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Abstract

Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, 

these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular 

(astrocyte-other cell types) signalling and metabolism. These astroglial functions require an 

expression of the assortment of molecules, be that transporters or pumps, to maintain ion 

concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. 

Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors 

and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium 

and sodium fluctuations, which are not only used for operative signalling but can also affect 

metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie 

astrocyte signalling.
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3.1 Definition of Astroglia

Astroglia (also known as astrocytes) are a class of neural cells of ectodermal, neuroepithelial 

origin that sustain homeostasis and provide for defence of the central nervous system (CNS) 

(Fig. 3.1; [410]). The term astrocyte (αστρoν κψτoσ; astron, star and kytos, a hollow 
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vessel, later cell; that is a star-like cell) was introduced by Michael von Lenhossék in 1895 

[213]; of note, he proposed to name all parenchymal glia spongiocytes, with only a subtype 

of these cells having characteristic morphology in Golgi’s stained preparations being 

identified as astrocyte. On this matter Lenhossék wrote: ‘I would suggest that all supporting 

cells be named spongiocytes. And the most common form in vertebrates be named spider 

cells or astrocytes, and use the term neuroglia only cum grano salis (with a grain of salt), at 

least until we have a clearer view’. The terms of protoplasmic (white matter) and fibrous 

(grey matter) glia were introduced by Albert von Kölliker and William Lloyd Andriezen [13, 

195]).

Astrocytes demonstrate quite heterogeneous morphology across different brain structures 

(see Chap. 1). Nevertheless, the main physiological features of astroglial cells are somewhat 

similar, being specifically tailored for their homeostatic function. Astrocytes maintain 

homeostasis of the CNS at all levels of organisation [408–410] from molecular (ion and 

transmitter homeostasis, regulation of pH, metabolic energy support, Fig. 3.1), cellular 

(neurogenesis), network (synaptogenesis and synaptic maturation, maintenance and 

extinction), organ (regulation of the blood-brain barrier, operation of the glymphatic system) 

and systemic (chemosensing of oxygen, CO2 and systemic Na+ concentration).

In the CNS, astrocytes are integrated into cellular networks (known as syncytia), by gap 

junctions, which are specialised areas of apposing membranes of adjacent cells pierced by 

many hundreds of intercellular channels or connexons that form the conduit for intercellular 

transport of ions, second messengers and other biologically active molecules with a 

molecular weight lesser than 1000 Da. In the mammalian CNS, astroglial syncytia are 

anatomically segregated within different anatomical structures. In the sensory cortex, 

astroglial syncytia are confined to individual barrels and in the olfactory bulb to individual 

glomeruli [118, 148, 332]. Panglial syncytia that connect astrocytes and oligodendrocytes 

have been identified in the thalamus, neocortex and hippocampus [59, 123, 181, 296]. 

Whether astroglia form syncytia with neurones, remains an open issue.

3.2 Membrane Physiology and Ion Distribution

Astrocytes are electrically non-excitable cells, with a rather negative resting membrane 

potential (Vm) of about −80 mV. Disparity between cytosolic and extracellular ion 

concentrations (Fig. 3.2), together with the specific membrane ion permeability, define this 

negative Vm of astrocytes. At rest intra-astrocytic concentration of K+ is between 120 and 

140 mM and extracellular K+ concentration is about 3 mM, which sets the equilibrium 

potential for K+ (EK) at −98 mV (at 37 °C). Concentration of cytosolic Na+ in astrocytes 

(15–20 mM) is generally higher than in the majority of neurones (8–10 mM). With Na+ 

concentration in the cerebrospinal fluid (CSF) around 145–155 mM, the corresponding ENa 

ranges between +55 and +60 mV [192, 331]. Concentration of ionised Ca2+ in the cytosol of 

astrocytes ranges between 50 and 150 nM, which for extracellular [Ca2+] of 1.4 mM sets the 

ECa
2+ at +120 to + 140 mV. Cytosolic concentration of free Mg2+ in cultured astrocytes 

measured with a fluorescent probe Mag-Fura-2 is around 125 μM [20]; the CSF Mg2+ has 

been determined at ~0.9 mM [384] giving EMg
2+ ~ +25 mV.
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High cytosolic Cl− concentration (30–50 mM) has been measured in cultured astrocytes and 

Bergmann glial cells in cerebellar slices [403]; this sets the ECl
− around −35 mV (the [Cl−]o 

is ~120 mM). The concentration of protons in astroglial cytosol is ~63 nM (pH 7.2), which, 

assuming the extracellular H+ concentration to be ~40 nM (pH 7.4) sets the EH
+ at ~−12 mV. 

The cytosol of astrocytes is rich in CO2 (~1.2 mM) and HCO3
− (~17 mM).

The most characteristic electrophysiological signature of mature astrocytes is hyperpolarised 

resting potential (~−80 mV) and low input resistance (5–20 MΩ) indicative of high resting 

membrane permeability for K+ [242, 243]; the current to voltage relationship of astroglial 

cells is nearly linear [2, 73, 161, 168]. Fluctuations of astroglial Vm generally reflect 

changes in extracellular K+ concentration [11, 81].

3.3 Ion Channels

3.3.1 Potassium Channels

Glial membrane permeability is dominated by K+ channels, several types of which are 

expressed in astrocytes (Fig. 3.3). These channels have distinct voltage-dependence, which 

covers the whole range of physiological membrane potentials, thus ensuring the passive 

properties of astroglial plasma membrane. This prominent K+ conductance of astrocytic 

plasmalemma defines the homeostatic capabilities of astrocytes [269], supporting movement 

of ions and providing electrical driving force for membrane transporters.

3.3.1.1 Inward Rectifier Potassium Channels, Kir—Inward rectifying K+ channels 

are so-called because they pass K+ ions more easily into the cell (the inward direction) than 

out of the cell (the outward direction). The inward rectification occurs due to a voltage-

dependent intracellular block by Mg2+ and polyamines [225]. These two transmembrane 

domain channels belong to a gene super-family represented by 16 subtypes (KCNJ1-

KCNJ18), which are further divided into 7 families from Kir1.x to Kir7.x [139].

The main astroglial inward rectifying K+ channels are represented by the Kir4.1 subtype 

(product of KCNJ10 gene). These channels are detected in many types of astroglia including 

protoplasmic and fibrous astrocytes, from all brain areas including hippocampus, neocortex, 

optic nerve, cerebellum, spinal cord and retina [58, 140, 169], with some regional variations; 

astroglia such as Müller glia and Bergmann glia express them as well. High Kir4.1 

immunoreactivity was detected in hippocampal astrocytes, in astroglial cells in the cerebral 

cortex, in the deep cerebellar nuclei, in Bergmann glia and in Müller cells but not in 

astrocytes in white matter [309]. In the spinal cord, the expression of Kir4.1 channels is the 

highest in astrocytes from the ventral horn and the lowest in astrocytes from the apex of the 

dorsal horn [273]. The Kir4.1 channels are major contributors to the resting membrane 

potential of astroglial cells: functional inhibition or genetic deletion of Kir currents markedly 

increases input resistance (up to 20-fold) and depolarises astrocytes (by ~20 mV) [273, 350].

