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Abstract

Breath-hold diving is an activity that humans have engaged in since antiquity to forage for resources, provide sustenance and 

to support military campaigns. In modern times, breath-hold diving continues to gain popularity and recognition as both a 

competitive and recreational sport. The continued progression of world records is somewhat remarkable, particularly given 

the extreme hypoxaemic and hypercapnic conditions, and hydrostatic pressures these athletes endure. However, there is abun-

dant literature to suggest a large inter-individual variation in the apnoeic capabilities that is thus far not fully understood. In 

this review, we explore developments in apnoea physiology and delineate the traits and mechanisms that potentially underpin 

this variation. In addition, we sought to highlight the physiological (mal)adaptations associated with consistent breath-hold 

training. Breath-hold divers (BHDs) are evidenced to exhibit a more pronounced diving-response than non-divers, while elite 

BHDs (EBHDs) also display beneficial adaptations in both blood and skeletal muscle. Importantly, these physiological char-

acteristics are documented to be primarily influenced by training-induced stimuli. BHDs are exposed to unique physiological 

and environmental stressors, and as such possess an ability to withstand acute cerebrovascular and neuronal strains. Whether 

these characteristics are also a result of training-induced adaptations or genetic predisposition is less certain. Although 

the long-term effects of regular breath-hold diving activity are yet to be holistically established, preliminary evidence has 

posed considerations for cognitive, neurological, renal and bone health in BHDs. These areas should be explored further 

in longitudinal studies to more confidently ascertain the long-term health implications of extreme breath-holding activity.
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BMC  Bone mineral content
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CSA  Cross-sectional area
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EBHD  Elite breath-hold diver

EPO  Erythropoietin

GPx  Erythrocyte glutathione peroxidase

GPx-3  Plasma glutathione peroxidase

GSH  Reduced glutathione

IMA  Ischemia-modified albumin

Mb  Myoglobin

MCV  Mean cell volume

MRI  Magnetic resonance imaging

ND  Non-diver

NSE  Neuron-specific enolase

PaCO2  Arterial carbon dioxide partial pressure

PaO2  Arterial oxygen partial pressure

R95  Diffusion distance

RBC  Red blood cell

ROS  Reactive oxygen species

SOD  Superoxide dismutase

TBARS  Thiobarbituric acid reactive substances

TLC  Total lung capacity
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It seems, then, that there are divers also among the 

Trojans.

Homer, Iliad (ca 800 BC)

Introduction

Breath-hold diving has been practiced for centuries, with 

reports dating back as far as ~ 800 BC (Davis 1934). Remark-

ably, in some parts of the world (i.e., North and South East 

Asia) breath-hold diving is still practiced as a means of har-

vesting food. These habitual breath-hold diving populations 

spend up to ~ 60% of their workday submerged underwater 

whilst performing repeated (up to ~ 140) short dives (less 

than ~ 60 s), at depths spanning 5–25 m (Hong et al. 1991, 

1963; Hurford et al. 1990; Schagatay et al. 2011). While the 

number of dives per workday of these habitual breath-hold 

diving populations are impressive, the maximum depth and 

duration are less so when compared with modern competi-

tive BHDs that repeatedly flirt with their absolute physi-

ological limits (Table 1).

During maximal apnoeic attempts, competitive BHDs 

endure extreme hypoxaemic hypercapnia (i.e., arterial oxy-

gen partial pressure  [PaO2], 2.7 kPa [20 mmHg], arterial car-

bon dioxide partial pressure  [PaCO2], 7.3 kPa [55 mmHg]) 

(Bain et al. 2016; Willie et al. 2015), whereas during depth 

diving they also encounter severe hydrostatic pressures and 

even greater  PaCO2. However, a remarkably large varia-

tion in individual performance and physiological threshold 

exists. Recent advances in apnoea physiology may now pro-

vide a clearer understanding of these large inter-individual 

variations in apnoeic capabilities. Accordingly, the first aim 

of this review was to explore the physiological characteris-

tics and underlying mechanisms that govern an individual’s 

apnoeic capabilities, and secondly, to delineate whether 

these inter-individual variations stem from training-induced 

stimuli and/or genetic predisposition.

Continued advances in world records bear testament to 

the exceptional capabilities of the human body (Table 1), 

yet the continued quest for greater performance raises 

safety concerns. Despite a plethora of research outlining the 

physiological responses that occur during and/or following 

maximal apnoeic attempts, there is a dearth of information 

regarding the possible health implications associated with 

exposure to apnoea-related activities. Considering the grow-

ing popularity of the sport and the increasing number of 

people pursuing breath-hold diving as a competitive and/

or recreational activity, increased awareness regarding the 

possible maladaptation(s) of chronic apnoeic training is nec-

essary from both safety and medical standpoints.

Therefore, the purpose of this review was to: (i) delineate 

the physiological characteristics and underlying mechanisms 

that govern an individual’s apnoeic capabilities, (ii) examine 

whether inter-individual variations in apnoeic capabilities 

stem from training-induced stimuli and/or genetic predispo-

sition, and finally, (iii) assess the physiological and patho-

physiological (mal)adaptations to chronic apnoeic training.

Physiological attributes of breath‑hold 
divers

The ability to suppress respiratory urges and attain long 

breath-hold durations is dependent on the collective con-

tribution of (i) the capacity for oxygen storage, (ii) the effi-

cacy of oxygen conservation and utilisation, and (iii) training 

experience, including an individual’s psychological toler-

ance toward the increasing breathing urge and continuously 

intensifying involuntary diaphragmatic movements. Accord-

ingly, the following section will seek to explore the physi-

ological traits/characteristics that govern an individual’s 

apnoeic capabilities and the underlying mechanisms that 

protect BHDs against hypoxaemic hypercapnia.

Lung volume

In humans, the theoretical maximum breath-hold time, for 

apnoeas initiated after air breathing (21% oxygen), is deter-

mined by the body’s oxygen stores and the rate that these are 

consumed (Ferretti et al. 1991; Mithoefer 1959, 1965). Con-

sidering that during an apnoeic bout, aerobic metabolism is 

limited to the body’s finite oxygen stores (i.e., comprising 

of blood [~ 98% of oxygen bound to haemoglobin], skeletal 

muscle [myoglobin] and the lungs), a higher oxygen reser-

voir at the start of a maximal attempt will extend the aerobic 

dive limit, thus permitting longer apnoeas (Mithoefer 1959, 

1965; Whitelaw et al. 1987). It is noteworthy that diving 

mammals possess extremely high oxygen stores in skeletal 

muscle and blood, both of which serve as strong predic-

tors of their diving capabilities (Ponganis 2011), whereas in 

Table 1  Current world records as recognised by the AIDA (2021)

Discipline World records

Men Women

Static apnoea (minutes:seconds) 11:35 9:02

Dynamic apnoea with fins (meters) 300 257

Dynamic apnoea without fins (meters) 244 191

Constant weight with fins (meters) 130 107

Constant weight without fins (meters) 102 73

Free immersion (meters) 125 98

Variable weight (meters) 146 130

No limit (meters) 214 160
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humans apnoeic time is greatly dependent on lung oxygen 

stores (Ferretti et al. 1991). Hence, factors that might con-

tribute towards enhancing these qualities are certainly con-

sidered advantageous with respect to apnoeic performance.

Lung oxygen stores are governed by the combined con-

tribution of inspired alveolar oxygen fraction and lung 

volume (Mithoefer 1965). For any given oxygen fraction 

in the alveoli, an individual’s lung volume is directly pro-

portional to their oxygen stores and, concomitantly, to the 

aerobic energy resources that can be made available dur-

ing an apnoeic attempt (Ferretti et al. 1991). It is, there-

fore, not surprising that competitive BHDs strive to com-

mence their maximal apnoeic attempts at lung volumes 

in proximity to their total lung capacity (TLC). Thus far, 

several studies have documented the importance of lung 

volume on apnoeic duration (Andersson and Schagatay 

1998; Mithoefer 1965; Muxworthy 1951; Overgaard et al. 

2006; Whitelaw et al. 1987). To illustrate, apnoeas per-

formed at TLC led to significantly longer apnoeic dura-

tions (309 ± 38 s) compared with apnoeas performed at 

85% of vital capacity (297 ± 48 s) (Overgaard et al. 2006) 

(Fig. 1). These performance increments are ascribed to a 

higher oxygen reservoir being readily available to support 

aerobic metabolism, an attenuated oxygen desaturation 

rate, an increased carbon dioxide buffering capacity, as 

well as a delayed Hering–Breuer deflation reflex (Godfrey 

et al. 1969; Mithoefer 1959, 1965; Overgaard et al. 2006; 

Rose et al. 1979).

