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Abstract——Galanin was first identified 30 years ago
as a "classic neuropeptide," with actions primarily as
a modulator of neurotransmission in the brain and
peripheral nervous system. Other structurally-related
peptides—galanin-like peptide and alarin—with diverse
biologic actions in brain and other tissues have since
been identified, although, unlike galanin, their cognate
receptors are currently unknown. Over the last two
decades, in addition to many neuronal actions, a number
of nonneuronal actions of galanin and other galanin
family peptides have been described. These include

actions associated with neural stem cells, nonneuronal
cells in the brain such as glia, endocrine functions, effects
onmetabolism, energy homeostasis, and paracrine effects
in bone. Substantial new data also indicate an emerging
role for galanin in innate immunity, inflammation, and
cancer. Galanin has been shown to regulate its numerous
physiologic and pathophysiological processes through
interactions with three G protein–coupled receptors,
GAL1, GAL2, and GAL3, and signaling via multiple
transduction pathways, including inhibition of cAMP/PKA
(GAL1, GAL3) and stimulation of phospholipase C (GAL2). In

ABBREVIATIONS: AC, adenylate cyclase; AD, Alzheimer’s disease; AP, acute pancreatitis; ARC, arcuate nucleus; Ab, b-amyloid; BNST,
bed nucleus of the stria terminalis; BW, body weight; CeA, central amygdala; CNS, central nervous system; CREB, cAMP response element-
binding protein; CRF, corticotropin-releasing factor; DCSV, dense core secretory vesicles; DH, dorsal horn; DR, dorsal raphe; DRG, dorsal root
ganglia; EPSCs, excitatory postsynaptic currents; ERK, extracellular signal-regulated protein kinase; GAL1, galanin receptor 1; GAL1-KO,
GAL1 knockout; GAL2, galanin receptor 2; GAL2-KO, GAL2 knockout; GAL3, galanin receptor 3; GAL3-KO, GAL3 knockout; GALP, galanin-
like peptide; GMAP, galanin message-associated peptide; GnRH, gonadotropin-releasing hormone; GPCR, G protein–coupled receptor;
HNSCC, head and neck squamous cell carcinoma; 5-HT, 5-hydroxytryptamine, serotonin; IL-1a, interleukin 1a; IPSPs, inhibitory
postsynaptic potentials; KO, knockout; LC, locus coeruleus; LDCVs, large dense-core vesicles; LepRb, leptin-induced p-STAT3 as a marker for
leptin receptor; LH, luteinizing hormone; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MCAo, middle cerebral artery
occlusion; MPO, myeloperoxidase; NA, noradrenaline; NPY, neuropeptide Y; NTS, nucleus tractus solitarius; OE, overexpressing; PAG,
periaqueductal grey; PKC, protein kinase C; PNS, peripheral nervous system; PTX, pertussis toxin; PVN, paraventricular nucleus of
hypothalamus; qRT-PCR, quantitative real-time polymerase chain reaction; SCLC, small-cell lung cancer; SFO, subfornical organ; SNP,
single-nucleotide polymorphism; SON, supraoptic nucleus; SPX, spexin; SSSE, self-sustaining status epilepticus; 7-TM, 7-transmembrane;
TNF-a, tumor necrosis factor-a; WT, wild-type.
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this review, we emphasize the importance of novel galanin
receptor–specific agonists and antagonists. Also, other
approaches, including new transgenic mouse lines (such
as a recently characterized GAL3 knockout mouse)
represent, in combination with viral-based techniques,

critical tools required to better evaluate galanin system
physiology. These in turnwill help identify potential targets
of the galanin/galanin-receptor systems in adiverse range of
human diseases, including pain, mood disorders, epilepsy,
neurodegenerative conditions, diabetes, and cancer.

I. Introduction—History of Galanin Systems

A. General Aspects of Neuropeptide Biology

1. Neuropeptides. The neuropeptide concept was
coined by the late Dutch scientist David de Wied (for
a review, see De Wied and De Kloet, 1987). In most
mammalian nervous systems, neuropeptides are not the
main chemical messengers but coexist with "classic"
transmitters, e.g., acetylcholine, dopamine, noradrena-
line (NA), serotonin (5-hydroxytryptamine; 5-HT),
GABA, nitric oxide, and/or others. Thus, neurons
release multiple messenger molecules (Hökfelt et al.,
1986b; Merighi, 2002) (Fig. 1). However, peptides are
the critical messenger molecules in hypothalamic
neurosecretory cells. Here the magnocellular neurons
produce inter alia oxytocin or vasopressin (Brownstein
and Mezey, 1986; Bondy et al., 1989) and the parvocel-
lular neurons synthesize corticotropin-releasing factor
(CRF), thyrotropin-releasing hormone, gonadotropin-
releasing hormone (GnRH), somatostatin, or/and others
(Swanson and Sawchenko, 1983; Hökfelt et al., 1986a;

Swanson et al., 1986; Kiss, 1988; Palkovits, 1992;
Sawchenko et al., 1992). These peptides act as hor-
mones and are released into the portal or general
circulation.

Neuropeptides are different in several ways from
classic transmitters (Strand, 1991). They are ribosomally
synthesized as large precursor molecules in cell soma
and dendrites and stored in and released from large
dense-core (storage) vesicles (LDCVs) (Mains et al.,
1987). The bioactive peptide is processed and then
excised by convertase enzymes from larger prepropep-
tide precursors (Beinfeld, 1998; Seidah and Chretien,
1999). In contrast, classic transmitters are mainly
stored in synaptic vesicles, although amines like NA
and serotonin are also present in LDCVs. Neuro-
peptides are preferentially released when neurons fire
in bursts or at high frequency (Adrian et al., 1983;
Lundberg and Hökfelt, 1983; Dutar et al., 1989;
Lundberg, 1996), so that under "normal" circum-
stances only the classic transmitter(s) is released
and peptides remain in their storage vesicles. This

Fig. 1. Coexistence of a neuropeptide with classic and "unconventional" neurotransmitters in a nerve ending synapsing on a dendrite. Two types of
storage vesicles are shown: synaptic vesicles (diameter 500 Å) storing classic transmitters (e.g., 5-HT, NA, GABA, or glutamate), mainly released at
synapses; large dense-core vesicles (LDCVs) storing neuropeptides and, in amine neurons, NA or 5-HT, generally released extrasynaptically (“volume
transmission”) and after high-frequency or burst firing. Peptide receptors are essentially extrasynaptic or presynaptic, whereas ligand-gated receptors
are mostly localized in the postsynaptic membrane. "Gaseous" (e.g., nitric oxide, NO) and other nonconventional transmitters are not stored in vesicles
but are generated in neurons and/or nerve terminals upon demand. There is evidence that galanin can coexist with nitric oxide synthase and glutamate
(or possibly GABA) in 5-HT neurons. Drawing by Mattias Karlén.
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has been known for a long time also to apply to
hypothalamic neurosecretory neurons. Thus, the release
of oxytocin from magnocellular neurons is triggered
by intermittent high-frequency burst firing (Wakerley
et al., 1994), and this is also true for GnRH (Suter et al.,
2000) and other hypothalamic releasing factors. Neuro-
peptides can be released both from nerve endings and
soma/dendrites (Ludwig and Leng, 2006) in a similar
way to some classic transmitters. After release they are
usually degraded by extracellular peptidases (Roques
et al., 1993), as there is no reuptake mechanism at
the cell or storage vesicle membrane. In this way
secreted neuropeptides have to be replaced by de novo
synthesis, and thus transcript levels are generally
elevated after release, followed by centrifugal trans-
port of the newly synthesized peptide to nerve end-
ings and/or dendrites. This results in dynamics that
contrast with those of classic transmitters, which
have a membrane reuptake mechanism (transporter)
at both the cell and storage vesicle membrane (Liu
and Edwards, 1997; Eiden et al., 2004; Torres and
Amara, 2007). These transmitters can also be locally
synthesized in nerve endings, allowing rapid reuse/
replacement after release. In addition to replacing
released peptide, peptide synthesis is also markedly
altered by different physiologic and pathologic con-
ditions. Thus, decreased or increased peptide expres-
sion may occur in response to, for example, nerve injury
(Hökfelt et al., 1994; Zigmond and Sun, 1997; Costigan
et al., 2002; Xiao et al., 2002).
Neuropeptides were initially monitored in native

tissues using antibody-based technologies such as radio-
immunoassay, Western blot analysis, enzyme-linked
immunosorbent assay, or immunohistochemistry and,
more recently, using advanced liquid chromatography
mass spectrometry (Fricker, 2010). The cloning of genes
encoding the neuropeptide precursors subsequently
allowed their distribution and regulation to be charac-
terized at the mRNA level by using molecular biologic
techniques such as Northern blotting, quantitative real-
time polymerase chain reaction (qRT-PCR), and in situ
hybridization.
2. Neuropeptide Receptors. Evidence for neuropep-

tide receptors was first obtained using [125I]-radioligand
autoradiography, but there was still uncertainty about
their existence/nature. This issue was resolved when
Nakanishi and collaborators cloned the first neuro-
peptide receptor, a substance K receptor (tachykinin
receptor; NK2 receptor) (Masu et al., 1987). This
receptor turned out to belong to the 7-transmembrane
(7-TM), G protein–coupled receptor (GPCR) family.
Subsequent research revealed that virtually all other
neuropeptide receptors identified so far are GPCRs,
with one exception, the peptide Phe-Met-Arg-Phe-NH2

(FMRFamide), which induces a fast excitatory depolarizing
response via direct activation of an amiloride-sensitive
sodium channel (Green et al., 1994; Lingueglia et al.,

1995). The cloning of neuropeptide receptors allowed
their mapping and quantification at the mRNA level
using in situ hybridization and qRT-PCR. At the
protein level, the production of antisera permitted the
identification of the exact subcellular localization and
trafficking of neuropeptide receptors by using immu-
nohistochemistry as well as quantification by Western
blot analysis. However, the specificity of antibodies
raised against neuropeptide receptors, and in fact
also to 7-TM GPCRs in general, remains a serious
problem.

3. Drug Development. The neuropeptide 7-TM
GPCRs are potentially important targets for drug
development, particularly as more than half of all
drugs prescribed today act via this type of receptor
(Hill, 2006). Moreover, neuropeptides and their recep-
tors are often expressed in brain circuits/systems
associated with conditions such as chronic pain and
anxiety/depression. However, neuropeptide systems
are prone to species variations (Bowers, 1994). Thus,
drug targets based on animal experiments may not
always be valid when designing drugs for treatment
of human diseases. Another major obstacle is that
neuropeptides are comparatively large molecules and
pass through the blood-brain barrier to only a very
limited extent. Moreover, due to the coexistence of
multiple transmitters, it may not be sufficient to block
only one receptor, if several transmitters are released
from the same nerve ending. For example, although
animal research indicated that substance P antago-
nists are analgesic, this effect was not reproduced
in clinical trials (Hill, 2000). One reason could be that,
in addition to substance P, several excitatory trans-
mitters (glutamate and calcitonin gene-related peptide)
are coreleased from central sensory nerve endings.
Thus, glutamate and calcitonin gene-related peptide
could still convey nociceptive signals, even if the
substance P (neurokinin 1 [NK1]) receptors are
blocked. Another interesting issue is that peptide
transmission is mostly "silent" under physiologic
conditions. Therefore, intervention with antagonists
is particularly attractive, because this should affect
only deranged (upregulated) signaling systems, pos-
sibly resulting in fewer side effects. In contrast,
agonists will act on receptors in the entire body,
resulting in more side effects (e.g., the well known
harmful effects of morphine, in addition to its un-
surpassed antinociceptive action). For this reason,
positive allosteric modulators are now increasingly
being used as a way of reducing side effects attribut-
able to receptor agonists.

B. History of Galanin Research

Galanin, a 29/30 amino acid peptide (Tatemoto et al.,
1983), has been a relatively "anonymous" peptide
during its 30-year-long research life, having been
mentioned in just 3500 publications (PubMed, April
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2014). Over this period a quite small number of galanin
"aficionados" have gathered at four symposia, the last
in 2013 in San Diego, California, with around 50
participants. In contrast, neuropeptide Y (NPY),
discovered by the same group at the Karolinska
Institutet around the same time as galanin (Tatemoto,
1982b), registers almost 13,000 hits in PubMed and
more than a dozen scientific meetings. A much earlier
discovered peptide, somatostatin, is associated with
almost 30,000 articles in PubMed. Galanin can also be
contrasted with the meteoric popularity of hypocretin/
orexin (de Lecea et al., 1998; Sakurai et al., 1998),
which has accumulated 3200 PubMed listings during
its short, 15-year research life following its association
with narcolepsy.
The galanin field or aspects of galanin biology have

been frequently reviewed, e.g., the term “galanin and

review” produces 460 hits in PubMed (April 2014), with
263 from 2001 and later, 91 of which have "galanin" in
the title. From the latter, a representative collection
covering the different galanin fields and research
groups is provided here for further reading (Gundlach
et al., 2001; Mazarati et al., 2001; Wiesenfeld-Hallin
and Xu, 2001; Wynick et al., 2001; Zigmond, 2001;
Crawley et al., 2002; Gundlach, 2002; Liu and Hökfelt,
2002; Vrontakis, 2002; Wynick and Bacon, 2002; Counts
et al., 2003; Morilak et al., 2003; Ubink et al., 2003;
Mazarati, 2004; Jacobowitz et al., 2004; Robinson, 2004;
Lundstrom et al., 2005a; Hoyer and Bartfai, 2012). In
addition, the proceedings of three of the galanin
meetings (Hökfelt et al., 1991, 1998; Hökfelt and
Crawley, 2005) and two multi-author reviews (Hökfelt
and Tatemoto, 2008, 2010) have been published, with
chapters by several authors who have been active in
this field for many years. However, an up-to-date
comprehensive review covering all aspects of the
galaninergic system, including pharmacology, receptor
signaling, major biologic functions, involvement in
disease, epidemiology, and therapeutic implications,
has not been published and is the rationale for the
current review.
1. Discovery. Galanin was discovered by the Mutt

group at the Karolinska Institutet in Stockholm
around the early 1980s (Mutt, 1991). Viktor Mutt
was a giant in the field of bioactive peptides (Jornvall
et al., 1998). He died in September 1998, just months
after attending the second galanin symposium. Viktor
Mutt was an Estonian refugee from World War II and
“found a home” at the Karolinska in the famous
biochemical laboratory of Erik Jorpes, who had himself
fled from Finland during World War I and then worked
at the Karolinska, where he discovered heparin, in
addition to other molecules (Åberg, 1991). Mutt over
decades personally collected material from a slaughter-
house, serving as a starting point for purification of
numerous peptides by him and his coworkers. While in
initial studies the purity of the peptide was established

in biologic assays, Mutt and his graduate student
Kazuhiko Tatemoto developed a novel method for
detection of biologically active peptides based on the
C-terminal amide structure (Tatemoto and Mutt, 1978).
This resulted in the discovery of several peptides,
including peptide HI, peptide YY from porcine intestinal
extracts, and NPY from porcine brain, published in
papers included in Tatemoto’s PhD thesis (Tatemoto,
1982a). The last in this peptide series was galanin, which
was identified in porcine intestinal extracts (Tatemoto
et al., 1983).

Viktor Mutt realized the problem of naming each
new peptide after its first identified function and
turned to an objective strategy based on the charac-
teristic amino acid "signature" of the peptide. For
example, galanin stands for N-terminal glycine and
C-terminal alanine. NPY (Y for tyrosine) has tyrosine
at both its C and N termini. As described by Tatemoto
in a short article (Hökfelt and Tatemoto, 2010), the
isolation of galanin was completed in 1980 but the
structure was not determined until 1983. This was
because, initially, no biologic activity was found.
However, MacDonald at the University of Western
Ontario demonstrated that galanin had an effect on
plasma glucose levels, and Ake Rokaeus (Karolinska
Institutet) demonstrated that galanin induced contrac-
tion of smooth muscle preparations, results that were
included in the first publication on galanin (Tatemoto
et al., 1983).

2. Rapid Expansion of Galanin Research. The rapid
availability of galanin antibodies, first produced by
Ake Rokaeus, allowed exploration of the galanin
system using radioimmunoassay and, in particular,
immunohistochemistry. A preliminary note (Rokaeus
et al., 1984) reported the presence of galanin in
widespread areas in the rat central nervous system
(CNS) and in the intestine. This was promptly followed
by major mapping studies (Skofitsch and Jacobowitz,
1985b, 1986; Melander et al., 1986c), an important
finding being that galanin coexists in noradrenergic
neurons in the locus coeruleus (LC) (high galanin
levels), in serotoninergic neurons in the dorsal and
medullary raphe nuclei (moderate levels), and with
acetylcholine in cholinergic forebrain neurons (very low
levels) (Melander et al., 1985b, 1986c). Subsequently,
the distribution of galanin was reported in the mouse
(Perez et al., 2001) and the primate brain (Gentleman
et al., 1989; Chan-Palay et al., 1990; Kordower and
Mufson, 1990; Kordower et al., 1992; Benzing et al.,
1993). Peripheral tissues were also analyzed, includ-
ing dorsal root ganglia (DRG) and the spinal cord
(Ch’ng et al., 1985; Skofitsch and Jacobowitz, 1985a),
as was the distribution of galanin neurons in the
intestine (Ekblad et al., 1985; Melander et al., 1985a;
Bishop et al., 1986), the respiratory tract (Cheung
et al., 1985), and the genitourinary tract (Bauer et al.,
1986a). However, in early studies, expression of
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galanin was also identified in endocrine tissues, e.g.,
the adrenal medulla (Bauer et al., 1986c) and anterior
pituitary (Hulting et al., 1989; Steel et al., 1989),
hence the designation of galanin as a “neuroendocrine”
peptide.
3. The Galanin and Receptor Genes. A milestone in

the field was the cloning of the rat GAL gene (Rokaeus
and Brownstein, 1986; Vrontakis et al., 1987; Kaplan
et al., 1988b) and the discovery of its estrogen-
sensitivity (Kaplan et al., 1988a), later followed by
the cloning of the mouse GAL gene (Kofler et al., 1996).
These studies then allowed the mapping of galanin
transcripts in the rat (Jacobowitz et al., 2004) and
mouse brain (Cheung et al., 2001). Further exploration
of the rat GAL gene revealed another peptide prod-
uct encoded by it, galanin message-associated
peptide (GMAP) (Rokaeus and Brownstein, 1986).
Then, another related peptide, galanin-like peptide
(GALP), was discovered, and although not a product
of the GAL gene, GALP was originally described as
a putative endogenous ligand of the GAL2 receptor
(Ohtaki et al., 1999), and its distribution in the rat
and mouse brain has been widely reported (see
section IV). Most recently, a further peptide product
of the GALP gene, alarin, was described (Santic et al.,
2006), demonstrating the existence of a small galanin
peptide family.
Galanin receptors were initially mapped using

radioligand binding autoradiography, first in the rat
(Skofitsch et al., 1986; Melander et al., 1988) and then
the primate brain (Kohler et al., 1989a,b; Kohler and
Chan-Palay, 1990). However, in the mid-1990s the
first galanin receptor gene, GAL1, was cloned from
a human melanoma cell line (Habert-Ortoli et al.,
1994). Shortly thereafter, the rat GAL1 gene was
cloned from Rin14B insulinoma cells (Parker et al.,
1995) and a rat cDNA library (Burgevin et al., 1995).
These findings were followed by the identification
and cloning of two more galanin receptors, GAL2 and
GAL3 (Iismaa and Shine, 1999; Branchek et al., 2000;
Lang et al., 2007). This allowed the mapping of
galanin receptor transcripts using Northern blotting,
qRT-PCR (Waters and Krause, 2000), and in situ
hybridization (O’Donnell et al., 1999, 2003; Burazin
et al., 2000; Mennicken et al., 2002; Le Maître et al.,
2013). Thus far, no totally specific and reliable
antigalanin receptor antibodies have been generated
(Lu and Bartfai, 2009), so the exact regional and
cellular localization of the three galanin receptor
proteins in brain and other tissues remains to be
elucidated, although studies of tagged receptors in
transfected cell lines have provided some information
on trafficking of GAL1 and GAL2 (Xia et al., 2004,
2008; Wirz et al., 2005).
4. Further Developments in the Galanin Field.

These early basic research studies were then comple-
mented by important advances in many areas, in

particular the generation of mice carrying deletions of
galanin and galanin receptor genes by several labora-
tories (Table 1), the synthesis of galanin receptor
agonist and antagonist ligands, foremost by the
Bartfai/Langel laboratories (see section III), as well
as the resulting insights that galaninergic signaling is
involved in a large number of disease states, including
chronic pain, epilepsy, mood disorders, Alzheimer’s
disease and addiction, interestingly not confined to the
nervous system but also involving the endocrine
system, cancer, and inflammation—aspects that will
be discussed in the following sections.

II. Galanin Genes and Peptides—Genomic

Organization and Processing

The galanin family of peptides is encoded by two
separate genes: galanin/GMAP prepropeptide (GAL)
and galanin-like peptide (GALP). The human GAL

gene is located on chromosome 11q13.2 (Evans et al.,
1993), the rat gene on chromosome 1q42, and the
mouse gene on chromosome 19 A. The human and
mouse genes have six exons spanning 6.6 kb and
4.5 kb, respectively (Kofler et al., 1996), and the mRNAs
encode precursor proteins of 124 (human) and 123
(mouse) amino acids (Rokaeus and Brownstein, 1986;
Kofler et al., 1995; Blakeman et al., 2003). As is typical
of regulatory peptides, galanin peptides are derived
from a preproprecursor molecule (Fig. 2). First, the
N-terminal signal sequence is cleaved, then further
proteolytic cleavage at two pairs of basic amino acids
results in the mature galanin peptide (30 amino acids in
human, 29 amino acids in other species) and GMAP. In
all species except humans, galanin is amidated on the
C terminus. The N-terminal part of galanin is highly
conserved throughout evolution. The first 19 amino
acids display over 90% conservation from fish to
humans, whereas the C-terminal portion of the peptide
is less conserved (Fig. 2). The conservation of the
N-terminal sequence is a strong indicator for the im-
portance of this part of the peptide for receptor binding
and biologic activity. Therefore, nearly all attempts to
develop galanin receptor-selective peptides have used/
are using galanin 1-13 as the core sequence (see section
III.C on peptidergic ligands). Proteolysis of preprogalanin
in cerebrospinal fluid leads to a variety of C-terminal,
N-terminal, and internal peptide fragments (Nilsson
et al., 2001). In certain types of tumors, processing of
progalanin by plasmin results in production of galanin
1-20 (Yamamoto et al., 2011c). The half-life of galanin in
plasma is around 5 minutes (Holmes et al., 2003).
Biostability studies revealed that the half-life of synthetic
galanin in plasma and cerebrospinal fluid is 60 to 120
minutes (Bedecs et al., 1995; Blakeman et al., 2001).
Therefore, for potential therapeutic applications of
galanin, analogs with increased biologic half-life are
needed (see section III.C).
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TABLE 1
Transgenic mice with altered levels of galanin/galanin receptor expression

Galanin/Galanin Receptor Overexpressing Transgenic Mice

Promoter/DNA/Strain Phenotype

Dopamine b-hydroxylase (Mazarati et al., 2000)/Human DBH (5.8 kb)
driving 4.6 kb mouse genomic preprogalanin (10.4 kb transgene)/
C57BL/6J

Increased thresholds to noxious heat intact (Blakeman et al.,
2001)

Decreased neuropathic pain and shorter duration (Hygge-Blakeman
et al., 2004)

Reduced spinal excitability following c-fiber stimulation (Grass et al.,
2003a)

Galanin overexpression in neurons containing adrenaline or NA.
Decrease in number of cholinergic neurons in the horizontal limbs
of the diagonal band (Steiner et al., 2001)

Increase in GAL1 in specific brain regions (Hohmann et al., 2003a)
Increased threshold for induction of after discharge (Mazarati et al.,

2000)
No difference in neuroendocrine profile (Hohmann et al., 2003b)
Increased NA and 5-HT release after forced swim (learned

helplessness—increase in depressive behavior) (Yoshitake et al.,
2004)

Reduced ACh release in the ventral hippocampus (Laplante et al.,
2004)

Decrease in opiate withdrawal behavior (Zachariou et al., 2003)
Deficits in olfactory memory (Wrenn et al., 2003)
Impaired response to trace cued fear conditioning (Kinney et al.,

2002)
Galanin (Bacon et al., 2002)/20 kb murine genomic galanin

upstream of the galanin gene/CBA/BL6 F1 hybrid
No difference in intact mechanical thresholds but higher after nerve

injury, returned to intact values by day 7 (Bacon et al., 2007; Hulse
et al., 2011)

Reduction in acetone-induced pain-like behavior after PSNI (Hulse
et al., 2012)

Lower levels of cell death in vivo and in vitro (Elliott-Hunt et al.,
2004)

Decrease in opiate withdrawal behavior (Holmes et al., 2012)Galanin (inducible) (Pope et al., 2010)/tTA under control of
20 kb murine genomic galanin, 4.6 kb murine genomic
galanin under control of tetO/CBA/BL6 F1 hybrid

Increased mechanical thresholds after nerve injury reduced by
galanin suppression (Pope et al., 2010)

Growth hormone (Perumal and Vrontakis, 2003)/320 bp rat
GH promoter driving full-length rat preprogalanin cDNA
including poly A tail (4.5 kb transgene)/C57BL6/SJL
F2 � Swiss CD

Increased serum levels of galanin, prolactin and GH (GH in males
only)

Pituitary hyperplasia and adenomas in older mice (Perumal and
Vrontakis, 2003)

Reduced CPZ-induced myelin breakdown (Zhang et al., 2012)
Platelet-derived growth factor driving galanin (Holmberg et al.,

2005a)/1.3 kb PDGF-b with galanin/GMAP gene construct,
including intron 2 of the mouse galanin gene (genomic DNA
and cDNA)/CBA/BL6 F1 hybrid

Increase in learned helplessness in old mice (Pirondi et al., 2005b).
Increase in learned helplessness (Kuteeva et al., 2005)

Reduced neuronal loss postaxotomy, 35% reduction in plasma
extravasation, increased response in phase 2 of formalin test
(Holmberg et al., 2005a)

Elevated thermal thresholds but no difference in mechanical
thresholds or cold thermal in intact adults (Blakeman et al.,
2001)

Decreased response to evoked seizures (Kokaia et al., 2001)
Delayed reduction in NA after intracerebroventricular injection of

galanin to ventral hippocampus. Increased NA and 5-HT release
following forced swimming stress (Kehr et al., 2001)

Platelet-derived growth factor driving GAL2 (Le Maitre
et al., 2011)/1.3 kb PDGF-b driving mouse genomic
GAL2 with EGFP

Decreased immobility during the forced swim test (Le Maitre et al.,
2011)

Prolactin (Cai et al., 1999)/2.5 kb rat prolactin promoter driving
4.6 kb murine genomic galanin (part of the first noncoding
exon and all five coding exons for preprogalanin)/7.1 kb
transgene/No details on strain

Increased prolactin synthesis and pituitary hyperplasia in older
females (Cai et al., 1999). No increase in prolactin or hyperplasia in
males.

