupled to the presence of
iron. The FDX2-FDXR reducing system is a good candidate for
this reaction, but most reconstitutions used the non-physiological
reductant dithiothreitol (DTT) instead, thereby occulting the
possible function of FDX2 in this process15,16,18–20. Moreover,
DTT-dependent Fe-S cluster reconstitution cannot be considered
as reproducing a physiological process since DTT reduces the
persulfide of the cysteine desulfurase, which leads to formation of
free sulfide that is not confined to ISCU14,21. DTT was also shown
to promote formation of [4Fe4S] clusters, the biosynthesis of
which is apparently supported by the ISCA type proteins25–27.
The first study of the role of FDX2 was performed with bacterial
Fdx2 and indicated that it promotes reductive coupling of [2Fe2S]
clusters into [4Fe4S], which may not be physiologically relevant
as formation of [4Fe4S] clusters on ISCU is possibly non-
natural17. A FDX2-dependent assembly of [2Fe2S] clusters on
ISCU was then reported with yeast proteins, thus suggesting that
FDX2 is an important component, but evidence that FDX2
reduces the persulfide was not provided21. Moreover, we found
that FDX2 is not able to reduce the persulfide transferred to
ISCU, which questioned its role in persulfide reduction14.

Similarly, the role of frataxin (FXN) remains very controversial
despite tremendous efforts to understand its biochemical func-
tion9. Since the discovery that Friedreich’s ataxia (FA), a severe
neurodegenerative and cardiac disease that is the most common
form of recessive ataxia is caused by defective expression of FXN,
this protein has been the focus of intense research2,9,10,28. FXN
was first proposed to operate as an iron chaperone or iron storage
protein providing iron to the ISC machinery, but this model was

challenged by several in vivo studies9,29–31. The reconstitutions of
the ISC machinery with FXN did not provide a clearer picture
either14,15,18,20,32. The first reconstitution was performed with the
bacterial system and unexpectedly showed that the bacterial
homolog of FXN, CyaY, inhibits the rate of Fe-S cluster assembly
under iron rich conditions, by slowing down sulfide release by
IscS, which was interpreted as a mechanism needed to prevent
uncontrolled Fe-S cluster formation15,32. The reconstitutions of
the mammalian system showed in contrast that FXN stimulates
sulfide production and concomitantly iron entry in the ISC
complex14,18,20. However, these studies were performed with
DTT instead of the FDX2-FDXR reducing system, which again
questions their physiological relevance. Another study reported
that yeast FXN stimulates persulfide formation on NFS133, but
this could not be reproduced with the murine proteins14. The
only reconstitution including both FDX2 and FXN concluded
that FXN is strictly required for Fe-S cluster assembly, which
may not be consistent with the dispensable role of FXN
in vivo21,31,34–36. FXN was also reported to stimulate persulfide
transfer to ISCU, therefore promoting confined production of
sulfide14,24. However, FDX2 was unable to reduce the persulfide
on ISCU, which prevented a direct correlation with Fe-S cluster
assembly14.

Several studies also attempted to assess the iron binding
properties of ISCU19,37–39. Bacterial IscU was shown to bind iron
in the μM range but another study could not detect interaction
with either Fe2+ or Fe3+ ions19,39. Yeast and drosophila ISCU
proteins were reported to bind iron but not in the assembly site
and it was not shown whether this iron containing form could
sustain Fe-S cluster assembly37,38.

We report here that a clue to these discrepancies is the pre-
sence of a zinc ion in the assembly site of ISCU, which has
been persistently reported in bacterial and eukaryotic ISCU
proteins40–45. We show that this zinc ion hinders iron binding
and precludes the reduction of the persulfide of ISCU by FDX2,
thereby fostering reduction of the persulfide of NFS1 by
L-cysteine, which leads to release of free sulfide and Fe-S cluster
formation that cannot be considered as physiologically relevant
since it is not confined to ISCU. By exchanging zinc with iron, we
generate an iron-loaded ISCU protein allowing Fe-S clusters
synthesis via FDX2-dependent reduction of the persulfide of
ISCU. In this process, FXN is not required for iron insertion but
stimulates persulfide transfer to ISCU. Moreover, both persulfide
transfer and reduction require iron, which most likely ensures the
coordination between sulfide production and iron availability in
ISCU. We propose that the reaction performed by iron-loaded
ISCU reproduces the physiological process of Fe-S cluster
assembly, thus allowing the elucidation of the sequence of Fe-S
cluster biosynthesis and the respective roles of FXN and FDX2.

Results
ISCU binds a Fe2+ ion upon removal of the Zn2+ ion. To
address these questions, we first attempted to isolate an iron
containing form of ISCU that would be competent for Fe-S
cluster assembly. Analysis of the metal content of purified mouse
ISCU revealed the presence of zinc as previously reported, but no
iron40–42,46. We measured 0.8 ± 0.1 zinc ion/ISCU and up to 1.0
± 0.1 by incubation with additional zinc (Fig. 1a). Site-directed
mutagenesis confirmed that the conserved amino acids of the Fe-
S cluster assembly site of ISCU, C35, D37, C61, and H103, but not
C104, are required for zinc binding, as also observed in the
structures of human ISCU (Fig. 1a)43. To probe binding of iron to
the assembly site of ISCU, we sought for typical ligand-to-metal
charge transfer (LMCT) bands of ferrous iron bound to cysteine,
expected in the near UV domain47,48. No such feature appeared
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upon addition of Fe2+ to the zinc containing form of ISCU (Zn-
ISCU), alone or in the presence of FXN (Fig. 1b). In contrast,
adding Fe2+ to ISCU devoid of metal (apo-ISCU) produced
absorptions at 270 nm, 310 nm, and 340 nm that are character-
istic of Cys-S→ Fe(II) LMCT bands in the circular dichroism
(CD) spectrum (Fig. 1b). Iron titrations by CD showed that ISCU
binds ~0.95 Fe2+ ions in this site (Fig. 1c, d). Altogether, these
data also show that FXN is not able to exchange zinc for iron and
is neither required for iron insertion in apo-ISCU (Fig. 1b).
Moreover, we did not detect any iron or zinc in purified FXN,
which strengthened the idea that FXN is not involved in iron
insertion.

We next evaluated the effect of iron on the structure of apo-
ISCU by NMR spectroscopy, since ISCU was reported to exist in
two different conformational states, structured (denoted S) and
disordered (denoted D), and zinc was shown to stabilize the S
state49. The NMR spectrum of apo-ISCU displayed broad central
signals that were assigned to the D state and more dispersed
resonances corresponding to the S state (Supplementary Fig. 1a).
Integration of the tryptophan W74 signals indicated that ~30% of
apo-ISCU was in the S form (inset of Supplementary Fig. 1a).
Upon addition of iron, the central part of the spectrum became
more resolved and additional dispersed signals appeared
(Supplementary Fig. 1b). Two signals were visible for W74: an
intense one slightly shifted relative to that of the S form of apo-
ISCU, and a weak one at the position of the D form of apo-ISCU.
By analogy, we assigned the weak signal to remaining apo-ISCU
in the D form and the shifted intense signal to an iron containing
S form. Integration of the W74 signals indicated that ~80% of
ISCU was in the S state.

To further assess the iron binding properties of ISCU, we used
Mössbauer spectroscopy. The Mössbauer spectrum of apo-ISCU
incubated with one equivalent of Fe2+ revealed the presence of
two species (Fig. 1e, Supplementary Table 1). The parameters of

the major component (component 1, 85%) were indicative of a
high spin Fe(II) center coordinated in a mixed environment by
one or two cysteines and two or three N/O ligands, consistent
with the CD spectrum (Supplementary Tables 1 and 2 and
Supplementary Note 1)50. The high value of the quadrupole
splitting (3.51 mm.s−1), that is growing with asymmetry, is in
agreement with this mixed coordination. Remarkably, the
amount of component 1 was similar to the proportion of ISCU
in the S state, which suggests that binding of iron to this site
promotes conversion of the D to S state. In contrast, the isomeric
shift of the minor species (component 2, 15%) was consistent
with a Fe(II) center coordinated by five or six N/O atoms but no
sulfur (Supplementary Tables 1 and 2). The parameters of this
species were not identical to those of free iron and this species
was absent when apo-ISCU was incubated with a sub-stoichio-
metric amount of iron, which suggests that component 2 is iron
bound to ISCU in a lower affinity site compared to component 1
(Supplementary Fig. 1c, d and Supplementary Table 1).