Presently, there is conflicting evidence regarding the 

lung volumes of competitive BHDs, with some studies 

reporting significantly greater volume in BHDs compared 

with non-divers (NDs) (Ferretti et al. 2012; Schaefer et al. 

1968; Schagatay 2011; Stewart et al. 2005) and other work 

failing to report any differences (Andersson et al. 2009; 

Roecker et al. 2014; Tetzlaff et al. 2008). However, in 

most reports (including those quoted here), the TLC of 

elite BHDs (EBHD) exceeds the maximum range expected 

in healthy age-matched adults (i.e., male: 7.07 ± 1.60 L; 

female: 5.25 ± 0.76 L; Neder et al. 1999) (Table 2). These 

distinct respiratory characteristics may be ascribed to indi-

vidual disposition, for example increased respiratory mus-

cle strength and/or chest flexibility (Eichinger et al. 2008; 

Johansson and Schagatay 2012; Whittaker and Irvin 2007). 

Indeed, there is evidence suggesting that long-term (i.e., 

6–11 weeks, 3–5 times per week) inspiratory muscle train-

ing, comprising glossopharyngeal insufflation and lung-

stretching regimes, significantly enhances vital capacity by 

0.13–0.45 L (Johansson and Schagatay 2012; Nygren-Bon-

nier et al. 2007). However, to what extent these increases 

stem from a reduction in pulmonary elastic recoil (i.e., 

due to reduced tension of elastic elements [e.g., elastin or 

collagen fibres] or from a change in surface forces from 

surfactant release form alveolar type-II cells) or chest wall 

recoil at high inspiratory volumes remains to be elucidated 

(Eichinger et al. 2008; Ferretti et al. 2012; Nygren-Bonnier 

et al. 2007; Rodarte et al. 1999; Seccombe et al. 2013, 

2006; Tetzlaff et  al. 2008; Whittaker and Irvin 2007). 

Notwithstanding, these training-induced adaptations may 

provide a partial explanation of the greater apnoeic capa-

bilities witnessed in EBHDs compared with less trained 

BHDs and NDs, since a greater amount of oxygen will be 

readily available to support an apnoeic attempt.

Glossopharyngeal insufflation and apnoeic performance

The importance of lung oxygen stores in apnoeic perfor-

mance is also instantiated by the use of glossopharyn-

geal insufflation.1 This manoeuvre acutely increases TLC 

by up to ~ 47% (Loring et al. 2007) prior to an apnoeic 

attempt, and markedly improves diving depth, dive dura-

tion, static and dynamic apnoeic performance (Lemaître 

et al. 2010; Lindholm and Nyrén 2005; Overgaard et al. 

2006; Whitelaw et al. 1987). Glossopharyngeal insufflation 

at TLC induces increases in intrathoracic gas volume and 

transpulmonary pressure (i.e., up to 8 kPa [≈ 80  cmH2O]), 

with a maximum increase in intrapulmonary pressure of 

108  cmH2O (Loring et al. 2007). The increased transpul-

monary and intrapulmonary pressure lowers the amount of 

blood in the chest and provides more space for air (Whit-

taker and Irvin 2007; Eichinger et al. 2008). Approxi-

mately one-third of the additional air is accommodated 

by air compression and the remainder is facilitated by vol-

ume distension of the lungs (Seccombe et al. 2006). These 

observations on glossopharyngeal insufflation substantiate 

the impact that lung oxygen stores have on apnoeic per-

formance. An individual’s ability to exceed their ‘normal’ 

TLC may also represent another factor that could poten-

tially contribute towards the large inter-individual apnoeic 

performance variation reported across the literature.

Splenic volume

The spleen is the largest lymphoid organ and is located 

beneath the 8th–11th thoracic rib on the left-hand side of 

the human body (Horan 2009). It is implicated in the pro-

cess of erythrophagocytosis but also serves as an antibody 

production site and erythrocyte reservoir, with humans stor-

ing ~ 10% of their total erythrocyte volume in their spleens 

(Mebius and Kraal 2005; Stewart and McKenzie 2002). Evi-

dence suggest that exercise interventions, hypercapnic and 

1 After a full inhalation to TLC, a mouthful of air with the glottis 

closed is compressed by the oropharyngeal muscles and then forced 

into the lungs, opening the glottis just for the gulping manoeuvre. 

This glossopharyngeal insufflation manoeuvre is repeated on several 

occasions until a sensation of fullness occurs.
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hypoxic/hypoxaemic conditions stimulate splenic contrac-

tions, with the latter serving as the most effective stimulus 

(Elia et al. 2021b; Laub et al. 1993; Otto et al. 2013; Rich-

ardson et al. 2012). Thus, following 3–5 repeated maximal 

apnoeic attempts the spleen contracts, releasing its stored 

erythrocytes into the systemic circulation (Elia et al. 2021b) 

(Fig. 1). These increases potentiate the oxygen binding and 

carrying capacity of blood; hence, the oxygen reserve is 

increased by the systemic mobilisation of erythrocytes. 

Thereby successive apnoeic bouts will commence with a 

greater amount of readily available oxygen, attenuating the 

oxygen desaturation rate and subsequently delaying the 

physiological breaking point, thus contributing towards an 

extended apnoeic duration (Bakovic et al. 2013; Schagatay 

et al. 2005) (Fig. 1). Hence, a larger splenic volume with the 

capacity to store a greater number of erythrocytes is con-

sidered advantageous for apnoeic performance (Elia et al. 

2021b; Schagatay et al. 2012) (Fig. 1). To date, no cross-

sectional study has found any splenic volume differences 

between diving and non-diving populations (Baković et al. 

2003; Elia et al. 2019b, 2021b; Hurford et al. 1990; Prommer 

et al. 2007) (Table 3). Interestingly, both Schagatay et al. 

(2012) and Elia et al. (2019b) observed that in the most 

successful BHDs, splenic volume appears to exceed the 

normal range (i.e., 455–598 mL and 402–499 mL, respec-

tively) documented in healthy adult males (76–400 mL; 

mean = 238 ± 70 mL) (Geraghty et al. 2004). Whether this 

characteristic is coherently shared across the most successful 

BHDs remains to be determined.

Reports on associations between splenic volume and 

bodyweight, height, gender and/or age are mixed (Elia 

et al. 2019b; Prassopoulos et al. 1997; Schagatay et al. 

2012; Spielmann et al. 2005), suggesting that there may be 

greater individual variation than in other organs. A compara-

tive genomic study by Ilardo et al. (2018) demonstrated that 

splenic volume is not governed by a training-induced stimu-

lus. Rather, it is partly governed by a natural selection on 

genetic variants in the PDE10A gene. Contrastingly, recent 

work by Bouten et al. (2019) recorded significant increases 

in splenic volume (+ 24%) following 8-weeks of static 

apnoeic training (i.e., five apnoeic bouts per day). Although 

the underpinning mechanisms dictating splenic volume 

are presently unclear, collectively these studies indicate 

that splenic size may be governed by a complex interplay 

between hypoxic/hypoxaemic training and genetics. Fur-

ther research is necessary to fully elucidate the mechanisms 

underpinning splenic size and growth.

Haematological indices

The lack of respiratory exchange during voluntary apnoea 

necessitates a reliance upon the body’s finite oxygen 

resources. In marine mammals, a high haemoglobin concen-

tration is considered a beneficial adaptation to apnoeic div-

ing, with a number of studies denoting a direct relationship 

between haemoglobin concentrations and diving capabilities 

(Ponganis 2011). Contrarily, this relationship between hae-

moglobin and apnoeic capacities does not seem to be shared 

by humans. To date, numerous studies have examined the 

resting haematological characteristics of habitual and com-

petitive BHDs, with some reporting higher red blood cell 

(RBC) counts and/or haemoglobin concentrations in divers, 

while others have failed to record any differences compared 

with non-diving populations (Table 4). Although these dis-

crepancies may partly be related to the training status of 

the BHDs recruited, it is worth mentioning that both the 

RBC and haemoglobin concentrations observed in BHDs 

lie within the physiological range expected in healthy adults 

(Osei-Bimpong et al. 2012).

Recently, Elia et al. (2019b) observed lower mean cell 

volume (MCV) in EBHD compared with ND (86 ± 6 fL vs. 