The Kir4.1 may co-assemble with Kir5.1 channels forming heteromers, which were found in 

parenchymal and radial astrocytes, in the olfactory bulb, neocortex, cerebellum and retina 

[50, 138, 159, 251]. The Kir4.1/Kir5.1 heteromeric channels are concentrated in perisynaptic 

and perivascular processes of astrocytes and their processes close to the pia mater [138]. 
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Some astrocytes in the hippocampus and cerebellum (including Bergmann glia) along with 

retinal Müller glia were found to express Kir2.1, Kir2.2 and Kir2.4 channels [194, 214, 317, 

380]. Astrocytes also express ATP-sensitive inward rectifying K+ channels assembled from 

Kir6.x subunit and SUR1/2; these channels open upon intracellular ATP depletion [96, 174, 

365, 395, 431].

3.3.1.2 Voltage-Independent K+ Channels—Another type of K+ channels, which 

contributes to the resting membrane permeability of astrocytes is represented by members of 

the two-pore-domain potassium channels (K2P) family encoded by 15 KCNK genes [100]. 

Hippocampal astrocytes were found to express functional TREK1/K2P2.1(KCNK2), 

TREK2/K2P10.1(KCNK10) and TWIK1/K2P1.1(KCNK1) channels [350, 432]. In cultured 

cortical astrocytes and astrocytes in hippocampal slices expression of TWIK-1/TREK-1 

heterodimer (formed by disulphide bridge between cysteine-cysteine residuals of both 

subunits) has been demonstrated as the predominant channel type [156].

3.3.1.3 Voltage-Gated K+ Channels, Kv—Astrocytes express delayed rectifying (KD) 

and transient (KA) voltage-gated K+ channels. The delayed rectifying K+ currents were 

identified in astrocytes throughout the CNS including the cortex, hippocampus, cerebellum 

and spinal cord [48]. At the molecular level, Kv1.5 (KCNA5), Kv1.4 (KCNA4) and Kv11.1/

ERG1 (KCNH2) have been identified in astrocytes from the hippocampus and spinal cord 

[97, 98, 334]. Astrocytes are also in possession of fast (rapidly activating and inactivating) 

A-type K+ currents mediated by Kv1, Kv3 and Kv4 channels [32].

3.3.1.4 Ca2+-Dependent K+ Channels, KCa—Several types of Ca2+-dependent K+ 

channels (KCa) were found in astrocytes in vitro and in situ. At the mRNA level SK (small 

conductance KCa 2.3/KCNN3) and IK (intermediate conductance KCa3.1/KCNN4) channels 

were detected in mouse cortical astrocytes in acutely isolated slices [222]. The KCa2.3 

immunoreactivity was found in astroglial processes in the rat supraoptic nucleus [17]. BK 

(big conductance) channels (KCa1.1/KCNMA1) were identified in the perivascular astroglial 

endfeet in the hippocampus and cerebellum [315], whereas patch-clamp recordings obtained 

from endfeet revealed large-conductance (225 pS) BK-single channel currents [107].

3.3.2 Sodium Channels

3.3.2.1 Voltage-Gated Sodium Channels—Although being non-excitable cells, 

astrocytes express voltage-gated Na+ channels (Nav), which were detected in vitro and in 

situ, albeit at low density [26, 28, 42, 371–374]. Cultured astrocytes from the optic nerve, 

hippocampus and spinal cord were found to express fast tetrodotoxin (TTX)-sensitive and 

slow TTX-resistant Na+ currents [373, 374]. At the molecular level astrocytes mainly 

express Nav1.5 subunit which was identified both in vitro and in situ at mRNA and protein 

levels [40, 41, 286]; relatively low expression of Nav1.2, Nav1.3 [44] and Nav1.6 [321, 345] 

were also detected; incidentally expression of Nav1.6 channels was found to increase in 

reactive astroglia [434].

Distribution of Na+ channels in astrocytes from different brain regions as well as their 

physiological role remain poorly understood; hitherto Na+ currents have not been recorded 
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from astroglial cells in vivo. Possibly voltage-gated Na+ channels contribute to Na+ 

signalling; it was also suggested that Na+ influx mediated by these channels is needed for 

sustained activity of Na+/K+ pump (see [43, 285, 287] for further details).

3.3.2.2 [Na+]o-Regulated Na+ Channels, Nax—Specific type of Na+ channels 

regulated by extracellular Na+ concentration ([Na+]o) are named Nax channels. They are 

expressed in astrocytes of the subfornical organ and organum vasculosum of the lamina 

terminalis (that are parts of circumventricular organs surrounding ventricles, structures 

where the blood-brain barrier is not as tight as in other parts of the brain) [267, 420]. These 

channels in vitro are opened following an increase in [Na+]o to 150 mM. In vivo, in the 

presence of endothelin-3, which activates ETB receptors expressed in astroglia, the threshold 

for Nax channel activation is lowered to 140 mM of [Na+]o [141]. The Nax channels appear 

to operate as molecular sensors for [Na+] in the circulation (Fig. 3.4).

3.3.2.3 Epithelial Sodium Channel, ENaC—The epithelial Na+ channels are non-

voltage gated, amiloride-sensitive Na+ channels widely expressed in the CNS [10, 238, 416]. 

Immunohistochemistry found strong expression of ENaCs in astrocytes in circumventricular 

organs, white matter and pia mater [237]. These channels, together with Nax channels, may 

be involved in the regulation of systemic Na+ homeostasis.

3.3.3 Calcium Channels

3.3.3.1 Voltage-Gated Ca2+ Channels—Early patch clamp recordings from astrocytes 

in culture revealed Ba2+ and Ca2+ currents sensitive to classic voltage-gated Ca2+ channel 

antagonists and enhanced by norepinephrine or by an increase in cytosolic 3′,5′-cyclic 

adenosine monophosphate, i.e. cAMP [27, 72, 228], the signalling by this second messenger 

complementing Ca2+ signalling in astrocytes [146]. Subsequently Cav1.2 and Cav1.3 

channels were detected in the transcriptome of rodent cortical astrocytes [60, 430]. Several 

types of Ca2+ channel subunits (α1B or N-type, α1C/D or L-type, α1E or R-type and α1G 

or T-type) were detected at mRNA and protein levels in astrocytes in culture [209]. 

Pituicytes analysed immunohistochemically in situ were found to possess Cav2.2 (N-type) 

and Cav2.3 (R-type) channels [418]. Evidence for functional activity of voltage-gated Ca2+ 

channels in situ is rather thin and indirect (see for example [215, 294]) and no evidence from 

the in vivo experiments exist at all. There are some indications for increased expression of 

voltage-gated Ca2+ channels in pathological or reactive astrocytes [419, 421].