To identify the ligands of the iron ion in these sites, we used
site-directed mutagenesis. The C35S, D37A, and C61A substitu-
tion mutants lacked the typical LMCT bands when incubated
with ferrous iron (Fig. 1f). Very weak absorptions were detected
for the H103A mutant but its Mössbauer spectrum lacks the
typical signal of the iron-cysteinyl site (Fig. 1f, Supplementary
Fig. 1e and Supplementary Note 1). In contrast, the C104S
mutant exhibited intense Cys-S→ Fe(II) LMCT absorption bands
and the major species detected by Mössbauer spectroscopy (65%)
displayed parameters nearly identical to those of the WT protein
(Fig. 1f, Supplementary Fig. 1f and Supplementary Note 1). The
lack of the minor species (component 2) in the H103A and C104S
mutants further suggested that H103 is a ligand of this iron ion
and that the C104S mutation impairs iron binding to this site
(Supplementary Note 1). We conclude that the zinc ion prevents
iron binding in the assembly site of ISCU, which may explain the
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lack of interaction with iron previously observed38,39. Removing
zinc allows binding of a Fe2+ ion in the assembly site via the C35,
D37, C61, and H103 amino acid residues, which stabilizes the S
state of ISCU. The minor component may correspond to iron
bound in a distorted assembly site via H103 in the D state.

Physiologically relevant assembly of Fe-S cluster by Fe-ISCU.
We then tested the ability of both, Fe-ISCU (apo-ISCU incubated
with one equivalent of Fe2 + ions) and Zn-ISCU in the presence
of one equivalent of iron, to assemble a Fe-S cluster, under
catalytic conditions with all the components of the ISC
machinery (the NFS1-ISD11-ACP (NIA) complex, FXN, FDX2
and FDXR) at a 1:10 molar ratio relative to ISCU, NADPH as a
source of electrons and L-cysteine in stoichiometric amounts
relative to ISCU. Fe-S cluster assembly was monitored by CD
and UV-visible spectroscopies. The reaction with Fe-ISCU led to
appearance of a species within 3 min, with spectroscopic features
identical to those reported for the oxidized form of the [2Fe2S]
cluster in ISCU (Fig. 2a, b)16,21. In contrast, the reaction with
Zn-ISCU generated virtually no Fe-S cluster (Fig. 2a), in agree-
ment with the hindrance of iron binding in the assembly site
when zinc is bound (Fig. 1b). Mössbauer spectroscopy and native
mass spectrometry showed that exclusively [2Fe2S]2+ clusters
were generated, in contrast to previous reconstitutions which
reported formation of both [2Fe2S] and [4Fe4S] clusters (Fig. 2c,
d, Supplementary Fig. 1h, i and Supplementary Note 2)16,18.

Moreover, native mass spectrometry showed that the [2Fe2S]
cluster was hosted in a monomer of ISCU (Fig. 2d). The iden-
tification of two different iron binding sites by Mössbauer
spectroscopy further indicated that the [2Fe2S] cluster was in an
asymmetrical arrangement, in agreement with crystal structures
and spectroscopic studies suggesting a three Cys, one Asp mixed
coordination in a monomer of ISCU (Fig. 2c, Supplementary
Note 2)17,45,51,52.

Iron and cysteine titrations showed that approximately two
irons and two cysteines per ISCU were required to form the
[2Fe2S] cluster when starting from apo-ISCU, with yields in the
range of 90% of reconstituted ISCU, which confirms the
stoichiometry of one [2Fe2S] cluster per ISCU (Fig. 2e, f).
Importantly, these data also indicate that the reaction is highly
efficient, with processing of nearly all L-cysteine and iron added
into [2Fe2S] clusters. Similar spectra were collected when the
reaction was performed with stoichiometric amounts of the NIA
complex, ISCU and FXN, which attested that the Fe-S cluster is
generated within the NFS1-ISD11-ACP-ISCU-FXN (NIAUF)
complex (Supplementary Fig. 2a).

We then evaluated the dependence of this reaction on FXN and
FDX2. In reactions missing FDX2, the assembly was compro-
mised, consistent with the absolute cellular requirement of FDX2
for Fe-S cluster biogenesis (Fig. 2g)53,54. When FXN was omitted,
the assembly was slowed down, consistent with the significant
decrease of Fe-S cluster biogenesis activity in cells lacking FXN
(Fig. 2g)31,34,35. In conclusion, the reconstituted system with
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Fe-ISCU appears to recapitulate biological conditions of Fe-S
cluster assembly. Furthermore, the reaction performed without
FXN led to formation of a [2Fe2S] cluster with identical features
as those observed in the presence of FXN and in similar yields as
the complete reaction, thus suggesting that FXN does not change
the outcome of the reaction, but only modulates its rate (Fig. 2g,
Supplementary Fig. 2d).

Mechanism of FDX2-based Fe-S cluster assembly by Fe-ISCU.
We next examined how the persulfide of NFS1 was reduced and
sulfide incorporated as a Fe-S cluster. We previously showed
using a protein persulfidation assay that NFS1 transfers its per-
sulfide to the cysteine C104 of ISCU14. Using this assay, we
monitored persulfide transfer to Fe-ISCU and Zn-ISCU and
found that both acquire a persulfide from NFS1, on a single
cysteine (Fig. 3a). Lack of transfer with the C104S mutant pro-
vided evidence that this residue serves as the persulfide receptor,
and mass spectrometry indicated that a single sulfur atom is
incorporated in ISCU (Fig. 3b–d)14. In the absence of metal,
persulfide transfer was abolished (Fig. 3b), despite formation of a
complex between apo-ISCU, FXN, and the NIA complex (Sup-
plementary Fig. 3a and Supplementary Note 3), which indicates
that the metal ion is required for persulfide transfer. Adding
FDX2 to the persulfidated form of Fe-ISCU led to disappearance
of the persulfide and concomitant formation of a Fe-S cluster,
thus indicating that FDX2 reduces the persulfide into sulfide
(Fig. 3a left panel, 3e, 3f). In contrast, FDX2 was unable to
reduce the persulfide of Zn-ISCU, which explains the inability of
this form to assemble a Fe-S cluster (Fig. 3a right panel). Per-
sulfide reduction was also precluded in the absence of metal,
which rules out the idea that zinc could be inhibitory and instead
points to a specific requirement of iron for persulfide reduction
(Fig. 3g).

Since formation of a [2Fe2S] cluster requires two sulfides, we
asked whether a second sulfide was provided by NFS1 either
directly, by FDX2-mediated reduction of the persulfide of NFS1,
or indirectly, via a second transfer-reduction process following
reduction of the first one. In both cases, a concomitant
disappearance of the persulfides of NFS1 and ISCU was expected
upon addition of FDX2. To prevent reloading of NFS1 with a
persulfide, which would otherwise mask both direct reduction
and second transfer, we used sub-stoichiometric amounts of L-
cysteine. These experiments were performed by incubating
reaction mixtures containing the NFS1-Fe-ISCU complex with
various amounts of L-cysteine from sub-stoichiometric to
excess, prior to adding FDX2. The persulfidation states of
NFS1 and ISCU were analyzed before and after addition of
FDX2. Upon addition of FDX2, the persulfide of ISCU was
reduced as described in the previous section, but the persulfide
of NFS1 did not disappear, thus establishing that only
one sulfide is provided to ISCU (Fig. 3h, i). As ISCU binds
only one iron ion, formation of a [2Fe2S] cluster likely requires
dimerization of ISCU followed by segregation of the Fe-S cluster
on one of the two subunits.