92 ± 4 fL), findings that were situated at the lower range 

observed in healthy adult males of a similar age (83–101 

fL) (Osei-Bimpong et al. 2012) (Table 4). Interestingly, 

a lower MCV has also been reported in both Chilean and 

Fig. 1  Schematic representation depicting: (i) pre-apnoeic strate-

gies evidenced to contribute towards attaining longer apnoeic dura-

tions, (ii) the role of resting characteristics on apnoeic capabilities 

and (iii) the physiological modifications induced during static apnoeic 

attempts and their role in influencing apnoeic length. Arrows up (↑) 
and down (↓) within the framed box indicate an increase or decrease 

of the associated variable. Dotted arrow lines (▪▪▪▪▪▪) indicate 

the link between pre-apnoeic strategies/resting characteristics and 

apnoeic durations. Abbreviations:  BR beetroot juice, CBF cerebral 

blood flow, CD capillary density, CHO carbohydrates, CO2   carbon 

dioxide, GI glossopharyngeal insufflation, Hb haemoglobin, Hct 

haematocrit, HR heart rate, IDM involuntary diaphragmatic move-

ments, MAP mean arterial pressure, Mb myoglobin, MCV mean cell 

volume, MIT mitochondria, O2  oxygen, PNA parasympathetic nerv-

ous system, R95  diffusion distance, RV residual volume, SF sharing 

factor, SNA sympathetic nervous system, TLC total lung capacity, 

VC vital capacity. Supporting literature is denoted by the numbers, 

where; 1 = Asmussen and Kristiansson (1968), 2 = Ayers et al. (1972), 

3 = Bae et  al. (2003), 4 = Baković et  al. (2003), 5 = Bakovic et  al. 

(2013), 6 = Chicco et  al. (2014), 7 = Dujic et  al. (2008), 8 = Eich-

horn et al. (2017), 9 = Eichhorn et al. (2018), 10 = Elia et al. (2019b), 

11 = Elia et al. (2021b), 12 = Engan et al. (2012), 13 = Espersen et al. 

(2002), 14 = Ferretti (2001), 15 = Fredén et  al. (1978), 16 = Gard-

ner (1996), 17 = Ghiani et  al. (2016), 18 = Hayashi et  al. (1997), 

19 = Heistad et  al. (1968), 20 = Heusser et  al. (2009), 21 = Hoil-

and et  al. (2017), 22 = Ilardo et  al. (2018), 23 = Joulia et  al. (2009), 

24 = Kjeld et  al. (2018), 25 = Kutti et  al. (1977), 26 = Kyhl et  al. 

(2016), 27 = Landsberg (1975), 28 = Lemaitre et  al. (2015), 29 = Lin 

(1982), 30 = Lindholm et  al. (2007), 31 = Loring et  al. (2007), 

32 = Olsson et  al. (1976), 33 = Overgaard et  al. (2006), 34 = Palada 

et al. (2007), 35 = Patrician and Schagatay (2017), 36 = Paulev et al. 

(1990), 37 = Richardson et  al. (2005), 38 = Schagatay and Holm 

(1996), 39 = Schagatay and Lodin-Sundström (2014), 40 = Schagatay 

et al. (2012), 41 = Shamsuzzaman et al. (2014), 42 = Steinback et al. 

(2010), 43 = Sterba and Lundgren (1988), 44 = Vestergaard and Lars-

son (2019), 45 = Whittaker and Irvin (2007)

◂
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Nepalese high-altitude natives (3700 m) (85 fL and 82.9 

fL, respectively) (Winslow et al. 1989). This observation 

may suggest that the total surface area of RBCs is larger in 

EBHD (Holland and Forster 1966) (Fig. 1). A larger RBC 

volume increases the intracellular diffusion path, with 

a concomitant decrease in the permeability of the RBC 

membrane (Holland and Forster 1966). Additionally, Van-

degriff and Olson (1984) demonstrated that oxygen release 

was less dependent on RBC size and shape than oxygen 

uptake. Thus, the lower MCV reported in the EBHD group 

might be advantageous, as haemoglobin will have a greater 

surface area to bind oxygen. However, whether this is a 

result of training-induced adaptations and/or is consistent 

across EBHD remains to be determined.

Skeletal muscle

Capillarisation and fibre type characteristics

At present, only a small number of studies have explored 

the skeletal muscle characteristics of BHDs using estab-

lished wet-lab techniques. Work by Bae et al. (2003) in 

Korean female BHDs documented higher capillary density 

(~ 39%) and smaller fibre cross-sectional area (CSA) in type-

I (~ 22%), type-IIa (~ 33%) and type-IIx (~ 25%) muscle 

fibres compared to active controls, as well as a smaller CSA 

of type-II fibres compared with type-I fibres in BHDs. The 

percentage distribution of type-I fibres was similar between 

groups (BHDs vs. NDs), with type-II fibres the predominant 

fibre type. The proportion of type-IIx fibres was higher in 

BHDs (31%) compared with controls (22%). Subsequent 

work by Park et al. (2005) in Indonesian habitual BHDs 

documented similar muscle fibre type composition (i.e., in 

type-I and type-IIa, but not in type-IIx) and CSA to that of 

non-diving age-matched controls. A possible explanation to 

Table 2  Lung volume and apnoeic performance characteristics of breath-hold divers

BHD breath-hold divers, DYN dynamic apnoea with fins, EBHD elite breath-hold divers, ND non-divers, PB personal best, STA static apnoea, 

TLC total lung capacity

Reference Participants Apnoeic performance characteristics TLC (L)

Schaefer et al. (1968) 1 EBHD (age: 33 years) PB Constant Weight Depth:

66 m

9.1

Muth et al. (2003) 2 EBHD PB STA:

393 ± 41 s (364–422 s)

PB Constant Weight Depth:

55 ± 7 m (50–60 m)

9 ± 1.41 (8–10)

Simpson et al. (2003) 1 EBHD PB STA:

 ~ 480 s

PB DYN:

 ~ 190 m

PB Constant Weight Depth:

 ~ 90 m

9.28

Overgaard et al. (2006) 7 male BHD (age: 30 ± 2 years) Years practicing apnoea:

 > 2 years

9.73 ± 1.36

Loring et al. (2007) 3 male and 1 female EBHD PB STA:

Male: 511 ± 85 s (405–608 s)

Female: 376 s

Male: 9.04 ± 0.67 (8.88–9.78)

Female: 5.91

Prommer et al. (2007) 7 male (age: 35 ± 9 years) and 3 female 

trained BHD (age: 32 ± 6 years)

Years practicing apnoea:

 > 3 years

Male: 10.58 ± 3.48 (6.4–12.8)

Female: 8.8 ± 1.7 (7.6–10)

Walterspacher et al. (2011) 12 male EBHD PB STA:

383 ± 47 s (304–469 s)

PB Depth:

52 ± 29.4 m (32–125 m)

Years of competitive experience:

6.6 ± 3.4 years (1–10 years)

9 ± 1.1 (7.36–10.82)

Ferretti et al. (2012) 8 male extreme BHD (age: 35 ± 4 

years)

Assisted breath-hold diving of at least 

50 m

8.76 ± 0.63 (7.3–10)

Stembridge et al. (2017) 14 male and 1 female EBHD PB STA:

401 s (296–560 s)

Years of competitive experience:

5.2 years (1.5–14 years)

8.28 ± 1.06
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the morphological disparities (i.e., fibre type distribution 

and CSA) across these habitual diving populations may be 

the water temperatures (i.e., Korean BHDs, 10–27 °C; Indo-

nesian BHDs, 29–30 °C) they are continuously exposed to 

during their daily working routines (Bae et al. 2003; Park 

et al. 2005). In rats, cold water immersion to ~ 20 °C for 

1 h per day, 5 days per week, for 19-weeks significantly 

increased the number of type-II fibres (+ 158%) and reduced 

the number of type-I fibres (− 24%) (Walters and ConsTa-

ble 1993). Similarly, in cold-acclimatised rats that had been 

reared continuously for 68 generations in a 5 °C environ-

ment, a significantly smaller CSA of the soleus muscles 

was observed compared with unacclimated controls (Suzuki 

et al. 1997). Therefore, the greater proportion of type-II 

fibres alongside the smaller fibre CSA documented in the 

Korean BHD population may be a chronic adaptive response 

to cold-water immersion. However, the question then arises 

as to what is the benefit of such morphological adaptations? 