Ret (Holmes et al., 2003)/12 kb murine c-ret cDNA driving 4.6 kb
murine genomic galanin promoter (upstream of galanin gene)/
CBA/BL6 F1 hybrid

Elevated thermal and mechanical thresholds in intact mice and after
injury (Holmes et al., 2003)

Reporters and Cre-expressing line

Gal5.1-hßg-lacZ (Davidson et al., 2011)/5.1 kb human genomic
galanin found 42 kb upstream of the galanin transcriptional
start site with human b-globulin promoter and b-galactosidase
reporter gene/CBA/BL6 F1 hybrid

Directed expression in galaninergic neurons of the PVN, ARC, and
amygdala (Davidson et al., 2011)

20 kb Gal-lacZ (Bacon et al., 2007)/20 kb murine genomic galanin
upstream of the GAL gene with 3.5 kb b-galactosidase
reporter gene/CBA/BL6 F1 hybrid

Identical axotomy response to endogenous galanin in DRG neurons
and in the developing DRG at embryonic day 17 (Bacon et al., 2007)

Identical to 20 kb Gal-lacZ (Bacon et al., 2007)

(continued )
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TABLE 1—Continued

Galanin/Galanin Receptor Overexpressing Transgenic Mice

Promoter/DNA/Strain Phenotype

4.6 kb Gal-lacZ (Bacon et al., 2007)/4.6 kb murine genomic
galanin upstream of the galanin gene with 3.5 kb b-galactosidase
reporter gene/CBA/BL6 F1 hybrid

1.9 kb Gal-lacZ (Bacon et al., 2007)/1.9 kb murine genomic galanin
upstream of the galanin gene with 3.5 kb b-galactosidase
reporter gene/CBA/BL6 F1 hybrid

Loss of embryonic and intact adult DRG expression and axotomy
response (Bacon et al., 2007)

4.6 D23,18 kb Gal-lacZ (Bacon et al., 2007)/4.6 kb murine
genomic galanin upstream of the galanin gene but with
deletion of the 23 bp 59 putative Stat/Smad (24326 to 24304) and
18 bp Stat/Smad/Ets (22551 to 22534) binding sites, with 3.5 kb
b-galactosidase reporter gene/CBA/BL6 F1 hybrid

No effect on embryonic or adult DRG expression but loss of axotomy
response (Bacon et al., 2007)

GAL-Cre (Wu et al., 2014)/C56BL/6J Use of galanin-Cre line to demonstrate that galanin neurons in the
medial preoptic area govern parental behavior

GAL2-OE-EGFP (Le Maitre et al., 2011) High levels of GAL2 expression in the presubiculum, subiculum,
cingulate cortex, retrosplenial granular and agranular cortices,
subregions of the prefrontal cortex and the olfactory bulb (Le
Maitre et al., 2011)

Knockouts

Galanin (Wynick et al., 1993)/129OlaHsd Reduced intact thermal and mechanical pain thresholds. Reduced
mechanical allodynia after nerve injury (Kerr et al., 2000a; Holmes
et al., 2003)

Increase in apoptosis in DRG at postnatal day 3–4 with reduction in
number of small peptidergic neurons. Decreased regeneration in
vivo and in vitro (Holmes et al., 2000; Sachs et al., 2007)

Loss of one-third of cholinergic neurons in basal forebrain (O’Meara
et al., 2000)

Deficits in evoked ACh release (O’Meara et al., 2000; Kehr et al.,
2001) and loss of spatial memory in aged mice (O’Meara et al.,
2000; Massey et al., 2003)

Increase in hippocampal cell death in vivo and in vitro (Elliott-Hunt
et al., 2004, 2011)

Increase in induced seizures (Mazarati et al., 2000)
Marked reduction in levels of prolactin in the anterior pituitary and

in plasma (Wynick et al., 1998)
Decreased severity of cerulein-induced acute pancreatitis (Bhandari

et al., 2010b)
Reduced insulin secretion in response to non-neuronal stimulation

and impaired glucose elimination (Ahren et al., 2004)
Decreased food consumption on high-fat diet (Adams et al., 2008;

Karatayev et al., 2010) Decreased ethanol intake and preference in
female mice. Decreased orexin and melanin-concentrating
hormone in the perifornical lateral hypothalamus (Karatayev
et al., 2010)

Increase in opiate withdrawal behavior (Zachariou et al., 2003)
Decreased sensitivity to nicotine and no increase in ERK2 activation

in mice that showed nicotine conditioned place preference (increase
in WT) (Neugebauer et al., 2011)

Increase in secreting sweat glands following thermal stimulation
(Vilches et al., 2012)

GAL1 (Jacoby et al., 2002)/C57BL/6J and 129T2/SvEmsJ Increased sensitivity to both heat and cold intact. Increased duration
of pain-like behavior after nerve injury (Blakeman et al.,
2003)

No difference in mechanical or thermal thresholds in intact animals
but increased hyperalgesia after thermal injury and faster recovery
after spinal nerve ligation (Malkmus et al., 2005)

No difference in regeneration in vivo (Blakeman et al., 2003) or in
vivo (Blakeman et al., 2003; Mahoney et al., 2003a)

Increase in opiate withdrawal behavior (Holmes et al., 2012)
Spontaneous seizures and reduced plasma levels of IGF-1. No sex

difference but strain difference in seizures; not present in mice on
129/Sv background (Jacoby et al., 2002)

Impaired response to trace cued fear conditioning (Wrenn et al.,
2004)

Mild glucose intolerance after feeding and impaired glucose
elimination. Increased food intake on high-fat diet (Zorrilla et al.,
2007)

No inhibition of vagal activity after stimulation of the vagus nerve
and administration of galanin, as seen in WT and galanin-KO. No
inhibition of vagal activity after stimulation of the vagus nerve in
the presence of propranolol and administration of an NPY Y2
antagonist, as seen in WT and galanin-KO (Smith-White et al.,
2003)

(continued )
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The galanin sequence is followed by the GMAP
sequence (60 amino acids in humans). No major
in vivo functions for GMAP have been reported in
mammals, but GMAP has antifungal activity (see section
IX.B).
Galanin gene expression is regulated by estrogen

within lactotrophs and somatotrophs of the rat anterior
pituitary gland (Vrontakis et al., 1989; Hyde et al.,
1991) and accordingly fluctuates during the estrous
cycle in the rat (Kaplan et al., 1988a; Merchenthaler
et al., 1991, 1993a; Bakker et al., 2002). Galanin
expression is modulated in a cell type-specific manner
in humans (Vrontakis et al., 1990; Kofler et al., 1995;
Howard et al., 1997b), and tissue and cell type-specific
hormonal regulators of the galanin gene include
vasoactive intestinal peptide (Mohney and Zigmond,
1999), activity-dependent neuroprotective protein
(Mandel et al., 2007), thyroid hormone (Hooi et al.,
1997; Calza et al., 1998a,b), progesterone (Brann et al.,

1993), GnRH (Marks et al., 1994), dexamethasone
(Torsello et al., 1992), nerve growth factor, brain-
derived nerve growth factor, and leukemia inhibitory
factor (Corness et al., 1996; Corness et al., 1998;
Kerekes et al., 1999).

Some of the most potent inducers of galanin gene
expression are protein kinase C (PKC) after activation
with phorbol ester, protein kinase A activated by
forskolin (Rokaeus et al., 1990; Corness et al., 1997),
and colchicine, which interferes with microtubules and
alters intraneuronal transport (Dahlstrom, 1968;
Kreutzberg, 1969) to produce a marked increase in
GAL mRNA expression (Cortes et al., 1990). In vivo,
galanin gene expression and peptide secretion in the
nervous system are modulated by chronic stress
(Holmes et al., 1995; Sweerts et al., 1999; Sergeyev
et al., 2005; Sciolino et al., 2012), axotomy (Hökfelt
et al., 1994; Burazin and Gundlach, 1998), ischemic
brain damage (Liu and Hökfelt, 2000; Holm et al.,

TABLE 1—Continued

Galanin/Galanin Receptor Overexpressing Transgenic Mice

Promoter/DNA/Strain Phenotype

GAL1 (Matkowskyj et al., 2000)/C57BL/6J Decreased fluid secretion in the GI tract after infection with enteric
pathogens (Matkowskyj et al., 2000)

No different from WT in response to Salmonella typhimurium
infection (Matkowskyj et al., 2009)

Decreased diarrhea after infection with rhesus rotavirus (Hempson
et al., 2010a)

GAL1/Deltagen (San Carlos, CA)/129P2/OlaHsd � C57BL/6
GAL2/Lexicon Genetics (The Woodlands, TX)/129/SvEvBrd �

C57BL/6

Increased neuronal loss in hippocampus after kainic acid
administration (Schauwecker, 2010)

15% less CGRP-IR neurons in DRG. No difference in thermal or
mechanical thresholds in intact animals, but decreased response to
neuropathic pain (no allodynia) and inflammatory pain (phase 2 of
formalin test). Decrease of one-third in neurite outgrowth, decrease
in phosphorylated ERK, increase in phosphorylated AKT (Hobson
et al., 2006)

Increased hippocampal cell death in vivo after glutamate treatment
(Elliott-Hunt et al., 2011)

Reduced levels of ERK and AKT after glutamate damage in vivo
(Elliott-Hunt et al., 2007)

GAL2/Deltagen (San Carlos, CA)/129 ⁄ Sv � C57BL/6 16–20% fewer neurons in DRG 7 days postaxotomy both intact and
contralateral, no further loss ipsilateral (WT decrease of 26%). No
difference in thermal or mechanical thresholds in intact animals or
in hyperalgesia after injury (Shi et al., 2006)

Persistent escape deficits after inescapable shock (persistent
depressive-like phenotype) (Lu et al., 2008)

Galanin had no effect on GABAergic IPSPs in CeA neurons
(decreased in WT) (Bajo et al., 2012)

GAL2/Nura Inc. (Seattle, WA)/129S1/SvImJ No difference in motor and sensory function, reproduction, feeding
behavior, mood, learning and memory, or susceptibility to seizures
(Gottsch et al., 2005)

Increased anxiety-like behavior in elevated plus-maze (Bailey et al.,
2007)

GAL3/Lexicon Genetics (The Woodlands, TX)/C57BL/6J Increased cholesterol and triglyceride levels in homozygous males
(Lexicon Genetics) (https://beta.infrafrontier.eu/sites/infrafrontier.
eu/files/upload/public/lexicon/combined_lexicon_data/LEXKO-230-
treeFrame.html)

Anxiety phenotype but no depression-like behavior (Brunner et al.,
2014)

Double GAL1 � GAL2-KO (Jacoby et al., 2002) � Deltagen (San
Carlos, CA)/C57BL/6J � (129 ⁄ Svx C57BL/6)

Galanin had no effect on GABAergic IPSPs in CeA neurons
(decreased in WT) (Bajo et al., 2012)

ACh, acetylcholine; bp, base pairs; CGRP, calcitonin gene-related peptide; CPZ, cuprizone; DBH, dopamine b-hydroxylase; EGFP, green fluorescent protein; GH, growth
hormone; GI, gastrointestinal; Hbg, human b-globulin; IGF, insulin-like growth factor; lacZ, b-galactosidase; PDGF, platelet-derived growth factor; PSNI, partial saphenous
nerve ligation injury; PVN, paraventricular nucleus of the hypothalamus; SNL, spinal nerve ligation.
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2011, 2012), chronic constriction nerve injury (Nahin
et al., 1994), orofacial pain (Tokunaga et al., 1992),
exercise (Legakis et al., 2000), electroconvulsive stim-
ulation (Christiansen, 2011), and herpes simplex virus
infection (Henken and Martin, 1992).
The GALP gene is located on chromosome 19 in

humans, 1q12 in rats, and 7 A1 in mice; it has 6 exons
spanning 9.7 to 19 kb. The GALP prepropeptide
consists of 115–120 amino acids, which includes
a signal peptide followed by the GALP sequence.
The C-terminal residual peptide is generated by
cleavage at dibasic residues. The fact that the
genomic organization of GALP is similar to that of
GAL and that GALP amino acids 9–21 are homolo-
gous to the first 13 amino acids of galanin, indicate
that these two genes evolved through gene duplica-
tion. In vivo experiments have revealed that GALP

expression is regulated by insulin and leptin (Jureus
et al., 2001; Fraley et al., 2004a), by fasting and
osmotic stimulation (Shen et al., 2001), by thyroid
hormone and lactation (Cunningham et al., 2004a),
during endotoxin shock, and in adjuvant arthritis
(Saito et al., 2003).
The high sequence conservation of GALP with the

amino-terminal end of galanin provides the structural

basis for GALP binding and activation of galanin
receptors (see section III). However, it is very likely
that GALP has other native receptors, despite actions
at GAL1-3, as it remains fully active in galanin receptor
KO strains.

In contrast to GAL mRNA, the GALP primary
transcript is characterized by extensive splicing (Santic
et al., 2006, 2007). Transcript 2 of GALP excludes
exon 3, which leads to a frame shift after the sequence
encoding the first five amino acids of the mature
GALP peptide, producing a putative "novel" pep-
tide of 25 amino acids (Santic et al., 2006, 2007).
Based on the naming of "galanin," this peptide was
named "alarin" because of its N-terminal alanine and
C-terminal serine residues. Analogously, other neuro-
peptides (e.g., vasoactive intestinal peptide and PHM-
27) were also found to be derived from the same gene
(Bodner et al., 1985).

Synthetic alarin inhibits neurogenic inflammation
of the skin (Santic et al., 2007) and has actions
typical of a neuropeptide in that it regulates food
intake, metabolism, reproductive behavior, and hor-
mone secretion (Boughton et al., 2010; Van Der Kolk
et al., 2010; Fraley et al., 2012, 2013). Furthermore,
alarin has antidepressant-like effects that are

Fig. 2. Alignment of amino acid sequences of the galanin precursor peptides. The degree of conservation is indicated by color: gray , 50%, pink 50–
70%, yellow 70–80%, blue 80–90%, and green . 90%.

Galanin Family Peptides and Receptors 127



associated with reduced serum levels of corticotrophin-
releasing hormone, adrenocorticotropic hormone, and
corticosterone (Wang et al., 2014). Although alarin
does not bind to galanin receptors, the peptide is
regarded as a member of the galanin peptide family
because it is derived from a gene with partial homology
to GAL.
As will be emphasized in this review, galanin

peptides have a wide range of nonneuronal functions
as well as classic neuromodulatory roles. We therefore
recommend that the galanin peptides be classified as
regulatory peptides and not as neuropeptides, as the
latter term is too narrow in scope and misleading in
this context.

III. Galanin Receptors

A. Identification and Nomenclature

In this review we use the receptor nomenclature
proposed by the International Union of Basic and
Clinical Pharmacology Committee. Galanin exerts its
biologic effects via three known GPCRs, GAL1

(Habert-Ortoli et al., 1994), GAL2 (Howard et al.,
1997a), and GAL3 (Wang et al., 1997b). The level of
sequence homology among the three human recep-
tors ranges between 33.2% (GAL1 versus GAL3) and
53.8% (GAL2 versus GAL3) (Liu et al., 2010) (Figs. 3
and 4). It has been speculated that GAL2 genes may
have evolved from GAL1, and GAL3 genes from GAL2,
because GAL3 genes are found only in some mam-
mals, whereas GAL1 and GAL2 genes are present in
vertebrates as diverse as fish and primates (Liu
et al., 2010).
In the CNS and in the periphery, all three galanin

receptors display distinct but overlapping patterns of
expression (see section IV); therefore, pharmacological
studies using receptor-selective ligands are needed to
help elucidate receptor-specific effects.
Studies using cell lines transfected with galanin

receptors have demonstrated GAL1 homodimerization

and internalization (Wang et al., 1998b; Xia et al.,
2004, 2005b, 2008; Wirz et al., 2005). GAL2 also
undergoes internalization upon ligand binding (Xia
et al., 2004, 2005b). There is also increasing evidence
that different galanin receptors can form heteromers,
at least in the CNS (Fuxe et al., 2012), leading to
altered recognition of galanin ligands. Moreover,
putative heteromers of galanin receptors with other
GPCRs have been described, including GAL1 with
a 5-HT receptor, Y1 and Y2 (NPY) receptors, a2-
adrenoceptor (Fuxe et al., 2008, 2012), and dopamine
D1-like receptors (D1 and D5), but not GAL2 (Moreno
et al., 2011). This latter study provides strong
evidence that D1-like/GAL1 receptor heteromers in-
tegrate signals of the monoamine and neuropeptide
transmitter systems to modulate hippocampal cho-
linergic neurotransmission. Such heteromeric re-
ceptors may present novel targets for therapeutic
intervention.

Of the other members of the galanin peptide family,
only GALP is a high-affinity ligand for the known
galanin receptors. At present, there are no identified
receptors for GMAP or alarin.

B. Galanin Receptor Signaling

The three galanin receptors share a number of
characteristics as they are members of the 7-TM GPCRs,
but their functional coupling and signal transduction
pathways are substantially different, thus contributing
to the diversity of galanin-mediated effects (Fig. 5),
depending on the cell type and its particular G protein
repertoire.

The majority of pharmacologic studies on GAL1

signaling have been performed with cell lines trans-
fected with rat or human GAL1, where GAL1

activation results in an inhibitory action on adenyl-
ate cyclase (AC), leading to reduced cAMP concen-
trations (Habert-Ortoli et al., 1994; Parker et al.,
1995; Fitzgerald et al., 1998; Wang et al., 1998c),
opening of G protein–regulated inwardly rectifying K+

Fig. 3. Alignment of amino acid sequences of human GAL1 (NP_001471.2), GAL2 (NP_003848.1), and GAL3 (NP_003605.1). Conserved amino acids of
the aligned receptors are shown shaded. Transmembrane regions are boxed.
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channels (Smith et al., 1998), and stimulation of
mitogen-activated protein kinase (MAPK) activity. All
actions are regulated in a pertussis toxin (PTX)–
sensitive manner and are mediated via a Gi/o-type G

protein (Smith et al., 1998; Wang et al., 1998c). In rat
neurons, a GAL1-mediated effect on voltage-dependent
Ca2+ channels has been reported (Endoh et al., 2008;
Anselmi et al., 2009).

Fig. 4. Alignment of amino acid sequences of rat GAL1 (NP_037090.2), GAL2 (NP_062045.1), and GAL3 (NP_062046.1). Conserved amino acids of the
aligned receptors are shown shaded. Transmembrane regions are boxed.

Fig. 5. Signaling pathways of galanin receptors. Abbreviations: AC, adenylate cyclase; BK, calcium-activated (big) potassium channel; CaCC, calcium-
dependent chloride channel; (p)CREB, (phosphorylated) 39,59-cAMP response element-binding protein; DAG, diacylglycerol; GIRK, G protein–regulated
inwardly rectifying potassium channel; IP3, inositol triphosphate; MEK, mitogen-induced extracellular kinase; PDK-1, phosphoinosotide-dependent
protein-kinase 1; PIP2, phosphatidylinositol bisphosphate; PIP3, phosphatidylinositol trisphosphate; PI3K, phosphatidylinositol 3-kinase; PKB, protein
kinase B; PLC, phospholipase C; VDCC, voltage-dependent calcium channel.
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GAL1-induced effects on the MAPK/extracellular
signal-regulated protein kinase (ERK) 1/2 pathway
have been described in human tumor cells (Henson
et al., 2005; Kanazawa et al., 2007). Activation of
the MAPK/ERK pathway via GAL1 is not linked to the
phosphatidylinositol 3-kinase pathway and leads to
the induction of the cell-cycle control proteins p27Kip1

and p57Kip2 and suppression of cyclin D1 in GAL1-
transfected human squamous cell carcinoma cells
(Kanazawa et al., 2007).
In vivo experiments in rodents suggest GAL1 might

be involved in the regulation of the transcription factors
cAMP response element-binding protein (CREB) (Badie-
Mahdavi et al., 2005; Kinney et al., 2009) and the
immediate early gene c-fos (Blackshear et al., 2007) in
specific brain regions.
However, phosphorylation of CREB is also mediated

by activation of GAL2 (Badie-Mahdavi et al., 2005),
which may be because GAL2 can inhibit AC activity
through coupling to Gi-type G proteins similar to GAL1

(Wang et al., 1997a; Fathi et al., 1998). In contrast to
GAL1, GAL2 signals through multiple classes of G
proteins to stimulate multiple intracellular pathways.
Activation of GAL2 is capable of stimulating the MAPK/
ERK pathway in a PTX-sensitive, PKC-dependent
fashion, indicative of coupling to a G0 protein in GAL2-
transfected cell lines (Wang et al., 1998c). Endogenous
GAL2-induced activation of the MAPK/ERK pathway
via PKC has been reported in rodent hippocampal
neurons (Hawes et al., 2006; Elliott-Hunt et al., 2007),
rat microglial cells (Ifuku et al., 2011), rat PC12
pheochromocytoma cells (Hawes et al., 2006), and
human small-cell lung cancer (SCLC) cells (Seufferlein
and Rozengurt, 1996), although in the latter, MAPK/
ERK pathway activation can also occur independently of
PKC (Wittau et al., 2000).
GAL2 predominantly couples to a Gq/11-type G

protein, leading to phospholipase C activation, which
stimulates Ca2+ release via inositol phosphate hydro-
lysis and opens Ca2+-dependent ion channels in a PTX-
resistant manner, in both GAL2-transfected cell lines
(Smith et al., 1997b; Borowsky et al., 1998; Fathi et al.,
1998; Pang et al., 1998; Wang et al., 1998c) and GAL2-
expressing rat microglial cells (Ifuku et al., 2011).
GAL2 activation led to a decrease in both Rho and
Cdc42 GTPase activity and activation of cofilin in rat
PC12 pheochromocytoma cells (Hobson et al., 2013).
In SCLC cells, another signaling pathway has been
proposed for GAL2 involving functional coupling to
a G12/13-type G protein and subsequent activation
of the small GTPase protein Rho A (Wittau et al.,
2000).
In GAL2-transfected human head and neck squa-

mous carcinoma cells, GAL2 activation affects the
regulation of the cell-cycle control proteins p27Kip1,
p57Kip2, and cyclin D1 and induces caspase-3–
dependent apoptosis (Kanazawa et al., 2009), which

has also been observed in GAL2-transfected human
SH-SY5Y neuroblastoma (Berger et al., 2004) and rat
PC12 pheochromocytoma cells (Tofighi et al., 2008). In
the latter cells, GAL2 activation leads to reduced
expression of pAkt, pBad, and p21cip1, downstream
of the Gq11/phosphatidylinositol 3-kinase pathway
(Tofighi et al., 2008). The AKT signaling pathway
also seems to be modulated by GAL2 in rodent
neurons in dorsal root ganglia (Hobson et al., 2006),
hippocampus (Elliott-Hunt et al., 2007), and basal
forebrain, where galanin-mediated AKT signaling
leads to suppression of caspase-3 and -9 activity
(Ding et al., 2006). In the human laryngeal carcinoma
cell line HEp-2, GAL2-mediated apoptosis is trig-
gered independently of caspase by the induction of
the proapoptotic Bcl-2 protein Bim (Uehara et al.,
2014). A recent report indicates that activation of
GAL2 in human embryonic kidney (HEK293) cells
leads to an elevation of intracellular Ca2+ due to Ca2+

efflux from the endoplasmic reticulum produced by
IP3R sequentially opening BK channels (Pan et al.,
2014).