FXN stimulates persulfide transfer to Fe-ISCU. We next
inspected the effect of FXN on each step of the assembly process.
The yeast FXN homologue was proposed to stimulate persulfide
formation on NFS133. However, this effect could not be observed
with the murine system, therefore indicating that FXN operates at a
later step14. We first tested the effect of FXN on persulfide transfer.
We previously reported that persulfide formation on NFS1 is much
faster than persulfide transfer, i.e., that persulfide transfer is the
rate-limiting step of this process14. Thereby, the global rate of
persulfidation of ISCU upon addition of L-cysteine to the NIAU

complex, which encompasses both, persulfide formation on NFS1
and its transfer to ISCU, only reflects persulfide transfer, thus
allowing direct determination of the rate of persulfide transfer by
measuring the rate of the two-step reaction. In the absence of FXN,
persulfide transfer still occured and was completed in about 30min
(Fig. 4a, upper panel). In the presence of FXN, the rate of the
reaction was markedly increased, with a transfer nearly complete in
5min (Fig. 4a, lower panel). The same effect was observed with Zn-
ISCU, consistent with our previous observation with as-purified
ISCU (Fig. 4b)14. Since the rates of persulfidation of Fe-ISCU and
Zn-ISCU are both much lower than the previously reported rate of
persulfide formation on NFS1, persulfide transfer appears rate-
limiting here too. Therefore, the effects of FXN on the rates of
persulfidation of Fe-ISCU and Zn-ISCU indicate that FXN stimu-
lates persulfide transfer in both cases. In contrast, FXN did not
affect the rate of persulfide reduction (Fig. 4c).

Overall, these data suggest that FXN modulates the rate of Fe-S
cluster assembly by acting solely on the persulfide transfer step,
which is mechanistically feasible only if persulfide transfer is the
rate-limiting step of the whole process. We thus compared the rate
constants of persulfide transfer determined by the alkylation assays
(Fig. 4a, d) with those of (i) persulfide reduction by FDX2 that is
combined with formation of the [2Fe2S] cluster and determined by
monitoring Fe-S cluster formation upon addition of FDX2 to a
persulfidated form of the NIAU complex (Fig. 4c), and (ii) the
global reaction of Fe-S cluster assembly monitored by UV-visible
spectroscopy upon addition of L-cysteine (Fig. 4e), using stoichio-
metric amounts of the NFS1-ISD11-ACP complex and Fe-ISCU.
The values of the rate constants of persulfide transfer and Fe-S
cluster assembly were comparable, both in the presence and absence
of FXN, and much lower than the rate constant of persulfide
reduction by FDX2, thus indicating that persulfide transfer is the
rate-limiting step of the whole process (Fig. 4d–f). This provides
evidence that FXN stimulates Fe-S cluster biosynthesis by
accelerating persulfide transfer to Fe-ISCU.

Zn-ISCU promotes Fe-S cluster synthesis from free sulfide. We
showed above that Zn-ISCU cannot assemble a Fe-S cluster when
incubated with one equivalent of iron and L-cysteine. However,
Fe-S cluster reconstitutions with as-purified ISCU which pre-
sumably contained zinc, were previously reported14–16,18,20,21.
We indeed observed reconstitution of a Fe-S cluster by Zn-ISCU
in the presence of iron, but only when the concentration of L-
cysteine was raised above stoichiometry (Fig. 5a). The spectro-
scopic features of the Fe-S cluster generated by Zn-ISCU were
identical to those of the [2Fe2S] cluster reconstituted by Fe-ISCU
(Fig. 5b). Moreover, the rate of the reaction was slowed down in
the absence of FXN, as reported for the reconstitutions performed
with as-purified ISCU (Fig. 5c)14,18,20. This suggests that this
reaction reproduces the phenotype of cells lacking FXN. How-
ever, this reaction was about 50 times slower relative to the
reaction with Fe-ISCU and required about 30 times more L-
cysteine to reach the same yield in Fe-S clusters, which accounted
for only 5% of L-cysteine incorporated (Fig. 5a). Furthermore, in
the absence of FDX2, the reaction was only slowed down, not
abolished, which suggests that this reaction does not reproduce
the physiology since FDX2 is essential for Fe-S cluster biogenesis
in vivo (Fig. 5c)53,54.

We thus examined the mechanism of the reaction performed by
Zn-ISCU. Since the persulfide of ISCU is not reducible in the
presence of zinc (Fig. 3a), the origin of sulfide was likely NFS1. In
the absence of FDX2, Fe-S clusters were still formed, which
indicated that FDX2 is not the main reductant in this reaction
(Fig. 5c). Instead, the dependency of the rate of the reaction on the
concentration of L-cysteine suggests that L-cysteine is the
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reductant (Fig. 5a). This assumption is corroborated, on one hand,
by our previous data demonstrating that L-cysteine is able to
reduce the persulfide of NFS1, a reaction which generates free
sulfide through intermediate formation of persulfidated L-cysteine,
and is stimulated by FXN, and, on the other hand, by the sigmoidal
behavior observed in the absence of FDX2 that is a hallmark of the
accumulation of an intermediate species (Fig. 5c)14. We thus
propose that the poorly efficient Fe-S cluster assembly reaction

performed by Zn-ISCU proceeds via formation of free sulfide and
is stimulated by FXN at the stage of sulfur transfer to L-cysteine, as
previously reported with as-purified ISCU14.

Discussion
We show here that upon removal of its zinc ion, ISCU can bind a
Fe2+ ion in the assembly site and carry out Fe-S cluster assembly
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with high efficiency, as virtually all iron and L-cysteine are
incorporated in the form of [2Fe2S] clusters. Our step-by-step
analysis indicates that the mechanism of assembly relies on the
transfer of the persulfide of NFS1 to ISCU that is subsequently
reduced into sulfide by FDX2, leading to formation of a [2Fe2S]
cluster in a monomer of ISCU (Fig. 6). These data thus provide
evidence that FDX2 operates in persulfide reduction and is
essential since Fe-S cluster assembly was compromised in its
absence. Our data also provide information on the nucleation
process leading to a dinuclear [2Fe2S] cluster. As only one iron is
initially present in ISCU and only one sulfide ion is generated per
ISCU by FDX2, we postulate that formation of the Fe-S cluster
requires dimerization of ISCU to generate a bridged [2Fe2S]
cluster at the interface of the two subunits, which then segregates
on one of the two monomers. Two structures of the NFS1-ISD11-
ACP complex were reported which both displayed a dimeric
complex but with distinct topologies43,44. In the structure
reported by Boniecki et al., the two ISCU proteins are bound at
the opposite ends of the complex thus precluding dimerization43.
Whereas in the structure reported by Cory et al., although it does

not contain ISCU, modelling predicts that the two ISCU proteins
are very close to each other, thus consistent with formation of a
dimer within the complex44.

Our data also indicate that a key feature of the Fe-ISCU based
reaction is the iron-dependency of both persulfide transfer and
reduction, which most likely ensure that sulfur transfer and sul-
fide production are coordinated with iron availability in ISCU,
thereby preventing futile persulfide transfer cycles and allowing
instantaneous binding of the nascent sulfide to the nearby iron.
Strikingly, zinc and iron appear interchangeable for persulfide
transfer. The metal ion might function as a Lewis acid creating an
electrophilic character on the sulfane sulfur of the persulfide of
NFS1 to facilitate the nucleophilic attack by the receptor cysteine
of ISCU. In contrast, persulfide reduction by FDX2 is operative
with iron, but precluded with zinc. During assembly, the iron ion
switches from the+2 state in Fe-ISCU to the+3 state in the
[2Fe2S]. This suggests that the iron ion is the source of one of the
two electrons needed for persulfide reduction, with the other one
being donated by the [2Fe2S] cluster of FDX2. This could explain
why reduction does not occur on Zn-ISCU.
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This model contrasts with the one drawn from the data
obtained with Zn-ISCU (Fig. 6). When zinc is in the assembly
site, the impeded reduction of the persulfide of ISCU by FDX2
fosters the reduction of the persulfide of NFS1 by L-cysteine,
which leads to formation of persulfidated L-cysteine (Cys-SSH)
that is decomposed into sulfide by another molecule of L-cysteine,
as previously described with as-purified ISCU14. FDX2 also

promotes this reaction most likely by reducing Cys-SSH. The
sulfide ions then combine with iron to form a Fe-S cluster that is
inserted in ISCU in a poorly efficient way akin to chemical
reconstitution1,14. This reaction might only occur in vitro, as
in vivo, the persulfidated cysteine and the sulfide ions will not
remain in ISCU but will diffuse throughout the cell. Moreover,
the zinc ion was shown to decrease the rate of sulfide production
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which may help mitigate this side-effect in vivo46. We thus
propose that the Fe-ISCU based reconstitution is the one that
recapitulates the physiological Fe-S cluster assembly process.