In carp, Rome et al. (1984) demonstrated that more muscle 

fibres, a greater proportion of which being type-II fibres, 

are recruited at lower temperatures (i.e., 10 °C compared 

with 20 °C) to compensate for the influence of temperature 

on muscle function and also to generate the power neces-

sary for swimming. Therefore, one might speculate that the 

skeletal muscle characteristics of the Korean habitual BHDs 

may be beneficial in sustaining the efficacy of heat produc-

tion in muscle tissues during exposure to cold environments; 

however, further research is necessary to affirm or refute this 

hypothesis.

A cross-sectional study by Elia et al. (2019b) recorded 

similar fibre type distribution between EBHDs and NDs 

(type-I: 56 ± 12% vs. 55 ± 13%; type-II: 44 ± 12% vs. 

45 ± 13%), findings that aligned with Kjeld et al. (2018). 

Furthermore, the CSA across fibre types was comparable 

to the findings of Park et al. (2005) findings. Additionally, a 

higher capillary density, capillary-to-fibre-ratio, and a lower 

diffusion distance (R95) and sharing factor was reported in 

the skeletal muscle of EBHDs (Elia et al. 2019b). These 

findings are indicative of an enhanced blood to skeletal mus-

cle fibre exchange capacity (Richardson et al. 1994; Saltin 

1985) (Fig. 1). Thus, ceteris paribus, the rate at which oxy-

gen enters the muscle fibre and by-products are removed 

during exercise is accelerated (McGuire and Secomb 2003; 

Tesch et al. 1981; Tesch and Wright 1983). Hence, in an 

apnoeic context, these capillarisation characteristics may 

confer advantages during recovery periods.

The capillarisation data of Elia et al. (2019b) (i.e., lower 

 R95 and higher capillary density) concur with those previ-

ously reported in female Korean BHDs (Bae et al. 2003). 

The greater capillarisation observed in EBHDs might be 

attributable to their habitual apnoeic training, whereby peri-

ods of static and dynamic apnoeas are frequently repeated. 

It is well accepted that hypoxia serves a vital role in the 

regulation and expression of vascular endothelial growth 

factor (Breen et al. 1996; Gustafsson and Sundberg 2000), 

and consequently, the initiation of capillary neo-formation 

and angiogenesis (Arany et al. 2008; Desplanches et al. 

1993; Kon et al. 2014; Terrados et al. 1990). Therefore, the 

greater capillarisation observed in BHDs may originate from 

the interaction between hypoxia and muscle recruitment 

occurring during apnoeic training.

Myoglobin

A high myoglobin concentration is regarded as an impor-

tant adaptation to apnoeic diving in mammals and is closely 

related to apnoeic and diving capabilities (see review by 

Ponganis 2011). Myoglobin facilitates oxygen delivery to 

the mitochondria during periods of increased metabolic 

activity, and serves as an oxygen reservoir during times 

when ventilation ceases and hypoxia ensues (Postnikova 

and Shekhovtsova 2013). For instance, when skeletal muscle 

activity increases and intramyocellular oxygen levels begin 

to decline as a result of increased contractile activity (e.g., 

during dynamic apnoea), myoglobin supports intramyocel-

lular oxygen by releasing its own bound oxygen, thus mak-

ing it available for aerobic metabolism (Hoppeler and Vogt 

2001; Kanatous et al. 2002, 2008, 2009). As a result, the 

active skeletal muscle can rely mainly on stored oxygen to 

sustain aerobic metabolism, permitting extended dive dura-

tions (Kooyman and Ponganis 1998; Polasek and Davis 

2001). Thus, myoglobin serves a central role in balancing 

intracellular hypoxia and aerobic metabolism in response to 

exercise (Postnikova and Shekhovtsova 2013).

More recently, using an immunofluorescence microscopy 

technique, Elia et al. (2019b) found a greater type-I fibre 

myoglobin content in EBHDs (+ 27%) compared to NDs, but 

no difference in type-II fibre myoglobin content (Figs. 1, 2). 

The greater myoglobin stores reported in the EBHD group 

might be an important adaptation to apnoeic diving, as a 

greater skeletal muscle oxygen reserve will be readily avail-

able to support aerobic metabolism during apnoeic activity. 

These characteristics likely stem from an apnoea-specific, 

training-induced stimuli (Terrados et al. 1990) rather than 

genetic polymorphisms (Moore et al. 2002). Indeed, hypoxia 

coupled with skeletal muscle activation in both humans 

(Terrados et al. 1990), diving mammals and rodents has 

been documented to enhance myoglobin concentration in a 

muscle-specific manner (Dolar et al. 1999; Kanatous et al. 

2008; Kanatous and Mammen 2010; Ponganis et al. 2010). 

Conversely, both hypoxic exposure and skeletal muscle acti-

vation in normoxic conditions have been shown to impair 

these adaptive myoglobin responses (Jacobs et al. 1987; 

Masuda et al. 1999; Terrados et al. 1990). Therefore, the 



1550 European Journal of Applied Physiology (2021) 121:1543–1566

1 3

higher myoglobin concentrations recorded in the EBHD 

group may stem from training-induced stimuli and could 

potentially, in a similar manner to diving mammals, provide 

an advantage during apnoeic activities.

Mitochondrial content

Our knowledge of mitochondria has evolved over the previ-

ous century, moving beyond understanding of their func-

tion in energy production to revealing their crucial roles 

as redox and apoptotic signal transducers within the cell 

(Kamga et al. 2012). In pinnipeds, average mitochondrial 

volume density values were 1.7- to 2.0-fold greater in the 

swimming muscles compared with the non-swimming 

muscles (Kanatous et al. 1999). This adaptation, allied to 

the lower aerobic capacity when compared to other long-

duration divers (i.e., Weddell seals), suggests an ability to 

maintain low levels of aerobic lipid-based metabolism and 

reflects their energy-conserving modes of locomotion in a 

hypoxaemic environment (Kanatous et al. 2002, 1999).

In humans, a comparison of EBHDs and NDs found 

that mitochondrial complex subunits did not differ, nor did 

maximal citrate synthase or 3-hydroxyacyl CoA dehydroge-

nase activity (Kjeld et al. 2018) (Fig. 2). There were also no 

differences in markers of glucose metabolism or cytosolic 

antioxidant capacity. However, BHDs demonstrated lower 

mitochondrial leak respiration and electron transfer system 

Table 3  Splenic volumes (quantified by means of ultrasonography) and performance characteristics of breath-hold divers

BHD breath-hold divers, DNF dynamic apnoea no fins, DYN dynamic apnoea with fins, EBHD elite breath-hold divers, L length, ND non-divers, 

PB personal best, STA static apnoea, T thickness, W width

References Participants Performance characteristics Formula Splenic volume (mL)

Hurford et al. (1990) 10 female Korean Ama 

habitual BHD (age: 38–60 

years) and 3 female control 

(age: 24 ± 1 years)

Years practicing apnoea:

34 ± 7 years

Length of diving shifts 

174 ± 46 min

Cross-sectional area = 0.8 

× (length × width)

Volume = (7.53 × cross-

sectional area) − 77.56

BHD: 206 ± 49

Control: 223 ± 48

Baković et al. (2003) 10 male trained BHD (age: 

28.6 ± 1.7 years) and 10 

male untrained individuals 

(age: 27.8 ± 2.4 years)

– BHD: 344.1 ± 16.6

ND: 332 ± 25.1

Prommer et al. (2007) 7 male (age: 35 ± 9 years) 

and 3 female trained 

BHD (age: 32 ± 6 years), 

and 7 male Scuba divers 

(age: 38 ± 11 years)

Years practicing apnoea:

 > 3 years

Training background:

2—3 h, 3 times per week or 

more

BHD: 191 ± 47

Scuba divers: 229 ± 55

Palada et al. (2007) 7 experienced BHD (age: 

27.4 ± 4.6 years)

Years practicing apnoea:

7.1 ± 3.6 years (5–14)

PB STA:

284.0 ± 34.4 s (240–335)

PB Constant Weight Depth:

33.7 ± 5.6 m (25–40 m)

308 ± 135

Palada et al. (2008) 7 male BHD (age: 27 ± 5 

years)

Years practicing apnoea:

7 ± 4 years (5–14 years)

PB STA:

284 ± 34 s (240–335 s)

PB Constant Weight Depth:

34 ± 6 m (25–40 m)

283 ± 76

Schagatay et al. (2012) 14 male EBHD (age: 29 ± 2 

years)

Years practicing apnoea:

5.8 ± 1.2 years

Training background:

6.2 ± 0.6 h per week

Pilström formula

Volume = (Lπ[WT−T2]/3)

336 ± 32 (215–598)

Elia et al. (2019b) 11 male EBHD and 10 male 

matched control ND

Years practicing apnoea:

7 ± 2 years

Training background:

8 ± 2 h per week

PB STA:

414 ± 101 s

PB DYN:

202 ± 46 m

PB DNF:

145 ± 50 m

BHD: 300 ± 122 (128–499)

ND: 297 ± 77 (198–452)
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capacity, and higher  H2O2 emission during leak respiration 

than controls. These findings suggest that, similar to previ-

ous observations in diving mammals (Chicco et al. 2014), 

EBHDs possess lower mitochondrial oxidative capacity than 

NDs (Kjeld et al. 2018), which might represent an oxygen-

sparing mechanism given the reduced skeletal muscle oxy-

gen extraction during diving activity (Chicco et al. 2014).