GAL1 and GAL2 are the most studied of the three
galanin receptors, and the signaling properties of GAL3

are still poorly defined (Fig. 5). GAL3 appears to act
mainly via a PTX-sensitive Gi/o-type G protein, result-
ing in activation of G protein–regulated inwardly
rectifying K+ channels, as well as decreased AC activity
and cytosolic cAMP levels (Kolakowski et al., 1998;
Smith et al., 1998). Therefore, it seems likely that
activation of GAL3, similar to activation of GAL1 and
GAL2, will affect phosphorylation of CREB. Also,
potential heteromerization of GAL3 with the other
galanin receptors or other neuropeptide receptors cannot
be excluded.

One explanation for the lack of information on GAL3

signaling is that, so far, no cell line has been identified
that expresses endogenous GAL3. There are several
GAL3-transfected cell lines available (Lang et al., 2005;
Lu et al., 2005b), but although they express GAL3

mRNA, they are not able to produce sufficient GAL3

protein or GAL3 in an appropriate form on the plasma
membrane to allow galanin binding and stable signal-
ing experiments to be performed (Robinson et al., 2013;
R. Lang and A. Lang, personal communication). A
possible reason for this is that the different cells used
do not express the appropriate G proteins or other
receptors to allow correct GAL3 trafficking and/or
signaling. Consistent with this hypothesis, GAL3 over-
expression in these cells has been shown to generate
insoluble inclusion bodies which prevent the receptor
being trafficked to and expressed on the cell surface
(Robinson et al., 2013; B. Brodowicz, unpublished
data). Robinson et al. (2013) reported that the GAL3

carboxy tail has multiple overlapping motifs that
target expression to the endoplasmic reticulum, inhib-
iting receptor transport and insertion at the cell
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membranes. Those authors showed that a modified
GAL3 construct (the C-terminal part of GAL3 was
replaced with that of GAL1) facilitates cell surface
expression while maintaining wild-type receptor phar-
macology. This finding (Robinson et al., 2013) should
allow the GAL3 field to move forward, because the
chimeric cell line can be used to study G protein
coupling, the downstream signaling pathways, and to
undertake high-throughput screening to identify novel
GAL3 ligands.

C. Galanin Receptor-Ligand Interactions

Some progress has been made over recent years
toward the development of receptor-selective ligands to
delineate the involvement of different galanin recep-
tors in a variety of physiologic processes and associated
diseases. Recent molecular docking studies have
revealed several ligand-binding amino acid residues
in galanin receptors, thus helping to identify the
molecular interactions underlying the ligand selectiv-
ity and specificity at the different receptors (Xiong
et al., 2005; Kothandan et al., 2013) (Table 2). Most of
the residues identified by ligand-docking studies have
been confirmed as crucial for these interactions in site-
directed mutagenesis studies (Berthold et al., 1997;
Church et al., 2002; Runesson et al., 2010) (Table 3)
and these key interaction sites represent logical
targets for drug-design studies.
1. Peptide Ligands. All three characterized galanin

receptors have high affinity for the endogenous galanin
peptide. Early pharmacological studies using a variety
of galanin fragments from various species demon-
strated minor importance of C-terminal amino acids
beyond positions 15–16 but significant importance of
the N-terminal region for galanin receptor affinity
(Land et al., 1991; reviewed in Lang et al., 2007).
N-terminal truncation of Gly1 reduces the affinity of
GAL1 for galanin in comparison with GAL2 and GAL3,
a finding that led to the introduction of the galanin
fragment (2–11) (also known as AR-M1896) as a "non-
GAL1" galanin receptor ligand that was only able to
activate GAL2 and GAL3 (Liu et al., 2001; Lu et al.,
2005b). Although removal of further N-terminal amino

acids from galanin (2–11) resulted in a loss of affinity
for all three receptors in cell lines transfected with
galanin receptors (Wang et al., 1997b; Bloomquist
et al., 1998; Smith et al., 1998), the fragment galanin
(3–29) is fully active in the anterior pituitary in vivo
(Wynick et al., 1993; Kinney et al., 1998; Todd et al.,
2000).

In the early 1990s, several chimeric, high-affinity but
nonselective ligands were synthesized composed of
mammalian galanin (1–13) as the N-terminal fragment
and a carboxy-terminus modified with different (neuro)
peptides, which mainly act as galanin receptor antag-
onists in vivo (Bartfai et al., 1991; Leibowitz and Kim,
1992; Wiesenfeld-Hallin et al., 1992; Crawley et al.,
1993; Xu et al., 1995a) (see Table 4). However, many of
these chimeric peptides have full or partial agonistic
activity in vitro in cell lines expressing just one
receptor type. To improve receptor selectivity further,
chimeric peptide ligands were introduced with mod-
ifications at both the N and C termini. A modified M35
peptide called M617, in which the proline at position 14
was substituted by a glutamine (see Table 4 for
sequence), was initially reported to be a GAL1-specific
ligand (Hobson et al., 2006), but was recently found to
have agonist activity at GAL3 (Sollenberg et al., 2010).
Removal of the N-terminal glycine residue of galanin
together with a C-terminal substitution resulted in
the GAL2-selective peptide M871, which acts as an
antagonist in vivo (Sollenberg et al., 2006, 2010).
Several other GAL2-specific chimeric peptides (M1145
and M1151-M1153) with agonist properties in vitro
have been described over recent years (Runesson et al.,
2009; Saar et al., 2011). It was reported that the GAL2-
specific peptide M1160 is a potential agonist in vivo
(Saar et al., 2013b) but generally the in vivo activity of
these peptides is largely unknown. Stearoylation of
M1145 resulted in a systemically active GAL2-preferring
ligand, J18 (Saar et al., 2013a).

Further chemical modifications of galanin have
included the introduction of lipoamino acid and
cationic acid residues as well as a palmitoyl moiety,
which resulted in several high-affinity galanin analogs
with potent anticonvulsant activities and improved
systemic bioavailability (Bulaj et al., 2008). An 18-fold
preference for GAL2 was produced by altering the N
terminus of these peptides (Robertson et al., 2010) (see

TABLE 2
Amino acid residues of galanin receptors involved in ligand binding found

by docking studies

Receptor Residues

GAL1
a Gln92, Val95, Tyr96, Cys108, His112, Phe115, Thr116,

Met119, Cys203, Val206, His263, His264, His267,
Ile286, His289

GAL2
a Gln82, Ile105, Phe106, Met109, Tyr160, Tyr163,

Tyr164, Asn171, Thr173, Asp188, Thr191, Ser195,
His253, Ile256, His278, Tyr282

GAL3
a,b Gln79a,b, Ile82a,b, Asp86b, Trp88b, Cys95a, Val98a,

His99a,b, Ile102a,b, Tyr103a,b, Tyr161a, Tyr166a,
Glu170b, Pro174b, Ala175b, Asp185b, His251a,
Tyr270a, Arg273a,b, His277a,b, Tyr281a

aJurkowski et al. (2013).
bKothandan et al. (2013).

TABLE 3
Amino acid residues of galanin receptors involved in ligand binding

determined in mutation studies

Receptor Residues

GAL1 Phe115a,b, Phe186,b, His264a, His267a, Glu271a,b, Phe282a

GAL2 His252c, His253c, Ile256c, Phe264c, Tyr271c

GAL3 Tyr103d, His251d, Phe263d, Tyr270d, Arg273d, His277d

aBerthold et al. (1997).
bChurch et al. (2002).
cLundstrom et al. (2007).
dRunesson et al. (2010).
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Table 4). Hydrocarbon stapling of galanin at its C
terminus by incorporation of (S)-2-(4-pentenyl)alanine
shifted the preference of the molecule from GAL1 to
GAL2 (Green et al., 2013).
GALP, which has an amino acid sequence from

position 9 to 21 that is identical to that of galanin (1–
13), was originally described as a high-affinity agonist
for rat GAL1 and GAL2 in receptor-transfected cells,
with preferential binding to GAL2 (Ohtaki et al., 1999).
A later study demonstrated that human GALP can
bind with high affinity to all human galanin receptor
types expressed in human neuroblastoma cells, exhib-
iting a slight preference for GAL3 (GAL1,GAL2,

GAL3) (Lang et al., 2005). Interestingly, in membranes
derived from Chinese hamster ovary cells transfected
with human GAL3, GALP was 70-fold more effective at
displacing [125I]galanin binding than was galanin
(Boughton et al., 2010). The putative proteolytic
fragment GALP (3–32) had similar agonist activity to
full-length GALP in functional assays in vitro and in
vivo (Lang et al., 2005; Schmidhuber et al., 2007).

2. Nonpeptide Ligands. The antifungal metabolite
Sch202596 (spirocoumaron) was described in 1997 as
the first nonpeptide galanin-receptor ligand with
antagonist activity in micromolar concentrations at
membranes of human Bowes melanoma cells (Chu et al.,
1997), which endogenously express GAL1 and GAL3

(Lang et al., 2001). In the same cell line, the compound
RWJ-57408 (2,3-dihydro-2-(4-methylphenyl)-1,4-
dithiepine-1,1,4,4-tetroxide) was shown to be an antag-
onist with submicromolar affinity (Scott et al., 2000). The
antagonistic properties of RWJ-57408 have been con-
firmed in cultured rat myenteric neurons (Anselmi
et al., 2009). The nonpeptide ligands galnon [7-((9-
fluorenyl-methoxycarbonyl)cyclohexylalanyllysyl)amino-
4-methylcoumarin] and galmic display low affinity
(micromolar range) for galanin receptors in membranes
of human Bowes melanoma cells and rat GAL2-trans-
fected Chinese hamster ovary cells (Bartfai et al., 2004),
as well as agonist activity in functional studies in vitro
and in vivo (Saar et al., 2002; Bartfai et al., 2004) (see
Table 5). However, both compounds interact with

TABLE 4
Peptide ligands for galanin receptors with type of in vivo activity

Peptide Ligands Sequence Receptor Specificity Activity Species

Human galanin (1–30) GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS none agonist
Rat galanin (1–29) GWTLNSAGYLLGPHAIDNHRSFSDKHGLT none agonist
Porcine galanin (1–29) GWTLNSAGYLLGPHAIDNHRSFHDKYGLA none agonist
Galanin (2–11) (AR-M1896) WTLNSAGYLL GAL2/GAL3

a,b agonista rat
C7 = galanin (1–13)-spantide I GWTLNSAGYLLGPRPKPQQWFWLL none antagonistc rat
M15 = galantide= galanin (1–13)-substance

P (5–11) amide
GWTLNSAGYLLGPQQFFGLM none antagonistd rat

M32 = galanin (1–13)-neuropeptide Y (25–36)
amide

GWTLNSAGYLLGPRHYINLITRQRY none antagoniste rat

M35 = galanin(1–13)-bradykinin(2–9) amide GWTLNSAGYLLGPPPGFSPFR none antagonistf rat
M40 = Galanin (1–13)-Pro-Pro-(Ala-Leu-)2Ala

amide
GWTLNSAGYLLGPALALA none antagonistc,g rat

M617 = galanin(1–13)-Gln14-bradykinin(2–9)
amide

GWTLNSAGYLLGPQPGFSPFR GAL1.GAL2 agonisth,i rat

M871 = galanin (2–13)-Glu-His-(Pro)3(Ala-Leu)2Ala
amide

WTLNSAGYLLGPEHPPPALALA GAL2
j,k antagonisti rat

M1160 RGRGNWLNSAGYLLGPVLPPPALALA GAL2
l agonistl mouse

J18 RGRGNWTLNSAGYLLGPkkK(eNH_C(O)stearic
acid)k

GAL2.GAL3.GAL1 agonistm mouse

Gal-B2 (NAX 5055) (Sar)WTLNSAGYLLGPKKKpalmitoylK GAL1.GAL2
n agonisto mouse

[N-Me, des-Sar]Gal-B2 N-MeWTLNSAGYLLGPKKKpalmitoylK GAL2.GAL1
n agonistp mouse

Gal-S2 (Sar)WTLNSAGYLLGPXKKKX nonen Agonistq mouse
Human galanin-like peptide GALP (1–60) APAHRGRGGWTLNSAGYLLGPVLHLP

QMGDQDGKRETALEILDLWKAIDGL
PYSHPPQPS

noner agonists mouse

Human GALP (3–32) AHRGRGGWTLNSAGYLLGPVLHLPQMGDQ noner,n agonists mouse
aLiu et al. (2001).
bLu et al. (2005b).
cCrawley et al. (1993).
dBartfai et al. (1991).
eXu et al. (1995a).
fWiesenfeld-Hallin et al. (1992).
gLeibowitz and Kim (1992).
hLundström et al. (2005b).
iJimenez-Andrade et al. (2006).
jSollenberg et al. (2006).
kSollenberg et al. (2010).
lSaar et al. (2013b).
mSaar et al. (2013b).
nNot tested for GAL3; X = (S)-2-(4-pentenyl)alanine.
oBulaj et al. (2008).
pRobertson et al. (2010).
qGreen et al. (2013).
rLang et al. (2005).
sSchmidhuber et al. (2007).
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a number of other GPCRs (Floren et al., 2005; Lu et al.,
2005c).
The first genuinely effective nonpeptide ligands with

selectivity for different galanin receptors are the 3-
arylimino-2-indolones SNAP 37889 (1-phenyl-3-[[3-
(trifluoromethyl)phenyl]imino]-1H-indol-2-one) and its
more water-soluble analog SNAP 398299 (1-[3-(2-
(pyrrolidin-1-yl)ethoxy)phenyl]-3-(3-(trifluoromethyl)
phenylimino)indolin-2-one), which act as specific
antagonists at GAL3 (Swanson et al., 2005; Konkel
et al., 2006a,b). Recently, a potent, low molecular weight,
positive allosteric modulator of GAL2 named CYM2503
(9H-fluoren-9-yl)methyl((S)-1(((S)-6(tert-butoxycarbonyl)
amino-1-((4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)amino)-
1-oxohexan-2-yl)amino])-3-cyclohexyl-1-oxopropan-2-
yl) carbamate) was described and shown to potentiate
the anticonvulsant activity of endogenous galanin
in mouse seizure models (Lu et al., 2010). Other
GAL2-selective compounds with submicromolar affin-
ity in vitro have been described—a series of 2,4,6-
triaminopyrimidines (Sagi et al., 2011). Among these
synthetic 2,4,6-triaminopyrimidine derivatives, two
compounds displayed selective binding affinity for
GAL1 in the micromolar range (Table 5).
Although several peptidergic and nonpeptide ligands

display some selectivity for the different galanin
receptors, they are of limited use because typically
they still bind to more than one receptor and/or they
have not been tested for activity at GAL3. Thus
currently, to differentiate between the three galanin
receptors, galanin (2–11) is used as a non-GAL1 agonist
and the SNAP compounds are useful GAL3-selective
antagonists (Tables 4 and 5).

IV. Galanin Family Peptide and Galanin

Receptor Distributions

The distribution of GAL mRNA and galanin-
immunoreactivity has been comprehensively mapped
in adult rat and mouse CNS (brain and spinal cord)

and to differing degrees in several other species,
including primate and human brain (mentioned above
and reviewed below), and several nonmammalian
vertebrates, including fish (Mensah et al., 2010).
Similarly, the distribution of GALP mRNA and GALP
immunoreactivity was described in the rat brain by
several groups soon after the peptide’s discovery
(Ohtaki et al., 1999) (see below), whereas its distribu-
tion in mouse brain was not as widely reported,
possibly due to its relatively lower abundance in this
species (Jureus et al., 2001). The distribution of GALP

mRNA-positive neurons has also been reported in
macaque brain (Cunningham et al., 2002, 2004b).
Subsequent to early reports of the central distribution
of [125I]galanin binding sites (Skofitsch et al., 1986;
Melander et al., 1988), the distribution of GAL1, GAL2,

and GAL3 mRNAs was reported in rat and mouse brain
(and spinal cord), using both in situ hybridization and
RT-PCR (see below). Although there are literature
reports of the distribution of GAL1-3 proteins using
polyclonal antisera and immunohistochemistry, the
validity of these data has been questioned and must be
considered only putative mappings that require in-
dependent validation (see section IV.C).

The central distributions of galanin and/or GALP
and the galanin receptors have been extensively
reviewed, most recently by Lang et al. (2007) and
Hökfelt and Tatemoto (2010) and references cited
therein. The main aspects will be summarized in the
following sections, and relevant aspects of galanin
expression during brain development and/or in patho-
logic conditions will be referred to in subsequent
sections.

A. Distribution of Galanin and Galanin-Like Peptide

mRNA and Immunoreactivity in the Central

Nervous System

1. Galanin mRNA and Galanin Immunoreactivity.

GAL mRNA and galanin immunoreactivity have been
characterized in the CNS of several mammalian

TABLE 5
Nonpeptidergic ligands for galanin receptors with type of in vivo activity

Nonpeptide Ligands Name Receptor Specificity Activity Species

Galnon 7-((9-Fluorenylmethoxycarbonyl)cyclohexylalanyllysyl)
amino-4-methylcoumarin

nonea agonistb mouse, rat

Galmic GAL1
a,c,d agonistc mouse, rat

SNAP37889 1-Phenyl-3-[[3-(trifluoromethyl)phenyl]imino]-1H-indol-
2-one

GAL3
e antagoniste mouse, rat, guinea pig

SNAP398299 1-[3-(2-(Pyrrolidin-1-yl)ethoxy)phenyl]-3-(3-
trifluoromethyl) phenylimino)indolin-2-one

GAL3
e antagoniste rat

CYM2503 (9H-Fluoren-9-yl)methyl((S)-1(((S)-6(tert-
butoxycarbonyl)amino-1-((4-methyl-2-oxo-1,2-
dihydroquinolin-7-yl)amino)-1-oxohexan-2-yl)
amino))-3-cyclohexyl-1-oxopropan-2-yl) carbamate

GAL2
f,d agonistf,g mouse, rat

aInteraction with other receptors.
bSaar et al. (2002).
cBartfai et al. (2004).
dNot tested for GAL3.
eSwanson et al. (2005).
fLu et al. (2010).
gPositive allosteric modulator of endogenous galanin.
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species, including rat (Skofitsch and Jacobowitz, 1985b;
Everitt et al., 1986; Ryan and Gundlach, 1996), mouse
(Cheung et al., 2001; Perez et al., 2001; Lein et al., 2007;
see Allen Brain Institute [www.brain-map.org]), pri-
mate (Kordower et al., 1992), and human (Gentleman
et al., 1989; Garcia-Falgueras et al., 2011), where it
coexists with a complex, species-dependent array of
classic neurotransmitters (Melander et al., 1986d; see
Merchenthaler et al., 1993b, and Jacobowitz et al., 2004,
for review) and other peptides (see below).
On a relative quantitative scale, GAL mRNA is

highly abundant in the hypothalamic and brain stem
areas of the rat (Ryan and Gundlach, 1996; Jacobowitz
et al., 2004) and mouse (Cheung et al., 2001), with very
high levels in the preoptic-, periventricular-, and
dorsomedial-hypothalamic nuclei, bed nucleus of the
stria terminalis (BNST), medial and lateral amygdala,
LC, and nucleus of the solitary tract. Relatively low to
medium GAL mRNA levels are present in the olfactory
bulb, septal nuclei, thalamus, and the parabrachial
and spinal trigeminal tract nuclei.
GAL mRNA is also detected in the proliferative

zones of both the developing and adult brains—the
subventricular zone, the rostral migratory stream, and
the subgranular zone of the hippocampus (Shen et al.,
2003)—where it may regulate the proliferation, differ-
entiation, and/or migration of neural stem cells (Xia
et al., 2005a; Agasse et al., 2013; Mansouri et al., 2013;
Zaben and Gray, 2013) (see sections V.D and VIII)—
and in oligodendrocyte precursor cells in the corpus
callosum (Shen et al., 2003; Ubink et al., 2003),
suggesting a role for galanin in normal myelination
and responses to myelin injury (see Wraith et al., 2009,
and Zhang et al., 2012).
Galanin is coexpressed with multiple different neuro-

transmitters and neuropeptides in different types of
neurons. For example, in the rat, galanin was associated
with four major ascending systems: 1) robustly in
a majority of the noradrenergic LC neurons (Holets
et al., 1988; Xu et al., 1998); 2) after colchicine in .50%
of 5-HT neurons in dorsal raphe (DR) (Xu and Hökfelt,
1997); 3) in the histaminergic/GABAergic neurons in
the tuberomammillary nucleus (Kohler et al., 1986;
Melander et al., 1986c; Sherin et al., 1998); and 4) in the
cholinergic basal forebrain neurons, which are known to
degenerate in Alzheimer’s disease (Davies and Maloney,
1976; Whitehouse et al., 1981). Notably, in the cholin-
ergic basal forebrain neurons, galanin expression is low/
undetectable in the normal rat (Miller et al., 1998) but is
observed after colchicine treatment (possibly due to
induction) (Melander et al., 1985b, 1986b; Dutar et al.,
1989; Senut et al., 1989) and is highly expressed in
monkeys (Melander and Staines, 1986; Kowall and
Beal, 1989; Walker et al., 1989, 1991), whereas it has
not been widely detected in humans (Walker et al.,
1991), suggesting species differences even among
primates (Kordower and Mufson, 1990).

Considerable evidence suggests that galanin expres-
sion in the brain, including the degree of co-expression
with other transmitters and peptides, is species-
specific. This is the case for galanin expression in 5-
HT neurons in the DR nucleus, where there is strong
coexpression in the rat, but none in the mouse (Larm
et al., 1999; Cheung et al., 2001; Perez et al., 2001).
This situation contrasts, however, with the LC, where
galanin has been detected in several species, including
rat, mouse (Cheung et al., 2001; Perez et al., 2001) and
human (Chan-Palay, 1990; Kordower and Mufson,
1990; Fodor et al., 1992; Miller et al., 1999; Le Maître
et al., 2013).

These species-based differences were further high-
lighted by a comparative study of the chemical
neuroanatomy of the mouse DR nucleus with a focus
on serotoninergic neurons (Everitt et al., 1986; Meister
and Hökfelt, 1988). Despite evidence for the presence of
several neuropeptides (including galanin and CRF) in
nerve terminal networks close to DR serotonin neu-
rons, indicative of direct or indirect influences on them,
a relatively low number of coexisting transmitters was
detected in mouse serotonin neurons compared with
observations in the rat (e.g., Holets et al., 1988; Xu and
Hökfelt, 1997; Larm et al., 2003). These data confirm
the considerable species differences with regard to the
chemical neuroanatomy of the DR (including galanin),
which may also be observed in other brain areas,
suggesting caution in any extrapolation of physiology
or pathology from mouse to rat and/or human.

There are many other cases of galanin coexistence
with a classic transmitter in the CNS and peripheral
nervous system (PNS), for example, in GABAergic and
dopaminergic neurons in the hypothalamic arcuate
nucleus (ARC) (Everitt et al., 1986; Meister and
Hökfelt, 1988), in GABAergic neurons in the spinal
cord (Skofitsch and Jacobowitz, 1985a; Tuchscherer
and Seybold, 1989; Klein et al., 1990; Carlton and
Coggeshall, 1996), in cholinergic motor neurons (Lindh
et al., 1989; Schreiber et al., 1994; Zhang et al., 1994),
in glutamatergic DRG neurons (Skofitsch and Jacobowitz,
1985a; Tuchscherer and Seybold, 1989; Klein et al., 1990;
Carlton and Coggeshall, 1996), and in noradrenergic
sympathetic neurons (Lindh et al., 1989; Schreiber et al.,
1994; Zhang et al., 1994), again with differing levels of
cross-species fidelity.