Since the presence of zinc has been persistently reported in
eukaryotic and prokaryotic recombinant ISCU proteins, we pre-
sume that all previous Fe-S cluster reconstitutions were describ-
ing the non-physiological Fe-S cluster assembly process.
Nevertheless, although the zinc ion hinders physiologically rele-
vant Fe-S cluster assembly on ISCU, by enabling persulfide
transfer to ISCU and by preventing reduction by FDX2, it might
convert ISCU into a sulfur-transferase as proposed for the
Bacillus subtilis SufU protein, a closely related homolog of
ISCU55.

Our data indicate that the function of FXN is to accelerate
persulfide transfer to Fe-ISCU that is the rate-limiting step of Fe-
S cluster synthesis. Further, the effect of FXN, as it does not
modify the nature of the Fe-S cluster formed on ISCU and its
yield, points to a regulatory function, which fits to FXN non-
essential role in vivo31,34–36. FXN also enhances persulfide
transfer to Zn-ISCU, as previously reported with as-purified
ISCU14, which might be linked to the above-proposed sulfur-
transferase function of Zn-ISCU. FXN thus appears as an
enhancer of metal-dependent persulfide transfer reactions. It may
operate by either promoting persulfide binding to the metal
center, by modifying the coordination sphere of the metal ion or
by deprotonating the receptor cysteine of ISCU to increase its
nucleophilic ability. Addressing these questions will be critical to
understand the biochemical function of FXN.

A reconstitution of the yeast ISC machinery that included
FDX2, reported that FXN is critical for Fe-S cluster synthesis, a
conclusion not supported by our data21. In these experiments, a
significant amount of Fe-S cluster (30%) was still formed in the
absence of FDX2, and also in reactions lacking FXN, which are in
fact typical features of the Zn-ISCU-based reaction (Fig. 5c).
Therefore these data might not be used to draw any conclusions
on the physiological role of FXN in Fe-S cluster biosynthesis.
FXN was also proposed to deliver iron to the ISC machinery
based on its ability to bind iron. However, this hypothesis has
been questioned by several studies9,29,36. Anyhow, if indeed FXN
carries this additional function, then how would zinc be
exchanged? This would require another enzyme since FXN is not
able to exchange zinc for iron. Our data instead indicate that FXN
does not bind iron and is not required for iron insertion.
Therefore, its biochemical role seems to be restricted to the sti-
mulation of persulfide transfer.

Altogether, our data afford evidence that FXN operates in Fe-S
cluster biogenesis as a kinetic activator of persulfide transfer, a
function that probably is conserved in prokaryotes given the
homologies of prokaryotic and eukaryotic frataxin proteins. Such
a regulatory function further suggests that the expression of FXN
is tightly regulated in order to adapt Fe-S cluster biogenesis to the
cellular demand. Our results thus open perspectives to unravel
the pivotal role of FXN in Fe-S cluster biogenesis that will help
better understand the pathophysiology of FRDA and research in
the development of therapeutic treatments9.

Methods
Chemicals and materials. Luria Bertani medium, protease inhibitor cocktail
(sigmafast), sodium phosphate dibasic (Na2HPO4), urea, tris base, tris HCl, sodium
dodecyl sulfate (SDS), dithiothreitol (DTT), L-cysteine, nicotinamide adenine
dinucleotide phosphate (NADPH), human His6-thrombin, Ethylenediamine tet-
raacetic acid (EDTA), diethylene triamine pentaacetic acid (DTPA), isopropyl β-D-
1-thiogalactopyranoside (IPTG), ferrous ammonium sulfate (Fe(NH4)2(SO4)2),
imidazole, zinc sulfate (ZnSO4), 4-(2-pyridylazo)resorcinol (PAR), 3-(2-pyridyl)-
5,6-diphenyl-1,2,4-triazine-p,p′-disulfonic acid monosodium salt hydrate (Ferro-
zine), ascorbic acid and acrylamide:bis-acrylamide (29:1) solutions were from
Sigma–Aldrich. HiTrap chelating HP column (5 ml), PD-10 desalting, HiPrep

Desalting 26/10, HiLoad 16/60 prep grade Superdex 200 and Superdex 75 columns
were from GE Healthcare; Amicon Ultra centrifugal filter ultracel 10 and 30 kDa
from MILLIPORE, MicroBio-Spin columns from Bio-Rad; Rosetta2-(DE3) and
pET28b from Novagen, cuvette from Hellma

Protein purification. The vectors expressing NFS1-(amino acid (aa) 59–459),
ISD11, ISCU-(aa 36–168) and FXN-(aa 79–207) were kindly provided by Dr.
Hélène Puccio (IGBMC, Strasbourg). His-tags followed by thrombin (Thr) cleavage
sites were introduced by mutagenesis leading to the expression plasmids
pCDFDuet-site1: 6xHis-Thr-NFS1-site2:ISD11, pETDuet-site1: 6xHis-Thr-ISCU
and pET16-6xHis-Thr-FXN. The C35S, D37A, C61A, C96S, H103A, and C104S
mutations were introduced in ISCU by site-directed mutagenesis (IMAGIF plat-
form, Gif Sur Yvette, France). The vectors expressing human 6xHis-Thr-FDX2
(aa53-183) from pET28b was generated by GenScript (Piscataway, USA). The
Rosetta2-(DE3) cells were transformed with the plasmids and the cells were grown
from a single colony at 180 rpm at 37 °C in LB with appropriate antibiotics. Protein
expression was induced when the cells reached OD600= 0.6 using 500 μM IPTG
and the cells incubated for an additional 16 h at 18 °C at 180 rpm for the expression
of NFS1-ISD11 and 3 h at 30 °C for the expression of ISCU, FXN, and FDX2. The
cell cultures were harvested by centrifugation at 5500 rpm for 10 min at 4 °C. Cell
pellets were resuspended in buffer A (50 mM Na2HPO4, 150 mM NaCl, 5 mM
imidazole, pH 8) containing a protease inhibitor cocktail. The cell suspensions were
lysed by 3 cycles of French Press. Cell debris were removed by centrifugation at
45,000 rpm for 45 min at 4 °C. The His-tagged proteins NFS1-ISD11-ACP, ISCU
(WT and mutants), FXN, and FDX2 were purified on a HiTrap chelating HP
loaded with nickel ions. The resin was washed with buffer A and bound proteins
were eluted by a linear gradient of buffer B (50 mM Na2HPO4, 150 mM NaCl,
500 mM imidazole, pH 8). Protein fractions were mixed and concentrated on
Amicon to 4 mL. The His6-NFS1-ISD11-ACP complex was incubated for 10 min
with 10 mM DTT at room temperature to remove persulfide and then loaded on a
HiLoad 26/600 Superdex 200 prep grade column pre-equilibrated with buffer P
(50 mM Na2HPO4, 150 mM NaCl, pH 8). The ISCU (WT and mutants), FXN, and
FDX2 proteins were desalted in buffer P on HiPrep Desalting 26/10 and the His-
tags were removed by treatment with thrombin (3.5 NIH unit of His6-thrombin
per mg of proteins) for 16 h at 22 °C. The ISCU proteins (WT and mutants) were
incubated with 10 mM DTT for 10 min to remove persulfide. The cleaved ISCU
(WT and mutants), FXN and FDX2 proteins were loaded on a HiLoad 26/600
Superdex 75 prep grade column pre-equilibrated with buffer P. All the proteins
were aliquoted and stored in glycerol (10% final) at −80 °C. All these procedures
were also previously described14. For 15N- labeled and 13C,15N-labeled ISCU, ISCU
overexpressing cells were grown in M9 minimal media supplemented with
15NH4Cl (1 g.L−1), glucose (4.g L−1) or 13C-glucose (2.7 g.L−1), ampicillin (100 µg.
mL−1), chloramphenicol (34 µg.mL−1), MgSO4 (2 mM), CaCl2 (50 µM), and ZnCl2
(50 µM). Purified human FDXR was provided by R. Lill (Marburg). Protein con-
centrations were determined by UV-visible at 278 nm in urea 8M, Tris 0.1 M, pH
= 7.5 using absorption coefficients of 49965, 9700, 26335, 13850, and 44330M−1.
cm−1 for the NFS1-ISD11-ACP complex, ISCU, FXN, FDX2, and FDXR. The
absorption of the PLP (ε= 5000M−1.cm−1) was also used to double-check the
concentration of the NFS1-ISD11-ACP complex.

