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The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as

well as their precursor cholesterol are required for successful establishment and

maintenance of pregnancy and proper development of the fetus. The human placenta

forms at the interface of maternal and fetal circulation. It participates in biosynthesis

and metabolism of steroids as well as their regulated exchange between maternal and

fetal compartment. This review outlines the mechanisms of human placental handling

of steroid compounds. Cholesterol is transported from mother to offspring involving

lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger

receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters,

ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental

progesterone and estrogen synthesis. Hormone synthesis is predominantly performed

by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or

CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD.

Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules

from fetal and maternal serum. Placental uptake of these precursors is mediated by

members of the solute carrier (SLC) family including sodium-dependent organic anion

transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting

polypeptide 2B1 (OATP2B1). Maternal–fetal glucocorticoid transport has to be tightly

regulated in order to ensure healthy fetal growth and development. For that purpose, the

placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1.

This article also summarizes the impact of diverse compounds and diseases on the

expression level and activity of the involved transporters, receptors, and metabolizing

enzymes and concludes that the regulatory mechanisms changing the physiological to a

pathophysiological state are barely explored. The structure and the cellular composition

of the human placental barrier are introduced. While steroid production, metabolism

and transport in the placental syncytiotrophoblast have been explored for decades, few

information is available for the role of placental-fetal endothelial cells in these processes.

With regard to placental structure and function, significant differences exist between

species. To further decipher physiologic pathways and their pathologic alterations in

placental steroid handling, proper model systems are mandatory.

Keywords: cholesterol, progestagens, estrogens, glucocorticoids, gestational diabetes mellitus, preeclampsia,
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INTRODUCTION

The placenta is a multifunctional organ enabling optimal fetal
growth. Structure and function can adapt to diverse external
stressors. In case of failure of adaptation or inadequate placental
development, fetal survival or fetal growth and development are
endangered and developmental programming of adult diseases
may occur (Barker and Thornburg, 2013; Burton et al., 2016;
Arabin and Baschat, 2017). Moreover, the placenta contributes
to maternal diseases such as preeclampsia, which predispose the
mother to lifelong illness (Bokslag et al., 2016).

Essential placental functions are biosynthesis, metabolism,
and transport of cholesterol, sex hormones and glucocorticoids.
This article summarizes placental handling of these steroids
under physiologic conditions and gives an overview on changes
observed due to maternal diseases and exogenous influences.
Whenever possible, data obtained in human placenta or human
in vitro systems are referenced. We also draw attention to open
research questions.

THE HUMAN PLACENTAL BARRIER AND
PLACENTAL MODEL SYSTEMS

The hemochorial human placenta results from a deep invasion
of embryonic cells during implantation. The mature human
placenta is a disk delimited by chorionic and basal plate
(Figure 1A), which enclose the intervillous space filled with
maternal blood. The basal plate contacts the uterine wall. From
the chorionic plate, both umbilical cord and the branched
chorionic villi originate. The cells of the chorionic villi form the

Abbreviations: 7-DHC, 7-dehydrocholesterol; ABC, ATP-binding cassette;
ACAT, Acyl-coenzyme A:cholesterol acyltransferase; ACTH, adrenocorticotropic
hormone; A-dione, androstenedione; Apo, Apolipoprotein; ART, assisted
reproductive technologies; BCRP, breast cancer resistance protein; CEH,
cholesteryl ester hydrolase; CRH, corticotropin-releasing hormone; CTB,
cytotrophoblasts; CYP, cytochrome P450; DHCR7, 7-dehydrocholesterol
reductase; DHEA, dehydroepiandrosterone; DHEA-S, dehydroepiandrosterone
sulfate; E1, estrone; E2, estradiol; E3, estriol; ER, endoplasmic reticulum;
GDM, gestational diabetes mellitus; GR, glucocorticoid receptor; hCG,
human chorionic gonadotropin; HDL, high-density lipoprotein; HMG-CoA,
3-hydroxy-3-methylglutaryl-coenzyme A; HMGR, HMG-CoA reductase; HPA
axis, hypothalamic–pituitary–adrenal axis; HPEC, (isolated) human placental
epithelial cells; HSD, hydroxysteroid dehydrogenase; HSP, heat shock protein;
HUVEC, human umbilical vein endothelial cells; INSIG, insulin induced
gene; IUGR, intrauterine growth retardation; LDL, low-density lipoprotein;
LDLR, LDL receptor; LRP, LDLR-related protein; LXR, liver X receptor; MTP,
microsomal triglyceride transfer protein; NPC, Niemann-Pick C; OAT, organic
anion transporter; OATP, organic anion transporting polypeptide; OHC,
hydroxycholesterol; OHP, hydroxyprogesterone; ORP, OSB-related protein;
OSBP, oxysterol binding proteins; oxLDL, oxidized LDL; PCOS, polycystic ovary
syndrome; PDI, protein disulfide-isomerase; pFEC, placental-fetal endothelial
cells; PKA, protein kinase A; PM, particulate matter; RCT, reverse cholesterol
transport; ROR, RAR-related orphan receptors; ROS, reactive oxygen species;
RXR, retinoid X receptor; -S, -sulfate; SCAP, SREBP cleavage-activating protein;
SCP, sterol carrier protein; SF, steroidogenic factor; sFlt1, soluble fms-like tyrosine
kinase 1; SLC, solute carrier; SLCO, SLC transporter, SOAT, sodium-dependent
organic anion transporter; SLOS, Smith-Lemli-Opitz syndrome; Sp1, Specific
protein 1; SRB1, scavenger receptor class B type I; SRE, sterol regulatory element;
SREBP, SRE-binding protein; StAR/STARD1, steroidogenic acute regulatory
protein; START, StAR-related lipid transfer; STB, syncytiotrophoblast; STS, steroid
sulfatase; SULT, sulfotransferase; TLR, Toll-like receptor; VLDL, very low-density
lipoprotein; VLDLR, VLDL receptor.

“placental barrier,” which prevents direct contact of maternal and
fetal blood. Biosynthesis, metabolism, and transport of steroids
occur in the chorionic villi (Benirschke et al., 2012).

Chorionic villi are composed of several cell types (Jones
and Fox, 1991; Benirschke et al., 2012). The STB, an epithelial
multinucleated syncytium, covers the surface of the chorionic
villi. The microvillous apical membrane of the STB contacts
maternal blood, while the basal plasma membrane of the STB
is directed toward the stromal core of the villi. Apical and basal
plasma membranes of the STB are often regarded as the most
important membrane barriers in the materno-fetal transport
processes. Nutrients, hormones, or fetal waste products traverse
the STB by different transport mechanisms (Desforges and Sibley,
2010; Brett et al., 2014). Mononuclear CTB are located below
the STB. They proliferate and fuse into the STB, thus supporting
growth and regeneration of this layer. Early in pregnancy,
CTBs form a continuous layer beneath the STB (Figure 1B).
With progressing pregnancy, CTBs transform from a cuboidal
into a flat phenotype. The CTB layer becomes incomplete, but
maintains a functional network due to multiple interconnecting
cell processes (Jones et al., 2008; Figure 1C).

The stromal core of the chorionic villi contains fetal blood
vessels delineated by pFECs (Burton et al., 2009), macrophages
(Reyes et al., 2017) and additional stromal cells (Sati et al., 2007),
which are all embedded in a non-cellular matrix. pFECs are non-
fenestrated endothelial cells. Early placental pFECs are probably
more permeable than term pFECs. Recent years of research have
demonstrated the importance of pFEC function for the fetal
development (Wadsack et al., 2012). Heterogeneity of pFECs
in the macro-circulation (umbilical cord) and microcirculation
(chorionic villi) was shown in situ (Lang et al., 1993) and
in vitro (Lang et al., 2003). Moreover, venous and arterial pFECs,
which differ in their phenotypic, genotypic, and functional
characteristics, have been described (Lang et al., 2008). The term
placenta has a high degree of vascularity (Zhang et al., 2002).
The capillaries closely approximate the villous covering, thereby
forming “vasculosyncytial membranes” that are important for
materno-fetal exchange processes (Burton et al., 2009). Thus,
the term maternal–fetal interface or placental barrier consists
of a thin cytoplasmic layer of STB apposed to a capillary
(Figure 1C). Between the STB and pFEC the extracellular
matrix is reduced to their fused basal laminae. STB and pFEC
actively regulate uptake, metabolism, and transfer/exchange of
molecules, while the non-cellular structures probably act as
filters and provide transient storage capability (Benirschke et al.,
2012).

The placenta undergoes significant anatomical changes in
the course of pregnancy (Kingdom et al., 2000), which are
relevant to maintain appropriate placental function as pregnancy
progresses. Hormones in the fetal and maternal circulations
have an important role in determining the placental phenotype
(Fowden et al., 2015). As a developing organ that constantly
adapts to the maternal environment, not only the structure, but
also the transcriptome changes over time (Cox et al., 2015). In
line with this, expression of various placental genes involved in
biosynthesis, transfer or metabolism of steroids changes during
pregnancy (see below).
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FIGURE 1 | The placental barrier. (A) Schematic depiction of the main structural elements of the human placenta. From the chorionic plate (CP), the umbilical cord

(UC), and the chorionic villi (CV) originate. The umbilical vein carries oxygen- and nutrient-rich blood from the placenta to the fetus, while two arteries transport

deoxygenated blood and waste products from the fetus to the placenta. The intervillous space (IS) is filled with maternal blood that enters this cavity via remodeled

and opened maternal spiral arteries (SA) and leaves via uterine veins (UV). Cells in direct contact with maternal blood are the villous trophoblasts (T). The basal plate

(BP) contains extravillous trophoblasts and decidual cells. (B,C) Schematic representation of first trimester (B) and term trimester chorionic villi (C) depicting the major

cell types and the placental barrier. CTB , cytotrophoblast; M, myometrium of the maternal uterus, pFECs, placental-fetal endothelial cells; STB, syncytiotrophoblast.

The structure of the placenta is species-specific. Thus, no
perfect animal model for the human placenta exists and special
care must be taken with extrapolation of data from one species
to another. Higher order primates including old world monkeys
such as baboons are most closely aligned to humans with
respect to structure as well as regulation of steroidogenesis (Pepe
and Albrecht, 1995; Grigsby, 2016). Species-specific placental
anatomy, endocrine function or advantages and limitations of
relevant animal models to study the function of the human
placenta in health and disease are detailed in various review
articles (Malassine et al., 2003; Carter, 2007; Fowden et al., 2015;
Carter and Enders, 2016; Grigsby, 2016; Hafez, 2017).

Placental functions can also be studied in human ex vivo
models such as the isolated perfused placenta and placental
villous tissue explants. Commonly used in vitro models
are (1) isolated and in vitro cultured placental primary
cells including trophoblasts as well as primary arterial and
venous pFECs; (2) diverse, mainly trophoblastic cell lines
derived by either transfection or spontaneous mutation
including the choriocarcinoma cell lines BeWo, JEG-3, and
Jar; and (3) isolated membrane vesicles (Lang et al., 2008;

Prouillac and Lecoeur, 2010; Orendi et al., 2011; Cvitic et al.,
2013; Myllynen and Vahakangas, 2013; Gohner et al., 2014;
Steinberg and Robins, 2016). Choriocarcinoma cell lines are
the most extensively used cell models. Their disadvantage
is their origin from tumors. GeneChip analysis has revealed
considerable differences between the gene expression patterns of
choriocarcinoma cell lines and primary placental cells (Bilban
et al., 2010). Thus, results obtained in cell lines should always
be interpreted carefully and best be confirmed in other in vitro
or ex vivo models. Over the last years co-cultures of trophoblast
cells with endothelial cells have been established in order to
mimic the entire placental barrier (Levkovitz et al., 2013a,b;
Blundell et al., 2016, 2018). In the future, they may become
attractive models to study transplacental transport processes and
functional interdependence of cells.