Galanin immunoreactivity is normally low in mouse
hippocampus but is abundant in this structure in the
monkey (Kordower et al., 1992; Perez et al., 2001); and
galanin cell bodies and dense galanin immunoreactive
fibers in the nucleus accumbens of the monkey are not
present in mouse or rat (Melander et al., 1986c;
Kordower et al., 1992; Perez et al., 2001). Although
rats and mice display a similar galanin distribution
pattern, GAL mRNA and immunoreactivity are readily
detected in the dorsal motor nucleus of the vagus of the
mouse but not that of the rat; GAL mRNA is observed
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in inferior olive neurons of the mouse (in different
subnuclei) (Cheung et al., 2001; Lein et al., 2007;
unpublished data) but not of the rat (Ryan and
Gundlach, 1996). These neurons also contain CRF
and provide climbing fiber projections to the cerebellar
cortex. In light of the involvement of hypothalamic and
extrahypothalamic CRF (and galanin) systems in
modulation of stress responses and evidence of cere-
bellar control of motor learning, these findings may
imply that the olivocerebellar system is part of a larger
peptidergic (CRF, galanin, others) functional system
(Ito, 2009; Yu et al., 2014). In contrast GAL mRNA is
not present in mouse cerebellum (Cheung et al., 2001),
but abundant galanin transcripts are observed in the
rat cerebellum in a subset of Purkinje cells in the
flocculus, paraflocculus, and several lobules, with twice
as many positive Purkinje cells in lobule 10 compared
with the rest of the adult cerebellum (Ryan and Gundlach,
1996), which may be associated with cardiovascular-motor
coordination (Ito, 2009).
Most recently, Laque et al. (2013) used reporter mice

with green fluorescent protein expression driven from
the galanin locus to identify the colocalization of
galanin and leptin-induced p-STAT3 as a marker for
leptin receptor (LepRb) expression in the lateral
hypothalamus. They reported the existence of two
populations of galanin- and LepRb-positive neurons
(galanin-LepRb neurons)—in the hypothalamus span-
ning an extended perifornical area and in the nucleus
of the solitary tract (Laque et al., 2013).
The application of such approaches, including mice

displaying a reporter protein expression linked to
specific genes (also see Table 1) should yield additional
valuable information in the future about the putative
neurochemical regulation of distinct populations of
galaninergic neurons.
2. GALP mRNA and Immunoreactivity. In all

species studied thus far, including the rat and mouse,
GALP mRNA has a far more restricted distribution
than GAL mRNA in the CNS, being detected by in situ
hybridization histochemistry in neurons of the peri-
ventricular regions of the ARC and median eminence
of the hypothalamus and in pituicytes (specialized as-
trocytes) in the posterior pituitary gland (Juréus
et al., 2000, 2001; Larm and Gundlach, 2000; Shen
et al., 2001). Subsequently, GALP mRNA was similarly
detected in primate hypothalamus (Cunningham et al.,
2004b), but there does not appear to be an equivalent
human mapping study (see Lawrence and Fraley, 2011,
for review).
In an important early study, GALP was detected

by immunohistochemistry in neurons in the ARC,
particularly the posterior-medial regions; GALP-
immunoreactive fibers were observed in the arcuate
and paraventricular nuclei, the lateral hypothalamus,
the medial preoptic area, the BNST, and the lateral
septum (Takatsu et al., 2001). Besides these initial

reports, a range of immunohistochemical studies has
demonstrated further characteristics of the hypotha-
lamic GALP system in the rat brain. A majority (85%)
of arcuate GALP neurons expresses leptin receptors
and smaller numbers express orexin receptor-1 (OX1R).
There is also functional evidence for the presence of
insulin receptors on GALP neurons (Lawrence and
Fraley, 2011).

Some GALP neurons contain a-melanocyte-stimulating
hormone, derived from pro-opiomelanocortin. NPY- and
orexin-terminals contact GALP neurons in the ARC,
whereas GALP-positive nerve terminals make contact
with orexin- and melanin-concentrating hormone neu-
rons in the lateral hypothalamus (Takenoya et al.,
2005) and GnRH neurons and fibers in the medial
preoptic area and the BNST of rats (Takatsu et al.,
2001; Takenoya et al., 2006), as well as a putative
association with kisspeptin neurons in the ARC
(Lawrence and Fraley, 2011; Mohr et al., 2012). On
the basis of these data, two major GALP pathways are
identified—one to the paraventricular hypothalamic
nucleus and a second to the medial hypothalamic area,
the BNST and lateral septum (see Kageyama et al.,
2005; Takenoya et al., 2006; Lawrence and Fraley,
2011).

B. Distribution of Galanin Receptors in the Brain and

Spinal Cord

The distributions of GAL1 and GAL2 mRNA were
extensively mapped by several independent laborato-
ries soon after the cloning and pharmacological
characterization of the receptors (see below), whereas
only a single comprehensive report exists on the
regional and cellular distribution of GAL3 mRNA in
the rat (Mennicken et al., 2002).

GAL1 mRNA is widely expressed in the mammalian
CNS. In the mouse and rat, expression is high in
olfactory structures and subregions/nuclei of the
amygdala, thalamus, hypothalamus, pons, medulla,
and spinal cord (O’Donnell et al., 1999; Burazin et al.,
2000; Mennicken et al., 2002; Hohmann et al., 2003a).
GAL2 mRNA is also broadly expressed in the CNS, with
high levels present in the hippocampus, particularly in
the dentate gyrus and the CA3 field, and
in the supraoptic, arcuate, and mammillary nuclei of
the hypothalamus (Gundlach and Burazin, 1998;
O’Donnell et al., 1999; Burazin et al., 2000). In the
hindbrain, GAL2 mRNA is abundant in the spinal
trigeminal tract and the dorsal vagal complex (O’Donnell
et al., 1999; Burazin et al., 2000). GAL3 mRNA is
abundant in peripheral tissues, but has a more re-
stricted distribution in the CNS than that of GAL1 and
GAL2 mRNA, being confined to discrete areas of the
hypothalamus (paraventricular, ventromedial, and
dorsomedial nuclei) and areas of the forebrain (medial
septum/diagonal band of Broca, bed nucleus of the
stria terminalis, medial amygdaloid nucleus), midbrain
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(periaqueductal gray), and hindbrain (DR nucleus, LC
and lateral parabrachial nucleus) (Mennicken et al.,
2002).
Anatomic studies have identified the presence of

GAL1 and GAL2 mRNA in the spinal cord, including
data on labeled neuron types and regulation of
expression (Brumovsky et al., 2006; Landry et al.,
2006). For example, in the rat brain, GAL1 mRNA-
positive neurons were detected in laminae I–III, and
several GAL1 mRNA-positive neurons were seen in
deeper layers, including the ventral horn, area X, and
the lateral spinal nucleus (Brumovsky et al., 2006). In
a separate study, putative GAL1 immunoreactivity,
which was absent in GAL1 knockout mice (GAL1-KO),
was detected in nerve endings in lamina II (Landry
et al., 2006). In contrast, small and intermediate
primary sensory neurons in the DRG express the
highest levels of GAL2 mRNA in the rat CNS (see
below); in the spinal cord, the large ventral horn alpha
motor neurons are moderately labeled, and small, less
intensely labeled cells are scattered throughout the
gray matter, with scarce weakly labeled GAL2 mRNA-
positive neurons in the ventral horns and area X and
even fewer cells in the dorsal horn and the sympathetic
and parasympathetic intermediate lateral cell columns
(O’Donnell et al., 1999; Brumovsky et al., 2006).
Finally, weak GAL3 mRNA expression is reported over
laminae I–II, with a few moderately labeled cells
distributed in laminae V and X (Mennicken et al.,
2002).
Anatomic studies have also identified GAL1 and

GAL2 mRNA in cells within the subventricular zone
and the rostral migratory stream, regions associated
with neurogenesis in the adult brain (Shen et al., 2003;
Mazarati et al., 2004). The autoradiographic distribu-
tion of high-affinity [125I]galanin binding sites best
correlates with that of GAL1 mRNA in rat and mouse
brain (Jacobowitz et al., 2004; Jungnickel and Gundlach,
2005; Lein et al., 2007), a finding consistent with a
more limited and lower level of GAL2/3 expression and
a lower affinity of the radioligand for non-GAL1

receptors (O’Donnell et al., 1999; Burazin et al., 2000;
Mennicken et al., 2002; Hohmann et al., 2003a). The
distribution of galanin receptors (and galanin) in the
developing CNS (Ryan et al., 1997; Burazin et al.,
2000; Jungnickel et al., 2005) (see Allen Brain Institute
[www.brain-map.org]) suggests that galanin regulates
developmental processes, including cell proliferation
and survival, neurite growth, and synaptic maturation
(Holmes et al., 2000; O’Meara et al., 2000; Jungnickel
et al., 2005; Xia et al., 2005a; Hawes et al., 2006; see
sections V.G and VIII).
In addition to their abundance in the adult mam-

malian CNS, galanin and its receptors are also present
in the PNS and associated organs and have been
implicated in functional regulation of various periph-
eral organ systems. For example, galanin and galanin

receptors are present in DRG neurons and are known
to participate in the control of pain processing at these
associated sites (e.g., see Liu and Hökfelt, 2002; section
V.C).

GALP was originally identified as a possible second
native ligand for GAL2 (Ohtaki et al., 1999) but is now
known to bind to GAL1 and to have high affinity for
GAL3 (see above; Lang et al., 2005). However, many in
vivo and some in vitro studies have shown differences
between the effects of GALP and galanin on neuronal
activity and/or animal behaviors (Lawrence et al.,
2002; Fraley et al., 2003; Krasnow et al., 2003; Dong
et al., 2006; Lawrence and Fraley, 2011) as well as
species differences in responses to GALP (Kauffman
et al., 2005). These findings suggest the existence of
a unique receptor for GALP that has yet to be discovered
or that distinct profiles of GAL1-GAL3 exist on different
populations of neurons, which might explain these
various pharmacological findings.

C. Galanin Receptor Antibodies

Although several galanin receptor antibodies have
been produced and used in experimental studies (e.g.,
Larm et al., 2003; Hawes and Picciotto, 2004), the
specificity of these antibodies has often not been clearly
demonstrated by using cells lines expressing the
different galanin receptors and/or tissues from relevant
galanin receptor KO mice as the preferred positive and
negative controls. Specifically, the validity of several
existing GAL1 and GAL2 antibodies has been ques-
tioned (Lu and Bartfai, 2009), and caution is required
when interpreting immunohistochemical data on the
presence and distribution of these galanin receptors.
One reason for the lack of specificity of multiple
commercially available galanin receptor antibodies is
the fact that they are identical antibodies being sold by
different vendors. Other technical issues may include
the relatively low abundance of these particular
peptide receptor proteins in native tissues relative to
other proteins recognized by components of the poly-
clonal antisera when used at high concentrations,
which can produce high levels of nonspecific staining
of different neuron populations that can often appear
"authentic," based on the distribution of the receptor
mRNA species.

V. Neuronal Actions of Galanin in the Central

and Peripheral Nervous Systems

Based on a large number of early studies with the
native peptide or synthetic analogs, galanin was
proposed to regulate numerous physiologic actions in
the adult mammalian nervous system. More recent
studies using receptor-selective agonists and antago-
nists (see section III.C) and various transgenic mouse
models (Table 1) have helped to establish which
galanin receptor(s) is/are primarily involved in these
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actions. In light of the considerable number of
established and putative physiologic actions of galanin
signaling, providing details of all of them and the
relevant supporting studies is beyond the scope of this
review. Importantly, a summary of much of the early
data is available in a previous review (Lang et al.,
2007) and in a series of chapters in a more recent
multiauthor monograph (Hökfelt and Tatemoto, 2010).
There have also been several more recent focused
reviews of particular aspects of galanin actions (e.g.,
Fang et al., 2012a; Webling et al., 2012). However, the
following sections provide a brief review of galanin
actions in some major central processes, based largely
on data from rats or from normal and transgenic mice.
Galanin has been linked to the regulation of metabolic
and osmotic homeostasis (Crawley, 1999; Landry
et al., 2000; Gundlach, 2002), reproduction (Rossmanith
et al., 1996; Gundlach, 2002), nociception (Liu and
Hökfelt, 2002), arousal/sleep (Sherin et al., 1998;
Steininger et al., 2001), and cognition (McDonald
et al., 1998; Kinney et al., 2002), and these functions
have been subsequently linked to the actions of specific
galanin receptors. For example, GAL1 has been linked
strongly with the CNS and PNS and with modulatory
actions on neurotransmission and anxiety, reward, and
nociception (see details below), whereas GAL2 is more
broadly expressed and in the CNS is implicated in
neurodevelopment (Burazin et al., 2000), modulation of
both neurotransmission (Mazarati et al., 2004) and
affective behaviors (Karlsson and Holmes, 2006; Lu
et al., 2008), neurite outgrowth in normal hippocampus
(Elliott-Hunt et al., 2004), and neuronal survival and
neurogenesis in injured hippocampus (Elliott-Hunt
et al., 2004; Mazarati et al., 2004; Pirondi et al.,
2005a) (see details below). Galanin and galanin recep-
tors have more recently been associated with neuro-
genesis and embryonic and adult neural stem cells (see
section VIII).

A. Feeding and Energy Homeostasis

Early behavioral studies discovered that central
administration of native galanin or biologically-active
fragments such as galanin (1–16) consistently stimu-
lated food intake. Acute intracerebroventricular ad-
ministration or injection into multiple sites, including
the hypothalamic paraventricular nucleus (PVN),
lateral, and ventromedial nuclei and the central
nucleus of the amygdala, produced a rapid increase
in food and total caloric intake without markedly
altering associated behaviors such as drinking, groom-
ing, and motor activity (Kyrkouli et al., 1986, 1990b;
Corwin et al., 1993; Schick et al., 1993; Crawley, 1999).
Notably, chronic intracerebroventricular administra-
tion of galanin did not induce sustained obesity, but
chronic daily administration of galanin into the PVN
produced variable, complex changes in daily caloric
intake, levels of obesity, and regional fat deposition,

depending on the fat and carbohydrate content of the
diet (Smith et al., 1994). Rats fed a high-fat, but not
high- carbohydrate or -protein, diet displayed a marked
increase in hypothalamic galanin levels (Leibowitz
et al., 1998), and blockade of fatty acid metabolism
reduced galanin expression in the anterior PVN (Wang
et al., 1998a), suggesting galanin production is regu-
lated by signals related to fatty acid metabolism
(Barson et al., 2010).

Acute effects of galanin on feeding were abolished by
galanin receptor (Corwin et al., 1993) and a2-adrenoceptor
(Kyrkouli et al., 1990a) antagonists. Inhibition of NA
synthesis also blocked galanin-induced feeding, in-
dicating that galanin modulates hypothalamic norad-
renergic activity (Kyrkouli et al., 1990a). In rats,
galanin was also reported to increase preference for
a high-fat diet given a choice between fat, carbohy-
drate, and protein (Tempel et al., 1988), although other
contemporary studies observed less of a difference in
macronutrient choice (Smith et al., 1997a; Crawley,
1999; see Gundlach, 2002, for review). More recent
studies in female rats also documented that ovarian
steroids likely function together with galanin in
a neural circuit, involving the medial preoptic nucleus,
the anterior PVN, and the median eminence and
anterior pituitary, to coordinate feeding behavior with
reproductive function to promote consumption of a fat-
rich diet at times of increased energy demand (Leibowitz
et al., 2007).

Kyrkouli and colleagues (2006) further examined the
influence of PVN galanin on dark/active phase nutrient
intake in rats in a self-selection feeding paradigm—

a choice between isocaloric diets enriched in protein,
carbohydrate, or fat. Intra-PVN galanin significantly
increased the 1-hour food intake but failed to increase
intake of any particular nutrient. Analysis of "prefer-
ence" relative to 24-hour baseline selection patterns
over a 4-week period revealed that galanin increased
"preferred nutrient" intake [i.e., galanin preferentially
increased intake of the carbohydrate- or fat-rich diet in
rats with high 24-hour intake of this particular
nutrient (. 40% of their total food intake)]. Additional
analysis of plasma hormone levels revealed a signifi-
cant increase in NA levels and a reduction in insulin
with no effects on adrenaline, glucose, or corticosterone
after intra-PVN galanin. The data suggest galanin in
the PVN influences food intake and metabolic func-
tioning, increasing sympathetic outflow and stimulat-
ing the intake of preferred macronutrients (Kyrkouli
et al., 2006).

Since these early studies, considerable research has
documented the interplay between fat and alcohol
intake with regard to regulation by neuropeptides. In
particular, hypothalamic galanin reportedly has a pos-
itive, reciprocal relationship with dietary fat and
alcohol (see Barson et al., 2010, and Lewis, 2011, for
review). It is well established that galanin increases
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consumption of fat or alcohol, which then stimulates
galanin expression leading to overconsumption, with
galanin facilitating intake by stimulating NA and
dopamine release and reducing satiety by decreasing
serotonin and acetylcholine signaling. In addition,
hypothalamic galanin injection stimulates enkephalin
expression throughout the brain, which also promotes
alcohol consumption. Circulating triglycerides released
by fat or alcohol correlate positively with hypothalamic
galanin expression (see Barson et al., 2010).
Initially, neither GAL1- or GAL2-KO mice nor

galanin-KO mice were reported to display any marked
phenotype compared with littermates related to differ-
ences in body weight, feeding behavior, or responses to
fasting or leptin (Jacoby et al., 2002; Wynick and
Bacon, 2002; Gottsch et al., 2005). However, more
detailed studies of galanin- and GAL1-KO mice fed
diets containing differing levels of energy and fat
indicated that the endogenous galanin-GAL1 system
plays a role in adjusting food intake and/or metabolism
to acute changes in dietary fat (Zorrilla et al., 2007;
Adams et al., 2008). In response to an acute 3-day high-
fat challenge, GAL1-KO mice displayed an impaired
adaptation, leading to increased food intake and
weight gain compared with normal food intake and
weight modulation on low-fat diets (Zorrilla et al.,
2007). This latter finding is consistent with the
phenotype reported for galanin-KO mice, which are
more sensitive to leptin treatment (Ahren et al., 2004).
In contrast to this acute response, over the subsequent
2 weeks on the high-fat diet, GAL1-KO mice consumed
less food and daily energy than when maintained on
a low-fat diet and less food and energy than their
heterozygous littermates, suggesting GAL1 signaling
may oppose positive energy balance or help maintain
neutral balance (Zorrilla et al., 2007). Furthermore,
heterozygous galanin-overexpressing (OE) mice dis-
played a .50% higher intake of a fat-rich diet relative
to wild-type (WT) mice (Karatayev et al., 2009). Adams
and others (2008) observed that WT mice consumed
more energy and gained more weight than galanin-KO
mice if only a high-fat diet was available; with
macronutrient choice, WT mice ate ;3-fold more fat
than galanin-KO mice. Chronic intracerebroventricu-
lar administration of galanin partially reversed the fat
avoidance phenotype of galanin-KO mice (Adams et al.,
2008). Macronutrient choices appear to be important,
not only as potential factors influencing obesity, but as
risk factors for diabetes and cardiovascular disease.
Together, these data suggest galanin receptor antag-
onists may be of use in the treatment of some forms of
obesity (Adams et al., 2008), although the precise
nature of galanin signaling under different chronic
dietary situations is still unclear.
Indeed, despite the widely reported and diverse

effects of galanin on consummatory behavior, genetic
linkage studies have to date revealed no strong impact

of the galanin or galanin receptor genes on obesity
(Kofler et al., 1998; Lapsys et al., 1999; Schauble et al.,
2005; Sutton et al., 2006; section VII.C). However, it
has become clear over recent years that common
neural circuits can be involved in mediating different
behaviors such as the regulation of feeding and fear/
anxiety. For example, there is strong evidence for
galanin and other peptides acting not only within parts
of the hypothalamus but also within the extended
amygdala to regulate feeding and reward aspects of
food and to modulate the level of innate anxiety (e.g.,
Skibicka and Dickson, 2011; see section VII.C).

B. Osmotic Regulation and Water Intake

Very early studies of galanin dynamics in vasopres-
sin neurons and the effects of central galanin admin-
istration revealed that galanin is involved in osmotic
regulation within the hypothalamus. Vasopressin is
pivotally involved in osmotic regulation, and
vasopressin-deficient and salt-loaded rats with in-
creased plasma osmolarity have reduced galanin levels
in the median eminence and neurointermediate lobe of
the pituitary (Koenig et al., 1989), suggesting increased
galanin release. Furthermore, central administration of
galanin reduced water intake (Brewer et al., 2005),
inhibited osmotically induced increases in vasopressin

mRNA in the PVN and supraoptic nucleus (SON)
(Landry et al., 1995, 2000), and reduced vasopressin
release and plasma vasopressin (Kondo et al., 1993).
Infusion of the galanin antagonist M15 increased
vasopressin mRNA in normal rats, further suggesting
tonic inhibition by galanin (Landry et al., 2000). Galanin
immunoreactivity in the SON is altered in diabetes
mellitus, and salt-loading with 2% saline-drinking
water increased GAL mRNA and GAL1 mRNA in the
PVN/SON of rats (Meister et al., 1990; Burazin et al.,
2001). Water deprivation and salt-loading also in-
creased galanin binding and putative GAL1 protein
immunoreactivity in these neurons (Burazin et al.,
2001), suggesting salt-loading and dehydration increase
vasopressin release and galanin levels, the latter acting
as a negative feedback modulator of vasopressin release,
via GAL1 activation.

Circumventricular structures, including the subfornical
organ (SFO), play a key role in control of water in-
take and vasopressin release (Miselis, 1981). Galanin
has been identified in synapses in the SFO, and in
brain slice preparations galanin dose dependently
inhibited the activity of SFO neurons, many of which
were activated by angiotensin II (Kai et al., 2006). The
GAL1 agonist M617 also inhibited SFO cells, whereas
the GAL2/3 agonist galanin (2–11) had no effect,
suggesting galanin responses were largely mediated
by GAL1. Consistent with this conclusion, GAL1 mRNA
was detected in the SFO using RT-PCR (Kai et al.,
2006) and an earlier study reported GAL1 mRNA and
putative GAL1 immunoreactivity in SFO neurons
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(Burazin et al., 2001). Any phenotypic differences in
galanin- or galanin receptor-related transgenic and/or
KO mice have not been widely reported. Furthermore,
the possible role of galanin signaling in the SFO
(Burazin et al., 2001; Mennicken et al., 2002) in the
control of ingestive behavior (Fry and Ferguson, 2007)
has not been investigated.

C. Pain

After nerve injury, under favorable conditions most
nerve fibers successfully regenerate. However, in many
clinically relevant circumstances, reduced or disor-
dered axonal regeneration often results in a loss of
sensation and/or the development of chronic neuro-
pathic pain states. The pathophysiological mechanisms
that underlie injury-induced axonal regeneration and
the resulting pain states are therefore of considerable
scientific and clinical importance. Neuropathic pain is
characterized by spontaneous pain, allodynia (the
perception of pain from a normally innocuous stimu-
lus), and hyperalgesia (an exaggerated response to
a given pain stimulus) and is often associated with
depression, sleep disturbance, and interference with
normal physical and social functioning (Tesfaye, 2009;
Tesfaye et al., 2011).
Antidepressants and gabapentinoids are the drugs

currently used to treat neuropathic pain in the United
Kingdom and the United States. However, overviews of
clinical trials (Saarto and Wiffen, 2007; Lunn et al.,
2009; Moore et al., 2009) indicate that at best only 40%
of patients gain control of their neuropathic pain with
these drugs, even when used in combination with other
available drugs, and very few obtain complete pain
relief. Thus, there is still a huge unmet clinical need for
the treatment of neuropathic pain, and more effective
long-term therapies are urgently required. Galanin
has been extensively studied in a number of physio-
logic systems, including regeneration of sensory
neurons and nociception, and current data support
the hypothesis that modulation of galanin receptor
signaling cascades represents a novel therapeutic
approach for treating sensory neuropathy and neuro-
pathic pain.
Extensive research has been done to examine the

function of the galanin system in pain processing in the
intact nervous system and in models of neuropathic
and inflammatory pain and the role played by galanin
and its receptors in axonal regeneration and neurite
outgrowth of sensory neurons. A number of reviews
have addressed these topics (Wiesenfeld-Hallin and
Xu, 1998; Kerr et al., 2000b; Xu et al., 2000b, 2008;
Wynick et al., 2001; Liu and Hökfelt, 2002; Holmes
et al., 2005; Hobson et al., 2008), so we will focus on
more recent findings and place them in the context of
previous data. Several experimental approaches have
been used to study the function of galanin in pain
processing and in axonal regeneration and neurite

outgrowth, including in vitro and in vivo paradigms
(almost all in rodents) in which anatomic, electrophys-
iological, and behavioral effects were assessed after
administration of exogenous galanin or galanin re-
ceptor antagonists and/or agonists or antisense nucleo-
tides. More recently, comparable studies have been
completed in genetically modified mice.

1. Galanin and Galanin Receptor Expression in the

Intact Adult Somatosensory System. In the adult
rodent somatosensory system galanin is expressed at
detectable levels in a small subset (,5%) of pre-
dominantly small fiber neurons in the DRG (Ch’ng
et al., 1985; Skofitsch and Jacobowitz, 1985b; Hökfelt
et al., 1987). However, ultrastructural studies suggest
ongoing galanin synthesis in up to 40% of sensory
neurons (Klein et al., 1990; Carlton and Coggeshall,
1996), most of which is transported to the afferent
terminals within lamina II of the dorsal horn (DH) of
the spinal cord (Villar et al., 1991; Zhang et al., 1993b;
O’Donnell et al., 1999). GAL1 and GAL2 mRNAs are
present in partially overlapping populations of DRG
neurons: ;50% contain GAL1 mRNA (mostly larger
neurons than those expressing GAL2) and ;80%
express GAL2 mRNA (with .60% of these being small-
to medium-sized neurons) (Xu et al., 1996; Sten Shi
et al., 1997; Zhang et al., 1998; O’Donnell et al., 1999;
Liu and Hökfelt, 2002; Kerekes et al., 2003).