3.3.3.2 Orai or Ca2+-Release Activated Ca2+ Channels—The Ca2+-release 

activated Ca2+ channels of Orai family (Orai1,2,3) represent one of the main molecular 

pathways of the store-operated Ca2+ entry (SOCE) in non-excitable cells [289]. Activation 

of these plasmalemmal channels is controlled by the stromal interacting molecules, STIM1 

and STIM2, which act as Ca2+ sensors of the endoplasmic reticulum (ER) [368]. In cultured 

astrocytes Orai1 and STIM1 were detected at a protein level; over-expression of Orai1 

increased the amplitude of SOCE, whereas siRNA knock out decreased SOCE [248]. 

Electrophysiological recordings of ICRAC performed on acutely dissociated Müller cells 

demonstrated sensitivity of the current to ORAI inhibitor Synta 66 [246].
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3.3.3.3 Ca2+ Release Channels—Release of Ca2+ from the ER store in astrocytes is 

mainly mediated by Inositol 1,4,5-trisphosphate receptors (InsP3R), of which type 2 

predominates [133, 144, 354, 356, 414]. Genetic deletion of InsP3R type 2 (InsP3R2) has 

been shown to significantly reduce or even completely abolish Ca2+ signalling in astroglial 

cells from the hippocampus and cortex [171, 302]. Other studies, however, reported [Ca2+]i 

transients in InsP3R2−/− mice astrocytes [130]. There is evidence for functional expression 

of InsP3Rs type 1 and 2 in astroglia [125, 327, 357].

Ryanodine receptors also have been identified in astrocytes [364, 414], although their 

functional role remains unclear. They supply Ca2+ necessary for Ca2+-dependent glutamate 

release from cortical astrocytes in culture. Ca2+-dependent glutamate release involves two 

classes of ER Ca2+ stores in astrocytes [150]. There is some evidence for astroglial 

expression of the two-pore channels (TPC) that release Ca2+, and are activated by nicotinic 

acid adenine dinucleotide phosphate, i.e. NAADP [25, 301].

3.3.4 Transient Receptor Potential (TRP) Channels

Astrocytes express several types of cationic channels of TRP (transient receptor potential) 

family (Fig. 3.5). The ‘ankyrin’ channel TRPA1 was found in somata and processes of 

astrocytes in the brain stem in the rat trigeminal caudal nucleus using immunogold electron 

microscopy [211]. Functional expression of TRPA1 was also demonstrated in a sub-

population of hippocampal astrocytes [360, 362]. The TRPC (‘canonical’) channels were 

detected in freshly isolated and in primary cultured astrocytes, which were reported to 

express all subtypes of these channels from TRPC1 to TRPC6 [124, 244, 308]. These TRPC 

channels contribute to astroglial Ca2+ signalling induced by purinergic, glutamatergic and 

mechanical stimulation [231, 323, 324]. Astroglial TRPC channels represent a substantial 

pathway for store-operated Ca2+ entry in astroglia [412].

Rodent astrocytes from the brain and the spinal cord have been also reported to express 

TRPV1 channels [91, 151, 398]. Similarly TRPV4 channels have been identified in cortical 

and hippocampal astrocytes [22, 33, 57, 220]; these channels can be activated by hypo-

osmotic stress and by cell swelling [33, 57] in the absence of addition of membrane by 

exocytosis [283].

3.3.5 Hyperpolarisation-Activated Cyclic Nucleotide-Gated (HCN) Channels

The cationic (Na+/K+) HCN channels are found in both healthy and reactive astrocytes in 

situ [145, 337].

3.3.6 Acid-Sensitive Ion Channels

The acid-sensitive ion channels (ASIC1–3) were described in reactive astrocytes in the 

context of chronic epilepsy, and their activation was claimed to contribute to seizure 

generation [423].

3.3.7 Anion Channels

Astrocytes express the following anion channels: (i) cystic fibrosis transmembrane 

conductance regulator or CFTR channels, (ii) voltage-dependent anion-selective channels or 
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VDAC, (iii) Ca2+-dependent Cl− channels (iv) volume-regulated anion channels or VRAC 

and (v) ClC-1, −2 and −3 channels [186, 291, 410, 429]. The ClC-2 channels are 

concentrated in astroglial processes enwrapping GABAergic synapses [363], which may 

indicate their role for regulation of intra-cleft Cl− concentration and hence of GABAergic 

transmission. Astrocytes also express an anion channel of Bestrophin (Best) family; these 

channels were suggested to contribute to the Ca2+-dependent secretion of glutamate and 

GABA [290, 422].

3.3.8 Aquaporins

Three types of aquaporins, the AQP1, AQP4 and AQP9 were identified in astroglia although 

AQP4 is the most abundant [21, 256, 342]; the plasma membrane contains mainly the 

AQP4e isoform [219, 313]. Astroglial AQP4 channels are concentrated in the perivascular 

and subpial endfeet [256]. Genetic deletion of AQP4 affects olfaction [224] and hearing; it 

results in a decrease in astroglial water permeability [370], deficient K+ buffering, 

compromised volume regulation [39, 219], and deficits in synaptic plasticity [346, 367], and 

memory [367, 427].

3.3.9 Connexons

Connexons form gap junctional channels that integrate astrocytes into functional syncytia, 

subject to regulation by G-protein coupled receptors [392]. Astrocyte-astrocyte homocellular 

gap junctions are composed of Cx26, Cx30 and Cx43 [117, 198, 258], of which Cx43 is the 

most abundant [257]. The Cx43 is expressed in astroglial cells in all CNS regions, whereas 

Cx30 is mostly expressed in the thalamus and leptomeninges [257, 369]. The Cx26 subtype 

has been detected in astrocytes in the hypothalamus, reticular thalamic and subthalamic 

nuclei [259]. Astrocyte-oligodendrocyte heterocellular gap junctions are composed of 

heterotypic channels represented, in vitro, by four complexes: Cx47/Cx43, Cx47/Cx30, 

Cx32/Cx30 or Cx32/Cx26 [230], although in situ Cx32/Cx30 and Cx47/Cx43 complexes 

appear to predominate [8, 277]. There are some sporadic reports of astrocyte-neuronal 

heterocellular contacts [9, 255, 279], and these contacts are arguably limited to developing 

brain.

Unpaired connexons, or hemichannels, have been identified in astrocytes in vitro and in 

vivo; all three major connexons (Cx26, Cx30 and Cx43) expressed in astrocytes can act as 

hemichannels [119]. The hemichannels are non-operational in healthy astrocytes, but can be 

activated by low external calcium concentration, by substantial depolarisation, by some 

specific intracellular Ca2+ signals, or by exposure to pro-inflammatory agents [274, 275]. 

The hemichannels can contribute to secretion of neurotransmitters and neuromodulators 

[293] and are subject to regulation via transmitters and G-protein coupled receptors.