In EBHDs, type-I fibre mitochondrial content was 

reported to be ~ 35% higher compared with type-II fibres, 

whereas in NDs this did not differ between fibres (Elia 

et al. 2019b). Although there were no between-group dif-

ferences in mitochondrial content, qualitative assessment 

of the relative myoglobin and mitochondrial protein dis-

tribution in muscle fibres revealed a stronger fluorescence 

intensity. Furthermore, there was a homogenous distri-

bution of fluorescence intensity at the sub-sarcolemmal 

regions of type-I muscle fibres in the EBHDs compared 

with NDs. Such a homogenous distribution may poten-

tially reduce the intracellular diffusion distance between 

oxymyoglobin and mitochondria. This novel observation, 

in combination with the higher myoglobin concentrations 

reported in the EBHDs type-I fibres, may suggest a greater 

reserve of readily available oxygen to support a similar 

(i.e., when compared with the type-I fibre mitochondrial 

content of NDs) mitochondrial respiration.

Apnoea and the diving‑response

During apnoea, the body undergoes a series of physiological 

modifications, known collectively as the diving-response, 

which adapts the body to the state of hypoxaemia and eco-

nomically manages oxygen stores until respiration is re-

established (Ferrigno et al. 1997; Foster and Sheel 2005; 

Gooden 1994; Lindholm and Lundgren 2009). The diving-

response is primarily characterised by an initial parasym-

pathetically-induced bradycardic response, which slows 

the depletion of oxygen stores (Asmussen and Kristians-

son 1968; Hoiland et al. 2017; Landsberg 1975; Lin 1982) 

(Fig. 1). A selective sympathetically-induced peripheral 

vasoconstriction is also triggered in the arterioles (i.e., the 

peripheral and visceral capillary beds) of non-vital organs 

and the body’s extremities, with preferential redistribution 

of oxygenated blood towards the vital organs (Baković et al. 

2003; Ferretti 2001; Kyhl et al. 2016; Mijacika and Dujic 

2016) (Fig. 1). This results in a shift from predominantly 

aerobic to anaerobic metabolism in the non-essential organs, 

further lowering oxygen utilisation and compounding the 

diving-response-induced oxygen-conserving effect (Anders-

son et al. 2004, 2002). Taken together, these findings suggest 

that the diving-response plays a key role in reducing the 

severity of hypoxaemia across a given duration of apnoeic 
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activity, by inducing a series of physiological modifications 

which economically manage oxygen utilisation.

The diving-response is evident in all humans; how-

ever, the magnitude of the predefined physiological com-

ponents differs substantially across diving and non-diving 

populations. More experienced BHDs exhibit an earlier 

(10–20 s) and more pronounced bradycardic response (less 

than ~ 35 bpm) compared with NDs (50–70 s; ~ 50 bpm) 

(Elia et al. 2021b; Ferretti 2001; Ferretti et al. 1991; Lemaî-

tre et al. 2008; Schagatay et al. 2000). Similarly, during static 

apnoeas, EBHDs are known to exhibit greater increases in 

cerebral blood flow, higher cerebrovascular reactivity (Joulia 

et al. 2009; Vestergaard and Larsson 2019) and are able to 

withstand greater hypoxaemic and hypercapnic levels than 

NDs (Bain et al. 2016, 2018; Willie et al. 2015). Addition-

ally, there is also evidence to suggest that trained BHDs 

exhibit a blunted ventilatory chemosensitivity to hypercap-

nia at rest and post-exercise (Delapille et al. 2001; Grassi 

et al. 1994; Roecker et al. 2014) that is distinct from scuba 

divers and controls (Roecker et al. 2014), in addition to dis-

playing a reduced cerebral autoregulation compared with 

ND controls (Moir et al. 2019). Yet the nature of the lat-

ter adaptation remains to be determined whether it serves a 

protective purpose (i.e., preserving cerebral oxygen perfu-

sion/delivery) or rather represents a more menacing phe-

nomenon (i.e., exposing BHDs to a greater risk of cerebral 

hypoperfusion).

Although these disparities may be partly attributed to a 

training-induced effect (Joulia et al. 2002, 2003; Schagatay 

et al. 2000), accumulating evidence suggests they may also 

stem from selective genetic variations (Baranova et al. 2017; 

Ilardo et al. 2018). Baranova et al. (2017) observed that during 

a maximal apnoeic attempt, individuals with a combination of 

the C/C allele of the bradykinin receptor B2, D/D allele of the 

angiotensin-converting enzyme, and G/G polymorphism in the 

renin genes exhibited: (i) a more pronounced vasoconstriction, 

(ii) a lower blood supply to peripheral vessels, (iii) a lower 

pulse wave amplitude and (iv) lower pulse transit time values 

compared with heterozygous individuals. Conjointly, these 

genetic polymorphisms augment the release of angiotensin-

II and suppress endothelial nitric oxide synthase through the 

degradation of bradykinin. Consequently, alterations in these 

vasoactive substances potentiate the noradrenergic diving-

response-induced vasoconstriction and delay the recovery of 

vascular tone after the stimuli abates.

Therefore, the exaggerated diving-response observed in 

BHDs may result from training-induced stimuli and/or a natu-

ral selection of genetic polymorphisms that collectively protect 

them from intense hypoxaemia.

Apnoea and face immersion

Apnoea, as the lone stimuli, is sufficient to elicit bradycar-

dia, however, when apnoea is coupled with face immersion, a 

stronger bradycardial response is noticeable (Andersson et al. 

2000; Ferrigno et al. 1997; Hayashi et al. 1997; Shamsuzza-

man et al. 2014). The profound influences of facial cooling 

largely stem from stimulation of the trigeminal nerve activ-

ity (i.e., facial cold receptors innervated by the ophthalmic 

nerve), which evidently evoke a ‘trigeminocardiac reflex’, 

also referred to as the diving-reflex (Lemaitre et al. 2015). 

The magnitude of this reflex is highly variable and primarily 

depends on the water temperature the facial cold receptors are 

exposed to (Ferrigno et al. 1997; Schagatay and Holm 1996). 

Similarly, apnoea with face immersion has been evidenced 

to synergistically incite a stronger reduction in limb blood 

flow (i.e., finger and forearm) and greater muscle sympathetic 

nerve activity than individual stimuli for either apnoea or facial 

cooling (Heistad et al. 1968; Shamsuzzaman et al. 2014). 

Collectively, these data suggest that a stronger bradycardial, 

peripheral vasoconstriction and reduction in limb blood flow 

is evident when apnoeas are coupled with the stimulation of 

the facial cold receptors.

Acute apnoea‑induced humoral 
and stress‑related responses

Erythropoietin

Under hypoxic/hypoxaemic conditions, hypoxia-induc-

ible factors stimulate the transcriptional activity of the 

erythropoietin (EPO) gene (Ebert and Bunn 1999; Haase 

2010, 2013), subsequently actuating the synthesis of the 

glycoprotein hormone EPO by the kidneys and, to a lesser 

extent, the liver and brain—with the production of EPO 

being directly proportional to the level of systemic hypox-

aemia (Eckardt et al. 1989; Elia et al. 2019a; Ge et al. 

2002; Jelkmann 2011; Knaupp et al. 1992). EPO serves a 

pivotal role in maintaining oxygen homeostasis through 

inciting the process of erythropoiesis and consequently 

elevating RBC and haemoglobin mass (Haase 2010, 2013; 

Jelkmann 2011; Lundby et  al. 2007; Rodríguez et  al. 