Galanin, GAL1, and GAL2 are also expressed in
subsets of DH neurons where nociceptive information
is integrated and transmitted. It has been shown that
galanin-expressing neurons constitute a distinct pop-
ulation of GABAergic inhibitory interneurons, pre-
dominantly located in laminae I–II (Simmons et al.,
1995; Zhang et al., 1995b; Tiong et al., 2011). GAL1

mRNA is expressed at relatively high levels, particu-
larly in laminae I–III (Parker et al., 1995; Gustafson
et al., 1996; Zhang et al., 1998; O’Donnell et al., 1999;
Brumovsky et al., 2006; Landry et al., 2006) but also in
the deeper DH, by numerous neurons that appear to be
excitatory glutamatergic interneurons (Landry et al.,
2006). Although present, GAL2 mRNA has a much
sparser distribution (O’Donnell et al., 1999; Brumovsky
et al., 2006), and it is not yet known by which
populations of neurons it is expressed. Ablation of
primary afferent innervation into the spinal cord does
not appear to significantly decrease galanin binding
(indicative of galanin receptor expression/levels) in the
spinal cord, suggesting galanin receptors are present
mainly on postsynaptic neurons (Kar and Quirion,
1994; Zhang et al., 1998). However, more recent studies
imply that galanin also functions presynaptically in
the DH, likely via GAL2 (Alier et al., 2008; Yue et al.,
2011). It is noteworthy that galanin and galanin
receptor binding have also been detected in monkey
DRG and spinal cord (Zhang et al., 1993a, 1995a), and
galanin is expressed in human DRG (Landry et al.,
2003). Expression of GAL3 in the rat and mouse DRG
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and spinal cord is very low, as determined by RT-PCR
(Waters and Krause, 2000; Hobson et al., 2006), and
undetectable using in situ hybridization (Mennicken
et al., 2002).
Galanin and its receptors are also present in supra-

spinal regions implicated in the modulation and
perception of pain, including the gracile nucleus (Ma
and Bisby, 1999), LC, periaqueductal gray (PAG), DR
nucleus, several hypothalamic nuclei (ARC and dorso-
and ventromedial hypothalamus), the habenula, and
amygdaloid nuclei (Skofitsch and Jacobowitz, 1985b,
1986; Melander et al., 1986a,b; Skofitsch et al., 1986;
Melander et al., 1988; O’Donnell et al., 1999; Perez
et al., 2001; Mennicken et al., 2002; Barreda-Gomez
et al., 2005). Galanin receptors are also present in
these brain areas in monkey and human (Kohler et al.,
1989a,b).
2. Nociception in the Uninjured Rodent. Functional

studies have demonstrated a role for galanin in the
modulation of acute pain in intact adult rat and mouse.
Administration of exogenous high-dose galanin to the
peripheral receptive field of primary afferents modifies
the firing of nociceptive fibers in response to noxious
heat, with most being inhibited, but with some facilitated
(Flatters et al., 2003), possibly due to activation of
different receptors. Galanin also dose dependently
modifies the response of mechanonociceptive C-fibers; low
dose galanin facilitates, whereas high-doses inhibit
nociceptor activity. Galanin (2–11) produces a similar
effect, indicating that this nociceptive modulation is
mediated in part via activation of peripheral GAL2

(Hulse et al., 2011). Close intra-arterial infusion of
galanin or galanin (2–11) both lead to the sensitization
of C-fiber responses to mechanical stimulation. How-
ever, galanin, but not galanin (2–11), inhibits responses
to cool stimuli, suggesting involvement of GAL1 in
mediating this inhibition (Hulse et al., 2012). Together
these data support a role for galanin in modulating
acute pain in the periphery via activation of GAL1 and/
or GAL2.
Intrathecally administered galanin, which can

potentially exert its actions on primary afferents
presynaptically (via GAL1 and/or GAL2) or postsynap-
tically (on predominantly GAL1-expressing excitatory
interneurons), dose dependently exerts both facilitatory
(Cridland and Henry, 1988; Kuraishi et al., 1991;
Wiesenfeld-Hallin and Xu, 1998; Kerr et al., 2000a;
Reeve et al., 2000; Liu et al., 2001; Flatters et al., 2003)
and inhibitory (Post et al., 1988; Xu et al., 1991b;
Yu et al., 2001; Flatters et al., 2003) effects on the
electrophysiologic properties of DH neurons and noci-
ception, with differential effects on sensory modalities
(Kuraishi et al., 1991; Wiesenfeld-Hallin et al., 1993).
Similar to the effects of peripheral administration,
intrathecal galanin is facilitatory at low doses and
inhibitory at higher doses, possibly via modulation of
the actions of substance P (Xu et al., 1990) and opioids

(Post et al., 1988; Wiesenfeld-Hallin et al., 1990; Reimann
et al., 1994; Suh et al., 1994).

More recent in vitro studies, recorded from cells in
lamina II of the spinal cord, reveal that low doses of
galanin increase the frequency, but not the amplitude,
of spontaneous excitatory postsynaptic currents
(EPSCs) via a presynaptic calcium-dependent mecha-
nism. This effect appears to be mediated by GAL2,
presumably located on terminals of primary afferents
and DH neurons, because it is mimicked by low-dose
galanin (2–11), but not the GAL1 preferential agonist
M617 (Yue et al., 2011). Conversely, it was demon-
strated that galanin (2–11) decreases spontaneous
EPSC frequency (Alier et al., 2008). Furthermore,
galanin or galanin (2–11) both reduce nociceptor
stimulation-evoked EPSC amplitudes, indicative of
decreased primary afferent glutamate release (Alier
et al., 2008; Yue et al., 2011). Galanin produces
variable dose-dependent effects on postsynaptic cur-
rents in both excitatory and inhibitory lamina II
neurons; GAL1 agonism appears to predominantly
cause hyperpolarization (Yue et al., 2011), and high-
dose galanin (2–11) decreases membrane excitability
(Alier et al., 2008; Yue et al., 2011). Overall, the effect
of galanin in the spinal cord is likely to be determined
by several factors, including the sensitivity of the
receptors to galanin, the phenotype of the receptor-
bearing neurons (e.g., neurotransmitter content and
electrophysiological properties), and the local circuitry
in the DH.

Several studies have demonstrated a potential role
for galanin in supraspinal pain transmission or
modulation in areas known to be innervated by
galanin-positive nerve fibers and thought to be involved
in pain modulation. Injection of galanin into the PAG,
which has a well defined role in descending pain
modulation, dose dependently decreases pain-related
behavior in response to noxious stimuli, an effect that
appears to involve the opioid system (Wang et al., 1999).
Similarly, administration of high doses of galanin into
the ARC decreases nociception by a PKC- and opioid-
dependent mechanism, probably by influencing the
PAG (Shi et al., 2011; Sun et al., 2003, 2007; Sun and
Yu, 2005). Administration of galanin into the central
nucleus of the amygdala (possibly by a GAL1- and
opioid-dependent mechanism) (Jin et al., 2010), the
tuberomammillary nucleus (Sun et al., 2004), and the
nucleus accumbens (Xu et al., 2012a) decreases pain-
related behaviors. These effects are inhibited by the
putative galanin receptor antagonist galantide, which
blocks all galanin receptors. Although it appears
galanin and its receptors are expressed in these regions,
the cellular localization of the receptor proteins is as yet
unknown.

In support of the effectiveness of exogenous galanin
or its receptor ligands, there is increasing data
to suggest that endogenous galanin plays a tonic
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inhibitory nociceptive role. The nonselective galanin
receptor antagonist M35 potentiates the facilitation of
intact C-fiber afferent activity (Wiesenfeld-Hallin et al.,
1992). Furthermore, a decrease in GAL1 mRNA levels
by intrathecal antisense administration attenuates the
inhibitory effect of galanin (Pooga et al., 1998; Rezaei
et al., 2001). Consistent with this, ablation of DH
galanin receptor-expressing neurons (which are pre-
dominantly GAL1 positive) reduces behavioral nocifensive
responses to noxious temperature stimuli (Lemons and
Wiley, 2011).
Results from genetically engineered mice provide

further evidence for the role played by galanin in acute
pain. Galanin-KO mice (Wynick et al., 1998) are more
sensitive to noxious stimuli than WT controls (Kerr
et al., 2000a), supporting an inhibitory function.
However, GAL1-KO mice have only a slightly increased
sensitivity to noxious thermal, but not mechanical,
stimuli (Blakeman et al., 2003), and GAL2-KO mice
display no differences in sensitivity to thermal or
mechanical stimuli (Gottsch et al., 2005; Hobson et al.,
2006; Shi et al., 2006). Several transgenic mouse lines
have been generated that overexpress galanin in
particular subsets of neurons, and their phenotypes
support an inhibitory role for galanin (Table 1). Mice
that constitutively overexpress galanin under the
control of the c-Ret (Holmes et al., 2003), PDGF,
platelet-derived growth factor subunit-b (Blakeman
et al., 2001), or dopamine b-hydroxylase (Hygge-
Blakeman et al., 2004) promoters, all display reduced
sensitivity to thermal stimulation, and in the case
of the c-Ret transgenic mice, also to mechanical
stimulation.
3. Models of Neuropathic Pain. Nerve injury in-

duces pronounced changes in the expression of GAL

mRNA and peptide, and many other genes are also
affected, as shown in gene array studies (Costigan
et al., 2002; Xiao et al., 2002). It was initially shown
that total peripheral nerve transection (axotomy)
induced an increase in galanin to the extent it was
detectable in 40–50% of DRG neurons, with peak levels
at 10–14 days after injury and elevated levels during
nerve regeneration (Hökfelt et al., 1987, 1994). Con-
comitant with this is a marked increase in galanin
transport, both toward the site of injury and to the DH
(Villar et al., 1991), although levels were little changed
within intrinsic DH neurons (Villar et al., 1989). Such
postinjury changes were also demonstrated in monkey,
where there is also reorganization of afferents in the
DH (Zhang et al., 1995a; Wang et al., 2007). Further-
more, there is increased galanin release in the DH
after nerve injury (Duggan and Riley, 1996; Colvin
et al., 1997; Colvin and Duggan, 1998). After axotomy,
the levels of mRNA for GAL1, and to a lesser extent for
GAL2, in the DRG are reduced (Xu et al., 1996; Sten
Shi et al., 1997), with no change in DH neurons
(Brumovsky et al., 2006). More recently, specific and

highly sensitive, semiquantitative RT-PCR (Taqman)
was used to demonstrate that the levels of GAL1 and
GAL2 mRNA in mouse DRG were reduced by 37 and
28%, respectively, 1 week after nerve section (Hobson
et al., 2006).

Galanin is also upregulated to a variable extent in
several models of neuropathy that are accompanied by
abnormal pain-like behaviors in vivo (Ma and Bisby,
1997; Shi et al., 1999; Coronel et al., 2008). These
models include partial sciatic nerve transection (Ma
and Bisby, 1997), tibial transection (Hofmann et al.,
2003; Garry et al., 2005), nerve crush/pinch (Villar
et al., 1991; Xu et al., 2012b), and chronic nerve
constriction (Villar et al., 1989, 1991; Nahin et al.,
1994; Ma and Bisby, 1997; Shi et al., 1999), in which it
has been suggested the extent of galanin upregulation
is inversely proportional to the development of pain
behavior (Shi et al., 1999; Liu and Hökfelt, 2000) and
single ligature nerve constriction (Coronel et al., 2008),
partial sciatic (Shi et al., 1999) or saphenous nerve
ligation (Hulse et al., 2008), photochemically-induced
ischemic nerve injury (Hao et al., 1999; Shi et al.,
1999), spared nerve injury (Holmes et al., 2003), spinal
nerve ligation (Fukuoka et al., 1998; Honore et al.,
2000), the cisplatin model of neurotoxicity (Barajon
et al., 1996), as well as after skin incision, which is
preceded by inflammation (Peters et al., 2005; Hill
et al., 2010). In contrast, galanin does not appear to
increase in models of painful diabetic neuropathy
(Zochodne et al., 2001; Burnand et al., 2004; Shi et al.,
2013). After nerve injury, galanin is also increased in
trigeminal (Zhang et al., 1996) and superior cervical
ganglia (Zhang et al., 1994), which may have implica-
tions in pain modulation.

Upregulation of galanin is also seen in disease
models associated with neuropathic pain, including
bone cancer pain (Peters et al., 2005), although some
caution is required when interpreting the data (Honore
et al., 2000), herpes simplex (Henken and Martin,
1992) or varicella zoster virus infection (Garry et al.,
2005), and perineural HIV-1 gp120 infection (Wallace
et al., 2007).

In the periphery, similar to observations in naive
rodents, local injection into the primary afferent
receptive field or intra-arterial perfusion of low doses
of galanin reduced peripheral nerve injury-induced
cooling-evoked nociceptor activity but increased me-
chanical sensitivity, likely mediated via activation of
GAL1 and GAL2, respectively (Hulse et al., 2011, 2012).
However, higher doses of galanin markedly inhibited
mechanonociceptor activity via activation of GAL2

(Hulse et al., 2011). Furthermore, injection of galanin
into the peripheral receptive fields of spinal nerve-
ligated rats reduced evoked responses in the vast
majority of DH neurons to mechanical and thermal
stimuli (Flatters et al., 2003) to a significantly greater
extent than in naive rats.
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In the spinal cord, the inhibitory effect of exogenous
galanin [delivered intrathecally or released from
transplanted galanin-expressing cells (Eaton et al.,
1999; An et al., 2010)] is also enhanced after nerve
injury, both in terms of effects on the electrophysiolog-
ical properties of neurons (Wiesenfeld-Hallin et al.,
1989; Xu et al., 2000a; Flatters et al., 2002) and on
neuropathic pain-like behaviors (Hao et al., 1999; Yu
et al., 1999; An et al., 2010; Eaton et al., 2000; Liu and
Hökfelt, 2000; Xu et al., 2012b,c). In support of an
inhibitory role for endogenous galanin, the administra-
tion of galanin antisense nucleotides increased pain
behavior after nerve injury (Wiesenfeld-Hallin et al.,
1992; Verge et al., 1993; Liu and Hökfelt, 2000). M35
(Wiesenfeld-Hallin et al., 1992; Verge et al., 1993; Liu
and Hökfelt, 2000) or galanin, but not galanin (2–11),
decreased nerve constriction injury-induced mechan-
ical allodynia, suggesting GAL1 may play a dominant
role in the analgesic effect of galanin after nerve
injury (Liu et al., 2001). However, GAL1-KO mice
demonstrate only a slightly enhanced sensitivity to
noxious temperature and increased duration of pain
behavior after nerve injury (Blakeman et al., 2003),
and no differences are seen between GAL1-KO and
WT mice in neuronal excitability in the C-fiber
stimulation-induced facilitation of flexor reflex model
(Grass et al., 2003b).
After nerve injury, galanin increases in several brain

areas associated with pain modulation (Imbe et al.,
2004; Gu et al., 2007). Application of high doses of
galanin into the medulla oblongata decreased behav-
ioral pain-like responses and the activity of gracile
nucleus neurons (Jung et al., 2009). Similarly, galanin
injected into the PAG (Wang et al., 2000) reduces pain
behavior, possibly involving the endogenous opioid
system (Zhang et al., 2000a,b). Galanin injected into
the ARC (Gu et al., 2007) also has analgesic effects.
Finally, several genetically modified mouse strains

have provided information regarding the role of
galanin and its receptors within pain circuits after
peripheral nerve injury. Mouse lines have been
generated that overexpress galanin (either constitu-
tively or inducibly under the control of different
promoters; see Table 1), and their electrophysiologic
and behavioral phenotypes further support a strong
analgesic role for galanin after nerve injury (Blakeman
et al., 2001; Grass et al., 2003a; Holmes et al., 2003;
Hygge-Blakeman et al., 2004; Pope et al., 2010; Hulse
et al., 2011, 2012) due to peripheral and central actions
of the peptide (Hulse et al., 2011). However, contrary to
initial predictions, galanin-KO mice display attenuated
pain-like behaviors in several nerve-injury models
(Kerr et al., 2000a, 2001b; Holmes et al., 2003; Hulse
et al., 2008). This result is likely due, however, to the
fact that galanin-KO mice lack a subset of sensory
neurons that may be critical for mediating pain after
nerve injury (Holmes et al., 2000; see Hobson et al.,

2008, for review). This neurotrophic effect of galanin is
mediated via activation of GAL2, and consequently
GAL2-KO mice also display neuronal deficits in the
DRG (Hobson et al., 2006; Shi et al., 2006); consistent
with this, GAL2-KO mice have attenuated neuropathic
pain-like behavior after spared sciatic, but not spinal,
nerve injury (Hobson et al., 2006; Shi et al., 2006).
Unfortunately, the impact of the developmental changes
evident in these findings confounds the interpretation of
pain data obtained in adult galanin-KO and GAL2-KO
mice.

4. Models of Inflammatory Pain. The distributions
of galanin and its receptors are altered throughout
pain circuits in experimental inflammation conditions
and this has functional implications for the modulation
of inflammatory pain. Galanin levels decrease in DRG
sensory neurons but increase in DH neurons in
response to peripheral injection of carrageenan (Ji
et al., 1995; Zhang et al., 1998). In this model, GAL1 is
transiently downregulated in the DRG (Xu et al.,
1996), whereas GAL2 is increased (Sten Shi et al.,
1997), and there is no significant change in GAL1 or
GAL2 mRNA expression within DH neurons (Brumovsky
et al., 2006). Similarly, in a model of chronic experi-
mental arthritis, peripheral adjuvant injection causes
an initial decrease in DRG galanin (after 3 days),
but this is followed by a later increase (;21 days),
suggesting a transition from an inflammatory to a nerve
injury state, and GAL mRNA levels also increase in DH
neurons (Calza et al., 1998a, 2000). However, in this
model, galanin peptide levels have been shown to
decrease in spinal cord by 28 days (Qinyang et al.,
2004). Galanin is released into the spinal cord of rats
with ankle inflammation (Hope et al., 1994; Garry
et al., 2005), and inflammatory orofacial pain increases
galanin in the trigeminal nucleus caudalis (Tokunaga
et al., 1992). The peptide is also present in neurons
innervating the Achilles tendon in a rupture model
(Ackermann et al., 2003). Galanin levels are reported to
increase in sensory neurons in models of chemically
induced ileitis (Pidsudko et al., 2003) and cystitis
(Callsen-Cencic and Mense, 1997), although a similar
study reported no significant change (Zvarova and
Vizzard, 2006). In this model, galanin also increased
in the hypothalamus and amygdala (Nishii et al., 2007).
Galanin also increases after noxious colorectal disten-
sion (in the absence of inflammation) (Lu et al., 2005a)
and in chronic diverticular disease (Simpson et al.,
2009), indicative of a role in visceral as well as somatic
pain modulation.

Peripheral intraplantar injection of low doses of
galanin enhances capsaicin-induced neuronal activity
and spontaneous inflammatory pain-related behavior,
an effect that appears to be mediated via GAL2 and
modulation of transient receptor potential vanilloid 1
(TRPV1) function (Jimenez-Andrade et al., 2004) by
a PKC-dependent signaling pathway (Jimenez-Andrade
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et al., 2005), whereas activation of GAL1 is antinoci-
ceptive in this experimental paradigm (Jimenez-
Andrade et al., 2006). Similarly, in adjuvant-induced
inflammation, both interarterial galanin and galanin
(2–11) decrease mechanical activation thresholds. How-
ever, galanin, but not galanin (2–11), reduces cooling-
evoked nociceptor activity (Hulse et al., 2012), suggesting
this antinociceptive effect is mediated via GAL1. The
same dose of galanin has variable effects on primary
afferent responses in an acutely inflamed knee joint
subjected to movement, as does blocking the actions of
endogenous galanin. However, the mechanosensitivity of
most of the affected afferents is inhibited by galanin
(Heppelmann et al., 2000).
Early studies investigating the effects of galanin in

the spinal cord suggested it had pronociceptive actions
in models of inflammation, even at high doses, possibly
by modulating substance P release (Lundeberg et al.,
1993). However, later studies revealed that intrathecal
administration of high doses of galanin is antinocicep-
tive in both intraplantar formalin-induced nociception
(Hua et al., 2004) and carrageenan-induced inflamma-
tion (Hua et al., 2005; Xiong et al., 2005), partially via
mechanisms involving the opioid system (Hua et al.,
2004; Xiong et al., 2005) and the modulation of
substance P release (Hua et al., 2005). This effect
may be mediated via both GAL1 (Hua et al., 2004) and
pre- and postsynaptic GAL2 (Hua et al., 2005). In
contrast, galanin-KO mice are hyporesponsive to
formalin and to thermal stimuli after carrageenan
inflammation and have attenuated spinal excitabil-
ity, arguing for a pronociceptive role for endogenous
galanin (Kerr et al., 2001a). However, galanin-KO
mice, as described, are deficient in a population of
nociceptors, which likely contributes to their impaired
pain phenotype (Holmes et al., 2000). GAL2-KO mice
also have impaired pain-like behavioral responses to
formalin (Hobson et al., 2006) but, like galanin-KO
mice, have sensory neuron deficits, which confounds
interpretation of the data (Shi et al., 2006). At the
supraspinal level, exogenous galanin appears to be
antinociceptive in the ARC after inflammation (Sun
et al., 2003).

D. Regeneration and Neurite Outgrowth

Damage to sensory neurons of the DRG induces
major and long-lasting changes in expression of a large
number of genes that promote neurite outgrowth and
axonal regeneration (see Navarro et al., 2007, for
review). Thus the upregulation in galanin expression
in the DRG after nerve injury led to the hypothesis
that galanin has a trophic role during regeneration.
Adult galanin-KO mice demonstrate a 35% reduction
in regeneration after a crush injury to the sciatic nerve
compared with WT controls, associated with long-term
sensorimotor functional deficits (Holmes et al., 2000).
Consistent with these findings, studies using the rat

facial nerve lesion model demonstrate that treatment
with galanin substantially increases the number of
neurons regenerating into identified branches of the
facial nerve (Suarez et al., 2006) compared with
vehicle-treated rats [possibly via GAL2 (Burazin and
Gundlach, 1998), see below]. However, despite in-
creased regeneration, the authors observed a decrease
in functional recovery compared with vehicle-treated
animals that they suggested was due to collateral
axonal branching (Suarez et al., 2006). A role for
galanin in regeneration is further supported by a recent
report that there are more regenerative fibers in rats
treated with exogenous galanin compared with control
rats after a sciatic nerve-pinch injury (Xu et al., 2012b).
Furthermore, this increase in regeneration is associ-
ated with increased functional recovery as measured
by both motor and sensory nerve conduction velocities
(Xu et al., 2012b). In contrast, galanin-OE mice did not
display an increase in functional recovery after a sciatic
nerve crush injury (Hygge-Blakeman et al., 2004).
However, these mice ectopically overexpress galanin
under the control of the dopamine b-hydroxylase
promoter (Steiner et al., 2001), and it remains to be
determined whether galanin levels in the DRG after
nerve injury are higher in these mice than in WT mice.

The impaired regenerative capacity in galanin-KO
mice is paralleled by a reduction in neuritogenesis of
adult mouse dispersed DRG neurons in vitro. The
number of neurons producing neurites is reduced by
a third and the neurite length almost halved after 8
hours in culture (Holmes et al., 2000). Importantly,
these deficits in both neurite numbers and length in
galanin-KO DRG cultures can be rescued by the
addition of exogenous galanin (Mahoney et al., 2003a,b).
Furthermore, after a conditioning nerve lesion, neu-
rite outgrowth in adult mouse dispersed DRG neurons
from galanin-KO mice was significantly lower than in
WT controls (Sachs et al., 2007). Consistent with these
findings, treatment of adult rat DRG with exogenous
galanin increases neurite length and the number
of branch points (Suarez et al., 2006). Subsequent
studies demonstrated that treatment with a gradient
of exogenous galanin significantly increased the
velocity of DRG growth cone advancement by 1.9-fold
without inducing a turning response, suggesting
galanin is not an attractant or repellent cue but
a "pure" promoter of neurite advance (Sanford et al.,
2008).

Many studies of neurite outgrowth have used the rat
adrenal pheochromocytoma (PC12) derived cell line
(Greene and Tischler, 1976) that when treated with
nerve growth factor differentiates to resemble sympa-
thetic neurons. An early study reported that treatment
with galanin failed to induce neurite outgrowth in
PC12 cells (Klimaschewski et al., 1995), whereas
a more recent study demonstrated that galanin
significantly increased the percentage of PC12 cells
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exhibiting neurite outgrowth (Hawes et al., 2006;
Hobson et al., 2013).
Existing data suggest that the proregenerative and

neuritogenic effects of galanin are mediated by GAL2.
Treatment of dispersed DRG neurons with the non-
peptide GAL1-specific antagonist RWJ-57408 (Scott
et al., 2000) failed to suppress neurite outgrowth
(Mahoney et al., 2003a). Consistent with this, GAL1-
KO mice have no reduction in regenerative capacity
after a nerve crush injury (Blakeman et al., 2003) nor
a deficit in neuritogenesis in vitro (Mahoney et al.,
2003a). Together these results suggest GAL1 is not
responsible for the proregenerative effects of galanin.
Furthermore, the deficits in neurite outgrowth of
neurons from the galanin-KO mouse can be rescued
by addition of the GAL2/3 specific agonist galanin (2–
11) (Mahoney et al., 2003b), suggesting GAL2 mediates
the neuritogenic effects of galanin. This is confirmed by
the finding that GAL2-KO mice have a one-third
reduction in neurite outgrowth consistent with that
observed in galanin-KO mice (Hobson et al., 2006),
which cannot be rescued by the addition of galanin or
galanin (2–11). Most recently, Hobson et al. (2013)
showed that, in adult sensory neurons and PC12 cells,
galanin decreases the activation state of Rho and
Cdc42 GTPases, both known regulators of filopodial
and growth cone motility. Consistent with this, the
levels of activated Rho and Cdc42 are increased in the
DRG of galanin-KO mice compared with WT controls.
Furthermore, exogenous galanin increases the activa-
tion of cofilin, which is a downstream effector of many of
the small GTPases, in the cell bodies and growth cones
of DRG and in PC12 cells. A reduction in the activation
of cofilin and an alteration in growth cone motility were
also observed in cultured galanin-KO neurons.
In summary, strong evidence has been obtained over

the last 20 years for a pivotal role for galanin in the
response of the nervous system to injury (see also
section V.E), particularly with respect to regeneration
and chronic pain caused by various sensory neuropa-
thies. However, the precise mechanisms of action that
underlie these roles remain to be fully elucidated.