CHOLESTEROL

Cholesterol (Figure 2B) is an essential component of cell
membranes influencing their integrity, fluidity, and permeability,
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FIGURE 2 | Structures of the steroid skeleton, cholesterol, and common oxysterols. (A) All steroids have the same basic perhydro-1,2-cyclopentenophenanthrene

skeleton. Letters designate each ring, the carbon atoms are numbered. A slight variation in this skeleton or the introduction of functional groups result in various

classes of steroids. (B) Unesterified cholesterol contains this skeleton with a hydroxyl group, two methyl groups, and a hydrogen tail. In the esterified form, a fatty

acid would be bound to the hydroxyl group by an ester bond. (C) 25-hydroxycholesterol (25-OHC), the most extensively studied oxysterol. (D) Oxysterol

27-hydroxycholesterol (27-OHC). (E) Oxysterol 7-ketocholesterol. Red molecules indicate the positions of hydroxylation (C,D) or oxidation (E) of cholesterol to 25- or

27-OHC, or 7-ketocholesterol, respectively. Oxysterols are intermediates of cholesterol catabolism and act as signaling molecules with regulatory impact on various

cellular processes including lipid metabolism.

equally important for the growing placenta and fetus. The
human placenta needs more than 1 g of cholesterol for tissue
growth (Pratt et al., 1946) and the term human placenta
manufactures approximately 400 mg of sex steroids from the
precursor cholesterol per day (Knopp et al., 1981). Cholesterol
is essential for myelination (Snipes and Suter, 1997) and as
an activator and propagator of the sonic hedgehog-signaling
pathway (Blassberg and Jacob, 2017). Thus, cholesterol is
indispensable for patterning and development of the fetal
nervous system.

Oxysterols are structurally closely related to cholesterol
(Figures 2C–E) and have regulatory functions in cholesterol
metabolism (Schroepfer, 2000; Mutemberezi et al., 2016; Sun
et al., 2018). They are not only generated by enzymes, but also
formed by autoxidation and thus accumulate under increased
oxidative stress (Zarrouk et al., 2014).

According to the WHO, in 2008 the global prevalence of
raised total cholesterol among female adults (≥5.0 mmol/l)
was 40%; thus, hypercholesterolemia became a major
health care problem. Various studies have indicated that
maternal hypercholesterolemia (Napoli et al., 1997, 1999;

Marceau et al., 2005; Catov et al., 2007; Zhang et al., 2017), but
also maternal hypocholesterolemia (Sattar et al., 1999; Edison
et al., 2007) negatively impact pregnancy outcome. Among the
observed consequences are preterm delivery (Marceau et al.,
2005; Catov et al., 2007; Edison et al., 2007), low birth weight
(Marceau et al., 2005), IUGR (Sattar et al., 1999), and changes
in the fetal aorta that determine the long-term susceptibility of
children to fatty-streak formation and subsequent atherosclerosis
(Napoli et al., 1997, 1999). Furthermore, altered mRNA
expression levels of placental lipoprotein receptors involved in
cholesterol uptake were observed (Ethier-Chiasson et al., 2007;
Zhang et al., 2017).

As described below, also diseases of pregnancy and various
endogenous and exogenous compounds can affect the placental
proteins involved in cholesterol biosynthesis, metabolism, and
transport. The long-term consequences for the fetus are hardly
known. Thus, we need to further explore the regulation of
cholesterol-associated pathways in placentas in healthy and
diseased pregnancies in order to understand the correlation
between observed changes in utero and diseases developing
during later lives.
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Cholesterol Biosynthesis and
Homeostasis
Cellular cholesterol homeostasis includes tightly regulated
processes, which are summarized in Figure 3 (Ikonen,
2006; Cerqueira et al., 2016; Soffientini and Graham, 2016).
Intracellular cholesterol synthesis starts from acetyl-coenzyme
A (acetyl-CoA). Lanosterol, the first sterol, feeds into two
pathways, the Bloch (Bloch, 1965) and the Kandutsch–Russell
(Kandutsch and Russell, 1960) pathway that both result in
cholesterol production. The rate-limiting and committed
step is the conversion of HMG-CoA to mevalonate mediated

by HMGR. HMGR is regulated by endogenous molecules
including transcription factor SREBP2 (Shimano and Sato, 2017)
as well as the statin drugs (Lamon-Fava, 2013). Excess cellular
cholesterol gets fatty-acylated by the action of ACAT, to form
cholesteryl esters for storage in cytoplasmic lipid droplets; the
inverse reaction is controlled by, e.g., CEH (Miller and Bose,
2011; Korber et al., 2017).

Cholesterol synthesis and HMGR activity in human (Hellig
et al., 1970; Telegdy et al., 1970; Boguslawski and Sokolowski,
1984) as well as baboon placenta (Khamsi et al., 1972; Shi et al.,
1999) decrease as pregnancy progresses. There are estimates

FIGURE 3 | Important steps in cholesterol synthesis and homeostasis. Cholesterol synthesis occurs via the mevalonate pathway and involves over 20 enzymes. It

starts from acetyl-CoA in the cytosol, but all steps downstream of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) occur in the smooth endoplasmic reticulum.

Lanosterol, the first sterol, feeds either into the Bloch pathway or the Kandutsch–Russell pathway. In these pathways, cholesterol is produced from either

desmosterol or 7-dehydrocholesterol (7-DHC), by the enzymes 24-dehydrocholesterol reductase (DHCR24) and 7-dehydrocholesterol reductase (DHCR7),

respectively. Gene mutations of the enzyme DHCR7 result in Smith-Lemli-Opitz syndrome, SLOS, with increased levels of cholesterol precursors and reduced levels

of cholesterol. In the skin, 7-DHC can be converted to vitamin D by UVB light. Diverse oxysterols are produced enzymatically from cholesterol, its precursors but also

during subsequent steroid hormone synthesis. The rate limiting step in cholesterol synthesis is catalyzed by 3 HMG-CoA reductase (HMGR). Cellular homeostasis of

cholesterol is maintained by three distinct mechanisms (red arrows). (1) Regulation of HMGR activity and levels to control cholesterol biosynthesis occurs by

feed-back inhibition, control of gene expression, rate of enzyme degradation, and phosphorylation–dephosphorylation. For example, the transcription factor sterol

regulatory element-binding protein 2 (SREBP2) positively regulates the gene expression of HMGR. Rising cholesterol and oxysterol levels reduce the rate of

cholesterol biosynthesis by modulating the activities of insulin-induced gene (INSIG) proteins. When activated, INSIG both promotes the ubiquitination and

consequent destabilization of HMGR and inhibits the transcriptional activity of SREBP2 by retaining it in complex with SREBP cleavage-activating protein (SCAP) in

the endoplasmic reticulum. (2) Rising cholesterol levels also activate acyl-coenzyme A:cholesterol acyltransferase (ACAT), which esterifies cholesterol leading to its

sequestration in cytosolic lipid droplets. Through hydrolysis via the cholesteryl ester hydrolase (CEH) enzyme system, the cholesteryl esters can be reused later. (3)

Regulation of cholesterol uptake and export via low-density lipoprotein (LDL)-receptor-mediated uptake and high-density lipoprotein HDL-mediated reverse

transport, respectively. Oxysterols activate liver-X receptor (LXR) transcription factors, which positively regulate the transcription of proteins that drive cholesterol

efflux from the cell (ABC transporter, ABCA1 and ABCG1), and sequester it in lipoprotein particles containing Apolipoprotein E (ApoE) in the circulatory system.

Activation of oxysterol binding protein-related proteins (ORP) by oxysterols negatively regulates cholesterol efflux by promoting ABCA1 ubiquitination and

degradation. Following binding of lipoprotein particles (LDL and HDL) to their respective receptors [LDLR, Scavenger receptor class B type 1 (SRB1)], they are

internalized into endosomes. Alternatively, HDL particles can transfer cholesteryl esters to the plasma membrane (selective lipid uptake) without requirement for

endocytosis. Within endosomes, Niemann-Pick C1 (NPC1) and NPC2 are critical for the egress of internalized cholesterol from endosomes; they act together to

redistribute cholesterol to the ER. Statins are HMGR inhibitors. The net result of statin treatment is an increased cellular uptake of LDLs, since the intracellular

synthesis of cholesterol is inhibited and cells are therefore dependent on extracellular sources of cholesterol.
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that de novo cholesterol synthesis in the term human placenta
provides only 1–2% of the cholesterol required for progesterone
biosynthesis (Simpson et al., 1978). But the extent of cholesterol
synthesis is species-specific; rabbit placentas near term exhibit a
high level of HMGR expression and activity (Montoudis et al.,
2003; Marseille-Tremblay et al., 2007).

Human pregnancy is characterized by maternal
hyperlipidemia especially during the last trimester (Herrera
et al., 2006). High maternal estrogen concentrations and
maternal insulin-resistance stimulate hepatic VLDL production.
Triglyceride and cholesterol concentrations in LDL and HDL
particles rise, providing ample cholesterol fuel for the STB
(Winkler et al., 2000; Herrera, 2002; Weissgerber and Wolfe,
2006). In contrast, maternal serum cholesterol levels in pregnant
rabbits drop significantly compared to the non-pregnant state
(Marseille-Tremblay et al., 2007).

With advancing gestational age, maternal serum-derived
cholesterol replaces endogenously produced cholesterol as
the major substrate of placental progesterone production in
humans and baboons (Baird et al., 1973; Babischkin et al.,
1997a,b; Henson, 1998; Shi et al., 1999). Addition of LDL
to primary trophoblast cultures drastically suppresses de novo
cholesterol synthesis, stimulates progesterone production and
inhibits cholesteryl ester-forming ACAT (Winkel et al., 1980a,b,
1981). Likewise, addition of HDL2 stimulates progesterone
secretion in vitro (Lasuncion et al., 1991). Trophoblasts isolated
from healthy early, mid, and late baboon gestation show an
upregulation of LDLR in mid and late gestation, while HMGR
activity is reduced (Henson et al., 1997). Nevertheless, when
external LDL supply is reduced in vivo or in vitro, human and
baboon trophoblasts continue to produce sufficient progesterone
due to endogenous cholesterol production (Simpson et al., 1978;
Moise et al., 1986; Parker et al., 1986; Henson et al., 1991).
In choriocarcinoma cells, an inverse relationship between the
lipoproteins in the culture medium and the HMGR activity
was demonstrated (Simpson et al., 1978). Together, these data
suggest feedback inhibition of maternal-derived cholesterol on
endogenous cholesterol synthesis and cholesteryl ester formation
in human and baboon STB.

Impact of Exogenous and Endogenous
Factors on Placental Cholesterol
Biosynthesis
Inconsistent with feedback inhibition by cholesterol, maternal
hypercholesterolemia does neither change placental HMGR
protein levels nor change placental cholesterol or cholesteryl ester
content (Marseille-Tremblay et al., 2008).