3.3.10 Pannexons

Transcripts for pannexin 1 (Panx1) were identified in astroglia in vitro and in situ [153, 320], 

with Panx1 currents characterised in cultured cortical astrocytes [157]. Astroglial pannexons 

are activated by voltage and by activation of P2X7 receptors; they are inhibited by broad-

spectrum gap junction antagonists carbenoxolone and mefloquine, and they are permeable to 
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fluorescent tracer YoPro [157]. Panx1 containing pannexons have been considered as a 

transmembrane conduit for ATP [78].

3.4 Receptors

Conceptually, astrocytes have been shown to express virtually any type of receptor found in 

the CNS. At the same time the pattern of receptors expressed by astrocytes in situ and in 

vivo is restrictive and is regulated by the local neurochemical environment [183, 410, 411].

3.4.1 Purinoceptors

3.4.1.1 Adenosine Receptors—All four types of adenosine receptors (A1, A2A, A2B 

and A3) were found in astrocytes in the in vitro and in situ preparations [84]. These receptors 

are linked to intracellular second messenger systems including InsP3, Ca2+ and cAMP 

cascades (Fig. 3.6). Activation of A1 receptors triggered intracellular Ca2+ release as well as 

Ca2+ entry and potentiated histamine-induced Ca2+ mobilisation [297, 310]. Similarly, A2A 

receptors were responsible for Ca2+ signalling in astrocytes from the olfactory bulb [90], 

whereas A2B receptors triggered Ca2+ signals in cortical astroglia [306]. The A3 receptors 

mediated adenosine- and guanosine-evoked [Ca2+]i transients in cultured mouse astrocytes 

[68].

3.4.1.2 P2X Purinoceptors—Transcripts for all seven types of ionotropic purinoceptors 

(P2X1-P2X7, Fig. 3.6) have been detected in astrocytes in vitro and in tissue extracts [89, 

109, 113, 162]. At the protein level, P2X2,3,4 receptors were found in astrocytes from the 

nucleus accumbens [109]. P2X1 and P2X2 receptors were found in astroglial cells in the 

cerebellum [173, 221]; P2X4 receptors were identified in astrocytes from the brainstem [18] 

and in Müller glia [142], whereas hippocampal astrocytes were immunoreactive for P2X1–4, 

P2X6 and P2X7 receptors [197].

Ion currents mediated by heteromeric P2X1/5 receptors were characterised in cortical mouse 

astrocytes [204]). These receptors contribute to ‘glial synaptic currents’ monitored in 

astrocytes in response to stimulation of neuronal afferents [200, 203]; in addition P2X1/5 

receptors produced spontaneous ‘miniature’ post-synaptic currents in astrocytes in cortical 

slices [203]. Astroglial P2X1/5 receptors have intermediate Ca2+ permeability (PCa
2+/

Pmonovalent ~ 2.2), and their activation by endogenous agonosts, or by synaptically released 

ATP, triggers transient cytoplasmic Ca2+ signals [281].

Astrocytes have been reported to express P2X7 receptors both in healthy and pathological 

contexts [111, 158]. In astrocytes in vitro P2X7 receptors were detected at mRNA and 

protein levels [89, 93, 113, 154, 164, 260, 282, 417]. Astroglial expression of P2X7 

receptors, as a rule, increases after brain injury of various aetiology [109, 110, 260]. In 

astrocytes in culture both P2X7-mediated Ca2+ signals and membrane currents have been 

detected [93, 113, 266, 268, 335]. Astroglial P2X7 currents were also characterised in rat 

and mouse cortical slices. Activation of P2X7 receptors in cultured astrocytes may be 

associated with release of glutamate, GABA, ATP [24, 93, 94, 382]. The P2X7-mediated 

release of glutamate was also identified in astrocytes in hippocampal slices [106].
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3.4.1.3 P2Y Receptors—Astrocytes in cortex express transcripts for P2Y1,2,4,6,12,13 and 

UDP-glucose P2Y14 receptor [1, 36, 89, 113], whereas spinal cord astrocytes predominantly 

express mRNA for P2Y1,2 receptors [104]. Stimulation of astroglial P2Y receptors triggers 

Ca2+ signals originating from InsP3-induced ER Ca2+ release [38, 56, 160, 163, 175, 298, 

299, 407].

3.4.2 Glutamate Receptors

3.4.2.1 Ionotropic Glutamate Receptors—Astrocytes from different regions of the 

brain express α-amino-3-hydroxy-5-methyl-isoxazole propionate (AMPA) receptors (Fig. 

3.7), which have been characterised at expression and functional levels. All main subunits of 

AMPA receptors (GluA1-GluA4) have been detected in astroglial cells. In the hippocampus, 

AMPA receptors are assembled predominantly from GluA2 and GluA4 subunits, which are 

reflected by a linear I-V relation and low Ca2+ permeability [351]. In cortical astrocytes 

these receptors are composed of GluA1 and GluA4 subunits [75]. In Bergmann glial cells 

AMPA receptors do not contain GluA2 subunit, and accordingly they have a double-

rectifying I-V relationship and low (PCa
2+/Pmonovalent ~ 1) Ca2+ permeability [115, 253]. 

Conditional deletion of AMPA receptors, composed of GluA1 and GluA4 subunits, from 

Bergmann glia led to a retraction of glial perisynaptic processes and deficient fine motor 

coordination [338].

Astrocytes also possess functional N-methyl D-aspartate (NMDA) receptors. The 

transcriptome of human astroglia contains all 7 NMDA receptors subunits (GluN1, 

GluN2/A-D and GluN3A,B-[210]). In acute slices the NMDA-mediated currents and Ca2+ 

signals were found in astrocytes in the neocortex [202, 272, 348], in the spinal cord [437], 

and in some cells in the hippocampus [311, 376]. Astroglial NMDA receptors 

heterotetramers assembled from obligatory two GluN1 and additional subunits of each 

GluN2 C or D and GluN3; this composition underlies a weak Mg2+ block (which develops 

at ~−120 mV) and relatively low Ca2+ permeability (PCa/Pmonovalent ~ 3), as well as 

sensitivity to memantine and GluN2C/D subunit-selective antagonist UBP141 [95, 203, 280, 

281].

3.4.2.2 Metabotropic Glutamate Receptors—The most abundant type of astroglial 

metabotropic receptors in mature CNS is represented by mGluR3, which inhibits adenylyl 

cyclase [385]. In younger animals astrocytes express mGluR1/5 receptors linked to Ca2+ 

signals and [Ca2+]i oscillations [76, 191, 208, 312].

3.4.3 GABA Receptors

Astrocytes express both ionotropic GABAA and metabotropic GABAB receptors. The 

GABAA receptors mediated Cl− currents have been characterised in astroglial cells in 

culture and in situ in the hippocampus, cerebellum, retina, hypothalamus, supraoptic nucleus 

and spinal cord [74, 179, 180, 182, 229, 252]. The subunit composition of astroglial GABAA 

receptors is not certain; α1 and β1 subunits were detected in hippocampal astrocytes [112] 

and α2 and γ1 in Bergmann glia [326]. Metabotropic GABAB receptors evoke astroglial 

Ca2+ signalling by triggering Ca2+ release from the ER [264].
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3.4.4 Glycine Receptors

Glycine receptors mediate Cl− currents in astrocytes in the spinal cord slices [295]. Single-

cell RT-PCR performed on these astrocytes revealed expression of α1 and (in ~50% of cells) 

β-subunits of the receptor [188].