E. Physiologic and Pharmacologic Actions of Galanin

in the Diseased Brain

A marked alteration in galanin expression in the
brain is observed under a number of different patho-
logic conditions, suggesting a role for the neuropeptide/
receptor system in the development, pathology, or
response to neuronal damage and neurodegeneration.
More generally, epidemiologic and genetic data are
starting to reveal the contribution of neuropeptides to
multifactorial disorders, such as Alzheimer’s disease
(AD), seizures and epilepsy, psychiatric disorders,
obesity, and substance abuse (section VII).
1. Alzheimer’s Disease. AD is characterized by

a progressive loss of cognitive function accompanied

by neuronal loss in cerebral cortex, hippocampus, basal
forebrain, and brain stem areas. AD brains are
characterized by neurofibrillary tangles and neuritic
plaques composed of neurites, astrocytes, and glial
cells around an amyloid core (e.g., Pearson, 1996;
Hyman, 2001), a historically "characteristic’ loss of
cholinergic neurons in the nucleus basalis of Meynert,
and reduced choline acetyltransferase and acetyl
cholinesterase levels in the basal forebrain. In post-
mortem brains from AD victims, a twofold increase in
galanin receptor binding sites was observed in the
hippocampal CA1 region, the stratum radiatum of
CA3, the hilus of the dentate gyrus, and the substantia
nigra (Rodriguez-Puertas et al., 1997). Increased
galanin receptors were also observed in the central
nucleus of the amygdala and the corticoamygdaloid
transition area in the early stages of AD, but levels
decreased by the end stages of the disease (Perez et al.,
2002). Notably, galanin-positive fibers and terminals
are present at a higher density in the basal forebrain
and hyperinnervate the remaining cholinergic cell
bodies (Chan-Palay, 1988; Mufson et al., 1993).

It was initially proposed based on early studies that
degeneration of a collateral network induced by AD
leads to upregulation of galanin production in the
remaining, "unaffected" nerve terminals (Chan-Palay,
1988), similar to models of neuronal injury. In contrast,
in Down’s syndrome, which also produces cholinergic
neuron degeneration, no galanin hyperinnervation
occurred (Mufson et al., 1993). Thus, degeneration
per se is not sufficient to induce galanin upregulation,
an idea supported by a lack of correlation between
galanin fiber hypertrophy and the level of cholinergic
cell loss resulting from lesions of the septum in rats (de
Lacalle et al., 1997). In more recent studies in human
brain, single neuron gene expression profiles in post-
mortem samples of cholinergic basal forebrain from AD
and control patients (i.e., from subjects who died with
a clinical diagnosis of no cognitive impairment com-
pared with nucleus basalis neurons from AD cases
lacking galanin hyperinnervation or those displaying
prominent hyperinnervation) indicated that galanin
hyperinnervation in this area was associated with
a "neuroprotective" gene expression profile (Counts
et al., 2009, 2010).

In recent years there has also been renewed interest
in aspects of galanin activity in AD and in animal
models of AD or beta-amyloid (Ab) toxicity. These
studies are beginning to reveal the functional con-
sequences of galanin system plasticity in AD. Several
studies have explored the neuroprotective role of
galanin using in vitro and in vivo paradigms. Cheng
and Yu (2010) demonstrated that galanin inhibited the
neurotoxicity and associated gene expression induced
by amyloid-b (25–35) (Ab (25–35)) or Ab (1–42) in rat
primary cultured hippocampal neurons, with activity
associated with GAL2/3 activation using galanin (2–11)
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(Cheng and Yu, 2010). Similar results were also
reported independently (Elliott-Hunt et al., 2011) and
using cultured human primary neurons (Cui et al.,
2010) and a mouse cholinergic cell line, SN56 (Pirondi
et al., 2010), with GAL2/3-mediated effects on cell
death-related gene expression (e.g., caspase-3) implicated.
In the study by Cheng and Yu (2010), galanin

inhibited spatial learning deficits in the Morris water
maze task produced by Ab (25–35) injection into CA1 of
the hippocampus as well as the associated disruption of
gene expression (p53, Bax, and MAP2) caused by the
amyloid (Cheng and Yu, 2010). New studies have
confirmed the ability of exogenous galanin to attenuate
spatial memory impairment and to decrease hippo-
campal Ab levels in a rat AD model (Li et al., 2013). In
these comprehensive studies, galanin and the GAL2/3

agonist galanin (2–11) improved spatial memory and
decreased hippocampal Ab levels produced by intra-
cerebroventricular Ab injection, and the levels of
galanin and GAL2 mRNA and peptide/protein were
increased significantly in the hippocampus after Ab
administration, whereas GAL1 mRNA and protein
levels were not altered. Together these results impli-
cate galanin signaling via GAL2 in the protective
effects against spatial memory impairment and hippo-
campal Ab aggregation.
In related studies the relationship between galanin

and Ab has been further explored. Ab peptides are
secreted from neurons, resulting in extracellular
accumulation of Ab and neurodegeneration. A study
that assessed the hypothesis that Ab undergoes
corelease with neurotransmitters demonstrated regu-
lated cosecretion of Ab (1–40) and Ab (1–42) with
galanin and other peptides (enkephalin and NPY) and
with the catecholamine transmitters (dopamine, NA)
(Toneff et al., 2013). Ab and both neuropeptide and
catecholamine neurotransmitters were found colocalized
in dense core secretory vesicles (DCSVs), which also
contained amyloid-precursor protein and its process-
ing proteases, b- and g-secretases, required for pro-
duction of Ab, suggesting Ab can be generated in
transmitter-containing DCSVs. Regulated secretion of
Ab (1–40) and Ab (1–42) with galanin was observed in
human neuroblastoma cells. This demonstration that
Ab peptides are present in transmitter-containing
DCSV and undergo cosecretion with galanin (and
other neuropeptide and catecholamine neurotrans-
mitters; Toneff et al., 2013) raises questions about the
nature of the interaction between galanin and Ab.
Recently, small peptides were shown to modulate the

aggregation and toxicity of Ab. A screen of neuro-
peptides using ion mobility-mass spectrometry to
search for such naturally occurring peptides with
direct Ab binding properties, revealed that galanin
and the neuropeptide leucine enkephalin interact
strongly with both monomeric and small oligomeric
forms of Ab (1–40) to create a range of complexes.

These data indicate that galanin may modulate fibril
generation and produce shorter fibrillar aggregates
when present in "excess" concentrations (Soper et al.,
2013). As such, this may contribute to a therapeutic
effect of endogenous or exogenous galanin in AD.

In a study in rats, the effects of antidiabetic drugs
that were postulated to inhibit galanin production
(glibenclamide and pioglitazone, orally for 3 weeks)
were examined on the behavioral and neurochemical
changes produced by intracerebroventricular Ab in-
jection (Baraka and ElGhotny, 2010). Administration
of Ab produced a predicted impairment in spatial
cognition, evaluated in the Morris water maze task,
and in learning and memory performance, in a passive-
avoidance learning task, and glibenclamide and
pioglitazone treatment resulted in significant improve-
ment in spatial cognition and in learning and memory
performance, as well as a decrease in hippocampal
galanin and hyperphosphorylated tau protein levels
(Baraka and ElGhotny, 2010). These findings have
potential implications for improving the major symp-
toms in AD.

Several studies using transgenic mice have attempted
to further explore the relationship between galanin
systems and AD pathology and symptomology. Nota-
bly, DbH-galanin-OE mice displayed performance
deficits in memory tests, analogous to deficits seen in
AD (Steiner et al., 2001). On this basis, it was proposed
that the inhibitory activity of galanin might inhibit
acetylcholine release and worsen symptoms, although
later studies indicated otherwise. In electrophysiolog-
ical studies of acutely dissociated rat cholinergic
neurons from basal forebrain, galanin inhibited K+

currents but not Ca2+ or Na+ currents (Jhamandas
et al., 2002). Hence, galanin may excite and augment
acetylcholine release from any remaining cholinergic
neurons in the AD brain. Thus, it is still unclear if
upregulation of galanin is a contributing factor to AD
or a compensatory change to maintain cholinergic and
noncholinergic transmission. In this regard, a recent
study reported that galanin-mediated spatial learning
deficits may be unrelated to its modulation of the
cholinergic system (Sabbagh et al., 2012).

2. Cerebral Ischemia and Stroke. A distinctive
feature of galanin expression established over many
years of research is the dramatic increase in its
expression produced by neuronal injury and during
development (see sections V.D and VIII). Although
stroke is a major clinical cause of neuronal injury, very
little research has investigated the galanin system in
human stroke or experimental models of cerebral
ischemia. Cerebral cortex contains few if any strongly
galanin-positive neurons under normal conditions but
receives galanin-positive inputs from subcortical areas.
Apart from an early study on the response to cortical
spreading depression (Shen et al., 2003), little is known
about the presence and function of galanin in normal or
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injured cortex. However, some data on alterations in
galanin gene expression and peptide levels and galanin
receptor plasticity over the time course of ischemic
damage are available.
In a comparative gene expression study that evalu-

ated changes in rat cerebral cortex at 6 and 24 hours
after reperfusion after transient middle cerebral artery
occlusion (MCAo), increased mRNA levels of genes
involved in stress, inflammation, transcription, and
plasticity were observed, in association with decreased
mRNA levels of genes that control neurotransmitter
function and ionic balance. Galanin was one of many
genes found to be increased (12- to 15-fold) in the
ischemic cortex (Raghavendra Rao et al., 2002).
In a later study, the effect of transient MCAo on the

tissue concentrations of galanin peptide was examined
in rats (Theodorsson and Theodorsson, 2005). The
concentrations of galanin and NPY were measured
after 3, 7, and 14 days in tissue extracts from the
lesioned and the contralateral hemisphere. Galanin
levels were not changed in any of the brain regions
studied except in the hippocampus, where levels were
lower in the ischemic compared with the intact
contralateral hemisphere. Thus, although neuronal
injury/lesions in the CNS generally produce an upregu-
lation of galanin, this study did not obtain evidence
that galanin is involved in the response within the
ischemic penumbra (Theodorsson and Theodorsson,
2005). However, a potential confound is the use of
regional tissue extracts, because changes in specific
populations of neurons may not be detected. In this
regard, no significant changes were observed in the
concentration of NPY in response to the lesions in this
study, but previous studies of the effect of different
types of ischemia (focal and transient) have reported
changes in NPY levels in hippocampal interneurons
and in cortical and striatal neurons. For example, in an
MCAo study with the ischemic region centered in the
insular cortex, significant increases in NPY immuno-
staining were detected within the peri-infarct region
(Allen et al., 1995). Also, transient (30 minutes)
forebrain ischemia by four-vessel occlusion produced a
decreased number of the NPY immunoreactive neurons
in the frontoparietal cortex at 4 hours and at 1 and
7 days after reperfusion followed by recovery after
40 days. A rapid reduction in NPY immunoreactive
neurons and an almost complete recovery by 7 days
after reperfusion were also observed in the striatum
(Grimaldi et al., 1990).
In a later study, the presence of galanin immunore-

active cells was investigated in the core and peri-
infarct zone at 1, 4, 24, and 72 hour after permanent

MCAo in the rat (De Michele et al., 2006). Seventy-two
hours after MCAo, a population of morphologically
intact galanin-positive neurons was observed in the
peri-infarct zone, but galanin cells were not observed at
earlier time points. However, galanin immunoreactive

myelinated nerve fibers were observed 4 and 24 hours
after the focal ischemia (De Michele et al., 2006),
perhaps reflecting expression in damaged neurons
with their soma outside the area of ischemia.

Hwang et al. (2004) investigated chronological
changes in galanin immunoreactivity and peptide
levels in the hippocampus at various times after 5
minutes of transient forebrain ischemia in the gerbil.
At 12 hours after ischemia/reperfusion, the number of
galanin immunoreactive neurons and galanin immu-
noreactivity were significantly increased in the hippo-
campus compared with 3 hours after ischemic insult,
especially in the CA1 region (Hwang et al., 2004).
Thereafter the number of hippocampal galanin immu-
noreactive neurons and immunoreactivity decreased in
a time-dependent fashion. Galanin immunoreactivity
was also identified in microglia in the CA1 region
associated with delayed death of CA1 pyramidal cells.
The authors speculated that these changes (early in-
creases) in galanin in pyramidal cells may be associated
with reduction of excitotoxic damage, the enhanced
expression between 0.5 to 2 days after ischemia may be
associated with increased extracellular potassium and
neuronal depolarization, and galanin expression in
microglia 4 days after ischemia may be associated with
a possible reduction of ischemic damage (Hwang et al.,
2004).

The temporal effects of focal ischemia induced by
unilateral MCAo on the expression of galanin receptors
as well as galanin in the rat was also investigated
(Shen and Gundlach, 2010). GAL and GAL1 mRNAs in
penumbral/undamaged areas were increased on the
first and second day postischemia, whereas increased
GAL2 mRNA was observed in the same regions only on
day 2. Galanin immunoreactive neurons were detected
in the frontal/cingulate cortex and abundant galanin-
immunoreactivity in nerve axons/fibers within the
penumbral areas between the third and the seventh
day after ischemia. GAL mRNA and immunoreactivity
were also increased in a population of putative
oligodendrocyte precursors (Shen and Gundlach,
2010). Upregulation of galanin and receptors in various
cell populations after severe ischemic injury further
demonstrates the plasticity of galanin/receptor expres-
sion after brain injury, consistent with a functional role
for galanin signaling in such pathophysiological con-
ditions (see also section V.E). Despite their widespread
investigation in other experimental paradigms, galanin
and galanin receptor KO and OE mice do not appear to
have been studied in relation to cerebral ischemia/
stroke.

3. Seizures and Epilepsy. Neuropeptide modulators
are ideal candidates to influence epileptic tissue over-
excited during seizures, because they have longer half-
lives allowing modulation of neuronal and network
activity over prolonged periods, potentially setting the
seizure threshold. Neuropeptides, stored in LDCVs,
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are released upon high frequency stimulation that
occurs during seizures (Kovac and Walker, 2013;
Dobolyi et al., 2014; see section I). Indeed, galanin
and a number of other neuropeptides are implicated in
epilepsy pathology and many are considered to partic-
ipate in endogenous neuroprotective actions via recep-
tors in the hippocampus, a focus of seizures in temporal
lobe epilepsy (Lerner et al., 2010; Kovac and Walker,
2013).
Galanin immunoreactivity in nerve fibers in the

hippocampus is markedly depleted in all hippocampal
areas for up to a week after experimental stimulation
of the perforant path-dentate gyrus pathway to induce
self-sustaining status epilepticus (SSSE) in rats, a state
of nearly continuous seizure activity lasting for hours
to days (Mazarati et al., 1998; see Lerner et al., 2010,
for review). Galanin-positive fibers reappear at a re-
duced density in the hippocampus, an effect caused by
"release fatigue" induced by over activation of galanin-
containing projections to the hippocampus. Adminis-
tration of galanin receptor agonists into brain areas
pertinent to the initiation and propagation of epileptic
activity attenuate seizure responses in multiple animal
models of epilepsy and pharmacological blockade of
galanin receptors exerts proconvulsant effects. For
example, the duration of SSSE can be markedly
shortened by injection of galanin into the dentate hilus
before stimulation of the perforant path, an effect
reversible by injection of a GAL1 antagonist, M35.
Furthermore, M35 alone promotes the establishment
of seizures and prolongs their duration, indicating that
galanin can affect the maintenance phase of estab-
lished SSSE, possibly via GAL1 (Mazarati et al., 1998;
Lerner et al., 2010).
Functional deletion of both GAL and GAL1 genes in

mice results in either a spontaneous seizure phenotype
or an enhanced susceptibility to seizure stimuli.
Despite their development by two laboratories (Gottsch
et al., 2005; Hobson et al., 2006; Lu et al., 2008), the
profile of GAL2-KO mice in terms of seizures and
epilepsy has not be reported. In contrast, overexpres-
sion of galanin in seizure pathways, using both trans-
genic and virus vector transfection methods, retards
the epileptic process. Galanin-OE mice display a re-
tarded seizure-threshold and duration during hippo-
campal kindling, presumably due to increased release
of galanin from hippocampal mossy fibers, which
interacts with presynaptic GAL2 to reduce glutamate
release and seizure activity (Kokaia et al., 2001).
Galanin-KO mice are more susceptible to perforant
path stimulation-induced SSSE than WT mice, sug-
gesting that endogenous galanin modulates the excit-
ability of the perforant path-dentate granule cell
complex and hippocampal excitability (Mazarati et al.,
2000). Galanin-KO mice display a similar increase in
susceptibility to seizures induced by pentylenetetrazole,
which acts on brain stem and medial thalamic nuclei

(Mazarati et al., 2000) that contain galanin fibers and
receptors. Galanin-KO mice do not have spontaneous
seizures (Mazarati et al., 2000), whereas GAL1-KO mice
do (Jacoby et al., 2002; McColl et al., 2006). Although
the reason for this difference is not known, there are
morphologic dissimilarities between brains of WT and
GAL1-KO mice, with a decrease in galanin-positive
fibers in the hippocampal granule cell layer of GAL1-KO
mice (Fetissov et al., 2003). Generally, galanin exerts
anticonvulsant effects via GAL1 and GAL2 and their
distinct downstream signaling cascades (see Lerner
et al., 2010, and Webling et al., 2012, for review).

Although activation and inhibition of receptors by
oral application of peptides is typically not efficient
because of low bioavailability, rapid degradation, and
insufficient penetration of peptides through the blood-
brain barrier, several synthetic agonists of galanin
receptors with optimized bioavailability and allosteric
modulators of GAL2 inhibit experimental seizures
upon systemic administration (Lerner et al., 2010; Lu
et al., 2010). Together with recent progress in gene
therapy approaches leading to the local production of
agonists and antagonists within the CNS (McCown,
2009) and encapsulated cell biodelivery (Nikitidou
et al., 2014), these approaches offer a realistic oppor-
tunity for the development of galanin-based antiepi-
leptic treatments (Lerner et al., 2010).

4. Anxiety Disorders, Depression, Substance Abuse,

and other Pathologic States. In animal studies, both
exogenous and endogenous galanin have been shown to
modulate anxiety- and depressive-like behaviors, both
basal levels of anxiety and anhedonia, and those
induced experimentally by different stimuli such as
acute or chronic stress. For example, in rodent models
of depression-related behavior, treatment with galanin
or galanin receptor agonists has been shown to affect
these behaviors and alter the behavioral and neuro-
chemical effects of antidepressants. Conversely, treat-
ment with clinically efficacious antidepressants alters
galanin and galanin receptor gene expression in rodents
(Karlsson and Holmes, 2006; Rovin et al., 2012).

The pathophysiology of depression remains unclear,
but is thought to involve stress-related disturbances in
brain monoaminergic transmission. Specific reports on
changes in galanin or galanin receptors associated with
the pathology of clinical anxiety disorders and/or major
depression in patient groups remain elusive (Murck
et al., 2004; Serafini et al., 2013; Juhasz et al., 2014),
although galanin is coexpressed with and modulates
NA and serotonin transmission, both implicated in
depression, and there are some relevant genetic
association studies (see section VII). Indeed, on the
basis of existing knowledge, Juhasz and colleagues
(2014) recently provided an excellent synthesis of data
that supports an integrated role of galanin and galanin
receptors in the pathology and potential treatment of
major depression disorder.
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Similarly, several peptides that affect stress-related
and innate motivated behavior and associated common
neural circuits have been shown to be involved in drug
reward behavior and substance abuse and addiction
(Nestler, 2005; Koob and Volkow, 2010). These pep-
tides include CRF (Koob, 2010), NPY (Ciccocioppo
et al., 2009), and galanin (Picciotto et al., 2010).
Galanin receptor binding sites are present in brain
regions implicated in drug addiction in rats (Skofitsch
et al., 1986) and mice (Hawes and Picciotto, 2004;
Jungnickel and Gundlach, 2005; but see Lu and
Bartfai, 2009), including the dopaminergic neuron
systems within the substantia nigra/caudate putamen
and ventral tegmental area/nucleus accumbens. They
are also present in the LC, which contains galanin-
positive noradrenergic neurons that express different
profiles of galanin receptors in rodents (Rovin et al.,
2012) and humans (Le Maître et al., 2013), with GAL3

most abundant in human LC (and DR nucleus), an
important consideration for therapeutic drug develop-
ment. Lastly GAL3, which has a more restricted
expression pattern in the brain than GAL1 and GAL2,
is strongly associated with anxiety- and depressive-like
behaviors (Swanson et al., 2005; Karlsson and Holmes,
2006; Rovin et al., 2012; Brunner et al., 2014).
In terms of neuropeptide regulation of alcohol

(ethanol) intake, experimental studies indicate a re-
lationship between hypothalamic galanin and the
consumption of ethanol. Injection of galanin into the
PVN or the cerebral ventricles increases the amount of
ethanol consumed (Lewis et al., 2004; Rada et al.,
2004), and voluntary ethanol intake and systemic
injection of ethanol stimulate the expression of GAL

mRNA in the PVN (Leibowitz et al., 2003). GAL3
antagonism by SNAP 37889 reduces the motivation to
work for alcohol (Ash et al., 2014). There are also more
recent experimental studies in transgenic mice dem-
onstrating a link between galanin signaling and
alcohol preference and intake—galanin-KO mice dis-
played a marked (35–45%) decrease in ethanol intake
and preference at the highest (15%) ethanol concen-
tration provided, which was stronger in female than
male mice, compared with littermate and nonlitter-
mate WT mice (Karatayev et al., 2010).
Other recent studies addressed the nature of galanin

signaling in the central amygdala (CeA), a key site of
alcohol action and production of anxiety-like behavior.
Bajo and colleagues (2012) examined the effects of
galanin in the CeA using slices from WT and both
GAL2-KO mice and GAL1/GAL2 double-KO mice.
Galanin had dual effects on GABA transmission,
decreasing the amplitudes of GABAergic inhibitory
postsynaptic potentials (IPSPs) in a majority of CeA
neurons but augmenting IPSPs in others. The increase
in IPSP size was blocked by the GAL3 antagonist
SNAP 37889, whereas the IPSP reduction was absent
in CeA neurons of GAL1 � GAL2 double-KO and

GAL2-KO mice, suggesting postsynaptic augmentation
of GABA transmission in some CeA neurons via GAL3,
whereas GAL2 receptors are involved in the depression
of IPSPs (Bajo et al., 2012). Galanin in combination
with ethanol, which augments IPSPs presynaptically,
caused summated effects in those CeA neurons
displaying galanin-augmented IPSPs, suggesting the
two agents act via different mechanisms in this
population. However, in neurons displaying dimin-
ished IPSPs in response to galanin, ethanol effects
were blunted, suggesting a pre-emptive effect of
galanin (Bajo et al., 2012). These findings illustrate
the complex cellular mechanisms that underlie the
interaction of galanin and ethanol with inhibitory
transmission in a key brain region related to anxiety-
related behavior and the demonstrated involvement of
GAL3 is consistent with genetic linkage data. A link
between galanin and abnormal levels of alcohol craving
or elevated consumption is suggested by a reported
association of galanin and GAL3 with alcoholism.
Galanin haplotypes and increased alcoholism risk were
identified in two distinct populations (Belfer et al.,
2006), whereas there was no effect of GAL1 or GAL2

haplotypes on alcoholism risk (see section VII).
There are also experimental studies in both rats and

WT and transgenic mice demonstrating a link between
galanin receptor signaling and nicotine (see Jackson
et al., 2011, for review), and opiates (see Picciotto,
2010, and Holmes et al., 2012, for review). For example,
galanin-KO mice have reduced sensitivity to nicotine
reward, and galanin-mediated signaling via GAL1 blocks
nicotine reward (Jackson et al., 2011; Neugebauer et al.,
2011).

Galanin was also shown in a series of studies to alter
the rewarding properties of morphine. Specifically,
galanin opposes the actions of morphine that lead to
opiate dependence and withdrawal, an effect that is
mediated via GAL1 (Holmes et al., 2012). Both mor-
phine administration and withdrawal increased galanin
gene transcription in the LC. Increasing galanin levels
in the brain reduced signs of opiate withdrawal. GAL1-
KO mice undergo more severe opiate withdrawal,
whereas mice lacking GAL2 display no significant
difference in withdrawal signs compared with matched
WT controls (Holmes et al., 2012).