From other tissues, age- and gender-related dysregulation of
cholesterol metabolism, and specifically of HMGR regulation are
known (Trapani and Pallottini, 2010). A hint for placenta-specific
regulation of cholesterol biosynthesis is the observation that
maternal hypercholesterolemia causes an increase in the placental
expression of the transcription factor SREBP-2 (Marseille-
Tremblay et al., 2008). Scarce information is available on
regulation of the placental SREBP – SCAP – INSIG system
(Figure 3). In the Golden Syrian hamster, suppression of

sterol synthesis by exogenous sterol is blunted in placenta and
other developing tissues when compared to parental tissues.
This lack of response appears to be mediated at least partly
through the SCAP:INSIGs ratio, which is 1.8-fold greater in
the placenta as compared to the adult liver (Yao et al., 2007).
Neither in human nor baboon placenta regulation of these
molecules has been investigated so far, but this topic might
be of relevance in the context of ART, which are increasingly
applied today. Among the observed adverse neonatal outcomes
in pregnancies conceived through in vitro fertilization and
intracytoplasmic sperm injection are low birth weight and small
size for gestational age. Interestingly, a recent study performed
in humans (Lou et al., 2014) found that placenta and fetus
fromART pregnancies showed altered transcript levels of INSIG1
and SREBF1. The enhanced gene expression correlated with
lower methylation rates of INSIG1 and SREBF1. The authors
hypothesized an impact of ART on the placental/fetal cholesterol
metabolism with consequences for the future life of the offspring
(Collier et al., 2009). More research is required to confirm this
theory.

Estrogen production is significantly (3–8 times at term)
increased during pregnancy. The elevated estrogen levels were
suggested to stimulate cholesterol uptake via increased LDLR
expression as well as progesterone production via increased
P450scc enzyme activity in cultured primary trophoblasts (Pepe
and Albrecht, 1995; Grimes et al., 1996). In contrast, activities
of the placental enzymes HMGR, ACAT, or CEH were found
unaffected by estrogen (Babischkin et al., 1997a). This contrasts
with estrogen-influenced HMGR regulation in other species and
tissues (Trapani et al., 2010).

Recently, an impact of GDM on cholesterol synthesis
and esterification in isolated and cultured human placental
endothelial cells (HPECs) has been observed. The authors of
the study suspected that higher intracellular ROS levels in GDM
upregulated HMGR, increased de novo cholesterol biosynthesis
and ACAT1 expression, but the underlying mechanisms remain
to be identified (Sun et al., 2018).

Statins, inhibitors of HMGR, are increasingly prescribed
to women of reproductive age (Forbes et al., 2015), but in
experiments with first trimester placental explants or isolated
first trimester trophoblasts, statins revealed detrimental effects
on trophoblast growth (Forbes et al., 2008). Statins not only
significantly decreased progesterone secretion (Kenis et al.,
2005). They also inhibited proliferation (Forbes et al., 2015)
and migration (Tartakover-Matalon et al., 2007) of trophoblasts.
Isoprenylation, which also depends onHMGR activity (Figure 3),
is required for cell proliferation, migration, metabolism, and
protein glycosylation and thus, proper development of embryo
and placenta. The existing data suggest that statins should be
avoided during the first trimester of pregnancy (Ermini et al.,
2017). On the other hand, there is evidence that statins, due
to their anti-proliferative, anti-invasive, anti-inflammatory, and
anti-angiogenic effects might be useful in treatment of various
obstetric and gynecologic conditions including endometriosis,
PCOS, ovarian cancer, preeclampsia, and antiphospholipid
syndrome (Esteve-Valverde et al., 2018; Zeybek et al., 2018).
Further studies are required to understand the mechanisms of
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action of statins during gestation. Moreover, clinical trials to
investigate the efficacy, safety, and appropriate dosage of different
statins during pregnancy are needed.

In summary, the regulation of placental cholesterol synthesis
requires further characterization, but species-specific placental
structure and function should be considered. Many of the
involved enzymes are regulated at multiple levels (Shi et al.,
1999). Besides total mRNA and protein levels, DNA- and protein
modifications and protein activities should be analyzed to obtain
conclusive information about the mechanism of regulation. Since
placental tissue is a mixture of different cell types, analysis of
purified cell populations should be preferred over total tissue
analysis to decipher cell type-specific regulation of protein
expression (Shi et al., 1999).

Maternal Lipoprotein Particle Uptake by
the STB
Fetuses produce a significant fraction of the required cholesterol
via endogenous synthesis. In humans, genetic defects in de novo
cholesterol synthesis result in severe congenital birth defects.
SLOS is caused by a deficiency of DHCR7 (Figure 3), which
catalyzes the conversion of 7-DHC to cholesterol (Jira, 2013;
Kanungo et al., 2013). SLOS fetuses with null mutations in
DHCR7 exhibit no endogenous cholesterol synthesis, but they
have some cholesterol in tissues and blood at birth indicating
placental cholesterol transfer (Tint et al., 1995).

Amount and period of materno-fetal cholesterol transport
remain under debate. Extrapolation of data from non-human
species is difficult as the quantity of cholesterol derived from
the maternal circulation differs (Connor and Lin, 1967; Pitkin
et al., 1972; Cavender et al., 1995; Woollett, 1996, 2005; Jurevics
et al., 1997; Woollett and Heubi, 2000; Herrera, 2002) ranging
from very low levels in rat (Belknap and Dietschy, 1988; Jurevics
et al., 1997) to more than 40% in the rhesus monkey (Pitkin et al.,
1972). Studies in humans revealed that materno-fetal cholesterol
transfer occurred throughout pregnancy (Plotz et al., 1968; Hellig
et al., 1970; Lin et al., 1977). However, mainly during early
development maternal cholesterol serves as the primary source
of fetal cholesterol (Napoli et al., 1997; Baardman et al., 2012).

Subsequently, we summarize the mechanisms of placental
cholesterol uptake and transport (Figure 4). Cholesterol
transport across the secondary yolk sac that may participate in
nutrition of the human fetus during the first trimester (Burton
et al., 2001) was reviewed elsewhere (Baardman et al., 2013).

In plasma, cholesterol is associated with different types of
lipoprotein particles. Among them, LDLs carry 65–70% of
circulating plasma cholesterol. Lipoprotein particles can interact
with the plasma membrane of target cells via members of the
LDLR family including LDLR, VLDLR, LRP1, LRP2 (megalin),
or LRP8 (apoE receptor 2) (Go and Mani, 2012).

The presence of LDL-specific binding sites was shown
throughout pregnancy in preparations of microvillous
placental membranes, representing enriched apical STB
plasma membranes (Alsat et al., 1982, 1984; Rebourcet et al.,
1986; Naoum et al., 1987). Expression of LDLRmRNA in baboon
STB increases with advancing pregnancy (Albrecht et al., 1995).

Estrogen, but also depletion of cholesterol upregulate LDLR
expression (Henson et al., 1991, 1997; Pepe and Albrecht, 1995;
Grimes et al., 1996; Babischkin et al., 1997a,b). But conflicting
data concerning the regulation of LDLR mRNA levels in
total placental tissue in the course of human pregnancy exist
(Furuhashi et al., 1989; Albrecht et al., 1995; Murata et al., 1996;
Plosch et al., 2010). Additional expression of LDLR in stromal
cells in the chorionic villi (Kamper et al., 2017) and cell-type
specific receptor regulation may account for that discrepancy.

The transfer of lipids between HDL and target cells is
incompletely understood. A number of proteins and receptors
have been described to bind HDL. After receptor binding,
HDL associated lipids are transferred to cells predominantly
without catabolism of the particle. Transfer of cholesteryl esters
to the accepting plasma membrane is known as “selective
uptake” (Linton et al., 2017). An alternative pathway comprising
endocytosis of whole HDL particles followed by resecretion
exists. Neither the connection between HDL endocytosis and
selective lipid uptake nor the physiological relevance of HDL
uptake is fully clarified. SRB1 (in humans also termed CLA-1) is
a multiple ligand receptor able to facilitate uptake of cholesteryl
esters from HDL. SRB1 can also mediate whole HDL particle
endocytosis (Rohrl and Stangl, 2013).

HDL binding-sites as well as SRB1 were found on isolated
placental microvillous and basal plasma membranes of the STB
(Alsat and Malassine, 1991; Lafond et al., 1999). In situ, SRB1
localizes to first and third trimester trophoblasts as well as term
pFECs (Landers et al., 2018). Cultured first trimester trophoblasts
expressed SRB1, exhibited selective cholesteryl ester-uptake from
HDL3, but also displayed considerable HDL endocytosis and
degradation. In term cultured trophoblasts, SRB1 expression was
lower. Likewise, selective uptake as well as HDL degradation
were decreased compared to first trimester cells, but were still
elevated compared to other tissues (Wadsack et al., 2003). In
vitro, SRB1 involvement in selective cholesteryl ester-uptake from
HDL3 was demonstrated (Wadsack et al., 2003). In total placental
tissue highest SRB1 expression levels were observed in term
placenta (Plosch et al., 2010), which might be explained by the
expression of SRB1 in pFECs (Stefulj et al., 2009) and the increase
of the proportion of vessels from 37% in first trimester to 63%
at term (Zhang et al., 2002). In pregnant women with high
serum cholesterol levels, LDLR expression, but not SRB1 protein
expression is down-regulated (Ethier-Chiasson et al., 2007).
Cell-type specific, SRB1 gene transcription can be regulated by
hormones, including hCG and estrogen (Landschulz et al., 1996;
Fukata et al., 2014).Whether and how SRB1 expression in human
STB and pFECs is influenced by these hormones, remains to be
determined.

VLDL binds to term placental microvillous membranes
(Naoum et al., 1987) and the triglyceride-enriched VLDL is
an important fatty acid supplier for the fetus. Hydrolysis of
VLDL-associated triglycerides is mediated by lipases such as
lipoprotein lipase, which are expressed at the apical membrane
of the STB (Bonet et al., 1992; Lindegaard et al., 2005). While
the placenta also expresses several receptors for apolipoprotein
(Apo)E-enriched particles, including VLDLR (Gafvels et al.,
1993; Wittmaack et al., 1995; Murata et al., 1996), LRP1 (Gafvels

Frontiers in Pharmacology | www.frontiersin.org 7 September 2018 | Volume 9 | Article 1027

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Chatuphonprasert et al. Steroids and the Human Placenta

FIGURE 4 | Proposed model for placental uptake of cholesterol from maternal lipoproteins, cholesterol metabolism, and materno-fetal transport of cholesterol. For

detailed information, see text. Solid arrows indicate pathways that have been demonstrated in vitro. Dashed arrows indicate hypothetic routes. Apo, Apolipoprotein;

ABC transporters, ATP-binding cassette transporters; CYPs, cytochrome P-450 enzymes; CTB, cytotrophoblast; pFECs, placental-fetal endothelial cells; HDL,

high-density lipoprotein; HSP, heat shock protein; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; LRP, lipoprotein receptor-related proteins;

LXR, liver X receptor; PDI, protein disulfide isomerase; MTP, microsomal triglyceride transfer protein; RXR, retinoid X receptor; SRB1, scavenger receptor class B type

1; STARD3, StAR-related lipid transfer domain protein 3; STB, syncytiotrophoblast; VLDL, very low-density lipoprotein; VLDLR, very low-density lipoprotein receptor.

et al., 1992; Cao et al., 2014; Kamper et al., 2017), LRP2
(Burke et al., 2013; Kamper et al., 2017), and LRP8 (Kim
et al., 1996; Ulrich et al., 2016), their involvement in cholesterol
uptake by the STB has never been demonstrated. A mutation
in human LRP2 gives rise to severe congenital anomalies in
the offspring (Kantarci et al., 2007). This may indicate an
important role of LRP2 in placental cholesterol transport, but
LRP2 is a multiligand receptor and thus, may serve different
roles in trophoblast biology (Coukos et al., 1994; Go and Mani,
2012).

Impact of Diseases and Exogenous
Compounds on Placental Lipoprotein
Receptor Expression
GDM is a glucose intolerance, which is first recognized during
pregnancy, but usually resolves after birth. In Europe, it has

a prevalence of 5.4% (Eades et al., 2017). The most common
adverse outcome is high fetal birth weight (macrosomia).
Placental abnormalities include increased incidence of villous
immaturity, increased measures of angiogenesis, and higher
placental weight. GDM is also associated with a higher risk of
maternal and fetal complications including development of type
2 diabetes in later life (Huynh et al., 2015; Gallo et al., 2016; Rani
and Begum, 2016). In GDM, altered maternal and neonatal lipid
profiles were observed. Moreover, expression of LDLR and SRB1
was induced (Dube et al., 2013).