2000). While, to date, no study has evaluated the effect of 

voluntary apnoea on hypoxia-inducible factors expression, 

a number of studies have demonstrated that the systemic 

hypoxaemia brought about by apnoeic activity stimulates 

an acute increase in serum EPO (de Bruijn et al. 2008; Elia 

et al. 2019a, 2021b; Kjeld et al. 2015).

de Bruijn et al. (2008) first demonstrated that a series 

of fifteen dry static apnoeic repetitions were effective 

in increasing serum EPO concentrations (+ 1.38 mlU/L 

[+ 16%]) in NDs, 3 h after the last apnoeic bout, with 
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values restored to baseline 5  h post. Similarly, Kjeld 

et al. (2015) reported significant increases in EPO (+ 1.8 

mIU/L) 3 h following a single bout of a combined maximal 

static and dynamic apnoeic attempt in a group of EBHDs. 

More recently, the first distinction between the individ-

ual erythropoietic effects of repeated static and dynamic 

apnoeas was provided by Elia et al. (2019a). In EBHDs, 

NDs and controls, a series of ten repeated maximal static 

apnoeic bouts with whole-body immersion did not signifi-

cantly affect serum EPO concentrations in relation to base-

line (Elia et al. 2019a). However, in elite exponents only, 

concentrations were elevated at 30 min (+ 60%; + 3.97 

mIU/L) and 180 min (+ 63%; + 4.02 mIU/L) following 

just five maximal dynamic apnoeic bouts. This increase 

was, however, not mirrored in ND, potentially due to the 

lower degree of hypoxaemia experienced by the NDs than 

the EBHDs. The strong association between end-apnoeic 

peripheral oxygen saturation levels and peak post-apnoeic 

serum EPO (r = − 0.49) seems to support this notion.

Considering the key role that EPO serves in the pro-

cess of erythropoiesis (Eckardt et  al. 1989; Jelkmann 

2011), a number of studies have explored the possibility 

Fig. 2  Schematic representation depicting current knowledge con-

cerning the (mal)adaptations associated with long-term exposures to 

apnoea-related activities. Abbreviations: BMC, bone mineral content; 

BMD, bone mineral density; CD, capillary density; CKD, chronic kid-

ney disease; Hb, haemoglobin; Mb, myoglobin; MIT, mitochondria; 

RBC, red blood cell; RTC, reticulocyte; R95 , diffusion distance. Sup-

porting literature is denoted by the numbers, where; 1 = Bae et  al. 

(2003), 2 = Bouten et  al. (2019), 3 = Doerner et  al. (2018), 4 = Elia 

et al. (2019b), 5 = Elia et al. (2020), 6 = Engan et al. (2013), 7 = Fer-

nandez et  al. (2017), 8 = Hwang et  al. (2006), 9 = Johansson and 

Schagatay (2012), 10 = Kjeld et al. (2018), 11 = Kohshi et al. (2014), 

12 = Nygren-Bonnier et  al. (2007), 13 = Oh et  al. (2017), 14 = Pot-

kin and Uzsler (2006), 15 = Seo et  al. (2018), 16 = Tanaka et  al. 

(2016).  Figure created with BioRender.com
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of apnoea-induced hypoxaemia in enhancing erythro-

cyte concentrations. Engan et al. (2013) first signified 

that 2-weeks of daily dry static apnoeic training (i.e., ten 

maximal apnoeic bouts, in total) was effective in increas-

ing resting reticulocyte concentrations. These findings 

highlighted the possible utility of apnoeic training as a 

sufficient stimulus for erythropoiesis. However, conflict-

ing evidence has since been published regarding the effect 

of apnoeic training on haematology (Bouten et al. 2019; 

Elia et al. 2021a; Fernandez et al. 2019); with Bouten et al. 

(2019) reporting significant increases (+ 6 g/L) in hae-

moglobin concentrations following 8-weeks of daily dry 

static apnoeic training (i.e., five maximal apnoeic bouts 

per day) whereas both Fernandez et al. (2019) and Elia 

et al. (2021a) failed to record any gains in haemoglobin 

and RBC following 22-weeks (i.e., structured apnoea pro-

gram) and 6-weeks (i.e., ten maximal dynamic apnoeic 

bouts, four times per week) of apnoeic training, respec-

tively. However, it is worth noting that Bouten et al. (2019) 

did not assess total haemoglobin mass nor plasma volume. 

Taking into consideration that haemoglobin concentrations 

are prone to plasma volume changes (Otto et al. 2013, 

2017), it is unclear whether the increases reported by 

Bouten et al. (2019) following apnoeic training reflect a 

true improvement in haemoglobin concentrations. There-

fore, it remains to be elucidated whether apnoea-induced 

increases in serum EPO concentrations are sufficient to 

stimulate erythropoiesis and ultimately translate to chronic 

increases in RBC and haemoglobin mass.

Oxidative stress and antioxidant enzyme activity

Once breathing is reinstated following a hypoxaemic bout, 

reactive hyperaemia and systemic reoxygenation results in 

increased free radical and associated reactive oxygen spe-

cies (ROS) production alongside a state of oxidative stress 

(Li and Jackson 2002). Similarly, repeated maximal apnoeic 

attempts have been documented to upregulate the production 

of ROS in the systemic circulation (Joulia et al. 2002, 2003), 

accentuating that repeated apnoeic bouts can aggravate sys-

temic oxidative stress levels (Mrakic-Sposta et al. 2019; 

Sureda et al. 2004b, 2015; Theunissen et al. 2013). Interest-

ingly, following sustained static and dynamic apnoeic activ-

ity EBHDs exhibited lower post-exercise blood acidosis and 

oxidative stress (i.e., thiobarbituric acid reactive substances 

[TBARS], reduced glutathione [GSH] and reduced ascor-

bic acid) compared with NDs, despite attaining significantly 

greater (302 ± 30 s vs. 104 ± 10 s) apnoeic performances 

(Joulia et al. 2002)—an observation that was later ascribed 

to a training-induced adaptation (Joulia et al. 2003).

The lower post-apnoeic oxidative stress documented in 

EBHDs may, at least in part, stem from an enhanced antioxi-

dant enzyme activity and resistance to antioxidant depletion 

(Bulmer et al. 2008; Sureda et al. 2004a, b). Indeed, 1 h 

following a series of repeated apnoeic dives (~ 55 dives) 

erythrocyte catalase and lymphocyte superoxide dismutase 

(SOD) were enhanced; a response which likely protected 

erythrocytes against any oxidative damage (Sureda et al. 

2006). Similarly, following a single, submaximal dynamic 

apnoeic attempt, Rousseau et al. (2006) reported significant 

increases in plasma glutathione peroxidase (GPx-3) activ-

ity and blood GSH, whereas no changes were observed in 

erythrocyte SOD, erythrocyte glutathione peroxidase (GPx), 

blood oxidised glutathione and TBARS concentrations. 

Moreover, after five static apnoeic repetitions, circulating 

antioxidant concentrations (i.e., bilirubin and uric acid) were 

reduced while antioxidant enzyme activity (i.e., SOD and 

GPx) was enhanced without causing an increase in oxidative 

stress (i.e., malondialdehyde) (Bulmer et al. 2008). More 

recently, Sureda et al. (2015) evaluated for the first time the 

cumulative effects of daily apnoeic exposures on ROS gen-

eration, oxidative stress and antioxidant enzyme activity. 

Following a series of repeated apnoeic dives (i.e., ~ 200 dives 

performed over a period of 5 days) xanthine oxidase activ-

ity, an enzyme responsible for the generation of ROS, was 

significantly elevated (+ 98%) (Sureda et al. 2015). However, 

concomitant increases in antioxidant enzyme activity (i.e., 

catalase, GPx, glutathione reductase and SOD) and protein 

levels (i.e., catalase), primarily observed 15 h after the last 

hypoxaemic bout, inhibited xanthine oxidase-derived ROS 

generation (i.e., supported by the lack of changes in malon-

dialdehyde and protein carbonyl derivates levels) and pro-

tected cells from oxidative damage. Collectively, these find-

ings illustrate that acute apnoea enhances oxidative stress in 

contrast to repeated apnoeas that appear to demonstrate an 

attenuation of oxidative stress. This may represent a protec-

tive physiological adaptation to the endogenous antioxidant 

defence system, capable of opposing excessive ROS and 

maintaining redox balance.

Neuronal stress

Emerging evidence indicates that maximal apnoeic bouts are 

associated with transient disruption of the blood–brain bar-

rier (Andersson et al. 2009; Bain et al. 2018; Matsuo et al. 

2014) and neuronal-parenchymal damage (Gren et al. 2016). 