3.5 Acetylcholine Receptors

The ionotropic nicotinic acetylcholine receptors (nAChRs) have been characterised in 

astrocytes in culture and in acute slices. Activation of these receptors mediates Ca2+ influx 

and triggers Ca2+-induced Ca2+ release [271, 353, 389]. Analysis of mRNA expression in 

rodent cortical astrocytes found α4, α7 and β2 subunits, whereas in human astroglial cells 

from the hippocampus and entorhinal cortex α3, α7 and β4 subunits were identified by 

immunocytochemistry [121, 390].

The metabotropic M1 and M2 AChRs mediate Ca2+ signalling in astrocytes from 

hippocampal slices [15].

3.6 Receptors for Monoamines

Astroglial cells express receptors for major monoamines including adrenoceptors, and 

receptors for serotonin, dopamine and histamine. Both α- and β-adrenoceptors have been 

identified and characterised in astrocytes in culture, in slices, and in vivo at transcript, 

protein and functional levels [14, 135]. The α1-adrenoceptors are coupled to phospholipase-

C (PLC) and InsP3 signalling and hence to Ca2+ release from the ER [55, 193, 352]. 

Immunoreactivity for α2-adrenoceptors was found in astrocytic processes in the brain tissue 

[14, 239]; activation of α2-adrenoceptor also triggers Ca2+ signalling [265, 339]. β1-, β2- 

and β3-adrenoceptors were characterised in astrocytes in vitro and in vivo [62, 232, 352]. β1-

adrenoceptors contribute to regulation of glycogen synthesis, while β2-adrenoceptors 

coupled to adenylyl cyclase through Gs proteins together with possibly β3-adrenoceptors 

regulate glucose uptake by modulating GLUT1 plasmalemmal glucose transporter [92, 155].

Astrocytes express 5-HT1A, 5-HT2A, 5-HT2B and 5-HT5A metabotropic serotonin receptors, 

[19, 61, 341]. 5-HT2 receptors activate PLC/InsP3/Ca2+ signalling cascade [341]. 5-HT2B 

receptor seems rather abundant in astrocytes [196] with its expression as twice as large as in 

neurones [428]. Serotonin-specific reuptake inhibitors (major anti-depressant agents such as 

fluoxetine or sertraline) directly activate astroglial 5-HT2B receptors [136, 428] with 

subsequent Ca2+ signalling [347] or phosphorylation of extracellular regulated kinases 1/2 

(ERK1/2) or up-regulation of Ca2+-dependent phospholipase A2 (cPLA2) [136, 428].

Dopamine D1, D2, D4 and D5 receptors have been detected in astroglia at transcript and 

protein levels [245] with higher expression of D1 [425] or D2 receptors [23]; astrocytes from 

the striatum were claimed to express D5 receptors [52]. Strong presence of D2 receptors was 

found in astroglial processes enwrapping cortical interneurones [184]. Activation of D1 and 

D2 receptors in astrocytes triggers Ca2+ signalling originating from the InsP3-induced ER 

Ca2+ release [184, 322].
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Astroglia express H1, H2 and H3 histamine receptors [166]. Astrocytic H1 receptors are 

coupled to PLC/InsP3/Ca2+ signalling cascade [193, 355], regulation of glucose metabolism 

[16] and up-regulation of EAAT2/GLT-1 plasmalemmal glutamate transporter [105]; the 

latter also modulated by cytosolic Ca2+ [377].

3.7 Bradykinin Receptors

The B2 bradykinin receptors were identified in cultured astrocytes [71]; stimulation of these 

receptors induces InsP3 production, Ca2+ signalling and glutamate release [292, 378].

3.8 Cannabinoid Receptors

Astrocytes express cannabinoid CB1 receptors, which are involved in regulation of cellular 

metabolism [46, 340]. The CB1-mediated astroglial Ca2+ signalling was detected in response 

to neuronal release of endocannabinoids [261]. Activation of CB1 receptors in astroglia was 

also claimed to regulate neuronal synaptic plasticity [262].

3.9 Neuropeptide Receptors

V1 vasopressin receptors induced Ca2+ signalling was found in cultured astrocytes and in 

pituicytes [129, 167]. Oxytocin receptors linked to PLC/InsP3/ER Ca2+ release were 

identified in rat embryonic cultured hippocampal astrocytes [87] and in hypothalamic 

astrocytes [199].

ETA and ETB endothelin receptors were initially described in cultured astrocytes [147, 405]. 

Stimulation of ETA/B receptors resulted in astroglial Ca2+ signalling [47, 233]. In mouse 

cerebellar Bergmann glial cells, endothelin evoked [Ca2+]i transients sensitive to the 

selective ETB receptor antagonist BQ-788 [399]. Activation of ETA/B receptors also 

suppresses astroglial gap junctions due to dephosphorylation of Cx43 [47, 116].

Receptors to atrial natriuretic peptide (NPR) were first identified in cultured mouse 

astrocytes [393]. Subsequently NPR-A [383], NPR-B [383, 438] and NPR-C [366, 383] 

receptors have been characterised. NPR-A and NPR-B increase intracellular cyclic 

guanosine monophosphate (cGMP), while NPR-C acts as a ‘clearance receptor’ that 

removes peptides from the extracellular space [314].

Astrocytes have been found to express δ and κ-opioid receptors [101, 102]; κ-opioid 

receptors induced Ca2+ signals sensitive to nifedipine [103], while δ-receptors, are linked to 

ER Ca2+ release [396]. Opioid receptors were claimed to regulate expression of 

plasmalemmal glutamate transporters [218], and astroglial growth [379].

3.10 Receptors for Leptin and Insulin

Expression of leptin receptors was detected in astrocytes in the subcommissural organ [79], 

in the nucleus tractus solitarius [80] and in the hypothalamus [149].

Insulin receptors have been characterised in astrocytes in vitro [131, 435]. Genetic deletion 

of insulin receptors from astrocytes affected brain glucose sensing, and reduced astroglial 
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coverage of hypothalamic neurones [114]. Insulin may also act via the insulin-like growth 

factor 1 (IGF-1) receptor. Activation of insulin and IGF-1 receptors upregulates levels of 

glycogen in cultured rodent astrocytes [250].

3.11 Platelet-Activating Factor Receptor

Receptors for platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) 

were detected in astrocytes in vitro [53]. Activation of platelet-activating factor receptors 

stimulated production of InsP3 [254, 304], induced secretion of nerve growth factor [54] and 

prostaglandin E2 [391].