IUGR is observed in 5–10% of pregnancies. Due to a
compromised placental function, the fetus does not reach its
intrauterine potential for growth and development. As the second

leading cause of perinatal mortality IUGR is responsible for 30%

of stillborn infants. Long-term health defects include impaired
neurological and cognitive development and cardiovascular or
endocrine diseases in adulthood (Nardozza et al., 2017). IUGR
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is associated with a decreased supply of nutrients and/or oxygen
to the growing fetus. Placental LDLR expression was found
increased, while SRB1 expression was decreased compared to
healthy controls (Wadsack et al., 2007).

Preeclampsia is a multifactorial pregnancy-specific
disease affecting 3–5% of pregnancies. It is defined by de
novo hypertension manifested after 20 weeks of gestation
in combination with either proteinuria (300 mg/day),
maternal organ dysfunction or uteroplacental dysfunction
(Tranquilli et al., 2014). IUGR and premature birth are
clinically relevant complications. In addition, preeclampsia
affects the long-term outcome of both mothers and their
offspring (Bokslag et al., 2016). Serum levels of triglycerides,
LDLs, small dense LDLs that are susceptible to oxidation,
as well as oxLDLs are higher in women with preeclampsia
compared to healthy pregnant women (Chigusa et al., 2013).
Murata et al. (1996) found decreased expression of VLDLR
and LDLR mRNA in third trimester placentas derived from
preeclamptic women. Hentschke et al. (2013) reported no
differences in LDLR, LRP1, SRB1 mRNA levels when comparing
placentas of healthy and preeclamptic women. But they
observed reduced LRP1 mRNA expression in placentas of
preeclamptic mothers delivering small-for-gestational-age
babies compared to healthy controls (Hentschke et al.,
2013).

Maternal exposure to cadmium, which is present in tobacco
smoke, is associated with low birth weight and possibly with
an increased incidence of spontaneous abortion. Cadmium
accumulates in the placenta and reduces progesterone secretion.
Partly, this is related to a down-regulation of LDLR mRNA
(Jolibois et al., 1999; Kawai et al., 2002).

In summary, the human placenta expresses several receptors
for lipoprotein particles. For most receptors, their involvement
in and individual contribution to placental cholesterol uptake
remains unexplored. Moreover, regulation of receptor expression
under physiologic and pathologic conditions of pregnancy has
been barely investigated.

Intracellular Cholesterol Transport in the
STB
After internalization into acidic endosomal compartments,
dissociation of receptor-ligand complexes occurs. The receptors
return to the plasma membrane, while lipoprotein particles
enter the lysosomal route for degradation. Cholesterol
incorporates into the endosomal/lysosomal membranes by
coordinated actions of NPC1 and NPC2. Cholesterol transport
to mitochondria for steroidogenesis is achieved by lipid transfer
proteins including StAR/STARD1 and other members of
the START domain protein family (Elustondo et al., 2017).
Cholesterol transport to other cellular targets, e.g., the plasma
membrane occurs by vesicular and non-vesicular means, the
latter involving cholesterol binding to various proteins (Miller
and Auchus, 2011; Luo et al., 2017). Although expression of some
intracellular cholesterol transporting proteins including NPCs,
NPC1-Like1, ABC-transporters ABCA2, SCP-x, STARD3, and
HSP60 has been demonstrated in human term placenta (Tuckey
et al., 2004; Burke et al., 2009; Monreal-Flores et al., 2017), the

mechanism of intracellular cholesterol transport in STB remains
largely uncharacterized.

Cholesterol Exit From the STB
To eliminate cholesterol, hepatocytes secrete lipoprotein particles
(Sacks, 2015). Secretion requires ApoB and the ER-localized
cofactor MTP. MTP transfers lipids to the forming lipoproteins.
It is a dimer of a 97-kDa protein and PDI (Walsh and
Hussain, 2017). Most other cell types release excess cholesterol
to extracellular lipid acceptors. Mechanisms accounting for
cholesterol efflux include passive diffusion as well as active
pathways mediated by ABCA1, ABCG1, and SRB1. Several
factors including cellular cholesterol status, lipid transporter
activity, and the nature of extracellular acceptors, influence
the efficiency of cholesterol efflux. ABCA1 and ABCG1 are
specifically important for the elimination of cholesterol from cells
and tissues and for the biogenesis of HDL. ABCA1 stimulates
cholesterol efflux to lipid-free apolipoproteins, predominantly to
apoA-I, but also ApoE. In contrast, ABCG1 promotes efflux of
cholesterol and oxysterols to HDL. SRB1 can mediate cholesterol
efflux from peripheral cells to HDL, but not to lipid-free apoA-I
(Phillips, 2014; Favari et al., 2015).

Efflux of cholesterol from the basal side of the STB is unclear.
It may occur via secretion of either lipoprotein particles or
of cholesterol complexed with apolipoproteins. ApoB, MTP
large subunit and PDI are expressed in the STB (Kamper
et al., 2017) and unique lipoprotein particles containing ApoB
and ApoA-I have been isolated from placental tissue (Park
et al., 1988). Furthermore, secretion of ApoB-100-containing
lipoprotein particles was shown from term placental biopsies
(Madsen et al., 2004). More recently, apical and basal secretion
of ApoB in polarized grown BeWo cells was demonstrated
(Kamper et al., 2017). Cholesterol complexed with ApoB or
lipoprotein particles and secreted from the basal membranes
of the STB could provide cholesterol and other lipids not
only to pFECs and consequently to the fetus, but also to
CTBs as well as stromal cells of the chorionic villi given
that these cells express the relevant apolipoprotein receptors.
Indeed, in situ expression of lipoprotein receptors such as
LDLR or LRP1 on placental cells including pFECs or LRP2
on the CTB was shown (Kamper et al., 2017). This would
enable uptake of STB-derived lipoprotein-associated cholesterol.
In support of the idea that intact lipoproteins reach stromal
cells of the villi, a capability to hydrolyze VLDL-triglycerides
has been demonstrated on isolated placental macrophages (Bonet
et al., 1992). However, how placental macrophages or other
stromal cells cover their cholesterol requirements is currently
unknown.

Apical secretion of ApoE from the STB was suggested to
facilitate uptake of maternal non-LDL lipoprotein particles
(Rindler et al., 1991); likewise, apical secretion of ApoB, which
was observed in BeWo cells (Kamper et al., 2017), could be
of relevance for regulation or induction of cholesterol uptake
by trophoblasts. Moreover, apical secretion of apolipoproteins
may enable RCT from the STB via apically expressed ABCA1
or SRB1 (see below). However, these speculations require further
investigation.
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Alternatively, cholesterol can exit the STB via ABCA1 and
ABCG1, which stimulate efflux of cholesterol and oxysterols (Aye
et al., 2009). Both transporters exhibit high expression in the
placenta (Albrecht et al., 2007; Stefulj et al., 2009; Aye et al., 2010;
Bhattacharjee et al., 2010; Nikitina et al., 2011; Bloise et al., 2016).
They localize to apical (ABCA1) and basal membrane (ABCG1)
of the STB and to the luminal surface of the pFEC (Albrecht et al.,
2007; Stefulj et al., 2009; Aye et al., 2010; Baumann et al., 2013),
but contradictory localization data also exist (Bhattacharjee et al.,
2010; Nikitina et al., 2011). In cultured trophoblasts, up- or
down-regulation of ABCA1 and ABCG1 stimulated or reduced,
respectively, cellular cholesterol efflux (Aye et al., 2010). The
presence of SRB1 at the apical and basal membrane of the STB
(Lafond et al., 1999) would allow for bidirectional transport of
liposoluble molecules to and from lipoprotein particles (Cao
et al., 1997). In polarized grown BeWo cells, basal efflux of
cholesterol was highest to HDL, and was suggested to occur
via either SRB1 (Schmid et al., 2003), or ABCG1 (Woollett,
2011). However, expression and subcellular localization of SRB1,
ABCA1, and ABCG1 seem to differ between BeWo cells and
primary trophoblasts (Woollett, 2011). In any way, an efflux of
cholesterol from the basal membrane of the STB via ABCG1 or
SRB1 requires appropriate cholesterol acceptor molecules within
the stroma of the villi. This has not been described.

Cholesterol Transport by pFECs
Uptake of cholesterol by pFECs remains unknown. Efflux of
cholesterol via ABCA1 and ABCG1 to apolipoproteins or HDL
particles, respectively, has been confirmed in isolated term
HPECs, while SRB1 does not contribute to HDL-mediated
cholesterol release (Stefulj et al., 2009; Sun et al., 2018).
Appropriate cholesterol acceptor molecules (HDL and ApoE) are
available in the fetal circulation (Bansal et al., 2005).

Regulation of ABC-Transporters via LXR
in Health and Diseases
LXRs are “sterol sensors” responsible for protecting cells from
cholesterol overload. LXR-activation by oxysterols (see below),
but not cholesterol, induces transcriptional activity of the
LXR/RXR heterodimer. This results in reduced intracellular
cholesterol synthesis as well as cholesterol uptake, but induced
expression of molecules implicated in RCT including ABCA1,
ABCG1, and ApoE (Zhao andDahlman-Wright, 2010; Soffientini
and Graham, 2016; see Figure 3). Although oxysterols are
generally perceived as endogenous agonists of LXR, some can
act as antagonists (Mutemberezi et al., 2016). Due to their
role in lipid metabolism, LXRs are considered as relevant
drug targets. The synthetic ligands T0901317 and GW3965 are
important tools in biomedical research. Unfortunately, they have
poor LXR subtype selectivity and T0901317 is not only an
LXR ligand, but also displays agonistic effects on farnesoid X
receptor and pregnane X receptor (Zhao and Dahlman-Wright,
2010).

LXR-α and LXR-β as well as RXR can be detected throughout
gestation, with increased expression of LXRs in preterm and term
placentas (Marceau et al., 2005; Plosch et al., 2010). Preeclampsia

or GDM were found to influence expression of LXRs in some
(Weedon-Fekjaer et al., 2010b), but not all studies (Plosch et al.,
2010).

LXR controls expression of ABCA1 and ABCG1 in cultured
trophoblasts (Aye et al., 2010) and HPECs (Stefulj et al., 2009;
Sun et al., 2018). Oxysterols or T0901317 increase cholesterol
efflux, while LXR-inhibitors or siRNA-mediated LXR knock
down decrease cholesterol efflux. As key regulators of the
lipid metabolism, LXRs also play a regulatory role in fatty
acid metabolism in trophoblast cells (Weedon-Fekjaer et al.,
2010a).

Recently, upregulation of ABCA1 and ABCG1 in HPECs
derived from GDM placentas compared to control placentas
was shown. Upregulation was the consequence of GDM-induced
increased ROS-formation, increased ROS-derived oxysterol
levels and subsequent LXR activation. The resulting enhanced
cholesterol efflux protected the cells from cholesterol overload
due to GDM-induced increased cholesterol biosynthesis. Thus,
the LXR-mediated upregulation of ABC-transporters in GDM
appeared to restore cholesterol homeostasis (Sun et al., 2018).
Alterations of expression levels of ABCA1 and ABCG1 in
total placental tissue in case of pregnancy diseases such as
GDM, preeclampsia, hypoxia, or antiphospholipid-syndrome
were reported, but the results are partly inconsistent (Albrecht
et al., 2007; Plosch et al., 2007, 2010; Korner et al., 2012; Baumann
et al., 2013; Chigusa et al., 2013; Dube et al., 2013; Liu et al., 2014;
Huang et al., 2018).