In nine BHDs, Andersson et al. (2009) reported significant 

increases (~ 26%) in serum S100β at the end of a maximal 

static apnoea, with values being restored to baseline ~ 2 h post; 

indicative of a potential perturbation of the blood–brain bar-

rier. A subsequent study by Kjeld et al. (2015) revealed signifi-

cant increases (~ 70%) in neuron-specific enolase (NSE), but 

failed to record any increases in S100β levels 3 h following a 
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combined bout of static and dynamic apnoea, possibly owing 

to the short half-life of S100β (~ 2 h) (Thelin et al. 2017). 

Separately, in competitive BHDs, static apnoea increased 

plasma concentrations of total tau and amyloid β42, whereas 

no changes were observed in neurofilament light protein or 

S100β (Gren et al. 2016). More recently, immediately after a 

maximal apnoeic bout S100β concentrations were significantly 

elevated (~ 40%), while NSE and human myelin basic pro-

tein (a specific biomarker for cerebral axonal damage) did not 

change (Bain et al. 2018). These findings were interpreted as 

a minor disturbance of the blood–brain barrier, but not enough 

to cause neuronal-parenchymal damage. Presently, it is unclear 

whether these transient increases are simply reflective of func-

tional physiological responses, or rather depict a maladaptive 

phenomenon. Moreover, to the best of our knowledge, no study 

has examined the neurological strain imposed by a series of 

repeated maximal apnoeic bouts (i.e., three or more repeti-

tions). Considering that intermittent hypoxaemia (i.e., hypoxia 

and reoxygenation) is evinced to be capable of disrupting the 

permeability of the blood–brain barrier as well as interfering 

with the critical intercellular tight junction protein complexes 

(Almutairi et al. 2016; Kaur and Ling 2008; Lochhead et al. 

2010), physiological modifications that could, in the long-

term, lead to neuronal dysfunction and degeneration, together 

reinforce the necessity for further studies to be undertaken.

Cardiac stress

Following a static apnoeic attempt and a 5 h spearfishing com-

petition, copeptin and ischemia-modified albumin (IMA)—

all representative markers of acute and hypoxaemic stress—

were elevated above baseline (Joulia et al. 2015; Marlinge 

et al. 2019). Interestingly, the recorded IMA increases were 

greater than those denoted in chronic cardiac failure patients 

(Franceschi et al. 2009) and during acute coronary ischemia 

(Bali et al. 2008; Lee et al. 2007); thus highlighting the sever-

ity of the physiological stress encountered by BHDs during 

apnoea. More importantly, following repeated apnoeic dives 

the cardiac injury markers cardiac troponin I and brain natriu-

retic peptide were significantly elevated (+ 275% and + 229%, 

respectively) from basal levels; a response that was not evident 

following a single static apnoeic attempt, nor after a combined 

bout of static and dynamic apnoeas (Kjeld et al. 2015; Mar-

linge et al. 2019).

Considering the substantial physiological stress experi-

enced by BHDs during voluntary apnoeic efforts, the question 

then arises as to whether chronic exposures to repeated, tran-

sient apnoeic interventions could lead to health implications. 

Accordingly, the following section will seek to delineate the 

possible maladaptation(s) of chronic apnoeic training.

Maladaptation(s) associated with chronic 
apnoeic training

Neurocognition

There is compelling evidence highlighting the deleterious 

effects of acute and chronic exposure to hypoxia across a 

range of cognitive and behavioural performances (Caine 

and Watson 2000; Hornbein et al. 1989; Truszczyński 

et  al. 2009). As previously discussed, even transient 

apnoea-hypoxaemia gives rise to increased serum S100β 

(a marker of cerebral ischemia and brain damage) (Anders-

son et al. 2009; Bain et al. 2018), plasma NSE (a marker 

of acute neuronal damage) (Kjeld et al. 2015) and alters 

amyloid metabolism by increasing plasma total tau and 

amyloid β42 (i.e., reflecting neuronal damage/dysfunction) 

(Gren et al. 2016). One may, therefore, argue that repeated 

exposures to such transient, severe hypoxaemia could lead 

to chronic negative consequences in BHD populations 

(Fig. 2).

In five EBHDs, single photon emission computed tomo-

graphic scans revealed brain abnormalities, demonstrating 

both large focal and/or diffuse areas of hypo- and hyper-

perfusion in the frontal and temporal lobes and cerebellar 

hemispheres (Potkin and Uzsler 2006). Moreover, brain 

magnetic resonance imaging (MRI) scans in 11 out of 12 

male Ama divers revealed cerebral ischemic lesions which 

were predominately situated in the cortex and subcortical 

white matter—characteristics that are indicative of circu-

latory disturbance at the corticomedullary junctional area 

of cerebral arteries (Kohshi et al. 2014) (Fig. 2). These 

MRI findings are so-called low-flow cerebral infarctions 

resulting from low perfusion pressure in terminal sup-

ply areas which the authors argued were not the result of 

aging. Contrastingly, in 17 EBHDs, Doerner et al. (2018) 

did not observe any cerebral (i.e., acute or sub-acute cer-

ebral ischemia) morphological alterations at baseline nor 

at follow-up after 1 year compared both intra-individually 

and with healthy controls. Taken together, the inconsistent 

findings across these studies highlight the necessity for 

more research to be undertaken in larger cohorts to further 

our understanding of the chronic effects of breath-hold 

diving on cerebral integrity.

Contrary to the common assumption that breath-hold 

diving holds no risk for decompression sickness, it has 

been shown that multiple repeated breath-hold dives can 

produce venous gas emboli (Cialoni et al. 2016; Lemaî-

tre et al. 2014; Spencer and Okino 1972). Symptoms in 

BHDs consistent with decompression sickness have also 

been reported both after several repeated dives and fol-

lowing very deep single breath-hold dives [see Lemaitre 

et al. (2009) for review]. Decompression sickness caused 
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by breath-hold dives tends to affect the central nervous 

system. The reason for this is unknown, although arteriali-

sation of venous gas emboli, either via pulmonary shunts 

(Schipke and Tetzlaff 2016), or due to compression and 

release of venous gas emboli lodged in the pulmonary cap-

illaries during repeated dives are possible mechanisms. 

Irrespective of the mechanisms, it is clear that when inves-

tigating cerebral pathology in EBHD the effects of asymp-

tomatic or symptomatic embolic events must be differenti-

ated from the effects of repeated hypoxia. Therefore, the 

prior activities of EBHD must be carefully explored and 

reported. It would be especially interesting to draw com-

parisons between EBHD who only carry out static apnoeas 

and/or dynamic breath-hold dives but not deep dives, and 

possibly distinguish them from EBHD who perform both 

repeated and deep dives.

To date, conflicting evidence exists concerning the long-

term sequalae of apnoeic training on neurocognitive health. 

Ridgway and McFarland (2006) failed to report any neu-

rocognitive impairments in 21 BHDs compared with non-

diving controls using a series of neuropsychological tests. 

Similarly, apnoea-induced hypoxaemia and hypercapnia 

did not seem to impair neurocognitive nor visual/cognitive 

processing stages (Ratmanova et al. 2016; Steinberg and 

Doppelmayr 2019). On the other hand, during a Stroop test, 

EBHD took longer to complete an interference card, made 

more errors, and had a lower total interference score than 

novice BHDs and controls (Billaut et al. 2018). More impor-

tantly, the time taken to complete the card was positively 

associated with maximal static apnoea duration (r = 0.73) 

and the number of years engaged in breath-hold diving train-

ing (r = 0.79). These findings signify that long-term partici-

pation in breath-hold diving, may give rise to short-term 

memory impairments. The discrepancies among the find-

ings of these studies may relate to the training background 

and apnoeic characteristics of the BHDs recruited. However, 

the growing popularity of the sport necessitates that further 

longitudinal studies are conducted to elucidate the potential 

chronic maladaptations to apnoeic-related activities.

Cardiovascular and arterial modifications

During prolonged apnoeas, peripheral vasoconstriction from 

elevated sympathetic nerve activity, in addition to the onset 

of involuntary diaphragmatic contractions (Fagoni et al. 

2017), progressively lead to increases in mean arterial pres-

sure (~ 35–55%) (Breskovic et al. 2011; Perini et al. 2008; 

Willie et al. 2015). Moreover, during dry maximal static 

apnoeas, Doerner et al. (2018) recorded dilations of the left 

ventricle as well as reductions in the left ventricular ejection 

fraction accompanied by an increased left ventricular sys-

tolic volume—a response that was evident in EBHDs but not 

in NDs. Considering that both persistent hypertension and 

cardiac dilation can lead to cardiac remodelling with fibrotic 

changes (Assomull et  al. 2006), one wonders whether 

chronic apnoeic training may give rise to an increased risk 

of cardiovascular disease.