3.12 Protease-Activated Receptors (PAR)

Thrombin-activated PAR-1 and trypsin-activated PAR-2 receptors were found in cultured rat 

newborn astrocytes; activation of these receptors induced ER Ca2+ release [400, 401]. 

Astroglial PAR receptors are coupled to several signalling pathways, including stabilisation 

of hypoxia inducible factor-1α through ERK, JNK and PI3K/Akt cascades [436]. Activation 

of PAR-1 receptors (for example, by the selective peptide agonist TFLLR) is often used for 

selective stimulation of astroglia in situ [201, 359], although there are reports of neuronal 

Ca2+ signals triggered by the TFLLR-sensitive receptors [127].

3.13 Astroglial Membrane Transporters

3.13.1 ATP-Dependent Transporters

The most prominent and functionally important astroglial membrane P-type ATPase is 

represented by the Na+-K+ ATPase (NKA), that counter-transports Na+ and K+ with a 

stoichiometry of 3 Na+ (expelled from the cell): 2 K+ (imported into the cell). This defines 

electrogeneity of NKA. Astrocytes exclusively express α2 catalytic subunit [137, 165], 

which defines its peculiar properties. In contrast to neurones (which express α1 subunit) 

astroglial NKA is activated by physiological rises in [K+]o, while neuronal NKA is activated 

by an increase in [Na+]i [134, 207, 329]. This stipulates the leading role of astroglial NKA in 

K+ buffering. Astrocytes also express plasmalemmal Ca2+-ATPases (PMCAs) and 

Sarco(Endo)Plasmic Reticulum Ca2+ ATP-ase (SERCA) both being responsible for Ca2+ 

homeostasis [410]. Astroglial plasma membrane and astroglial secretory vesicles possess the 

vacuolar V-type H+ ATPase [288, 305].

3.13.2 Secondary Plasmalemmal Transporters of Solute Carrier (SLC) Family

3.13.2.1 Glutamate Transporters—Astrocytes represent the main sink for glutamate 

in the CNS [82, 410, 433]. Astrocytes express two types of plasmalemmal glutamate 

transporters: the excitatory amino acid transporters 1 and 2 (EAAT1/SLC1A6 and EAAT2/

SLC1A2), which in rodent experiments are also referred to as GLAST1 (glutamate-aspartate 

transporter 1 [381]) and GLT-1 (glutamate transporter 1 [307]). The EAAT1 is 

predominantly expressed in the cerebellum [212], in the retina [319] and in 

circumventricular organs [37]; in all other parts of the brain the EAAT2 is the major type. 

The average density of EAAT1 is ~4700/μm2 in Bergmann glia, and ~2300/μm2 in the CA1 

region of the hippocampus; the density of EAAT2 is ~8500/μm2 in the hippocampus and 
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~740/μm2 in the cerebellum [212]. Both transporters are concentrated in perisynaptic 

astroglial processes [66].

The stoichiometry of EAAT1 and EAAT2 is 3 Na+, 1 H+, 1 glutamate− in (glutamate is an 

anion at physiological conditions): 1 K+ out [278, 426]. The equilibrium potential EEAAT is 

the function of ions and glutamate concentration; the extracellular glutamate concentration 

varies between 25 nM at rest and 1 mM during synaptic transmission. The intracellular 

concentration of glutamate in astrocytes is ~0.3 mM due to high activity of glutamine 

synthetase [49, 132]. At the rest the EEAAT is about +9 mV, whereas at 1 mM of glutamate in 

the cleft the transporter reverses at +145 mV [410]. The transporter is electrogenic and 

generates transmembrane current carried mainly by Na+ ions [190, 404]. This Na+ influx 

may elevate [Na+]i by 10–30 mM [331].

Astrocytes also express the cystine/glutamate antiporter Sxc−, which localises 

extrasynaptically [7, 70, 176]. This transporter is important for accumulation of cystine 

needed for production of glutathione.

3.13.2.2 Glutamine Transporters—The obligatory glutamate (and in proxy GABA) 

precursor glutamine is exported from astrocytes by SNAT3/SLC38A3 and SNAT5/SLC38A5 

plasmalemmal glutamine transports, which are coupled with co-transport of 1 Na+ and 

counter-transport of 1 H+ [343]. Astroglial Na+ signals stimulate glutamine efflux [397].

3.13.2.3 GABA Transporters—Astrocytes predominantly express GAT3 GABA 

plasmalemmal transporter with much lower expression of GAT1. The GAT3 are 

concentrated in astroglial processes [241, 325]. In the cerebellum GAT3 is localised in the 

perisynaptic processes of Bergmann glia, enwrapping inhibitory synapses [241]. In thalamic 

astrocytes GAT1 is concentrated in perisynaptic membranes, whereas GAT3 is localised 

more distantly being thus responsible for extrasynaptic GABA transport [31]. The 

stoichiometry of both transporters is 1 GABA: 2 Na+: 1 Cl−, being thus electrogenic [177, 

223, 318]. The reversal potential EGAT lies around −50 mV; hence, relatively small 

depolarisation and/or an increase in [Na+]i favour the reverse mode operation of these 

transporters [402].

3.13.2.4 Glycine Transporters—Astroglial cells express GlyT1/SLC6A9 glycine 

plasmalemmal transporters [424]. Their stoichiometry is 1 glycine: 2 Na+: 1 Cl− [333]. The 

transporter can reverse at physiological membrane potentials [358]. This transporter-

mediated glycine release was shown to be stimulated by dopamine [152].

3.13.2.5 Adenosine Transporters—Astrocytes express both equilibrative (i.e. 

controlled by adenosine transmembrane gradient, [187]) plasmalemmal transporters ENT-1/

SLC29A1, ENT-2/SLC29A2, ENT-3/SLC29A3 and ENT-4/SLC29A4, and Na+-dependent 

concentrative nucleoside plasmalemmal transporters CNT2/SLC28A2 and CNT3/SLC28A3, 

which co-transport adenosine together with 1 Na+ [217, 300].

3.13.2.6 Transporters for Monoamines—It seems that the main astroglial 

monoamine plasmalemmal transporter is represented by norepinephrine transporter NET/
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SLC6A2 that couples monoamine transport with 2 Na+ and 1 Cl−, this transporter has higher 

affinity for dopamine than norepinephrine [349, 387].

3.13.2.7 D-Serine Transporters—Transmembrane transport of D-serine in astrocytes 

is mediated by a neutral amino acid transporter subtype ASCT2 (SLC1A5), which is an 

alanine-, serine-, cysteine-preferring neutral amino acid plasmalemmal transporter [234]. 

The ASCT2 is a Na+-dependent with Na+ to amino acid stoichiometry of 1:1 [235].