ABCA1 and ABCG1 also efflux oxysterols (Stefulj et al.,
2009; Aye et al., 2010; Sun et al., 2018). In cultured trophoblasts,
both transporters were shown to prevent accumulation
of the oxysterols 25-hydroxycholesterol (25-OHC) and
7-ketocholesterol (Figures 2C,E), which exhibit cytotoxic
potential at higher concentrations (Aye et al., 2010). ABCA1
expression increases during trophoblast syncytialization in vitro
(Keelan et al., 2011). ABCA1 localization at the apical STB
membrane in situ (Figure 4) may ensure efflux and thus
placental elimination of oxysterols into maternal blood.

Oxysterols and Pregnancy
Many different oxysterols have been identified; they are
formed by either free radical oxidation or by enzyme-mediated
mechanisms (Mutemberezi et al., 2016). Oxysterols exhibit
multifaceted functions. Some oxysterols are important regulators
of cholesterol homeostasis (Figures 3, 4). 27-OHC (Figure 2D),
produced from cholesterol by the enzyme CYP27A1, is the
most prominent oxysterol in the bloodstream of human adults
(Bjorkhem, 2002). In vitro, 27-OHC inhibits cholesterol synthesis
by negative feedback regulation of HMGR. 27-OHC is an
agonist of LXR stimulating cholesterol efflux from cells. Increased
CYP27A1 and/or 27-OHC levels might reflect the attempt
to remove excess cholesterol from cells and to limit lipid
peroxidation. Some studies show that diseases of pregnancy
such as preeclampsia are associated with altered expression of
placental CYP27A1 protein and altered levels of 27-OHC in
placenta, maternal, and/or fetal serum. But these studies are
partly contradictory and the mechanism behind the alteration
and the impact of these changes on placental cholesterol
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metabolism remains to be determined (Moon et al., 2014; Mistry
et al., 2017; Winkler et al., 2017).

Oxysterols are major components of oxLDL. They contribute
to the pathophysiology of atherosclerosis, and are found at
increased levels in atherosclerotic lesions (Vejux et al., 2008;
Levitan et al., 2010). OxLDL serum levels rise even during normal
gestation (Belo et al., 2004; Makedou et al., 2011). Elevated levels
of oxLDL and oxysterols have been identified in maternal serum
in preeclampsia, pregnancy-induced hypertension, GDM, and
diabetes mellitus type I as well as in the cord blood of neonates
with IUGR or GDM (Bodzek et al., 2002a,b; Uzun et al., 2005; Qiu
et al., 2006; Kim et al., 2007; Leduc et al., 2011; Moon et al., 2014;
Sun et al., 2018). Overall, the cytotoxic and pro-inflammatory
activities of oxysterols contribute to the development of many
diseases associated with oxidative stress (Vejux et al., 2008;
Zarrouk et al., 2014).

Oxysterols can influence various aspects of trophoblast
function. The oxysterols 25-OHC and 7-keto-cholesterol
(Figures 2C,E), which are present in oxLDLs, reduce trophoblast
invasion via activation of LXR (Pavan et al., 2004; Fournier
et al., 2008). Moreover, 25-OHC inhibits syncytialization of
CTB (Aye et al., 2011). Oxysterols increase the release of soluble
endoglin, a molecule present at elevated concentrations in
the maternal circulation in women with preeclampsia, via
increased expression of matrix metalloproteinase 14 in the
placenta (Valbuena-Diez et al., 2012; Brownfoot et al., 2014).
Oxysterols promote the production of pro-inflammatory
cytokines in placental trophoblasts, via activation of TLR 4
thus providing a mechanistic link between oxidative stress in
pregnancy and placental inflammation. This pro-inflammatory
action of oxysterols predominated over simultaneously observed
anti-inflammatory effects mediated by oxysterols via LXR
activation (Aye et al., 2012). It has been speculated that LXR
activation indirectly supports the repression of TLR target
genes activation. LXR activation results in increased placental
expression of ABCA1 and ABCG1 (Stefulj et al., 2009; Aye
et al., 2010; Sun et al., 2018). This may change cellular oxysterol
levels as well as alter the cholesterol content of the membrane
microdomains required for TLR signaling by promoting
cholesterol efflux.

The dual (pro-inflammatory/anti-inflammatory) role of
oxysterols observed in trophoblast cells (Aye et al., 2012) already
indicates the complexity associated with these molecules. In
addition, a study by Larkin et al. (2014) revealed that the effects
of oxysterols on trophoblasts are concentration dependent.
25-OHC applied at higher (100 µM) concentrations was found
to be cytotoxic, to inhibit differentiation as well as progesterone
secretion of trophoblast cells. In contrast, low (10 µM)
concentrations stimulated differentiation, progesterone secretion
and ABCA1 expression, and reduced SRBP2, LDLR and HMGR
expression (Larkin et al., 2014). To add to the complexity, not all
of these cellular effects are mediated via LXR (Larkin et al., 2014).
Oxysterols are known to interact with many proteins. RORα

and RORγ are other nuclear receptors binding oxysterols. RORs
are transcription activators and RORγ was shown to regulate
hepatic lipid metabolism. Loss of RORγ reduces the expression
of a number of lipid metabolic genes, which in turn reduces

the levels of triglycerides, cholesterol, and bile acids in liver and
blood. 25-OHC is an agonist of RORγ, while other oxysterols
may function as inverse agonists (Mutemberezi et al., 2016;
Jetten et al., 2018). Oxysterols including 25-OHC are able to bind
INSIGs, which induces interaction of INSIGs and SCAP and
consequently inhibits SREBP activation. 25-OHC can regulate
cholesterol synthesis by interaction with NPC1 and 2. Finally,
25-OHC can bind to OSBP and ORPs and modify their function
(Figure 3). ORP8 can modulate ABCA1 expression and thereby
influence cholesterol efflux (Mutemberezi et al., 2016).

To conclude, oxysterols can compromise placental formation,
regeneration, and function, but also are important regulators
of placental cholesterol metabolism and probably other
physiological processes. Their effect may depend on the identity
and concentration of the local oxysterol compound and the
available intracellular binding partners. ABCA1 and ABCG1
were shown to prevent the toxic effects of oxysterols on placental
and fetal development and function, and reduce the risks
associated with diseases of pregnancy such as GDM. But altered
regulation of these receptors or oxysterol binding partners
in the case of pregnancy-associated diseases in combination
with increased levels of oxysterols might (further) compromise
placental function.

Our knowledge of function and regulation of oxysterols
in the context of pregnancy and regulation of cholesterol
metabolism remains limited. We need to explore the types of
oxysterols induced during healthy and diseased pregnancy, and
learn whether they are generated mainly by enzymes or by
autoxidation. It remains to be determined whether they act
primarily early (around implantation) or late in pregnancy.
Published data are often contradictory. This might be related
to problems associated with reliable measurements of oxysterols
that are quite susceptible to autoxidation and the fact that
oxysterol production is influenced by several factors including
cell type, mode of experimentation or circadian variations
(Schroepfer, 2000; Mutemberezi et al., 2016).

STEROID HORMONES

Steroid hormones comprise sex steroids and corticosteroids.
In adults, the sex steroids – progestagens, estrogens, and
androgens – are produced in ovaries and testes, while the
corticosteroids – glucocorticoids and mineralocorticoids – are
released from the adrenal cortex (Miller and Auchus, 2011;
Miller, 2017). During pregnancy, the placental STB becomes
a major source of progesterone (at term around 250 mg/day)
and estrogens (at term around 100–120 mg/day). Fetal organs
(adrenal cortex and liver), in contrast, synthesize corticosteroids
and the androgens DHEA, DHEA-S, 16α-hydroxy-DHEA, and
16α-hydroxy-DHEA-S (Evain-Brion and Malassine, 2003; Costa,
2016; Pasqualini and Chetrite, 2016). These hormones are
transfered between placental and fetal compartment and are
subjected to transformation. Partly, fetus and placenta have
complementary enzyme activities and thus are interdependent.
Moreover, the hormones also reach the maternal compartment.
For more information about steroid hormone exchange between
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fetus, placenta andmother the reader is referred to Pasqualini and
Chetrite (2016). Proper function and interaction of the steroid
producing tissues and the involved enzymes and transporters
is crucial since the intrauterine exposure of the offspring to
abnormal levels of glucocorticoids (Miranda and Sousa, 2018)
or sex steroids (Cardoso et al., 2015; Pluchino et al., 2016)
can negatively impact fetal development. Furthermore, abnormal
concentrations of steroid hormones during pregnancy can
increase the maternal risk for malignant diseases (Schock et al.,
2014). The following chapters summarize the mechanisms of
uptake, synthesis, and transformation of steroid hormones at the
human placental barrier and highlight circumstances that cause
alterations.

Steroid hormones are derived from cholesterol and thus have
closely related structures based on the common steroid skeleton
(Figure 2A). The major classes of enzymes required for the
production of steroid hormones are the CYP heme-containing
proteins (P450 and CYPs) and the HSDs. CYPs important
for steroid hormone synthesis are CYP11A1, which is a
mitochondrial protein, as well as CYP17A1, CYP19A1, and
CYP21A2, all located in the ER. CYPs catalyze the hydroxylation
and cleavage of steroid substrates, while reduction and oxidation
of steroid hormones are effected by isoforms of 3βHSDs and
17βHSDs. Cell-type specific, HSDs localize to the membranes
of either mitochondria or ER (Payne and Hales, 2004; Miller
and Auchus, 2011). The major placental transporter families are
SLCs and the ABC-transporters. SLCOs usually mediate influx
of their substrates. They participate in uptake of hydrophilic
or charged molecules such as sulfated steroids. In contrast,
ABC-transporters mediate the efflux of substrates (Joshi et al.,
2016; Walker et al., 2017).

Sex Steroids and the Placenta
Progesterone

Progesterone (P4) is the major and most relevant progestagen. In
humans, the ovarian corpus luteum secretes progesterone until
week 8 of gestation, thereafter, the placenta completely takes over
the production (Malassine et al., 2003).

Progesterone exerts many functions. Briefly, it is an
intermediate in the production of other steroid hormones
(Figures 5, 6) and a neurosteroid involved in brain function.
Progesterone is crucial for a successful pregnancy as it supports
blastocyst implantation, maintains pregnancy, and prepares
the mammary glands for lactation (Miller and Auchus, 2011;
Halasz and Szekeres-Bartho, 2013; Costa, 2016; Di Renzo et al.,
2016). Progesterone and synthetic progestins are successfully
used for the prevention of preterm birth and for treatment
of various gynecological disorders (Di Renzo et al., 2012,
2016).

The action of progesterone on target tissues is mediated by
two progesterone receptor isoforms (A and B) that function
as ligand-activated transcription factors. Under physiological
conditions, the withdrawal of progesterone receptor-mediated
signaling triggers menstruation and parturition (Wetendorf
and DeMayo, 2012, 2014; Patel et al., 2015). Likewise,
pathologic deregulation of the progesterone-receptor signaling
pathway is associated with preterm delivery (Patel et al., 2015;

Tiwari et al., 2016). For example, poor pregnancy outcome due
to hepatitis E virus infection is related to low expression
of functional progesterone receptors and high expression of
receptor haplotypes exhibiting reduced response to progesterone
(Romano et al., 2007; Bose et al., 2011).