Metal insertion and exchange. Zn-ISCU was prepared by incubating as-purified
ISCU with 2 molar equivalents of ZnSO4 followed by desalting to remove excess
zinc. All iron binding properties on Zn-ISCU and preparation of Fe-ISCU were
performed under anaerobic conditions using a Jacomex glove box (O2 < 2 ppm).
Samples were prepared by mixing 2 μL of ferrous ammonium sulfate (5 mM)
prepared in H2O with Zn-ISCU (100 μM), with or without FXN (100 μM) in buffer
P. To prepare Fe-ISCU, the zinc ion was first removed by incubating Zn-ISCU with
DTPA, followed by desalting on Superdex to remove excess DTPA. Then apo-
ISCU was incubated with ferrous ammonium sulfate in various conditions as
described in each section. Apo-ISCU incubated with one equivalent of ferrous
ammonium sulfate is denoted Fe-ISCU thereafter.

Fe-S cluster assembly assays. Fe-S cluster assembly assays were performed under
anaerobiosis in two different conditions: catalytic and stoichiometric. Standard
catalytic conditions included Zn-ISCU (100 μM) incubated with one molar
equivalent of ferrous ammonium sulfate or Fe-ISCU (100 μM), mixed with the
NFS1-ISD11-ACP complex (10 µM), FXN (10 µM), FDX2 (10 µM), FDXR (1 µM),
and NADPH (200 μM) in buffer P. The mix was transferred into a septum sealed
cuvette and the reaction was initiated with L-cysteine (100 µM) introduced with a
gastight Hamilton syringe. The kinetics of assembly were monitored by UV-visible
spectroscopy at 456 nm. The kinetics of Fe-S cluster assembly with Zn-ISCU at
high L-cysteine concentrations were monitored by CD at 430 nm as promiscuous
Fe-S clusters were reported to be formed that could contribute to the absorption by
UV-visible but not to CD26. Standard stoichiometric conditions included Fe-
ISCU (100 μM), the NFS1-ISD11-ACP complex (100 µM), FXN (100 µM), FDX2
(10 µM), FDXR (1 µM), and NADPH (200 μM) in buffer P. The reactions were
initiated by L-cysteine (100 µM) as described for catalytic conditions.

To assess the effect of FXN on the reduction of persulfide by FDX2, the reaction
of persulfidation of ISCU was performed using stoichiometric amounts of Fe-ISCU
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(50 μM) and the NFS1-ISD11-ACP complex (50 µM) with 1 equivalent of L-
cysteine for 30 min in buffer P, then FDX2 (5 µM), FDXR (1 µM) and NADPH
(100 μM) with or without FXN (50 μM) were added and the reaction of Fe-S cluster
assembly was monitored at 456 nm by UV-visible spectroscopy.

UV-visible and CD spectroscopies. Electronic absorption spectra in the UV-
visible domain were acquired using a Secomam UVIKON XL spectrometer and CD
spectra using a Jasco J-815 CD spectrometer. For iron binding properties of Zn-
ISCU, the samples were prepared by mixing 2 μL of ferrous ammonium sulfate
(5 mM) prepared in H2O with Zn-ISCU (100 μM), with or without FXN (100 μM)
in buffer P and under anaerobic conditions. For iron binding properties of apo-
ISCU, the samples were prepared by mixing apo-ISCU (100 μM), WT and mutants
(C35S, D37A, C61S, H103A that are devoid of zinc, and apo-C104S) prepared in
buffer P with 2 μL of ferrous ammonium sulfate (5 mM) prepared in water. The
mixtures were then introduced in a septum sealed cuvette.

To generate UV-visible and CD spectra of reconstituted ISCU alone and in the
NIAUF complex the contribution of the proteins and non-incorporated
component was subtracted. To this end, the mixture at the end of the reaction was
desalted on a Biospin P6 column to remove the contribution of non-incorporated
components, essentially NADPH, and the UV-visible and CD spectra were
collected. Then the contribution of the proteins was removed by subtraction of the
spectra of the initial mixture (minus L-cysteine and NADPH). To account for
protein loss during the desalting procedure, the amount of the initial spectra to be
subtracted was calculated based on total protein concentration measured by the
Bradford method before and after desalting. Scales in molar absorption coefficients
referred to the absorption coefficients of the [2Fe2S] clusters of free ISCU and of
ISCU in the NIAUF complex (see quantifications section).

Quantifications of zinc, iron, and Fe-S clusters. The zinc content of ISCU was
measured by inductively coupled plasma mass spectrometry (ICP-MS) at IRAMIS,
CEA Saclay, France, and routinely by a colorimetric method using 4-(2-pyridylazo)
resorcinol (PAR), a metallochromic indicator. In brief, a standard curve at 500 nm
was prepared using zinc sulfate in the 0–10 μM range in 8 M urea, 150 mM Tris,
pH 7.5 containing 100 μM of PAR. The amount of zinc in the proteins was
measured in the same buffer for five different concentrations. Iron in proteins was
quantified by ICP-MS. Routinely, the concentration of iron in stock solution was
determined using ferrozine56.

Fe-S clusters were quantified routinely by UV-visible spectroscopy based on
absorption coefficients that were determined by quantification of iron by ICP-MS.
To determine the absorption coefficient of the [2Fe2S] cluster of free ISCU and
ISCU within the NIAUF complex, ISCU was reconstituted under catalytic and
stoichiometric conditions, respectively, with 2 eq. of iron and L-cysteine to reach
the maximum yield. For free ISCU, the proteins were separated on a Superdex 75
column under anaerobic conditions. The fractions corresponding to monomeric
free ISCU holding a Fe-S cluster were pooled and a UV-visible spectrum was
collected. Total iron in this sample was measured by ICP-MS. Based on iron
titrations, an absorption coefficient of 7200M−1.cm−1 was determined at 456 nm
for the [2Fe2S] of free ISCU. For ISCU in the NIAUF complex, the reaction
mixture was desalted on a NAP-5 column, a UV-visible spectrum was collected and
total iron was measured by ICP-MS. Since FDX2 was present in this sample which
contains a [2Fe2S] cluster, its contribution to total iron was subtracted based on its
initial concentration. But to account for FDX2 loss during the desalting procedure,
the initial amount of FDX2 was corrected by measuring total protein concentration
by the Bradford method, before and after desalting. The titration of iron, corrected
from the contribution from FDX2, yielded an absorption coefficient of 6000M−1.
cm−1 at 456 nm for the [2Fe2S] of ISCU in the NIAUF complex.

For titration of Fe-S clusters by iron and L-cysteine, the reconstitutions were
performed under catalytic conditions with apo-ISCU (50 μM) mixed with the
NFS1-ISD11-ACP complex (5 µM), FXN (5 µM), FDX2 (5 µM), FDXR (1 µM) and
NADPH (100 μM) in buffer P and various amounts of iron or L-cysteine as
indicated in the text, keeping the concentration of L-cysteine or iron, respectively,
constant at 2 molar equivalents.

Mössbauer spectroscopy. Samples for Mössbauer spectroscopy were prepared by
mixing 300 μL of apo-ISCU (2 mM) WT and mutants, prepared in 50 mM Tris,
150 mM NaCl, pH= 8 (buffer T), with one equivalent of 57Fe enriched solution of
ferrous ammonium sulfate (81.5 mM) prepared in H2O. Samples of ISCU recon-
stituted with a Fe-S cluster were prepared under catalytic conditions with a mixture
containing 350 μL of apo-ISCU (1 mM), 57Fe enriched ferrous ammonium sulfate
(2 mM), the NFS1-ISD11-ACP complex (5 µM), FXN (5 µM), FDX2 (5 µM), FDXR
(1 µM), NADPH (2mM), and L-cysteine (2 mM) in buffer P and after 60 min of
reaction the mixture was desalted. The samples were introduced in sample holders
and frozen in the glove box.

Transmission Mössbauer spectra were recorded with a conventional Mössbauer
spectrometer operated in the constant acceleration mode in conjunction with a
512-channel analyzer in the time-scale mode (WissEl GmbH). The Mössbauer
spectra were calibrated using α-iron foil at room temperature. A continuous flow
cryostat (OptistatDN, Oxford Instruments) was used to cool the samples to 77 K.
Field-dependent conventional Mössbauer spectra were obtained with a helium

closed-cycle cryostat (CRYO Industries of America, Inc.) equipped with a
superconducting magnet. The magnetic field was aligned parallel to the γ-ray
beam. The spectral data were transferred from the multi-channel analyzer to a PC
for further analysis employing the public domain program Vinda running on an
Excel 2003® platform57. The spectra were analyzed by least-squares fits using
Lorentzian line shapes with the linewidth Γ. Field-dependent spectra were
simulated by means of the spin Hamilton formalism58.