A recent study investigated the potential cellular
mechanisms involved in the ability of galanin to
modulate opiate reward (Einstein et al., 2013). Excit-
atory postsynaptic potentials were measured using
both field and whole-cell recordings in striatal brain
slices from WT mice and mice lacking specific galanin
receptors. Galanin decreased excitatory postsynaptic
potentials amplitude in the dorsal striatum and
nucleus accumbens in WT mice, whereas this ability
of galanin was absent in slices from mice lacking either
the GAL1 or GAL2 gene, suggesting that both receptors
are required for this effect. In studies to determine
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whether behavioral responses to opiates were depen-
dent on both receptors, GAL1- and GAL2-KO mice were
tested for morphine conditioned place preference,
which was significantly attenuated in both KO strains.
These data suggest that mesolimbic excitatory signaling
is significantly modulated by galanin in a GAL1- and
GAL2-dependent manner, and morphine conditioned
place preference is dependent on the same receptors
(Einstein et al., 2013).
5. Other Neuronal Actions. In addition to the

neuronal actions of galanin already discussed, there
are many other actions that, because of space restric-
tions, cannot be covered in detail. These include roles
in arousal and sleep regulation (see Gaus et al., 2002;
McGinty and Szymusiak, 2003; Saper, 2006), repro-
duction and associated behavior, neuroendocrine
mechanisms, and hormone release, which are reviewed
elsewhere, along with similar GALP actions (see, e.g.,
Gundlach, 2002; Gottsch et al., 2004; Crown et al.,
2007; Kalló et al., 2012; see section VI).
There is also good evidence for a role for galanin

signaling in processes of myelination and responses to
myelin injury (Wraith et al., 2009; Zhang et al., 2012)
along with proliferation, differentiation, and/or migra-
tion of oligodendrocyte precursor cells (Shen et al.,
2003; Ubink et al., 2003; Butzkueven and Gundlach,
2010) and neural stem and progenitor cells (the latter
topic is covered in section VIII). It is highly likely that
ongoing research in these areas will produce further
evidence of the pleiotropic actions of galanin and the
associated receptor mechanisms.

VI. Actions of Galanin-Like Peptide in the

Normal Brain and in Pathology

Since its discovery, .100 peer-reviewed articles and
reviews have appeared on GALP biology or closely
related topics, and most of these have provided
consistent anatomic, physiologic, and pharmacological
evidence for its potential role in affecting and in-
tegrating metabolism and reproduction via actions in
the hypothalamus and pituitary (reviewed in Gundlach,
2002; Cunningham, 2004; Gottsch et al., 2004; Shiba
et al., 2010; Lawrence and Fraley, 2011). However,
unfortunately for the field and for the important aspects
of drug development and therapeutic applications, it
is also thought that GALP mediates these actions via
an as yet unknown receptor(s) rather than via GAL1-3

(see, e.g., Krasnow et al., 2004; Lawrence and Fraley,
2011).
Initially it was reported that central GALP infusion

altered feeding in rats (acute stimulation and sub-
sequent inhibition; Lawrence et al., 2002; Matsumoto
et al., 2002) and mice (inhibition only; Krasnow et al.,
2003). In rats maintained on a high-fat diet associated
with greater caloric intake (.2-fold) and body weight
(BW) (;30% higher) compared with chow-fed control

rats, central administration of GALP induced rapid
feeding in both dietary groups over 30 minutes post-
injection. A 0.3 nmol dose of GALP led to ;40% larger
increases in caloric intake in high-fat-fed rats than in
chow-fed controls (Tan et al., 2005).

A more recent study determined whether energy
metabolism in spontaneously exercising mice could be
promoted by intracerebroventricular GALP adminis-
tration (Ito et al., 2013). Changes in the respiratory
exchange ratio in response to GALP indicated that
lipids were primarily consumed followed by a continu-
ous consumption of glucose throughout the dark period
in nonexercising mice. In mice permitted to spontane-
ously exercise on a running wheel, intracerebroven-
tricular GALP administration increased oxygen
consumption and heat production levels for 5 to 11
hours after administration, independent of the total
running distance. GALP administration and spontane-
ous exercise decreased BW within 24 hours, and energy
metabolism-related enzymes in liver and skeletal muscle
were altered, including phosphoenolpyruvate carboxy-
kinase, which regulates gluconeogenesis, and glucose
transporter-4 (Ito et al., 2013).

Studies of acute and chronic GALP infusion in leptin-
deficient ob/ob obese mice revealed that acute GALP
induced a long-lasting (4 days) decrease in food intake
and BW, whereas chronic GALP produced a sustained
decrease in BW and an increase in core body temper-
ature, despite significant recovery of food intake. In
a pair-fed model, chronic GALP treatment resulted in
a decrease in BW and an increase in body temperature
and thermogenesis in brown adipose tissue, suggesting
that leptin activation of the sympathetic nervous system
and ultimately thermogenesis may be partially medi-
ated by GALP (Hansen et al., 2003).

Data from more recent in vivo and in vitro studies
suggest GALP elicits thermogenesis via a prosta-
glandin E2-mediated pathway in CNS astrocytes
(Kageyama et al., 2013). Central injection of GALP
(intracerebroventricular) caused biphasic thermogene-
sis that was blocked by pretreatment with central
(intracerebroventricular), but not peripheral (intrave-
nous), administration of the cyclooxygenase inhibitor
diclofenac. Astrocytes in the periventricular zone of
the third ventricle were activated by GALP, and the
peptide also increased cyclooxygenase-2 and cytosolic

prostaglandin E2 synthase mRNA levels in cultured
astrocytes (Kageyama et al., 2013).

Fasting reduces GALP mRNA expression in the ARC
(Fraley et al., 2004a), and as GALP is also present in
the gastrointestinal tract (Ohtaki et al., 1999), levels of
immunoreactive GALP in the blood are also decreased
by food deprivation. Fasting also decreased a rapid
blood-to-brain influx of intact GALP induced by glucose
treatment (Kastin et al., 2001).

In regulatory studies to determine if and how GALP
expression was modulated by pituitary hormones in
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the rat, it was reported that hypophysectomy induced
a reduction in GALP mRNA levels in the ARC, and
although this was not associated with alterations in
levels of gonadal or adrenal steroids, thyroidectomy led
to a significant reduction in GALP mRNA expression
compared with intact controls, and thyroidectomized
rats treated with thyroxine displayed GALP mRNA
levels similar to intact controls, suggesting a selective
regulation of arcuate GALP neurons by thyroid hor-
mone (Cunningham et al., 2004a). In contrast, GALP

mRNA was increased in neurohypophyseal pituicytes of
lactating compared with nonlactating rats (ARC levels
were unaffected), likely associated with the lactation-
induced activation of oxytocin and vasopressin secretion
(Cunningham et al., 2004a).
In relation to the reproductive axis, central infusion

of GALP activated GnRH neurons (reflected by Fos
staining) and increased plasma luteinizing hormone
(LH) levels post-treatment in male rats, mice, and
macaques, and the LH response was blocked by
pretreatment with a GnRH1 antagonist (Takatsu
et al., 2001; Krasnow et al., 2003; Cunningham, 2004;
Cunningham et al., 2004a,b; Seth et al., 2004). In
a later study, the magnitude of increases in serum LH
in response to GALP administration was heightened in
pubertal versus adult male rats, and negligible LH
responses were detected in pubertal or adult female
rats at diestrus (Castellano et al., 2006). Short-term
fasting amplified rather than reduced LH responses to
GALP in pubertal males. These findings suggest the
LH response to GALP is sexually differentiated and
the relative responsiveness of the GnRH/LH system
may relate to the metabolic-reproductive axis crosstalk
during puberty (Castellano et al., 2006).
Furthermore, in vitro studies demonstrated that

GALP induced GnRH release from rat hypothalamic
explants and GALP antiserum inhibited leptin-induced
GnRH release (Seth et al., 2004). Further in vitro
studies suggested additional targets for GALP in the
hypothalamus, with activation of growth hormone-
releasing hormone neurons isolated from the ARC,
reflected by increased cytosolic Ca2+ levels (Kuramochi
et al., 2005). In electrophysiologic studies of ARC
neurons in hypothalamic slices, GALP was shown to
inhibit excitatory and inhibitory postsynaptic currents
in a similar way to galanin, whereas the two peptides
differentially affected the intrinsic membrane proper-
ties, with galanin inducing hyperpolarization of the
resting membrane potential and GALP having no
effect (Dong et al., 2006). Galanin also suppressed the
spontaneous firing of arcuate neurons, whereas GALP
produced a mixture of suppression and enhancement
of firing and appeared to antagonize galanin effects
(Dong et al., 2006).
Further to its effects on reproductive hormones,

GALP was shown to increase male sexual behavior in
rats, whereas galanin inhibited it, and the effect of

GALP was maintained in castrated rats, suggesting
effects independent of testosterone secretion (Fraley
et al., 2004b). In more recent comparative studies in
adult, ovariectomized, female mice primed with estra-
diol and progesterone, GALP infusion increased LH
secretion, and the response was blocked by pretreat-
ment with a GnRH1 antagonist. GALP infusion
significantly increased the latency with which sexually
experienced female mice displayed receptivity and
slightly reduced lordosis behavior (Kauffman et al.,
2005). In contrast to effects in rats, GALP inhibited
sexual behavior in male mice. These authors also
observed a dose-dependent reduction in motor control
(on rotarod) and open-field locomotor activity in female
mice acutely treated with GALP (Kauffman et al.,
2005), effects not reported in rats.

The absence of leptin signaling in obese Zucker rats
and hypoleptinemia in streptozotocin-induced diabetic
rats are associated with decreased hypothalamic GALP
expression, and this reduction can be reversed by
treatment with either leptin or insulin (Fraley et al.,
2004a). In fact, the downregulation of hypothalamic
GALP and the upregulation of NPY may act in concert
to promote hyperphagia in these rats. These findings
are consistent with a tonic influence of leptin and
insulin signaling on hypothalamic GALP expression
under normal conditions and abnormalities in GALP
neuronal signaling and their putative targets—
thyrotropin-releasing hormone and GnRH neurons—-
under pathologic conditions such as diabetes and obesity
(Takatsu et al., 2001; Kumano et al., 2003; Fraley et al.,
2004b; Seth et al., 2004).

In this regard, another report provided further
evidence for the trophic support by endogenous GALP
of the neuroendocrine reproductive axis, including
sexual behavior (Stoyanovitch et al., 2005), demon-
strating firstly that central immuno-blockade of GALP
reduced serum LH levels and blocked sexual behavior
in normal male rats and also that central GALP
infusion increased (restored) serum LH levels and
sexual behavior in diabetic rats (Stoyanovitch et al.,
2005). These authors also found that treatment of
diabetic rats with leptin and insulin normalized LH
and sexual behavior, and this effect could be attenuated
by intracerebroventricular GALP antibody infusion.

In relation to puberty, GALP mRNA was first
detected in the ARC on day 8. GALP mRNA was
gradually increased between days 8 and 14 and
markedly increased between days 14 and 40, which is
the weaning and pubertal period in rats. After day 40,
there were no significant differences in GALP mRNA
and there was no sexual dimorphism in GALP mRNA
during postnatal development (Kawagoe et al., 2008).
In food-restricted weanling rats of both sexes, GALP
treatment restored the timing of puberty onset to that
observed in ad libitum-fed controls, and a reduction of
GALP translation in ad libitum-fed, prepubertal females,
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but not male rats, significantly delayed the onset of
puberty (Mohr et al., 2012). Studies of a potential
mechanism revealed that, in food-restricted rats,
kisspeptin mRNA in the ARC was significantly re-
duced compared with ad libitum-fed controls, and this
effect was prevented by central GALP administration
via indirect effects on the kisspeptin neurons (Mohr
et al., 2012).
In mice that were overfed during breastfeeding (by

rearing in a small litter) and/or during adolescence
(adolescent mice fed a high-fat diet), possible alter-
ations in GALP and other neuropeptide mRNA levels
were investigated after 50 days of a high-fat diet (high-
fat challenge) at 19 weeks of age. In developmentally
overfed mice, the high-fat challenge significantly de-
creased GALP mRNA levels compared with control
challenged mice. Thus, in mice overfed during critical
developmental periods, hypothalamic neuropeptide sys-
tems (GALP and galanin, NPY, and AgRP) are altered
and respond differently to a high-fat diet in adulthood
(Ferretti et al., 2011).
GALP-KO mice are reported to be physiologically

indistinguishable from WT mice in several assessed
aspects of growth, sexual development, body weight,
food and water consumption, and motor activity when
allowed unlimited access to standard chow. However,
in response to changes in diet, GALP-KO mice
consumed less food during refeeding after a fast than
WT mice (male only) and gained less weight on a high-
fat diet than WT controls, despite having consumed
equal amounts of food (male and female). These
findings suggest GALP signaling may not be essential
for the maintenance of energy homeostasis under
steady-state nutritional conditions but plays a role in
readjusting energy balance under changing nutritional
circumstances (Dungan Lemko et al., 2008).
Overall, considerable independent evidence indi-

cates that GALP is a key modulatory factor that
integrates metabolism and reproduction during pu-
berty and in adulthood under different nutritional
conditions and is an important mediator of the
physiologic effects of leptin and insulin on GnRH/LH
secretion and the reproductive axis. Comparative data
also suggest some sex-based and species differences in
the nature of GALP actions (see Gottsch et al., 2005;
Kauffman et al., 2005; Stoyanovitch et al., 2005;
Castellano et al., 2006). Therefore, the identification
of the GALP receptor(s) and further developments in
the field are eagerly awaited.

VII. Genetic Association Studies of Galanin and

Galanin Receptors

A. Anxiety- and Depression-Related Behavior

In animal studies, both exogenous and endogenous
galanin have been shown to modulate anxiety- and
depressive-like behavior (see section V.E). In human

studies, the sex-specific association of polymorphisms
in the promoter region of the GAL gene in patients
with anxiety disorder or major manic depression with
the severity of anxiety symptoms, supports a role for
galanin in the pathophysiology of clinical anxiety and
depression and demonstrates the importance of sex-
and hormone-status-specific genetic associations
(Unschuld et al., 2008, 2010) (Table 6). Specifically,
a meta-analysis of genome-wide association studies on
over 10,000 individuals revealed a significant associa-
tion between the GAL gene (rs2156464) and major
depressive disorder (Wray et al., 2012). The rs2156464
single-nucleotide polymorphism (SNP) is in linkage
disequilibrium with two other SNPs in the promoter
region of GAL that have been shown to influence
promoter activity and therefore galanin expression in
the amygdala and hypothalamus (Davidson et al.,
2011). In the Chinese Han population, a different GAL

SNP also has a positive correlation with major de-
pressive disorder (Wang et al., 2013). Race-associated
differences may, at least partially, explain why de-
pression is correlated with different SNPs in the GAL

gene in different studies. Further evidence was re-
cently described of potential involvement of alterations
in the galanin peptide and receptor genes with an
increased risk of depression and anxiety in people who
experienced childhood adversity or recent negative life
events (Juhasz et al., 2014). Bayesian multivariate
analysis revealed a greater relevance of galanin system
genes in highly stressed subjects than in subjects with
moderate or low life stress, suggesting galanin path-
ways play an important role in the pathogenesis of
depression in humans by increasing the vulnerability
to early and recent psychosocial stress (Juhasz et al.,
2014).

B. Addiction-Related Behavior

Considerable experimental evidence has been
obtained that implicates galanin signaling in reward
and addictive processes. Neural circuits that affect
both stress-related and feeding behavior have been
shown to be involved in drug reward behavior and
substance abuse and addiction (Nestler, 2005; Koob
and Volkow, 2010) and are known to be modulated by
neuropeptides, including galanin (Picciotto et al., 2010;
Ubaldi et al., 2013). Galanin can increase the release of
dopamine and norepinephrine (Melnikova et al., 2006;
Robinson and Brewer, 2008), a likely mechanism for its
influence on reward behavior and drug seeking. All
three galanin receptors are reported to be present in
brain regions implicated in drug addiction in mice
(Hawes and Picciotto, 2004; Lu and Bartfai, 2009),
including the dopamine neuron systems within the
substantia nigra/caudate putamen and ventral teg-
mental area/nucleus accumbens, and in the LC, which
contains noradrenergic neurons that are galanin and
NPY positive, with similar or partial indications in rats
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(Rovin et al., 2012) and humans (Le Maître et al.,
2013). Galanin-KO mice have a decreased sensitivity to
nicotine reward, and galanin-mediated signaling via
GAL1 blocks nicotine reward (Jackson et al., 2011;
Neugebauer et al., 2011). In a clinical context, craving
for tobacco (nicotine) is a major challenge for individ-
uals with nicotine dependence, and craving is one of
the most important factors contributing to smoking
relapse. Two studies on smokers of European ancestry
reported an association of an intronic SNP in the GAL1

gene with smoking cessation (Lori et al., 2011; Gold
et al., 2012) (Table 6).

In Finnish and American Plains Indian men, an
association of GAL haplotypes with alcoholism has
been reported (Belfer et al., 2006). Furthermore, the
GAL3 gene, but not the GAL1 and GAL2 genes, was
associated with alcoholism in Finnish Caucasians
(Belfer et al., 2007), whereas in the same study, no
association of the GAL3 locus with alcoholism was
observed in American Plains Indians. This difference

TABLE 6
Association of gene variations of the galanin system with multifactorial diseases

Disease Cases/Controls Population Gene SNP P Value Reference

Smoking cessation 486 European American GAL1 rs2717162 ,0.001 Lori et al., 2011
Heroin addiction 412/184 Caucasian ancestry GAL rs694066 0.001 Levran et al., 2008
Opioid addiction 142/142 Western European GAL rs948854 0.001 Beer et al., 2013
Heroine addiction 314/208 African American GAL1 rs5376/(Asn334Ser) 0.02 Levran et al., 2014

rs2717162
GAL rs3136541 0.04

0.04
Cocaine addiction 281/208 African American GAL1 rs5374 0.001 Levran et al., 2014

rs2717162 0.03
Pharmacogenetic association

with smoking cessation
1025/192 European American GAL1 rs2717162 0.003 Gold et al., 2012

Alcoholism 522/489 Finnish Caucasians GAL3 rs3091367 0.012 Belfer et al., 2007
Alcoholism 263/251 Finnish Caucasians GAL HT A/B 0.001 Belfer et al., 2006

rs31336540
rs4930241
rs6940066
rs3136541

Alcoholism 193/138 Plains American
Indians

GAL HT A/B 0.045 Belfer et al., 2006
rs31336540
rs4930241
rs6940066
rs3136541

Ventral striatum
reactivity/problem
drinking

77 Female Caucasian GAL HT GAL5.1 0.002 Nikolova et al.,
2013

Anxiety 268/541 Caucasian GAL rs948854 ,0.05 (female) Unschuld et al.,
2008,
2010

rs4432027
Major depressive

disorder/HAMD
score

541/541 Caucasian GAL rs948854 ,0.05 (female) Unschuld et al.,
2010

Major depressive disorder 5673/6901 Meta analysis GAL rs2156464 ,0.001 Wray et al., 2012
Major depressive disorder 376/360 Female Chinese Han GAL rs694066 0.0005 (female) Wang et al., 2013
Major depressive disorder 324/313 Male Chinese Han GAL rs694066 0.054 (male) Wang et al., 2013
Life time depression 1641 female/720

male
Caucasian GAL rs3136541 ,0.05 Juhasz et al., 2014

Life time depression with
childhood adversity
interaction

1641 female/720
male

Caucasian GAL1 rs5375 ,0.05 Juhasz et al., 2014
HT 2:GAGTAG
HT 6:GAGTGA
HT12:GGTCGG

Life time depression with
recent negative life
events interaction

1641 female/720
male

Caucasian GAL1

GAL2

rs1893829 HT
10:AAGCAG
rs8836

,0.05 Juhasz et al., 2014

Current depression score with
childhood adversity
interaction

1641 female/720
male

Caucasian GAL1 rs11665337 ,0.05 Juhasz et al., 2014

Current depression score with
recent negative life events
interaction

1641 female/720
male

Caucasian GAL1

GAL2

rs5375
rs8836

,0.05 Juhasz et al., 2014

Current anxiety score with
childhood adversity
interaction

1641 female/720
male

Caucasian GAL1

GAL3

rs11665337 ,0.05 Juhasz et al., 2014
rs2285179
HT 1:GA

Current anxiety score with
recent negative life events
interaction

1641 female/720
male

Caucasian GAL1 rs11662010 ,0.05 Juhasz et al., 2014

HT, haplotype.

152 Lang et al.



might be due to the fact that the frequency of SNP
rs3091367 differed significantly between the two
populations (Belfer et al., 2007). Furthermore, the
GAL3/GAL risk diplotypes display a significant asso-
ciation with alcoholism, more than GAL or GAL3 alone
(Belfer et al., 2007).
A significant association of a SNP in intron 2 of the

GAL gene and heroin addiction was observed in US
Caucasians (Levran et al., 2008), and more recently the
involvement of galanin in opioid addiction was further
suggested by a candidate gene association study
conducted including .100 well phenotyped long-term
opioid addicts undergoing opioid maintenance therapy
and well matched healthy controls. The most significant
association with opioid addiction was for the rs948854
SNP in the GAL gene (Beer et al., 2013).

C. Obesity

The increased prevalence of obesity and "overweight"
is a major health problem, because these conditions
can cause metabolic complications, including elevated
cholesterol, hyperlipidemia, type 2 diabetes mellitus,
coronary artery disease, and hypertension. Clear
evidence exists that galanin is involved in the
regulation of food intake and body weight (see section
V.A). For example, central administration of galanin
increases food and ethanol consumption (Leibowitz
et al., 2003), and galanin-OE mice display an increased
intake of dietary fat and ethanol (Karatayev et al.,
2009). Indeed, the actions of central and peripheral
galanin and its receptors in the regulation of metabolism,
obesity, and appetite, including galanin receptor-linked
mechanisms in experimental obesity, were recently
reviewed in detail (Fang et al., 2012a), with the authors
recommending development of GAL1 antagonism as a
novel antiobesity strategy. However, in early clinical
studies, there was no strong association reported between
GAL or GAL1 genetic variants and obesity or dietary fat
intake in obese children and adolescents (Schauble et al.,
2005) and no evidence for a GAL2 linkage to obesity
(Sutton et al., 2006) (Table 6).

VIII. Stem Cells

In recent years, much interest has been generated in
stem cells because of their ability to extensively
proliferate, self-renew, and differentiate into different
types of cells and tissues, offering the possibility to
treat multiple diseases and disorders. Embryonic stem
cells are pluripotent cells with the ability to differen-
tiate into all types of cells of an adult individual.
Notably, gene expression analysis revealed abundant
expression of galanin in mouse embryonic stem cells
(Anisimov et al., 2002). The presence of galanin during
mouse embryonic development has been further con-
firmed via immunolocalization of the peptide in tissues
of mesenchymal and neural crest origin (Jones et al.,

2009). Human embryonic stem cell lines and embryonic
carcinoma cells also express galanin at high levels
(Assou et al., 2007). Moreover, galanin is considered to
be a “stemness” gene in human embryonic stem cells,
related to the fact that its expression level declines
during differentiation (Bhattacharya et al., 2005).
Murine bone marrow mesenchymal stem cells (Louridas
et al., 2009), neural stem cells of the subventricular zone
(Shen et al., 2005), oligodendrocyte progenitor cells
(Shen et al., 2005), and human cultured pulp-derived
odontoblast-like cells (Paakkonen et al., 2009) also
express GAL mRNA and/or peptide.

Data on the expression patterns of different galanin
receptors in stem cells are largely lacking in humans
and are scarce for mice. Although all three galanin
receptor transcripts are expressed in mouse R1
embryonic stem cells (Anisimov et al., 2002), GAL2

and GAL3 seem to be more strongly expressed in these
cells and may mediate the decrease in cell number
after incubation in high levels of galanin in the
presence of leukemia inhibitory factor (Tarasov et al.,
2002). Similar galanin receptor expression patterns
were observed in murine bone marrow mesenchymal
stem cells, with GAL1 the least abundantly expressed
(Louridas et al., 2009). Hence, it is likely that GAL2

and GAL3 are involved in mediating the promigratory
effects of galanin on murine bone marrow mesenchy-
mal stem cells (Louridas et al., 2009). The same scale of
galanin receptor expression (GAL2.GAL3.GAL1) was
reported in a murine oligodendrocyte progenitor cell
line (Shen et al., 2005).

However, in murine neural stem cells, GAL1 displays
a more prominent expression level (Shen et al., 2003)
and might contribute to the antiproliferative effects of
galanin observed on murine neural stem cells isolated
from the subventricular zone (Shen et al., 2005). How-
ever, a recent study did not confirm galanin-mediated
effects on proliferation of cultured murine neural stem
cells derived from the subventricular zone but did
demonstrate that galanin treatment had antimigratory
as well as proneurogenic effects on these cells (Agasse
et al., 2013). Furthermore, GAL3 activation promotes
survival of these cells in response to diabetes (Mansouri
et al., 2013).

IX. Endocrine and Neuroendocrine Functions

A. Glucose Metabolism and Diabetes

Diabetes mellitus is a multifactorial disease associ-
ated with genetic and environmental factors. Notably,
a study that analyzed affected sib-pair families
identified the GAL gene as a possible candidate gene
for type 1 diabetes, although the GAL polymorphisms
investigated did not provide any evidence for associa-
tion (Eckenrode et al., 2000) (Table 6).