Physiology and Pathophysiology of Progesterone

Synthesis

Synthesis of progesterone starts within mitochondria (Figures 4,
6). Cholesterol has to be loaded into the outer mitochondrial
membrane in a process that is not entirely understood (Miller
and Auchus, 2011; Miller, 2017). In most steroidogenic tissues,
the transport of cholesterol from the outer to the inner
mitochondrial membrane is mediated by StAR, which can be
acutely stimulated by tissue-specific trophic hormones (Miller,
2013); however, StAR is not expressed in human placenta
(Sugawara et al., 1995). Instead, StAR-like protein, STARD3
(or MLN64) (Bose et al., 2000; Tuckey et al., 2004) as well as
HSP60 are involved in mitochondrial cholesterol import in the
placenta (Tuckey, 2005; Olvera-Sanchez et al., 2011; Esparza-
Perusquia et al., 2015; Monreal-Flores et al., 2017). In JEG-3
cells, HSP60 additionally participates in delivery of cholesterol to
the metabolizing enzyme CYP11A1 (Monreal-Flores et al., 2017).
STARD3 action requires a complex multicomponent molecular
machine on the outer mitochondrial membrane, which includes,
among other factors, the translocator protein TSPO. In obese
women (BMI 38.8 ± 6.4 kg/m2), who exhibit altered insulin
sensitivity and leptin level, the serum levels of progesterone as
well as estradiol were significantly reduced. While expression of
key enzymes of placental progesterone and estrogen synthesis
(CYP11A1, 3β-HSD1, and 17β-HSD1) was not altered, the
expression levels of TSPO as well as the cholesterol content in
placental mitochondria were decreased. In vitro, long chain fatty
acids and LPS could reduce TSPO expression (Lassance et al.,
2015).

After mitochondrial import, cholesterol is hydroxylated at
two positions (C-20 and C-22) and the cholesterol side chain
is cleaved off by P450 side-chain cleaving enzyme (P450scc or
CYP11A1; Figures 5, 6; Hochberg et al., 1974; Slominski et al.,
2015b). CYP11A1 is a rate-limiting enzyme of steroidogenesis
and converts cholesterol to pregnenolone, the precursor of
all other steroid hormones (Hanukoglu, 1992; Miller and
Auchus, 2011; Miller, 2013). Moreover, CYP11A1 is also a
metabolizing enzyme for other sterols. It mediates conversion
of 7-DHC to 7-dehydropregnenolone and hydroxylates the side
chain of vitamin D (Slominski et al., 2005, 2006, 2009, 2012,
2015a,b).

CYP11A1 localizes exclusively to the STB (Li et al., 2005; He
et al., 2013). The placental CYP11A1 protein expression level
remain constant from first to term trimester (Henderson et al.,
2008; He et al., 2013). The major regulatory factor for CYP11A1
gene expression in other steroidogenic tissues, SF-1, is absent in
the human placenta. Instead, human placental CYP11A1 gene
expression is tightly regulated by one activator (LBP-1b) and two
repressor proteins (LBP-9 and LBP-32). In analogy to CYP11A1,
these proteins are expressed already very early in pregnancy and
localize to the STB (Henderson et al., 2008).
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FIGURE 5 | Structures and interconversion of the sex-steroids progestagens (green), estrogens (red), and androgens (blue) starting from cholesterol. For detailed

information, see text. Arrows indicate metabolizing processes by respective enzymes (gray). CYPs, cytochrome P-450 enzymes; HSD, hydroxysteroid

dehydrogenase; SULT, sulfotransferase.

CYP11A1 is upregulated at both mRNA and protein level in
placentas of women with severe preeclampsia. Overexpression
of CYP11A1 reduces trophoblastic cell proliferation and induces
apoptosis in the HTR8/SVneo extravillous trophoblast cell
line through activation of caspase-3 expression (Enquobahrie
et al., 2008; He et al., 2013). In line with increased expression
of CYP11A1 during preeclampsia, the level of pregnenolone
(and progesterone) is increased in preeclamptic women (Moon
et al., 2014). CYP11A1 is also involved in lipid peroxidation.
Based on results obtained in isolated placental mitochondria
and JEG-3 cells, it has been speculated that not only
excess progesterone synthesis but also production of lipid
peroxides by increased expression of placental CYP11A1 may
contribute to the pathogenesis of preeclampsia (Zabul et al.,
2015).

In contrast, life style factors like smoking or cocaine may
inhibit progesterone synthesis. Cadmium, which is found in
cigarette smoke, reduces CYP11A1 mRNA expression as well as
progesterone synthesis in human cultured trophoblasts (Kawai
et al., 2002). A study in pregnant rats treated with cocaine
demonstrated significantly reduced maternal serum levels of
pregnenolone and progesterone as well as reduced mRNA and
protein expression of CYP11A1 and STARD3 (Wu et al., 2012).

Pregnenolone is converted to progesterone by 3β-HSD1 in
the ER (Figures 5, 6; Miller and Auchus, 2011; Liu et al., 2016).

3β-HSD1 is exclusively expressed in the placental STB (Ian
Mason, 1993; Li et al., 2005), while 3β-HSD2 is predominantly
expressed in the adrenal gland and gonads (Labrie et al., 1992;
Ian Mason, 1993). Besides pregnenolone, human 3β-HSD1 can
also use 17α-hydroxypregnenolone and DHEA as substrates
(Hanukoglu, 1992). Various endogenous hormones including
estradiol, insulin, insulin-like growth factor, calcitriol, leptin,
and CRH can modulate progesterone synthesis (Costa, 2016).
Unfortunately, also environmental toxins influence activity of
3β-HSD1 and thus progesterone synthesis. Evidence for this
was obtained in the choriocarcinoma cell line JEG-3. Fine PM
(<2.5 µm, PM2.5) is a leading air pollutant and exposure
to PM2.5 during the prenatal period increases the risk of
adverse pregnancy outcome. Exposure of cells to PM2.5 causes
reduced progesterone secretion as well as reduced expression
of 3β-HSD1 and CYP11A1 mRNA and protein (Wang et al.,
2017). The fungicide tributyltin lowers progesterone production
and acts as a moderate inhibitor of 3β-HSD1 (Cao et al.,
2017). Likewise, the insecticides methoxychlor and its metabolite
hydroxychloroquine inhibit progesterone as well as estradiol
production; these substances are potent 3β-HSD1 inhibitors (Liu
et al., 2016). In contrast, ochratoxin A, a common food-borne
mycotoxin, induces the expression of 3β-HSD1, leading to a
significant increase of progesterone production (Woo et al.,
2013).
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FIGURE 6 | Proposed model for placental progesterone and estrogen synthesis. For detailed description, see text. Progestagens are shown in green, estrogens in

red, and androgens in blue color. Solid arrows indicate enzymatic steps that have been demonstrated in human placenta; respective enzymes are shown in gray.

Dashed arrows indicate hypothetic routes of transport of sulfate-conjugated compounds. Dashed purple circles highlight sulfate-conjugated compounds that require

transporters for uptake into (SOAT, OAT4, and OATP2B1) and export (ABCG2) from cells. A-dione, androstenedione; ABC transporters, ATP-binding cassette

transporters; BCRP, breast cancer resistance protein; DHEA, dehydroepiandrosterone; DHEA-S, dehydroepiandrosterone sulfate; CYPs, cytochrome P-450

enzymes; E1, estrone; E1-S, estrone sulfate; E2, Estradiol; E2-S, estradiol sulfate; E3, estriol; E3-S, estriol sulfate; ER, endoplasmatic reticulum; pFEC,

placental-fetal endothelial cell; -OH-, -Hydroxy-; 17α-OHP, 17α-hydroxyprogesterone; HSD, hydroxysteroid dehydrogenase; OAT4, organic anion transporter 4;

OATP2B1, organic anion transporting polypeptide 2B1; SOAT, sodium-dependent organic anion transporter; STS, steroid sulfatase; SULT, sulfotransferase; STB,

syncytiotrophoblast; TES, testosterone.

Estrogens

The group of estrogen steroids comprises estrone (E1),
estradiol, (E2), estriol (E3), and estetrol (E4). Among these,
estradiol is the most abundant estrogen. Estrogen’s multiple
functions have been summarized on several occasions and
include stimulation of utero-placental blood flow, endometrial
growth and differentiation, contraction of the myometrium
and proliferation of the mammary epithelium (Mesiano, 2001;
Costa, 2016). As detailed in the chapter on cholesterol,
estrogens also regulate expression of genes required for placental
cholesterol supply. They exert their effect via different types of

receptors, the nuclear estrogen receptors α and β as well as

membrane-associated receptors. The synthesis of estrogens is
controlled by diverse endogenous hormones such as estradiol,

cortisol, calcitriol, CRH, hCG, insulin, and leptin (Costa,
2016).

Physiology and Pathophysiology of Estrogen

Synthesis

Synthesis of estrogens involves several enzymes and transporters
(Figures 5, 6). CYP17A1 (or P450c17) is a bifunctional enzyme
with 17α-hydroxylase and 17,20-lyase activities that converts
pregnenolone to 17α-hydroxypregnenolone and subsequently
to DHEA. Alternatively, progesterone can be converted to
17α-hydroxyprogesterone (17α-OHP) and then to A-dione
(Escobar and Carr, 2011; Thomas and Potter, 2013). Early
studies in human placentas and choriocarcinoma cell lines
could not demonstrate placental CYP17A1 activity or mRNA
expression (Siiteri and MacDonald, 1966; Bahn et al., 1981;
Voutilainen and Miller, 1986). The concept emerged that the
placenta was unable to convert pregnenolone and progesterone
to the androgen products. Thus, compulsive import of sulfated
fetal C19-androgens, 16α-hydroxylated DHEA-S and DHEA-S,
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which are further processed into estrogens by placental STS,
3βHSD1, CYP19A1 (aromatase), and 17βHSD isoenzymes, was
assumed. However, more recent studies (Pezzi et al., 2003;
Escobar et al., 2011; Noyola-Martinez et al., 2017) demonstrated
placental CYP17A1 mRNA expression, although at a much
lower level as compared to 3β-HSD1, CYP19A1, CYP11A1,
and 17β-HSD3. CYP17A1 protein was detected in placental
STB and JEG-3 cells (Escobar et al., 2011). 17α-OHP synthesis
by CYP17A1 in trophoblasts is regulated by the cAMP/PKA
pathway (Escobar and Carr, 2011). The authors estimated that
20–30% of the estrogen produced during pregnancy could result
from pregnenolone conversion by placental CYP17A1.

While endogenous production of DHEA in the STB occurs,
a large fraction of the sulfo-conjugated C19-estrogen precursors
16α-OH-DHEA-S and DHEA-S is derived from the fetus
(Figure 6); maternal DHEA-S is also used, but to a minor extent
(Kallen, 2004; Pasqualini and Chetrite, 2016). DHEA is produced
in the fetal adrenal gland, which is also rich in SULT activity,
thus generating DHEA-S. 16α-OH-DHEA-S, that is the most
abundant estrogen precursor, is synthesized in the fetal liver by
16α-hydroxylation of DHEA-S via CYP3A7 (Leeder et al., 2005).
Fetal hepatic CYP3A7 expression is detected around day 50 to 60
of gestation (Yang et al., 1994); expression of CYP3A7 in human
placenta remains unclear (Hakkola et al., 1996; Maezawa et al.,
2010). Unconjugated estrogens, synthesized by the placenta, are
released into both the maternal and fetal blood by diffusion. In
part, they get sulfated in the maternal and fetal compartment and
re-enter the placenta by carrier-mediated transport (see below).
Moreover, the human placenta exhibits STS activity as well as
SULT activities (e.g., SULT1E1 and SULT2B1) (Stanley et al.,
2001; Miki et al., 2002; He et al., 2004) and thus can convert
unconjugated estrogens (or other substrates) into sulfated forms
and vice versa, respectively. Formore information on the function
of sulfated steroid hormones in reproduction, the reader is
referred to Geyer et al. (2017).