Denaturing and native mass spectrometry analysis. Nanoelectrospray ioniza-
tion mass spectrometry (nanoESI-MS) analyses were carried out on a quadrupole
time of flight mass spectrometer (Synapt G2 HDMS, Waters) equipped with an
automated chip-based electrospray ionization technology (Triversa Nanomate,
Advion) using the positive ion mode.

Prior to mass spectrometry analysis, the samples were buffer exchanged with
10 mM ammonium acetate (AcONH4) at pH 7.0 using microcentrifuge gel-
filtration columns (Zeba 0.5 mL, Thermo Scientific).

For denaturing MS analysis, the external calibration was performed using a
2 μM denaturated horse heart myoglobin solution as a standard for denaturing
analysis in the 500–5000m/z range mass spectra. Data acquisition time and scan
time were set at 2-min and 4-s, respectively. Buffer exchanged samples were diluted
to 10 μM in a mixture of water:acetonitrile (1:1) acidified with 1% of formic acid.
Denaturing MS analyses were performed with an accelerating voltage of 40 V and
the backing pressure of the instrument was fixed to 1.7 mbar. Mass spectra were
deconvoluted with MassLynx 4.1 (Waters, Manchester, UK) using the MaxEnt
module 1 with the following parameters: m/z range: 600–3000; Gaussian
smoothing: 2; mass range: 14,500–15,000 Da, number of iterations: 30; substract:
20–40%.

For native mass spectrometry analysis, cesium iodide cluster ions from a 2 g/L
isopropanol:water (1:1) solution were used to calibrate the mass spectrometer up to
6000m/z. Samples were diluted to 10 μM in 10 mM ammonium acetate (AcONH4)
at pH 7.0. Data acquisition time and scan time were set at 2-min and 4-s,
respectively. To avoid the dissociation of the iron-sulfur cluster protein interaction,
the analysis under native conditions were performed with an accelerating voltage of
40 V and the backing pressure of the instrument was fixed to 6 mbar. Raw data
mass spectra were acquired with MassLynx 4.1 (Waters, Manchester, UK) and
treated with the following parameters: m/z range: 1500-4000; Gaussian
smoothing: 10.

NMR spectroscopy. 1D 1H and 2D 1H-15N SOFAST-HMQC NMR spectra of
unlabeled ISCU and 15N-ISCU were recorded on a Bruker Avance III 800MHz
NMR spectrometer equipped with a TCI cryoprobe at a temperature of 293 K.
Samples were in buffer P containing 7% 2H2O to lock the magnetic field. ISCU
concentration was 50–100 µM. Mixed samples with NFS1-ISD11-ACP and FXN
were obtained by adding 1 equivalent of each protein and concentrating the
mixtures to 50 µM final concentration. Apo-ISCU and Fe-ISCU samples were in
buffer T and measured in a valved tube filled in a glove box. Fe-ISCU was prepared
by incubating apo-ISCU with one molar equivalent of Fe2+. The ratio of the S to D
form was estimated based on the intensities of the two Hε-Nε correlation signals of
the tryptophan side chain of ISCU (denoted 74Wε)49.

Maleimide-peptide alkylation assay. Proteins were assayed for persulfide by
alkylation with MalP1614. The assays were routinely conducted with stoichiometric
amounts of NFS1-ISD11-ACP, ISCU (WT and mutants, with and without 1
equivalent of metal) and FXN at a final concentration of 20 μM and 5 equivalents
of L-cysteine. The reactions were stopped by incubation with 2 molar equivalents
of MalP16 with regard to the total concentration of thiols, under denaturing con-
ditions (2% SDS) for 30 min; then DTT (1 mM) was added and the reactions were
incubated for another 30 min before analysis by SDS-PAGE under reducing con-
ditions. Persulfidation of ISCU and NFS1 was monitored on 14% and 10% SDS-
PAGE gels, respectively.

Persulfide transfer to Fe-ISCU, Zn-ISCU, apo-ISCU, and the C104S mutant
reconstituted with iron (Fe-ISCUC104S) were assayed in the presence of FXN by
incubating the proteins with the NIA complex and L-cysteine for 5 min. To assay
reduction by FDX2, the persulfidated forms of Fe-ISCU and Zn-ISCU were
incubated with FDX2 (20 µM), FDXR (5 µM), and NADPH (100 μM) for 5 min
before analysis by the alkylation assay. To circumvent the co-migration of
alkylated FDX2 with fully alkylated ISCU which corresponds to its non-
persulfidated form, a mutant of ISCU lacking the cysteine residue C96, that is
non-conserved, was used to decrease the number of alkylation sites and thereby
decrease the size of alkylated ISCU. We have checked that the C96S mutation
was silent by assessing the kinetics of Fe-S cluster assembly under catalytic
conditions and by comparing the UV-visible spectra with WT ISCU (See
Supplementary Fig. 5a, b). To assess the effect of iron on persulfide reduction,
the persulfidated form of ISCU prepared as described above was incubated with
DTPA (100 μM) for 10 min before adding FDX2 (20 µM), FDXR (5 µM), and
NADPH (100 μM). We checked by UV-visible that at this concentration of
DTPA the [2Fe2S] cluster of FDX2 was not destroyed and was still reducible by
FDXR and NADPH (See Supplementary Fig. 5c). To assess the parallel effect of
FDX2 on the persulfidation of both NFS1 and ISCU (i.e., second transfer or
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direct reduction), WT Fe-ISCU (50 µM), the NIA complex (50 µM), and FXN
(50 µM) were incubated for 10 min with various amounts of L-cysteine, ranging
from sub-stoichiometric to excess, as indicated in the text. Then a mixture
containing FDX2 (5 µM), FDXR (1 µM), and NADPH (50 μM) was added and
the mixture was incubated for 10 min before analysis by the alkylation assay. The
persulfidation of both, ISCU and NFS1, before and after adding FDX2, were
analyzed in parallel.

To assess the effect of FXN on the kinetics of persulfide transfer, the reactions
were initiated by incubating Zn-ISCU or Fe-ISCU (20 μM) and the NIA complex
(20 μM) with 5 equivalents of L-cysteine in the absence or presence of FXN (20
μM). The reactions were analyzed at different time points by adding the mixture
containing MalP16 and SDS, as described above, to quench the reaction. Then the
persulfidation of ISCU was analyzed as described above.

Simulation of kinetics. The kinetics were fitted using the enzyme-substrate model
developed by Michaelis and Menten.

For catalytic conditions of reconstitution, the quasi-stationary state
approximation as developed by Briggs and Haldane was applied to the linear
portion of the kinetics corresponding to the steady state conditions. In this model
the initial and maximum velocities, Vi and Vmax, are express as follows:

Vi ¼
dP

dt
¼

Vmax � S0½ �

S0½ � þ KM

ð1Þ

Vmax ¼ k2 � E0½ � ð2Þ

Where P is the concentration of product, [S0] and [E0] are the initial concentrations
of substrate and enzyme, respectively, KM is the Michaelis constant and k2 the rate
of product formation. As the initial velocities were constant at all concentrations of
L-cysteine tested (Supplementary Fig. 2b), this indicated that the rate of the
reaction was at its maximum velocity. The initial velocity could then be equal to the
maximum velocity:

Vi ¼ Vmax ¼ k2: E0½ � ð3Þ

and after integration, the concentration of product is:

P½ � ¼ k2: E0½ �:t ð4Þ

The rate constant of Fe-S assembly, k2, was extracted from the slope by linear
regression of the linear portion of the curve. A similar model was applied to extract
the rate constant of persulfide reduction by FDX2 by monitoring Fe-S cluster
formation upon addition of FDX2 to the persulfidated form of the NIAU complex.

For stoichiometric conditions of reconstitution, the kinetics of persulfide
transfer were modelled as a first-order reaction corresponding to the trans-
persulfidation reaction within the NIAU complex. The curves were fitted using the
following first-order equation:

P ¼ Pf 1� exp �k:tð Þð Þ ð5Þ

Where Pf is the final concentration of product and k the rate constant of persulfide
transfer.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1a, d, 2e, f, 3a, b, g–i, 4a, b, f are provided as a Source

Data file. All other data supporting the findings of this study are available from the

corresponding author on reasonable request.