3.13.2.8 Sodium-Calcium Exchangers—All three known plasmalemmal sodium-

calcium exchangers, NCX1/SLC8A1, NCX2/SLC8A2 and NCX3/SLC8A3, are expressed in 

astroglia [287]. The NCXs are mainly concentrated in astroglial perisynaptic processes, and 

co-localise with glutamate transporters and possibly with glutamate ionotropic receptors [45, 

240]. The stoichiometry of astroglial NCX is 3 Na+: 1 Ca2+, and hence the equilibrium 

ENCX lies at ~−85 to −90 mV at rest making it prone for fluctuating between forward and 

reverse modes [415]. Membrane depolarisation and increase in intracellular Na+ 

concentration favour NCX to operate in the reverse mode, whereas increase in [Ca2+]i 

promotes the forward mode. Operation of astroglial NCX was shown in vitro [120, 388] and 

in situ [189].

3.13.2.9 Sodium-Proton Exchanger, or NHE—Astrocytes express NHE1/SLC9A1 

Na+-H+ exchanger [69, 85] with electroneutral stoichiometry 1 Na+ (in): 1 H+ (out) [276]. 

The NHE1 is primarily responsible for efflux of protons generated by cytoplasmic 

metabolism and accumulated by astrocytes through glutamate uptake (each glutamate brings 

a single H+ ion) and Ca2+ extrusion (PMCA exchanges 2 H+ for each Ca2+ ion expelled).

3.13.2.10 Sodium-Bicarbonate Co-transporter, NBC—The sodium-bicarbonate 

transporter NBCe1/SLC4A4 has been identified in astrocytes in culture [270] and in 

hippocampal slices [122]. The NBC stoichiometry is 1 Na+: 2 HCO3
− or 1 Na+: 3 HCO3

− 

[263], and this transporter can operate in both forward and reverse modes [394].

3.13.2.11 Sodium-Potassium-Chloride Co-transporter, NKCC1—The Na+-K+-

Cl-co-transporter NKCC1/SLC12A2 has been detected in Bergmann glia [170], in astrocytes 

from the optic nerve [227] and spinal cord [316]. It has an electroneutral stoichiometry of 1 

Na+: 1 K+: 2 Cl− [226]. Experiments in situ in hippocampal slices questioned the functional 

role of NKCC1 in protoplasmic astrocytes in the healthy brain [207].

3.13.2.12 Glucose Transporters—Astrocytes express the glucose transporter GLUT1/

SLC2A1 [6], which is predominantly localised in endfeet and perisynaptic processes. 

Immunostaining revealed the presence of this transporter in grey matter astroglia [249]. It 

also contains GLUT4, a transporter sensitive to insulin in skeletal muscle, however the flux 

of glucose in astrocytes is not upregulated by insulin [250].

3.13.2.13 Monocarboxylate Transporters, MCT—Monocarboxylate transporters 1 

and 4 (MCT1/SLC16A1, MCT4/SLC16A3) provide for export of lactate from astroglial 

cells [126]. They may, however, mediate both export or import of lactate depending on 

concentration gradients for monocarboxylate and H+ [126].
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3.14 Ionic Signalling in Astroglia

3.14.1 Calcium Signalling

Discovery of astroglial Ca2+ signals and propagating Ca2+ waves [63, 76, 83, 99, 108, 185, 

236] led to the formulation of the concept of astrocytic ionic signalling as a basis for their 

excitability [411]. Astroglial Ca2+ signalling depends on both intracellular and extracellular 

sources (Fig. 3.8) [414]. Somatic Ca2+ signals almost entirely depend on Ca2+ release from 

the ER mediated by InsP3 receptor type 2; deletion of this channel often substantially 

reduced or even eliminated somatic [Ca2+]i transients [4, 171, 302, 303]. At the same time, 

Ca2+ signals in astroglial processes remain even in the InsP3R2−/− mice [130, 172, 375]. 

These signals were mediated by plasmalemmal Ca2+ influx [336]. This Ca2+ influx may 

reflect upon Ca2+ entry through ionotropic receptors and plasmalemmal channels, or Ca2+ 

influx mediated by the reverse mode of NCX [29, 361, 414].

Mechanisms underlying Ca2+ signalling differ between astrocytes from different brain 

regions. Local Ca2+ microdomains in Bergmann glia and in the main processes of 

hippocampal astrocytes were mediated solely by InsP3Rs [86, 191]. Local [Ca2+]i transients 

in hippocampal astrocytes in contrast are mediated by TRPA1 channels [360]. In neocortical 

astrocytes Ca2+ signals involve ryanodine receptor-mediated [Ca2+]i-induced Ca2+ release 

[284], which is not operative in hippocampal astroglia [30]. In astrocytes in vivo sensory 

stimulation triggers global synchronised Ca2+ signals in astrocytes in somato-sensory cortex, 

which depend entirely on InsP3R2 [171]. In cortical astrocytes spontaneous local Ca2+ 

signals in fine processes originate from Ca2+ release from mitochondria [3].

Global Ca2+ signals in the mature astrocytes in vivo are mediated by α1-adrenoceptors [88]. 

Similar global astroglial signalling is observed in attention and vigilance state, when 

widespread astrocytic responses are evoked by acetylcholine release from projection of the 

nucleus basalis of Meynert and are mediated through metabotropic cholinergic receptor-

InsP3 pathway [67, 386]. Global astroglial Ca2+ signals spreading through the entire cortex 

were observed in response to transcranial direct current stimulation; these signals were 

mediated through α1-adrenoceptors [247].

Astroglial propagating Ca2+ wave is mediated either by intercellular diffusion of InsP3 

through gap junctions [5, 143, 216] or through regenerative paracrine ATP-mediated 

signalling [12, 77, 128] or through the combination of both [344]. Whether propagating 

Ca2+ waves develop in the in vivo brain in awake and behaving animals remains an open 

question.

3.15 Sodium Signalling

The concept of astroglial Na+ signalling has been developed rather recently [192, 331]. 

Physiological stimulation triggers [Na+]i transients in astrocytes in vitro [178, 329, 330] and 

in situ [189, 190, 205, 328]. Generation of Na+ signals is accomplished through 

plasmalemmal Na+ entry either through plasmalemmal channels or Na+ coupled SLC 

transporters, whereas extrusion of Na+ is primarily mediated by NKA [192, 331]. Resting 

[Na+]i in astrocytes is higher than in neurones, being in the range of 15–20 mM.
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One of the main sources for Na+ influx activated in response to neuronal activity is 

associated with operation of EAATs that co-transport 3 Na+ with 1 glutamate; increase in 

extracellular glutamate may increase [Na+]i by 10–30 mM [35, 65, 190]. Sodium influx may 

also be mediated by GABA transporters, ionotropic receptors, by TRP channels or by NCX 

operating in the forward mode [189, 205, 323]. Sodium entry may produce long-lasting [Na
+]i microdomains which, as per computational modelling, may be facilitated by fairly 

negative resting potential of astroglial plasmalemma [51]. Propagating Na+ waves have been 

also detected in astrocytes in culture and in situ in hippocampal slices; these waves are 

propagating through gap junctions [206].

Astroglial Na+ signals regulate multiple SLC transporters sensitive to transmembrane Na+ 

gradients (Fig. 3.9); [Na+]i also regulates glutamine-glutamate (GABA) shuttle through 

direct action on glutamine synthetase [34] and regulation of glutamine transporters [397]. 