Resting echocardiograms and 24 h continuous electrocar-

diogram monitoring did not unveil any cardiac abnormali-

ties in 16 competitive BHDs (Zelenkova and Chomahidze 

2016). Similarly, using magnetic resonance imaging, nei-

ther late gadolinium enhancement imaging nor T1-map-

ping and its derived parameters showed significant cardiac 

morphological alterations (i.e., myocardial scars or fibrotic 

changes) at baseline, nor at follow-up after 1 year compared 

intra-individually and with healthy controls (Doerner et al. 

2018). Moreover, a cross-sectional study that investigated 

the arterial stiffness of 115 female lifelong Ama BHDs (i.e., 

38 ± 8 years practicing apnoea) with age-matched physi-

cally active adults demonstrating similar arterial stiffness, 

cardio-ankle vascular index and β-stiffness index (Tanaka 

et al. 2016). Therefore, in totality, despite some findings 

that indicate acute cardiac disturbances (Joulia et al. 2015; 

Marlinge et al. 2019), the current evidence suggests that 

long-term participation in apnoea-related activities does not 

affect cardiac health nor vascular integrity (Fig. 2).

Bone tissue

Mechanical loading has a vital impact on bone remodel-

ling and bone mineral density (BMD) (Chahal et al. 2014; 

Lanyon and Rubin 1984), with bone responding adap-

tively to its habitual loading environment, for example the 

contractile forces applied by skeletal muscle (Hart et al. 

2017). Although the high-pressure conditions associated 

with diving may be osteogenic, this stimulus appears to 

be mitigated by the weight-supported underwater environ-

ment (Hwang et al. 2006). Male EBHDs were shown to 

possess significantly lower bone mineral content (BMC) 

than age- and morphometry-matched controls (3.1 ± 0.2 kg 

vs. 3.7 ± 0.4 kg) (Kjeld et al. 2018) (Fig. 2). This was also 

the case for BMD (1.3 ± 0.1 kg/m2 vs. 1.4 ± 0.1 kg/m2) 

and T/Z-score (0.6 ± 0.8 vs. 2.3 ± 0.8). In support, Fer-

nandez et al. (2017) reported comparable BMD values of 

1.28 ± 0.09 g/cm2 in BHDs (Fig. 2). However, it is impor-

tant to note that comparisons of dual-energy x-ray absorp-

tiometry (DXA) measurements from different machines 

should be made with a degree of caution (Gillette-Guy-

onnet et al. 2003; Saarelainen et al. 2016). Furthermore, 

both of these studies measured total-body BMC and BMD, 

whereas the use of additional measurement sites, such as 

the proximal femur, may provide more information with 

relation to the risk of osteoporotic fracture (Lu et al. 2001). 

Lumbar spine and femoral neck BMD and T-scores were 

similar in female Ama BHDs compared to NDs, yet these 

participants were postmenopausal and older (~ 70 years) 
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than those in comparable literature (Seo et  al. 2018). 

Importantly, in both groups, the reported T-scores were 

suggestive of osteopenia (Karaguzel and Holick 2010) and 

approached the threshold for osteoporosis in this popula-

tion [≤ −2.5; Kanis (1994), Park et al. (2016)], thus indi-

cating that substantial cumulative exposure to the diving 

environment does not confer benefits with regards to BMD 

at the lumbar spine and proximal femur. In a younger 

(~ 54 year) population of female divers, with ~ 34 years 

of diving experience, greater BMD values were seen for 

the total hip and femoral neck areas compared to controls 

(Hwang et al. 2006). Whilst the femoral neck T-score  was 

in the healthy range in premenopausal divers, postmeno-

pausal divers and NDs demonstrated T-scores indicative 

of osteopenia. Noticeably, age was a predictor of proxi-

mal femur BMD in BHDs and controls, revealing a more 

rapid decrease in BMD in divers. Furthermore, BMD was 

reduced in proportion to time spent in the water (Hwang 

et al. 2006).

Prolonged and repeated exposure to hypercapnic con-

ditions may significantly impact bone metabolism. For 

example, untreated chronic obstructive pulmonary dis-

ease patients with hypercapnia exhibited lower BMD than 

eucapnic comparators (Dimai et al. 2001), a difference that 

was partially attributed to increased bone resorption (i.e., 

the breakdown of bone tissue by osteoclasts to liberate 

calcium). The decreased pH of the blood brought about by 

hypercapnia may also drive this process, whilst inhibiting 

mineral deposition by osteoblasts (i.e., bone formation) 

in a seemingly reciprocal manner (Arnett 2010). Interest-

ingly, the resorptive activity of osteoclasts is not impaired 

in hypoxia, however, the growth and differentiation of 

osteoblasts is inhibited (Arnett 2010). Therefore, the com-

bined effects of hypoxaemic and hypercapnic exposure, 

as well as the weight-supported environment in competi-

tive and habitual BHDs may influence bone metabolism to 

varying degrees, thus partially explaining the differences 

reported above. In light of this evidence, the use of pro-

phylactic measures for the prevention of osteoporosis [i.e., 

calcium and vitamin D supplementation, weight-bearing 

exercise and/or antiresorptive agents, (Kling et al. 2014)] 

may be justified in BHDs, particularly for older individuals 

with a more substantial history of diving activity. How-

ever, the nature and efficacy of such interventions in diving 

populations is yet to be explored.

Taken together, the current evidence concerning the 

impact of prolonged breath-hold diving on BMC and BMD 

is equivocal, with conflicting findings depending on the 

measurement site and/or population in question. Therefore, 

these aspects of bone health should be explored further in 

longitudinal investigations of elite and occupational div-

ing populations.

Renal health

To our knowledge, the only study to have explored the 

impact of long-term breath-hold diving on kidney function 

was in female habitual Korean divers, using estimates of 

glomerular filtration rate (Oh et al. 2017). After matching 

for propensity scores (n = 715 per group), chronic kidney 

disease prevalence was significantly higher in BHDs com-

pared with non-diving controls (12.6% vs. 8.0%). Multivari-

ate analyses revealed significant associations between diving 

activity and chronic kidney disease risk in an unmatched 

cohort. In the propensity score-matched cohort, diving 

remained the independent risk factor for chronic kidney 

disease, even following adjustment for multiple covariates. 

Moreover, following a single, sled-assisted dive to 40 m, 

creatinine concentrations increased (+ 40%), suggesting a 

possible early renal dysfunction (Mrakic-Sposta et al. 2019). 

Conjointly, these findings provide evidence that sustained, 

long-term breath-hold diving activity may lead to a dete-

rioration in kidney function (Fig. 2). The causality of this 

association needs to be explored further in longitudinal stud-

ies of BHDs.

Conclusions

This review has provided (i) an overview of the pertinent 

physiological traits and mechanisms that govern an indi-

vidual’s apnoeic capabilities, (ii) outlined the humoral and 

stress responses to maximal apnoeic bouts and (iii) deline-

ated the physiological (mal)adaptations to chronic apnoeic 

training. The present evidence suggests that BHDs demon-

strate a more pronounced diving-response than NDs while 

elite exponents also display beneficial adaptations in blood 

and skeletal muscle, primarily as a consequence of expo-

sure to training-induced stimuli. Moreover, BHDs possess an 

ability to endure distinct acute cerebrovascular and neuronal 

stressors, the physiological basis of which (i.e., training-

induced or as a consequence of genetic disposition) is less 

understood. Over the long-term, sustained breath-hold div-

ing activity may pose ramifications for renal health, whereas 

the impact on bone tissue, neurocognition and cardiovascu-

lar function is less clear.
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Future directions

This review highlights the necessity for further cross-sec-

tional and longitudinal studies to be performed, with the 

goal of advancing our fundamental understanding of the 

maladaptation(s) associated with chronic apnoeic stress as 

well as the influence of training-induced and genetic factors 

on apnoeic performance. Preliminary evidence has posed 

considerations for neurocognition, renal and bone health in 

BHDs. Considering the growing popularity of the sport and 

the increasing number of people pursuing breath-hold div-

ing as a competitive and/or recreational activity, enhanced 

understanding of the (mal)adaptation(s) of chronic apnoeic 

training is paramount from a safety and medical standpoint.
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