Received: 14 February 2019 Accepted: 4 July 2019

References
1. Braymer, J. J. & Lill, R. Iron-sulfur cluster biogenesis and trafficking in

mitochondria. J. Biol. Chem. 292, 12754–12763 (2017).
2. Cardenas-Rodriguez, M., Chatzi, A. & Tokatlidis, K. Iron–sulfur clusters: from

metals through mitochondria biogenesis to disease. J. Biol. Inorg. Chem. 23,
509–520 (2018).

3. Ciofi-Baffoni, S., Nasta, V. & Banci, L. Protein networks in the maturation of
human iron–sulfur proteins. Metallomics 10, 49–72 (2018).

4. Rouault, T. A. & Maio, N. Biogenesis and functions of mammalian iron-sulfur
proteins in the regulation of iron homeostasis and pivotal metabolic pathways.
J. Biol. Chem. 292, 12744–12753 (2017).

5. Freibert, S. A. et al. Evolutionary conservation and in vitro reconstitution of
microsporidian iron-sulfur cluster biosynthesis. Nat. Commun. 8, 13932
(2017).

6. Roche, B. et al. Iron/sulfur proteins biogenesis in prokaryotes: formation,
regulation and diversity. Biochim. Biophys. Acta 1827, 455–469 (2013).

7. Alvarez, S. W. et al. NFS1 undergoes positive selection in lung tumours and
protects cells from ferroptosis. Nature 551, 639 (2017).

8. Ezraty, B. et al. Fe-S cluster biosynthesis controls uptake of aminoglycosides in
a ROS-less death pathway. Science 340, 1583 (2013).

9. Pastore, A. & Puccio, H. Frataxin: a protein in search for a function. J. Neurol.
126(Suppl 1), 43–52 (2013).

10. Stehling, O., Wilbrecht, C. & Lill, R. Mitochondrial iron-sulfur protein
biogenesis and human disease. Biochimie 100, 61–77 (2014).

11. Saxena, N., et al. SDHB-deficient cancers: the role of mutations that impair
iron sulfur cluster delivery. J. Natl Cancer I. 108, djv287 (2016).

12. Fuss, J. O., Tsai, C. L., Ishida, J. P. & Tainer, J. A. Emerging critical roles of Fe-
S clusters in DNA replication and repair. Biochim. Biophys. Acta 1853,
1253–1271 (2015).

13. Przybyla-Toscano, J., Roland, M., Gaymard, F., Couturier, J. & Rouhier, N.
Roles and maturation of iron–sulfur proteins in plastids. J. Biol. Inorg. Chem.
23, 545–566 (2018).

14. Parent, A. et al. Mammalian frataxin directly enhances sulfur transfer of NFS1
persulfide to both ISCU and free thiols. Nat. Commun. 6, 5686 (2015).

15. Adinolfi, S. et al. Bacterial frataxin CyaY is the gatekeeper of iron-sulfur
cluster formation catalyzed by IscS. Nat. Struct. Mol. Biol. 16, 390–396 (2009).

16. Agar, J. N. et al. IscU as a scaffold for iron-sulfur cluster biosynthesis:
sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry
39, 7856–7862 (2000).

17. Chandramouli, K. et al. Formation and properties of [4Fe-4S] clusters on the
IscU scaffold protein. Biochemistry 46, 6804–6811 (2007).

18. Colin, F. et al. Mammalian frataxin controls sulfur production and iron entry
during de novo Fe4S4 cluster assembly. J. Am. Chem. Soc. 135, 733–740
(2013).

19. Nuth, M., Yoon, T. & Cowan, J. A. Iron-sulfur cluster biosynthesis:
characterization of iron nucleation sites for assembly of the [2Fe-2S]2+ cluster
core in IscU proteins. J. Am. Chem. Soc. 124, 8774–8775 (2002).

20. Tsai, C. L. & Barondeau, D. P. Human frataxin is an allosteric switch that
activates the Fe-S cluster biosynthetic complex. Biochemistry 49, 9132–9139
(2010).

21. Webert, H. et al. Functional reconstitution of mitochondrial Fe/S cluster
synthesis on Isu1 reveals the involvement of ferredoxin. Nat. Commun. 5,
5013 (2014).

22. Smith, A. D. et al. Sulfur transfer from IscS to IscU: the first step in iron-sulfur
cluster biosynthesis. J. Am. Chem. Soc. 123, 11103–11104 (2001).

23. Urbina, H. D., Silberg, J. J., Hoff, K. G. & Vickery, L. E. Transfer of sulfur from
IscS to IscU during Fe/S cluster assembly. J. Biol. Chem. 276, 44521–44526
(2001).

24. Bridwell-Rabb, J., Fox, N. G., Tsai, C. L., Winn, A. M. & Barondeau, D. P.
Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur
transfer chemistry. Biochemistry 53, 4904–4913 (2014).

25. Beilschmidt, L. K. et al. ISCA1 is essential for mitochondrial Fe4S4 biogenesis
in vivo. Nat. Commun. 8, 15124 (2017).

26. Fox, N. G., Chakrabarti, M., McCormick, S. P., Lindahl, P. A. & Barondeau, D.
P. The human iron-sulfur assembly complex catalyzes the synthesis of [2Fe-
2S] clusters on ISCU2 that can be transferred to acceptor molecules.
Biochemistry 54, 3871–3879 (2015).

27. Mühlenhoff, U., Richter, N., Pines, O., Pierik, A. J. & Lill, R. Specialized
function of Yeast Isa1 and Isa2 proteins in the maturation of mitochondrial
[4Fe-4S] proteins. J. Biol. Chem. 286, 41205–41216 (2011).

28. Synofzik, M. & Németh, A. H. in Handbook of Clinical Neurology 155 (eds
Mario Manto & Thierry A. G. M. Huisman) 73–89 (Elsevier, 2018).

29. Seguin, A. et al. Evidence that yeast frataxin is not an iron storage protein
in vivo. Biochim. Biophys. Acta - Mol. Basis Dis. 1802, 531–538 (2010).

30. Martelli, A. & Puccio, H. Dysregulation of cellular iron metabolism in
Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial
iron accumulation. Front. Pharmacol. 5, 130 (2014).

31. Aloria, K., Schilke, B., Andrew, A. & Craig, E. A. Iron-induced oligomerization
of yeast frataxin homologue Yfh1 is dispensable in vivo. EMBO Rep. 5,
1096–1101 (2004).

32. Iannuzzi, C. et al. The role of CyaY in iron sulfur cluster assembly on the E.
coli IscU scaffold protein. PloS one 6, e21992 (2011).

33. Pandey, A. et al. Frataxin directly stimulates mitochondrial cysteine
desulfurase by exposing substrate-binding sites, and a mutant Fe-S cluster
scaffold protein with frataxin-bypassing ability acts similarly. J. Biol. Chem.
288, 36773–36786 (2013).

34. Pynyaha, Y. V. et al. Deficiency in frataxin homologue YFH1 in the yeast
Pichia guilliermondii leads to missregulation of iron acquisition and
riboflavin biosynthesis and affects sulfate assimilation. Biometals 22,
1051–1061 (2009).

35. Yoon, H. et al. Frataxin-bypassing Isu1: characterization of the bypass activity
in cells and mitochondria. Biochem. J. 459, 71–81 (2014).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11470-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3566 | https://doi.org/10.1038/s41467-019-11470-9 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


36. Roche, B., Huguenot, A., Barras, F. & Py, B. The iron-binding CyaY and IscX
proteins assist the ISC-catalyzed Fe-S biogenesis in Escherichia coli. Mol.
Micro 95, 605–623 (2015).

37. Dzul, S. P. et al. In vitro characterization of a novel Isu homologue from
Drosophila melanogaster for de novo FeS-cluster formation. Metallomics 9,
48–60 (2017).

38. Rodrigues, A. V., Kandegedara, A., Rotondo, J. A., Dancis, A. & Stemmler, T.
L. Iron loading site on the Fe-S cluster assembly scaffold protein is distinct
from the active site. Biometals 28, 567–576 (2015).

39. Adinolfi, S. et al. Bacterial IscU is a well folded and functional single domain
protein. Eur. J. Biochem 271, 2093–2100 (2004).