Changes in [Na+]i regulate K+ buffering through the NKA transport and pH homeostasis by 

regulating NBC and NHE. By controlling reversal potential of NCX, astroglial Na+ signals 

may contribute to Ca2+ signalling by initiating local Ca2+ influx in distal processes. Finally, 

fluctuations of [Na+]i are coupled to astroglial metabolism, through controlling glycolysis 

and lactate production and possibly regulating ATP synthesis [64]. The sodium signalling 

system thus provides for fast coordination of neuronal activity with ‘homeostatic’ response 

of astroglia mediated through Na+-dependent transporters, concentrated in perisynaptic 

processes.

3.16 Summary

Astroglial physiology is defined by a complement of ion channels, receptors for 

neurotransmitters, and neurohormones and membrane transporter systems. High expression 

of K+ channels stabilises the membrane potential at negative level, thus ensuring electro-

driving forces for operation of membrane transporters. Multiple receptors for neuroactive 

agents on astrocytes provide for input signals reflecting upon neuronal activity. Astrocytic 

ionic signalling regulates operation of transporters responsible for astroglial homeostatic 

response, central for astrocytic support of neuronal networks.
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Fig. 3.1. 
Homoeostatic functions of astroglia
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Fig. 3.2. 
Ion distribution (and corresponding values of equilibrium potentials for different ions) 

between the cerebrospinal fluid and cytosol of astrocytes and neurones. Modified from [413]
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Fig. 3.3. 
Potassium channels in astroglia. Gene names for a given channels are shown in parentheses. 

Modified from [413]
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Fig. 3.4. 
Astroglial Nax channels in systemic Na+ regulation. Increases in blood Na+ concentration 

activate Nax sodium channels localised in astrocytes residing in the subfornical organ. This 

leads to an increase in cytosolic Na+ concentration, which in turn increases astroglial 

production of lactate. Lactate released by astrocytes is accumulated by neighbouring 

neurones (release and uptake carried by MCT1 in astrocytes and MCT4 in neurones, 

respectively), thus increasing ATP production in neurones. Increased ATP in turn closes 

neuronal ATP-sensitive K+ channels, which results in depolarisation and subsequent 

activation of neuronal networks responsible for systemic Na+ homeostasis. NKA, sodium-

potassium ATPase. Modified from [413]
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Fig. 3.5. 
Astroglial TRP channels. Activation of G-protein coupled receptors (GPCR), i.e. 

metabotropic stimulation, can lead to production of InsP3 and release of Ca2+ from the ER 

store. The Ca2+ content of the ER store is refilled by Sarco(Endo)Plasmic Reticulum Ca2+ 

ATPase, i.e. SERCA. Depletion of the ER Ca2+ store activates (via STIM) TRPC channels in 

astrocytes which are therefore acting as a store-operated channel, contributing to capacitative 

Ca2+ entry. Activation of all TRP channels mediates Ca2+ and Na+ influx. Modified from 

[413]
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Fig. 3.6. 
Classes of purinoreceptors. ATP after being released from neurones and glia is rapidly 

degrading by ectonucleotidases into ADP, AMP and adenosine, which act on P1 

metabotropic adenosine receptors, P2X ionotropic and P2Y metabotropic nucleotide 

receptors. Adenine stimulates A0 adenine metabotorpic receptors, which hitherto have not 

been detected in astrocytes. Modified from [406]
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Fig. 3.7. 
Classes of glutamate receptors expressed in astrocytes. Current traces show a faster time 

course for AMPAR than NMDAR. AC, adenylyl cyclase; AMP, adenosine monophosphate; 

cAMP, cyclic AMP; InsP3, inositol 1,4,5-trisphosphate; PIP2, phosphatidylinositol 4,5-

bisphosphate; PLC, phospholipase C. Modified from [406]
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Fig. 3.8. 
Calcium distribution and calcium signalling cascades in intracellular compartments. Stimuli-

induced increases in [Ca2+]i could be caused by the entry of Ca2+ from the extracellular 

space through ionotropic receptors or store-operated channels (SOC). Plasmalemmal Ca2+ 

pumps/ATPases (PMCA) can extrude cytosolic Ca2+, while the plasmalemmal sodium-

calcium exchanger (NCX) can operate in both directions depending on intercellular Na+ 

concentration and membrane potential. An additional source of Ca2+ is available from the 

ER internal store that possesses inositol 1,4,5 trisphosphate (InsP3) receptors, which can be 

activated by the activity of metabotropic G-protein coupled receptors (GPCRs) and 

phospholipase C (PLC). The ER store is (re)filled by the activity of the store-specific Ca2+-

ATPase (SERCA). Cytosolic Ca2+ levels can be affected by a variety of cytosolic Ca2+-

binding proteins (CBPs) and by the action of mitochondria. A negative membrane potential 

exists across the inner mitochondrial membrane. Mitochondrial Ca2+ uptake occurs through 
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voltage-dependent anion channels (VDACs) present in the outer membrane and by the 

uniporter in the inner membrane as the electrochemical gradient drives Ca2+ into the matrix, 

while free Ca2+ exits the mitochondrial matrix through the mitochondrial Na+/Ca2+ 

exchanger and transient opening of the mitochondrial permeability transition pore (MPTP). 

Concentrations of free Ca2+ in different compartments are indicated on the scheme. Inset 

shows various Ca2+ effector molecules, sensors and enzymes. CaM, calmodulin; RAF, 

Rapidly Accelerated Fibrosarcoma, MAPK, mitogen-activated protein kinase (MAPK), 

MEK, MAPK kinase. Modified from [413]
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Fig. 3.9. 
Molecules of Na+ homeostasis and targets of Na+ signalling in astroglia. Schematic diagram 

showing receptors and transporters involved in and sensitive to changes in [Na+]i and their 

relations to main homeostatic functions of astroglia. Abbreviations ASCT2, alanineserine-

cysteine transporter 2; ASIC-acid sensing ion channels; CNT2, concentrative nucleoside 

transporters; EAAT-excitatory amino acid transporters; ENaC-epithelial sodium channels; 

GAT-GABA transporters; GS-glutamine synthetase, GlyT1-glycine transporter. iGluRs-

ionotropic glutamate receptors; Nax-Na+ channels activated by extracellular Na+; NAAT-Na
+-dependent ascorbic acid transporter; NBC-Na+/HCO3

− (sodium-bicarbonate) 

cotransporter; NCX-Na+/Ca2+ exchanger; NCLX-mitochondrial Na+/Ca2+ exchanger; NHE-

Na+/H+ exchanger; NKCC1-Na+/K+/Cl− cotransporter, MCT1-monocarboxylase transporter 

1; P2XRs-ionotropic purinoceptors; SN1,2-sodium-coupled neutral amino acid transporters 

which underlie exit of glutamine; TRP-transient receptor potential channels. Reactive 

oxygen species (ROS). Modified from [413]
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