Uptake of conjugated fetal and maternal steroids requires
placental expression of appropriate transport systems (Geyer
et al., 2017). The human SLC family 22 member 11 (SLC22A11)
also known as OAT4, is predominantly expressed in placenta
and kidney (Cha et al., 2000). In placenta, OAT4 was detected
at the basal plasma membrane of the STB as well as on the
CTB in first- and third-trimester placentas (Ugele et al., 2003;
Noguchi et al., 2015; Tomi et al., 2015). Studies using isolated
basal membrane fractions of placental STB, primary trophoblasts,
JEG-3 cells as well as OAT4-transfected cell lines demonstrated
uptake of sulfated steroids, includingDHEA-S, 16α-OH-DHEA-S
and sulfated estrogens via OAT4 (Cha et al., 2000; Ugele et al.,
2008; Schweigmann et al., 2014; Tomi et al., 2015). PKA regulates
OAT4-mediated transport of sulfated steroids (Tomi et al., 2014).
The SLC OAT family member 2B1 (SLCO2B1, OATP2B1, and
OATP-B) is also expressed at the basal surface of the STB
and on the CTB (St-Pierre et al., 2002). However, 16α-OH-
DHEA-S is not a substrate of SLCO2B1. SLCO2B1 can transport
sulfated estrogens, while conflicting data exist about whether
DHEA-S is a substrate of this transporter (Grube et al., 2007;
Ugele et al., 2008; Schweigmann et al., 2014). SLCO2B1 activity
is regulated by unconjugated steroid hormones (Grube et al.,

2006). The BCRP (ABCG2) is found on the apical surface of
placental STB (Nakamura et al., 1997). Placental ABCG2 appears
regulated by several endogenous factors (including hormones)
as well as exogenous factors (Hahnova-Cygalova et al., 2011).
In ABCG2/OATP2B1-overexpressing epithelial MDCKII cells,
Grube et al. (2007) obtained evidence that OATP2B1 and
ABCG2 together mediate basolateral-to-apical directed transport
of the steroid sulfates E3-S and DHEA-S (Grube et al., 2007).
Thus the current concept for uptake of fetal sulfated steroid is
that OAT4 can transport sulfo-conjugated estrogens as well as
sulfated C19-steroid precursors for placental de novo synthesis of
estrogens. In contrast, OATP2B1 (in combination with ABCG2)
may rather contribute to the clearance of estrogen sulfates
(as well as DHEA-S?) from the fetal circulation (Ugele et al.,
2003; Grube et al., 2007). SOAT was identified as transporter
for both 16α-OH-DHEA-S and DHEA-S (Schweigmann et al.,
2014). SOAT was detected in the apical membrane of STB
as well as on pFECs in the third trimester of pregnancy
(Schweigmann et al., 2014). This transporter may thus mediate
uptake of fetal 16α-OH-DHEA-S and DHEA-S by pFECs and
maternal DHEA-S by the STB. A mechanism for exit of
sulfated steroids at the abluminal side of pFECs is unknown
(Figure 6).

STS, also known as aryl sulfatase C is responsible for
hydrolysis of steroid sulfates such as DHEA-S, 16α-OH-DHEA-S,
E1-S, E2-S, and E3-S, leading to the production of their
unconjugated active forms (Thomas and Potter, 2013). STS
is expressed in the STB (French and Warren, 1965; Miki
et al., 2002; Suzuki et al., 2003) and STS mRNA and
protein is significantly elevated in placentas from early onset
preeclamptic women (Gratton et al., 2016). In preeclampsia,
anti-angiogenic factors such as soluble fms-like tyrosine kinase
(sFlt)1 disrupt the maternal endothelium by binding circulating
angiogenic factors, which causes the symptomatic second stage
of preeclampsia including dysregulated placental perfusion and
ischemia (Maynard et al., 2003). Silencing of STS in primary
placental trophoblasts resulted in a significant decrease in sFlt1
secretion and a significant reduction in sFlt1 transcription
(Gratton et al., 2016). Thus, it was speculated that high STS
expression could contribute to preeclampsia via altered sFlt1
regulation (Gratton et al., 2016).

3β-HSD1 catalyzes the conversion of DHEA into A-dione,
which is further transformed to estrone by the P450 aromatase
(CYP19A1). CYP19A1 could also convert testosterone into
estradiol (Hanukoglu, 1992; Thomas and Potter, 2013), but
affinity of CYP19A1 for A-dione is much higher (Yoshida
and Osawa, 1991). Placental CYP19A1 expression and function
are diminished in pregnancies complicated by preeclampsia
compared to controls (Perez-Sepulveda et al., 2015). PCOS is a
common endocrinal metabolic disorder, affecting approximately
5–10% of women at reproductive age. It is characterized
by ovulatory/menstrual irregularity, polycystic ovaries, and
hyperandrogenism, including progesterone resistance (Goodarzi
et al., 2011; Piltonen et al., 2015). In placental tissue from
women with PCOS, reduced activities of CYP19A1 and increased
activities of 3β-HSD1 were observed when compared to control
women. Moreover, women with PCOS showed higher A-dione
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and testosterone concentrations compared to normal pregnant
women (Maliqueo et al., 2013).

17β-HSDs are also known as 17-ketosteroid reductases. They
catalyze the reversible conversion of 17-keto and 17β-hydroxy
groups in androgens and estrogens, including A-dione, DHEA,
and estradiol. The direction of the reaction depends on
the substrate (Hanukoglu, 1992; Thomas and Potter, 2013).
17β-HSD1 predominantly catalyzes the NADPH-promoted
stereospecific reduction of estrone to the more active estradiol
(Thomas and Potter, 2013; Herman et al., 2016). 17β-HSD2
shows oxidative activity and is capable of catalyzing the
conversion of estradiol, testosterone, and dihydrotestosterone
to their less-active 17-keto forms, estrone, A-dione, and
5α-androstanedione, respectively (Rantakari et al., 2008). These
two enzymes were found to have different locations in the
placenta. While 17β-HSD1 was detected in the STB already at
week 4 of gestation, 17β-HSD2 was expressed in the pFEC and
detected only after week 12 of gestation. 17β-HSD2 was suggested
to prevent the excessive passage of active estrogens into the fetal
circulation by catalyzing the inactivation of estradiol to estrone
within the pFECs (Takeyama et al., 1998; Bonenfant et al., 2000;
Drolet et al., 2007). Placental expression of 17β-HSD3, which is
involved in testosterone formation, is increased in preeclamptic
women (Shao et al., 2017). 17β-HSD5 protein (Phillips et al.,
2014) and 17β-HSD7 mRNA (Krazeisen et al., 1999) expression
were shown in human placenta.

Estriol is mainly synthesized from 16α-OH-DHEA-S, but,
alternatively, can be converted from estrone or estradiol. This
requires expression of enzymes with 16α-hydroxylase activity
such as CYP1A1 (Duttaroy and Basak, 2015; Figure 6).

Overall, in preeclampsia, and specifically early onset
preeclampsia, several of the placental enzymes involved in
progesterone and estrogen formation and transformation show
altered expression. Moreover, the placental expression levels
of steroid receptors (estrogen receptor α and β, progesterone
receptor) can change in preeclampsia (Park et al., 2018). Whether
the alterations are a consequence of preeclampsia or precede the
disease is not known. Maternal serum progesterone and estrogen
levels are found reduced, while androgen levels are increased
in preeclampsia (Ghorashi and Sheikhvatan, 2008; Hertig et al.,
2010; Bussen and Bussen, 2011; Sharifzadeh et al., 2012; Acikgoz
et al., 2013; Moon et al., 2014; Perez-Sepulveda et al., 2015;
Shao et al., 2017; Shin et al., 2018; Wan et al., 2018). But data
remain partly conflicting, which might be due to diverging
characteristics of the patients selected.

Most of the reports are mainly descriptive without any
analysis of mechanisms causing the underlying changes. One
exception is a recent study describing a significant up-regulation
of microRNA (miR-22) in placentas derived from preeclamptic
women (Shao et al., 2017). MicroRNAs (miRNAs) are small non-
coding RNAs of about 22 nucleotides in length that play a critical
role in post-transcriptional gene regulation (Bartel, 2009). The
authors demonstrated significantly increased testosterone and
reduced estradiol levels in plasma samples as well as increased
placental expression levels of 17β-HSD3 and reduced placental
aromatase expression in women with early onset preeclampsia.
Furthermore, increased levels of themiR-22 were detectedmainly

in placental villous and extravillous trophoblasts. JEG-3 cells
were then used to explore the mechanism behind the changes.
Increasing testosterone concentrations repressed the expression
of aromatase and estrogen receptor α and the production of
E2. Testosterone caused increased miR-22 expression, which
directly inhibited estrogen receptor α expression. The altered
estrogen receptor α signaling decreased aromatase expression
and estradiol production. Unfortunately, the question how
17β-HSD3 is induced by preeclampsia remains open. 17β-HSD1
also appears dysregulated – albeit significantly reduced –
in preeclamptic placentas, most likely due to upregulation
of miR-210 and miR-518c, which were confirmed to target
17β-HSD1 (Ishibashi et al., 2012). Dysregulation of miRNAs in
preeclamptic placentas has also been reported by Hu et al. (2009)
and Zhu et al. (2009).

The adrenocortical carcinoma cell line NCI-H295R is
an established cellular model to study adverse effects on
steroidogenesis of numerous substances including heavy metals
such as cadmium (Knazicka et al., 2015) or industry-derived
environmental toxins such as perfluoroalkyl acids (Kang
et al., 2016). Various substances have already been found to
change steroid production and thus it might be expected that
these molecules could also impact placental steroidogenesis.
For cadmium, this has already been demonstrated (Kawai
et al., 2002), but further functional studies are required. In
this context the recently established co-culture models of
choriocarcinoma cells (JEG-3 or BeWo) with H295R cells should
be considered for future analysis. The H295R/BeWo co-culture
model offers the opportunity to evaluate the effects of chemical
exposures on androgen and estrogen biosynthesis, as well as on
various other aspects of feto–placental communication (Hudon
Thibeault et al., 2017; Drwal et al., 2018; Thibeault et al.,
2018).

Glucocorticoids and the Placenta
Glucocorticoids or glucocorticosteroids are produced by the
adrenal cortex in response to cues such as stress or illness
under the control of the HPA-axis. The name glucocorticoid
is derived from their ability to promote gluconeogenesis in
the liver and their synthesis in the adrenal cortex (Castro
et al., 2011). The natural human glucocorticoid is cortisol
(Figure 7). In the adult, these signals stimulate the hypothalamus
to release CRH, which in turn cause the release of ACTH
from the anterior pituitary. ACTH induces synthesis of
glucocorticoids from cholesterol in the adrenal glands, which
exerts a negative feedback on the release of CRH and ACTH
(Figure 8).

Glucocorticoids coordinate many functions such as
inflammatory and immune responses, metabolic homeostasis,
cognitive function, reproduction, and development. At the
cellular level, glucocorticoids exert their effects by binding to
the GR that is almost ubiquitously expressed and induces target
gene transcription. The classical model of GR transactivation
involves GR dimerization and binding at glucocorticoid response
elements (GREs) leading to co-activator recruitment and
activation of transcription from proximate promoters (Pavek
and Smutny, 2014; Whirledge and DeFranco, 2018). GR is
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FIGURE 7 | Interconversion of cortisol and the inactive metabolite cortisone

by 11β-hydroxysteroid dehydrogenases type 1 and 2. 11β-HSD1 exerts

mainly reductase activity in vivo, while 11β-HSD2 metabolizes the conversion

of cortisol to cortisone. In human placenta, conversion from cortisol to

cortisone predominates at all gestational ages, but increasing conversion of

cortisone to cortisol in homogenized human placental tissue toward term

indicates a predominant reductase activity of 11β-HSD1.

expressed in STB and CTB as well as in JEG-3 and BeWo cell
lines (Pavek and Smutny, 2014). Cortisol stimulates productions
of placental hormones such as CRH and hCG (Robinson et al.,
1988; Ni et al., 2009). Increased cortisol levels in the placenta are
linked to the induction of estrogen synthesis, which precedes
the onset of parturition in human. Induction of CYP19A1 in
trophoblast cultures in response to cortisol was shown to occur
via activation of the cAMP/PKA pathway by CRH and hCG
and the subsequent induction of transcription factor Sp1 (Wang
et al., 2012, 2014; Figure 8).