40. Ramelot, T. A. et al. Solution NMR structure of the iron-sulfur cluster
assembly protein U (IscU) with zinc bound at the active site. J. Mol. Biol. 344,
567–583 (2004).

41. Liu, J. et al. Structural characterization of an iron-sulfur cluster assembly
protein IscU in a zinc-bound form. Proteins 59, 875–881 (2005).

42. Iannuzzi, C. et al. The role of zinc in the stability of the marginally stable IscU
scaffold protein. Protein Sci. 23, 1208–1219 (2014).

43. Boniecki, M. T., Freibert, S. A., Muhlenhoff, U., Lill, R. & Cygler, M. Structure
and functional dynamics of the mitochondrial Fe/S cluster synthesis complex.
Nat. Commun. 8, 1287 (2017).

44. Cory, S. A. et al. Structure of human Fe–S assembly subcomplex reveals
unexpected cysteine desulfurase architecture and acyl-ACP–ISD11
interactions. Proc. Natl Acad. Sci. USA 114, E5325–E5334 (2017).

45. Bonomi, F., Iametti, S., Morleo, A., Ta, D. & Vickery, L. E. Facilitated transfer
of IscU-[2Fe2S] clusters by chaperone-mediated ligand exchange.
Biochemistry 50, 9641–9650 (2011).

46. Fox, N. G. et al. Zinc(II) binding on human wild-type ISCU and Met140
variants modulates NFS1 desulfurase activity. Biochimie 152, 211–218 (2018).

47. McLaughlin, M. P. et al. Azurin as a Protein Scaffold for a Low-coordinate
Nonheme Iron Site with a Small-molecule Binding Pocket. J. Am. Chem. Soc.
134, 19746–19757 (2012).

48. Tucker, N. P. et al. Analysis of the nitric oxide-sensing non-heme iron center
in the NorR regulatory protein. J. Biol. Chem. 283, 908–918 (2008).

49. Kim, J. H. et al. Structure and dynamics of the iron-sulfur cluster assembly
scaffold protein IscU and its interaction with the cochaperone HscB.
Biochemistry 48, 6062–6071 (2009).

50. Liu, J. et al. Redesigning the blue copper azurin into a redox-active
mononuclear nonheme iron protein: preparation and study of Fe(II)-M121E
Azurin. J. Am. Chem. Soc. 136, 12337–12344 (2014).

51. Marinoni, E. N. et al. (IscS-IscU)2 complex structures provide insights into
Fe2S2 biogenesis and transfer. Angew. Chem. Int. Ed. 51, 5439–5442 (2012).

52. Shimomura, Y., Wada, K., Fukuyama, K. & Takahashi, Y. The asymmetric
trimeric architecture of [2Fe-2S] IscU: implications for its scaffolding during
iron-sulfur cluster biosynthesis. J. Mol. Biol. 383, 133–143 (2008).

53. Lange, H., Kaut, A., Kispal, G. & Lill, R. A mitochondrial ferredoxin is
essential for biogenesis of cellular iron-sulfur proteins. Proc. Natl Acad. Sci.
USA 97, 1050–1055 (2000).

54. Sheftel, A. D. et al. Humans possess two mitochondrial ferredoxins, Fdx1 and
Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster
biosynthesis. Proc. Natl Acad. Sci. USA 107, 11775–11780 (2010).

55. Selbach, B. P. et al. Fe-S cluster biogenesis in Gram-Positive bacteria: SufU
is a zinc-dependent sulfur transfer protein. Biochemistry 53, 152–160 (2014).

56. Martin, D. et al. The rotavirus nonstructural protein NSP5 coordinates a [2Fe-
2S] iron-sulfur cluster that modulates interaction to RNA. FASEB J. 27,
1074–1083 (2013).

57. Gunnlaugsson, H. P. Spreadsheet based analysis of Mössbauer spectra.
Hyperfine Interact. 237, 1–6 (2016).

58. Volker, S. & Heiner, W. Structure and dynamics of biomolecules studied by
Mössbauer spectroscopy. Rep. Prog. Phys. 63, 263 (2000).

Acknowledgements
We are grateful to M. Tummeley for support during the record of the Mössbauer spectra

and Batoul Srour for help with CD recording. We are grateful to Roland Lill’s lab for

providing purified ferredoxin reductase. This work was funded by the french National

Research Agency (ANR-17-CE11-0021 Frataxur awarded to B. D’Autréaux, ANR AA17-

PPPPCE11-0000034-02 PrxAge to M.B. Tolédano and ANR-11-LABX-0011-01 “LABEX

DYNAMO”), Fondation pour la Recherche Medicale to M.B. Tolédano, the MINECO

(grants CTQ2014-52658-R and CTQ2017-84779-R) for peptide-maleimide synthesis, the

Université de Strasbourg and the French Proteomic Infrastructure (ProFI; ANR-10-

INBS-08–03) for mass spectrometry experiments. S.C. thanks GIS IBiSA and Région

Alsace for financial support in purchasing a Synapt G2 HDMS instrument. T.B.

acknowledges the Institut de Recherche Servier for funding of his PhD fellowship. C.S.M.

and V.S. acknowledge the DFG for financial support of this work (SCHU 1251/17-1

within the SPP 1927 “Iron-Sulfur for Life”).

Author contributions
S.G. made characterization of iron containing ISCU by CD, Mössbauer and NMR,

assessed efficiency of Fe-ISCU and Zn-ISCU in Fe-S cluster reconstitution assays and

characterized Fe-S reconstituted ISCU by native mass spectrometry and Mössbauer. He

also made L-cysteine titrations of persulfidation and reduction by FDX2 using alkylation

assays. D.L. assessed the effects of FDX2 on the persulfide of Fe-ISCU and Zn-ISCU by

alkylation assays and mass spectrometry, performed kinetics of persulfide transfer to Fe-

ISCU and Zn-ISCU and assessed the effects of FXN on transfer. A.B.M. contributed first

studies showing effect of zinc and iron in ISCU using kinetics and alkylation assays and

first experiments indicating the effects of FXN on persulfide transfer. T.B. performed all

the analysis by mass spectrometry and contributed interpretation of the data. C.S.M.

performed all Mössbauer characterizations and simulations of these data and contributed

interpretation of the results. L.P. contributed metal titrations and analysis of oligomeric

states of Fe-S cluster containing ISCU. G.L.P. performed site-directed mutagenesis on

ISCU. A.D.-M. contributed discussion of the results. O.B., J.A., and A.G. synthesized the

maleimide-peptide. M.F. contributed interpretation of the results. V.S. contributed

interpretation of Mössbauer analysis. S.C. contributed design and interpretation of the

mass spectrometry experiments. C.S. designed and performed NMR analysis as well as

interpretations. M.T. contributed discussion of the results and writing of the manuscript.

B.D’A. designed and contributed most of the experiments, supervised S.G., D.L., A.B.M.,

and G.L.P., analyzed and interpreted the results and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-

019-11470-9.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Peer Review Information: Nature Communications thanks Patricia Dos Santos, Tracey

Rouault and the other anonymous reviewer for their contribution to the peer review of

this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11470-9

12 NATURE COMMUNICATIONS |         (2019) 10:3566 | https://doi.org/10.1038/s41467-019-11470-9 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-11470-9
https://doi.org/10.1038/s41467-019-11470-9
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications


© 2019. This work is published under

http://creativecommons.org/licenses/by/4.0/(the “License”). Notwithstanding

the ProQuest Terms and Conditions, you may use this content in accordance

with the terms of the License.


	Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin
	Results
	ISCU binds a Fe2+ ion upon removal of the Zn2+ ion
	Physiologically relevant assembly of Fe-S cluster by Fe-ISCU
	Mechanism of FDX2-based Fe-S cluster assembly by Fe-ISCU
	FXN stimulates persulfide transfer to Fe-ISCU
	Zn-ISCU promotes Fe-S cluster synthesis from free sulfide

	Discussion
	Methods
	Chemicals and materials
	Protein purification
	Metal insertion and exchange
	Fe-S cluster assembly assays
	UV-visible and CD spectroscopies
	Quantifications of zinc, iron, and Fe-S clusters
	Mössbauer spectroscopy
	Denaturing and native mass spectrometry analysis
	NMR spectroscopy
	Maleimide-peptide alkylation assay
	Simulation of kinetics
	Reporting summary

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