Placental CRH Synthesis and Function

CRH is the major mediator of adaptive response to stressors and
is synthesized by several organs (Koutmani et al., 2013; Slominski
et al., 2013). During pregnancy, the CRH concentration in
maternal plasma increases substantially and reaches levels that
are 1,000–10,000 times that of non-pregnant women. The
major CRH source during pregnancy is the placenta that can
also produce ACTH (Bicknell, 2008; Gangestad et al., 2012;
Thomson, 2013). CRH is synthesized in the STB from first
to third trimester (Riley et al., 1991; Warren and Silverman,
1995). In humans and great apes CRH levels rise exponentially
throughout pregnancy to peak at labor. Rodents, in contrast, do
not exhibit placental CRH production (Heussner et al., 2016).
Placental CRH production may have evolved in primates to
stimulate fetal ACTH release and adrenal steroidogenesis, in
order to guarantee sufficient synthesis of DHEA, a precursor
for placental sex hormone synthesis. Concomitant stimulation
of fetal cortisol and DHEA by placental CRH would couple the
glucocorticoid effects on fetal organ maturation with the timing
of parturition. While glucocorticoids inhibit hypothalamic CRH
synthesis and secretion (Frim et al., 1990), they paradoxically
stimulate placental CRH expression (Robinson et al., 1988; Jones
et al., 1989; Wang et al., 2014).

CRH operates via activation of two receptors, CRH-receptor
type 1 and type 2 (Grammatopoulos and Ourailidou, 2017),
which are expressed in the human placenta (Florio et al.,
2000). Placental CRH exhibits many functions in pregnancy and
parturition. To name a few, CRH modulates placental glucose
transporter expression (Gao et al., 2012) and stimulates estradiol
production by induction of STS, CYP19A1, and 17β-HSD1

expression in trophoblasts (You et al., 2006). CRH impacts
on the expression levels of several other placental hormones
including ACTH (Challis et al., 1995) and prostaglandin (Gao
et al., 2008). Progesterone is an inhibitor of CRH production
(Karalis et al., 1996; Ni et al., 2004; Sfakianaki and Norwitz,
2006) and also a competitive antagonist of cortisol binding to
GR (Majzoub and Karalis, 1999). On the other hand, CRH
inhibits progesterone production by suppression of CYP11A1
and 3β-HSD1 (Jeschke et al., 2005; Yang et al., 2006). CRH is
involved in the timing of birth by regulation of estrogen and
progesterone levels as they control the contractile properties of
the myometrium (Majzoub and Karalis, 1999; Gangestad et al.,
2012; Thomson, 2013).

Placental Cortisol Metabolism and Transport in

Health and Disease

Glucocorticoids are important during pregnancy and for fetal
development. Fetal glucocorticoid synthesis is only partially
influenced by the HPA axis, but instead is primarily regulated by
differential expression of the enzymes required for glucocorticoid
synthesis. Moreover, maternal glucocorticoids can potentially
cross the placenta. To enable pregnancy and ensure proper
fetal development, glucocorticoid signaling occurs during three
period of gestation: early in pregnancy to enable implantation,
between week 7 and 14 to enable fetal-adrenal development,
repress DHEA synthesis and enable female genital development
and finally during the third trimester. Fetal serum glucocorticoid
levels must increase significantly before birth in order to ensure
proper development of the lungs and several other organs
(Busada and Cidlowski, 2017). On the other hand, the fetus
should not be exposed to excessive levels of glucocorticoids; this
can suppress fetal growth and program the fetus for life-long
diseases such as hypertension, glucose intolerance, diabetes, and
strokes (Moisiadis and Matthews, 2014a,b; Konstantakou et al.,
2017).

In the adrenal gland, cortisol synthesis is initiated by
21-hydroxylase (CYP21A2) (Hanukoglu, 1992). CYP21A2
converts progesterone as well as 17α-OH-progesterone, through
a hydroxylation at position C21, into 11-deoxycorticosterone and
11-deoxycortisol, respectively. After catalyzation by CYP21A2,
11β-hydroxylase (CYP11B1), and 11β-HSD are the keymolecules
mediating and regulating tissue-specific glucocorticoid actions.
CYP11B1 catalyzes 11-deoxycorticosterone and 11-deoxycortisol
to corticosterone and cortisol, respectively. There has been
no evidence so far of CYP21A2 or CYP11B1 expression in
human placenta. However, 11β-HSD type 1 and 2 isozymes
are expressed in the placenta and the fetal membranes
(Heussner et al., 2016; Yang et al., 2016; Konstantakou
et al., 2017). 11β-HSD2 is an oxidase converting cortisol
to the inactive 11-keto metabolite, cortisone. 11β-HSD1, in
contrast, preferentially acts as a reductase in vivo, mediating
the NADPH-dependent conversion of cortisone to cortisol
(Figure 7). In line with this, Giannopoulos et al. (1982) reported
increasing conversion of cortisone to cortisol in homogenized
human placental tissue toward term, although conversion from
cortisol to inactive cortisone predominated at all gestational
ages.
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FIGURE 8 | Proposed model for placental glucocorticoid (cortisol) function and metabolism. For detailed description, see text. Cortisol can diffuse across cell

membranes and regulate target protein expression directly via glucocorticoid receptor (GR) or indirectly via other transcription factors (e.g., Sp1). Placental

corticotropin-releasing hormone (CRH) is the major mediator of adaptive response to stressors during pregnancy. Cortisol stimulates placental CRH expression,

which regulates placental hormone levels (e.g., hCG, estrogen, progesterone, and 11β-HSD2). Red arrows indicate inhibiting/negative feedback pathways, while

green arrows indicate stimulating pathways. ABC transporters, ATP-binding cassette transporters; ACTH, adrenocorticotropic hormone; CRH,

corticotropin-releasing hormone; DHEA, dehydroepiandrosterone; GRE, glucocorticoid response element; HSD, hydroxysteroid dehydrogenase; hCG, human

chorionic gonadotropin; pFEC, placental-fetal endothelial cell; PKA, protein kinase A; Sp1, specificity protein 1 transcription factor; STB, syncytiotrophoblast.

Cortisol is required during early pregnancy for the
establishment of gestation (Michael and Papageorghiou,
2008). 11β-HSD1 and GR are localized widely in the decidual
stroma and epithelium, while the distribution of 11β-HSD2
is mainly confined to the decidual epithelium and scarcely
observed in the decidual stroma. Furthermore, 11β-HSD1 is
localized only in the fetal blood vessels in the interstitial core
of the villous tissue but not in the extravillous trophoblast,
CTB and STB. 11β-HSD2 expression is mainly restricted to the
STB. The distribution pattern of 11β-HSD1 suggests that higher
concentrations of cortisol are required on the maternal side than
on the fetal side in early pregnancy (Yang et al., 2016).

Cortisol levels in the maternal circulation rise toward term
(Goldkrand et al., 1976). As steroid hormones use free diffusion
to enter target cells, maternal cortisol reaches placental cells.
Overexposure of the fetus to glucocorticoids during pregnancy
reduces birth weight and can be detrimental to fetal development.

In the human placenta, 11β-HSD2 acts as a major “barrier”
to materno-fetal cortisol transfer as shown in the isolated
perfused placenta (Stirrat et al., 2018). 11β-HSD2 is localized
abundantly in the STB (Yang et al., 2016) and generates a
cortisone-to-cortisol-ratio >1 (Heussner et al., 2016). CRH
and cortisol induce the expression of 11β-HSD2 in isolated
trophoblasts (van Beek et al., 2004; Fahlbusch et al., 2012).
Furthermore, cortisol stimulates hCG production in trophoblasts
(Wang et al., 2014) and the upregulation of 11β-HSD2 expression
in trophoblasts by cortisol may be mediated in part by hCG
(Ni et al., 2009). Nevertheless, the conversion of cortisol is
incomplete and a fraction of cortisol remains unmetabolized (Sun
et al., 1999). The energy-dependent drug-efflux pump ABCB1
may mediate export of glucocorticoids from cells (Uhr et al.,
2002). Studies in BeWo cells suggested that this transporter
could contribute to the placental glucocorticoid barrier (Mark
and Waddell, 2006). ABCB1 is expressed at the apical surface
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of the STB (Ni and Mao, 2011). In CTBs, the glucocorticoid
drugs dexamethasone and betamethasone, significantly induce
the expression of ABCB1 (Manceau et al., 2012). 11β-HSD2
and ABCB1 may thus act together to reduce fetal and placental
exposure to maternal cortisol and thereby minimize the growth
inhibitory action on the fetus (Figure 8).

11β-HSD1 and 2 are key molecules in the production
and metabolism of glucocorticoids. Both are expressed in
the human decidua and placenta and both are related to
a number of pregnancy-associated complications. 11β-HSD1
is implicated in the pathogenesis of metabolic syndrome.
11β-HSD1 expression is altered in preeclampsia as well as
IUGR and gene polymorphisms are associated with hypertensive
disorders of pregnancy. Likewise, reduced 11β-HSD2 activity is
related to preeclampsia, IUGR, and adverse pregnancy outcome
(preterm birth). These interesting studies have been extensively
reviewed in a recent publication (Konstantakou et al., 2017).
Many of the underlying mechanisms causing altered expression
of the enzymes remain to be explored, and additionally suspected
correlations between altered enzyme expression and diseases
such as GDM need to be confirmed. In addition, it remains to be
demonstrated whether gene polymorphisms in 11β-HSD2 could
serve as biomarkers for hypertensive disorders of pregnancy.

SUMMARY AND OUTLOOK

Cholesterol, progesterone, estrogens, and cortisol are required
to establish and maintain pregnancy and ensure healthy fetal
development. The human placenta, located at the interface of
maternal and fetal circulation, has an active role in biosynthesis,
metabolism, and transport of thesemolecules.Many enzymes and
transporters are involved in these processes but our knowledge
concerning their function and regulation is incomplete. The
placental barrier is composed of trophoblast cells and pFECs.

Few studies have addressed the role of pFECs in placental steroid
handling. The functional interdependence of trophoblasts,
pFECs, and fetal adrenal cells is incompletely understood.
The use of co-culture systems may significantly broaden our
understanding.

Diseases, but also external factors such as high fat diet or
smoking alter the placental steroid metabolism. We need to
explore these alterations and their potential consequences for
fetus or mother. It should be kept in mind that the enzymes
and transporters involved are regulated at multiple levels and by
many endogenous molecules. Thus, whenever possible, mRNA
levels, protein levels and posttranslational modifications should
be examined (Hudon Thibeault et al., 2018). Likewise, when
looking for changes in the concentration levels of steroids or
other substances, subcellular fractionation should be considered
in order not to miss important details (Lassance et al., 2015).
Apart from diseases, we are facing an ever-growing number of
toxic substances in the environment. As the steroid metabolism
of the human placenta is crucial for life long health of fetus and
mother, we should be interested to understand their influence on
the function of the human placenta.
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