In patients with type 1 diabetes with no autonomic
neuropathy, plasma galanin levels were not different
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from those of healthy control subjects (Tallroth et al.,
1992), whereas significantly lower plasma galanin
concentrations were detected in type 1 diabetic patients
with autonomic dysfunction, and these increased during
exercise (Sundkvist et al., 1992). In addition, higher
plasma concentrations of galanin were detected in
children with type 1 diabetes compared with healthy
children. Furthermore, there was a positive association
between galanin levels and body mass index (Celi et al.,
2005). In another study, elevated serum levels of galanin
were associated with a gain in body mass index in
epileptic children treated with valproate (Cansu et al.,
2011). Similarly, plasma galanin levels were increased
in female patients with obesity and obese women with
type 2 diabetes (Baranowska et al., 1997), although
a separate study reported comparable plasma galanin
concentrations in obese and normal weight women
(Invitti et al., 1995). Hormonal status also appears to
have an impact on galanin levels in obese women
(Baranowska et al., 2000; Milewicz et al., 2000a).
Results from experiments with galanin-OE mice

indicate that chronically elevated galanin levels induce
obesity and alter lipid metabolism (Poritsanos et al.,
2009) and therefore may contribute to the development
of metabolic disorders leading to type 2 diabetes. This
idea is further supported by findings that plasma
galanin levels are significantly increased in patients
with type 2 diabetes (Legakis et al., 2005) and pregnant
women with gestational diabetes mellitus (Fang et al.,
2013a). Moreover, galanin was recently postulated as
a biomarker for the prediction of gestational diabetes
mellitus (Zhang et al., 2014).
Galanin and other members of the galanin family of

peptides have actions in brain and peripheral tissues
involved in the complex circuits controlling metabo-
lism, appetite, and obesity (see Fang et al., 2012a, for
review). Various studies provide evidence for a relation-
ship between galanin and glucose levels. In humans,
a positive correlation between blood galanin and
glucose levels was observed in children with type 1
diabetes (Celi et al., 2005), patients with type 2
diabetes (Legakis et al., 2005), and pregnant women
with gestational diabetes mellitus (Fang et al., 2013a;
Nergiz et al., 2014; Zhang et al., 2014) as well as in
healthy volunteers during an oral glucose tolerance
test (Tatemoto et al., 1983; McDonald et al., 1985;
Manabe et al., 2003). Furthermore, galanin infusions
induced hyperglycemia in fasted dogs, and galanin-OE
mice show impaired glucose tolerance (Poritsanos
et al., 2009). Unexpectedly, galanin-KO mice also had
higher glucose levels after glucose administration than
WT mice (Ahren et al., 2004). Moreover, in humans,
galanin infusions had no effect on plasma intravenous
glucose tolerance (Gilbey et al., 1989; Holst et al., 1993;
Mazziotti et al., 2008) and did not suppress the
postprandial rise in glucose plasma concentrations
(Bauer et al., 1989).

It is currently unclear which galanin receptor(s)
mediate the glucoregulatory effects of galanin. GAL1-
KO mice had significantly higher circulating glucose
levels than control when subjected to a high-fat diet
(Zorrilla et al., 2007), indicating possible involvement
of GAL1. On the other hand, mice on a high-fat diet
displayed significantly increased expression of all three
galanin receptor transcripts in epididymal and sub-
cutaneous fat tissues, but levels were significantly
downregulated in skeletal muscle (Kim and Park,
2010).

In humans with type 1 or type 2 diabetes, plasma
galanin levels were also positively correlated with
hemoglobin A1c, which is frequently used as a marker
to guide therapy in diabetes (Celi et al., 2005; Legakis
et al., 2005), whereas in gestational diabetes mellitus
conflicting results have been reported (Fang et al.,
2013a).

Several studies indicate that galanin might regulate
insulin release in some species. For example, galanin
administration lowers plasma insulin levels in various
species, including rats and pigs (McDonald et al., 1985;
Lindskog et al., 1990; Manabe et al., 2003). However,
different results were reported in humans, and
although suppressed insulin levels were detected after
galanin infusion in one study (Bauer et al., 1989), other
studies observed no effect of galanin administration on
basal plasma insulin secretion (Gilbey et al., 1989;
Ahren, 1990). Plasma galanin levels were found to be
negatively correlated with plasma insulin levels in
obese postmenopausal women, whereas a positive
correlation between galanin and insulin plasma levels
was observed in controls (Milewicz et al., 2000b).

Galanin directly inhibited glucose-stimulated insulin
secretion from isolated pancreatic tissues from several
species (Lindskog et al., 1990; Olkowicz et al., 2007;
Ruczynski et al., 2010). In rodents, inhibition of insulin
release from pancreatic islets by galanin is mediated
by a Go2 G protein via regulation of potassium and
calcium channels (Lindskog and Ahren, 1991; Tang
et al., 2012). Conversely, genetically obese, hyper-
insulinemic mice had a reduced pancreatic galanin
content (Dunning and Ahren, 1992). Interestingly,
diabetic rats also displayed a significant reduction of
galanin-expressing pancreatic islet cells (Adeghate and
Ponery, 2001).

Conflicting data were derived from experiments with
galanin-KO mice, which display impaired glucose-
stimulated insulin secretion in pancreatic islets com-
pared with WT mice (Ahren et al., 2004). Furthermore,
a possible "insulinostatic" effect of galanin in human
pancreatic islets in vitro remains uncertain, because
an inhibitory effect of galanin on glucose-stimulated
insulin secretion, as well as no effect, has been reported
(Ahren et al., 1991; Straub et al., 1998).

Data from several studies suggest galanin reduces
insulin resistance by increasing glucose transporter 4
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content in skeletal muscle cells and adipocytes of
healthy and type 2 diabetic rats (Jiang et al., 2009; Guo
et al., 2011; He et al., 2011; Fang et al., 2012b; Liang
et al., 2012). Exercise decreased insulin resistance and
significantly elevated plasma galanin levels in these
rats (Jiang et al., 2009; Guo et al., 2011; He et al., 2011;
Liang et al., 2012). However, exercise alone seems not
to be sufficient to increase plasma galanin levels in
rats, and the effect also requires glucose (Milot and
Trudeau, 1997). Data on the influence of exercise on
plasma galanin levels in humans are scarce and
inconclusive, with both an increase in plasma galanin
levels and no change after exercise being reported
(Ceresini et al., 1997; Legakis et al., 2000).
Galanin appears to have beneficial effects in some

animal models of diabetes (see Fang et al., 2014, for
review), so further genetic and other studies of galanin
and GALP are warranted to elucidate their exact role
in human metabolic disorders and diabetes (Fang
et al., 2013a). A recent whole-genome profile study
revealed that 30 genes from the hippocampus, in-
cluding galanin, and 22 genes from the prefrontal
cortex, including GAL2, were found to exhibit altered
expression levels in type 2 diabetic rats compared with
nondiabetic control rats, shedding further light on the
complex role of insulin signaling in fine-tuning brain
functions and its interactions with galanin systems
(Abdul-Rahman et al., 2012).

B. Skin

The skin is the largest organ of the body and the first
barrier against external environmental factors/influences.
The skin is able to "communicate" with the endocrine,
immune, and central nervous systems via different
mediators. Among these mediators are neuropeptides,
including members of the galanin peptide family, the
importance of which for skin function has been high-
lighted previously (Bauer et al., 2010). Here we will
review the most important influences of the galanin
peptide family on skin biology.
1. Epidermis. As the outermost layer of the skin, the

epidermis is involved in a multitude of processes such as
barrier formation, maintenance and repair, immune
functions, and sensory transduction. In human epider-
mis, galanin immunoreactivity has been localized in
sensory Merkel cells (Fantini and Johansson, 1995) and
follicular and interfollicular keratinocytes (Pincelli et al.,
1990; Kofler et al., 2004). Additionally, galanin secretion
has been detected in cultures of human primary foreskin
and oral keratinocytes (Kofler et al., 2004; Henson et al.,
2005). Keratinocytes play a crucial role in the innate
immune responses of skin, including the production of
proinflammatory cytokines and antimicrobial peptides
(Metz and Maurer, 2009). It has been shown that
galanin upregulates the production of the proinflamma-
tory cytokines interleukin 1a (IL-1a) and tumor necrosis
factor-a (TNF-a) in cultured keratinocytes (Dallos et al.,

2006a) and that galanin expression is increased in
inflamed epidermis (Ji et al., 1995).

Recently, it was demonstrated that GMAP, the
peptide derived through proteolytic cleavage of the
galanin precursor peptide, possesses antimicrobial
activity against Candida albicans and other Candida

species (Rauch et al., 2007; Holub et al., 2011). The
discovery that alarin, another member of the galanin
family of peptides (see section II), has antimicrobial
activity against Escherichia coli (Wada et al., 2013) is
also consistent with the idea that the galanin peptide
family has important functions and therapeutic poten-
tial in the regulation of cutaneous innate immune
responses.

Although galanin receptors are expressed in epithe-
lia of other organ systems (Matkowskyj et al., 2000),
data on galanin receptor expression in the epidermis
are controversial. In rats, galanin binding sites have
been detected in the basal layer of the epidermis (Ji
et al., 1995), whereas no substantial galanin binding
could be detected in human epidermis from different
anatomic sites (Kofler et al., 2004). However, putative
GAL2-like immunoreactivity has been localized in the
epidermis of a human breast skin specimen and in
cultured primary keratinocytes derived from this
specimen, where GAL2 seems to be functional (Dallos
et al., 2006b). Interestingly, human immortalized oral
keratinocytes express mRNA for all three galanin
receptors (Henson et al., 2005), reflecting either
different galanin receptor distributions at different
anatomic sites or differential galanin receptor expres-
sion due to malignant transformation. In malignant
oral keratinocytes, GAL1 likely produces antiprolifer-
ative effects, because treatment of the cells with an
anti-GAL1 antibody resulted in increased proliferation
and MAPK activation (Henson et al., 2005). Antipro-
liferative effects of galanin have also been reported
after GAL2 re-expression in p53-mutant oral carci-
noma, and galanin treatment caused morphologic
changes and a marked reduction in cell number
(Kanazawa et al., 2009).

2. Skin Appendages. Galanin immunoreactivity
was detected in different parts of human scalp hair
follicles and, in agreement with this immunohisto-
chemical analysis, GAL mRNA was detected in micro-
dissected hair follicles and isolated outer root sheath
keratinocytes (Holub et al., 2012). Galanin treatment
of cultured human hair follicles resulted in inhibition
of hair-shaft elongation and shortening of the hair
growth phase (Holub et al., 2012). The presence of
GAL2 andGAL3 mRNA in outer root sheath keratinocytes
and some hair follicle samples (Holub et al., 2012)
suggests these galanin receptors mediate the hair
growth-inhibitory properties of galanin. Because nor-
mal human scalp hair follicle epithelium possesses a
functional antimicrobial defense system (Reithmayer
et al., 2009), galanin and other members of the galanin
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peptide family produced by hair follicles presumably
also belong to this armory.
In human skin, galanin-like immunoreactivity was first

detected in nerves innervating eccrine sweat glands
(Tainio et al., 1987) and later in ductal cells of eccrine
sweat glands (Kofler et al., 2004). Recently, it was shown
that the NCL-SG3 cell line derived from human eccrine
sweat gland secretory epithelia expresses GAL mRNA
(Bovell et al., 2013). Because this cell line produces galanin
peptide immunoreactivity (B. Holub and R. Lang, un-
published data) and galanin is present in human sweat at
concentrations up to 10-fold higher than in serum (Bovell
et al., 2013), it is likely that members of the galanin
peptide family are secreted by eccrine sweat glands and
transported to the skin surface to exert their antimicrobial
activity, similar to other cutaneous antimicrobial peptides
(Schittek et al., 2001; Murakami et al., 2002).
Galanin also plays a key role in eccrine sweat gland

physiology, because galanin-KO mice exhibit a signifi-
cantly altered sweating response to thermal stimula-
tion (Vilches et al., 2012). Furthermore, galanin and
GALP can regulate transepithelial chloride ion trans-
port and fluid secretion in NCL-SG3 cells (Bovell et al.,
2013). Although a possible contribution of GAL2 could
not be excluded, the effects of galanin and GALP on
anion movement were shown to be mediated via GAL3

(Bovell et al., 2013), establishing GAL3 as an important
component of normal eccrine sweat gland physiology.
3. Dermis. In the human dermis, galanin is present

in sensory nerve fibers and nerve fibers innervating
anatomic structures in the dermis, including blood
vessels and eccrine glands (Tainio et al., 1987; Johansson
et al., 1988; Kofler et al., 2004), as well as in dermal
mechanoreceptors called Meissner corpuscles (Johansson
et al., 1999). Galanin is also present in nonneuronal
locations in the dermis, including in smooth muscle cells
of human blood vessels (Kofler et al., 2004) and
immune-competent cells of the rat hindpaw (Ji et al.,
1995). After the observation that carrageenan injection
into rat hindpaw evoked a marked increase of galanin-
expressing cells (likely macrophages) in the inflamed
dermis (Ji et al., 1995), it was apparent that galanin is
involved in skin inflammatory processes. Postcapillary
venules in the dermis are associated with migration of
inflammatory cells from vessels into the tissue and
increased vascular permeability during acute inflamma-
tion, which can be induced in response to stimulation of
peripheral sensory nerves in a process termed neurogenic
inflammation (Holzer, 1998).
Galanin has been shown to inhibit inflammatory

edema formation induced by antidromic C-fiber stimu-
lation, substance P (Xu et al., 1991a), or histamine
(Jancso et al., 2000). A significant reduction in cutane-
ous plasma extravasation produced by coinjection of
substance P and calcitonin-gene–related peptide into
mouse skin was produced by galanin, GALP, and
alarin (Santic et al., 2007; Schmidhuber et al., 2007),

demonstrating an apparent functional redundancy of
the galanin family peptides. The antiedema effects
were attributed to vasoconstrictive properties of
galanin peptides (Santic et al., 2007; Schmidhuber
et al., 2007), which have also been described in pigeon
skin (Santha et al., 1998) and in the microvasculature
of the hamster cheek pouch (Dagar et al., 2003). In
accordance with the proposed vasoconstrictor activities
of galanin peptides, galanin binding sites have been
detected around dermal blood vessels in human skin
(Kofler et al., 2004) and, as mentioned, increased galanin
binding sites are present in the inflamed dermis of rat
hindpaw skin (Ji et al., 1995).

There is evidence that, in murine dermal microvas-
culature, the vasoconstrictive effects of galanin on
inflammatory edema formation are mediated by GAL3

(Schmidhuber et al., 2009). But because GAL2 mRNA
is present in murine dorsal skin (Schmidhuber et al.,
2007) and putative GAL2 protein has been localized
around blood vessels in human skin (Dallos et al.,
2006b), it seems GAL2 may also be involved in the
vasoactive actions of galanin peptides.

Data from transgenic mice supported the proposed
anti-inflammatory function of galanin in the skin.
Galanin-OE mice displayed a significant reduction in
cutaneous plasma extravasation induced by mustard
oil (Holmberg et al., 2005a). In addition, galanin-KO
mice exhibited a deficit in neutrophil accumulation in
skin after exposure to noxious heat, carrageenan, or
TNF-a (Schmidhuber et al., 2008).

Interestingly, galanin expression was reported to be
downregulated in psoriasis, a chronic inflammatory skin
disease (Gudjonsson et al., 2009), and reduced galanin
levels were observed in inflamed ears in a mouse model
of allergic contact dermatitis (El-Nour et al., 2004).
Together, findings to date suggest the galanin peptide
family and its receptors (known and unknown) should
be considered as potential targets for the development
of better treatment of inflammatory skin diseases.

Recently, a possible role of galanin in the angiogenic
process during granulation tissue formation was revealed
in an experimental rat model, whereby galanin in-
jections after subcutaneous implantation of cotton
threads increased granulation and hemoglobin con-
tent. The proangiogenic effects of galanin are thought
to be mediated by GAL1/GAL2 in this model (Yamamoto
et al., 2011a), although a possible role of GAL3 has not
been investigated.

Overall, the presence of galanin family peptides
throughout whole skin and recent discoveries of their
diverse actions via specific receptors have opened a new
area of research in skin biology and could lead to
therapeutic applications in cutaneous pathophysiology.

C. Heart and Central Cardiovascular Control

There is substantial evidence that galanin partic-
ipates in the central control of cardiovascular function
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(see Diaz-Cabiale et al., 2010, for review). Central
administration of galanin affects heart rate and blood
pressure in rats via complex mechanisms (Harfstrand
et al., 1987; Narvaez et al., 1994; Diaz-Cabiale et al.,
2005; Abbott and Pilowsky, 2009). In humans, galanin
infusion ranging from 33 to 132 pmol/kg per minute
dose dependently induced an increase in heart rate
(Carey et al., 1993; degli Uberti et al., 1995), although
in an early study galanin infused at a lower doses (7.8
and 32 pmol/kg per minute) did not affect heart rate
(Bauer et al., 1986b).
The nucleus tractus solitarius (NTS) in the brain

stem is a complex neuroanatomical site for the in-
tegration of peripherally initiated sensory neural
information regarding the status of blood pressure,
heart rate, and respiratory function (see Lawrence and
Jarrott, 1996, for review). Galanin is expressed by
neurons in the NTS of young and adult rats (Burazin
et al., 2000), and experimental hypertension in rats
decreases GAL mRNA levels in the NTS (Coelho et al.,
2004).
In situ hybridization data suggest GAL1 mRNA, but

not GAL2 mRNA, is abundantly expressed in the NTS
(Burazin et al., 2000), suggesting the galanin-induced
inhibition of voltage-dependent calcium channels in rat
NTS neurons is GAL1-mediated (Endoh et al., 2008).
Recently, it was postulated that GAL1 interacts with
GAL2 to form heterotrimers with the Y2 receptor or
angiotensin II type I receptor in the NTS to integrate
cardiovascular responses (Fuxe et al., 2012). Further-
more, it was proposed that galanin receptors form
heteromers with other neuromodulatory receptors in-
volved in central cardiovascular regulation such as
5-HT1A receptor, a2-adrenoceptor or Y1 receptor (Diaz-
Cabiale et al., 2010).
Exogenous galanin has been shown to modulate the

cardiac sympathovagal crosstalk that leads to brady-
cardia in mice (Potter and Smith-White, 2005), guinea
pigs (Herring et al., 2012), and cats (Ulman et al.,
1992), but this effect has not been observed in rats
(Smith-White et al., 1999) or dogs (Moriarty et al.,
1992). Although both GAL1 and GAL3 are present in
cardiac ganglia, it was suggested that GAL1-activation
reduces acetylcholine release from atrial cholinergic
neurons in guinea pigs (Herring et al., 2012). Experi-
ments with GAL1-KO mice support the view that GAL1

acts to reduce acetylcholine release from cardiac
parasympathetic neurons after peripheral sympathetic
stimulation (Smith-White et al., 2003; Potter and
Smith-White, 2005). Furthermore, analysis of human
heart tissue revealed prominent GAL1 and GAL3

expression (Sullivan et al., 1997; Kolakowski et al.,
1998).
Galanin immunoreactivity has been localized in all

major regions of the heart in rats and other mamma-
lian species (Xu et al., 1995b) and GALmRNA has been
detected in mouse cardiovascular cells (Chalmers et al.,

2008). After myocardial infarction and after ischemia-
reperfusion in rodents, galanin content was elevated in
the left ventricle (Habecker et al., 2005; Ewert et al.,
2008; Alston et al., 2011), indicating a role for galanin
in the response of the heart to injury. In other organs,
including the brain, ischemia increases GAL1 expres-
sion (Shen and Gundlach, 2010; Holm et al., 2012),
suggesting that an increase of GAL1 expression might
also occur in the heart after myocardial infarction.

Galanin has been shown to regulate the contractility
of guinea-pig cardiomyocytes and their sensitivity to
hypoxic conditions (Kocic, 1998). Furthermore, it was
recently suggested that galanin promotes glucose
uptake into cardiac muscle of diabetic rats by in-
creasing glucose transporter 4 expression in cardio-
myocytes (Fang et al., 2013b). In addition to a role in
the central and peripheral regulation of cardiovascular
function, galanin is also involved in heart development
(Schweickert et al., 2008; Jones et al., 2009). In-
terestingly, galanin expression decreases during car-
diomyocyte differentiation (Beqqali et al., 2006). Additional
studies are necessary to elucidate the relative contri-
bution of central and peripheral galanin and the
receptor(s) involved in the complex regulation of
cardiovascular processes.

D. Cancer

Neuropeptide expression has been detected in
a variety of tumors, and the expression levels were
shown to correlate with differentiation level or tumor
aggressiveness (Rauch and Kofler, 2010). In vivo
identification of neuropeptide receptors in various
diseases plays an important role in the development
of suitable neuropeptide analogs as imaging agents
and for the evaluation of the main indications for which
these agents should be used. Apart from the use of
neuropeptide receptors for tumor imaging, neuro-
peptides can have pro- or antiproliferative activity
on cancer cells, thereby having direct therapeutic
implications.

1. Expression of Galanin Peptides in Tumor Tissues

and Cell Lines. Human pheochromocytoma was the
first tumor in which galanin was identified (Bauer
et al., 1986c; Hacker et al., 1988), and later galanin-like
immunoreactivity was detected in other neuroendo-
crine tumors, including human pituitary adenoma
(Bauer et al., 1986c; Hacker et al., 1988). Subsequently,
galanin-like immunoreactivity was detected in human
pituitary adenoma particularly associated with adre-
nocorticotrophic hormone-secreting cells (Hulting et al.,
1989; Vrontakis et al., 1990; Bennet et al., 1991; Hsu
et al., 1991; Sano et al., 1991; Leung et al., 2002;
Grenback et al., 2004) and in gangliocytoma (Sano
et al., 1991; Felix et al., 1994), paraganglioma (Fried
et al., 1994; Tadros et al., 2003), and neuroblastoma
(Tuechler et al., 1998). Alarin was subsequently
detected in differentiated neuroblastoma cells (Santic
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et al., 2006) and was recently detected in a variety of
human CNS tumors and suggested to be a diagnostic
marker for ependymoma to differentiate them from
other gliomas (Eberhard et al., 2013).
Galanin expression in neuroblastoma may depend on

the differentiation state of the tumor, because a human
undifferentiated tumor transplanted into nude mice
did not express galanin, whereas all transplants derived
from tumors with different types of differentiation
expressed galanin (Hoshi et al., 2008). Indeed, a corre-
lation between the amount of galanin in neuroblastoma
and their differentiation status was reported (Perel
et al., 2002), although a similar study could not confirm
this correlation (Berger et al., 2002)
Galanin was also detected in a variety of non-

neuroendocrine human tumors of different origin,
including glioblastoma and other brain tumors (Berger
et al., 2003), melanoma (Gilaberte et al., 2007), head
and neck squamous cell carcinoma (HNSCC) (Sugimoto
et al., 2009), basal cell carcinoma (Kepron et al.,
2009), colon cancer (Kim et al., 2007; Godlewski and
Pidsudko, 2012; Stevenson et al., 2012), and embryonic
carcinoma (Skotheim et al., 2005). Interestingly, the
majority of these tumors exhibited significantly higher
galanin levels than corresponding noncancerous tissue
(Skotheim et al., 2005; Gilaberte et al., 2007; Kim
et al., 2007; Sugimoto et al., 2009; Stevenson et al.,
2012), similar to observations of human pheochromo-
cytoma (Bauer et al., 1986c). In colon cancers, GAL

mRNA levels were observed to increase significantly
with tumor size and stage (Kim et al., 2007), and
a recent study found a significant correlation between
high galanin expression and poorer disease-free survival
in colon cancer patients, identifying galanin as a poten-
tial biomarker for certain cancer types (Stevenson et al.,
2012).
In HNSCC, current data are conflicting, with

significant upregulation of galanin reported in tumor
samples from HNSCC patients (Sugimoto et al., 2009),
whereas a more recent study proposed galanin as
a tumor suppressor and correlated galanin promoter
methylation with significantly lower disease-free sur-
vival in HNSCC patients (Misawa et al., 2013). In
basal cell carcinoma, a type of tumor arising from
keratinocytes, two different studies reported reduced
galanin expression (Kepron et al., 2009).
Galanin expression was reported in several human

tumor cell lines, including SH-SY5Y neuroblastoma
(Berger et al., 2004), several breast cancers (Ormandy
et al., 1998; Yamamoto et al., 2011b), HNSCC (Henson
et al., 2005; Sugimoto et al., 2009), colon carcinoma
(Kim et al., 2007), embryonic carcinoma (Skotheim
et al., 2005), and SBC-3A small lung carcinoma
(Yamamoto et al., 2011b). In xenografts generated
from the latter cells and implanted in mice, galanin
was processed from the longer precursor peptide
progalanin by plasmin (Yamamoto et al., 2011b) and

it induced the release of the proprotein forms of matrix
metalloproteinase-2 and -9 (Yamamoto et al., 2011c).
Overall, the expression of galanin in different tumor
tissues suggests that further studies of the potential of
galanin as a target for therapeutic interventions in
cancer are warranted.

2. Therapeutic Implications of Galanin Receptors

in Cancer Biology. Initially, galanin receptors were
identified in a hamster pancreatic cell tumor and a rat
insulinoma cell line (Amiranoff et al., 1987; Lagny-
Pourmir et al., 1989). In humans, galanin receptors were
first discovered in pituitary tumors (Hulting et al., 1993)
and were subsequently identified in pheochromocytoma
(Berger et al., 2005), neuroblastoma (Tuechler et al.,
1998), glioma (Berger et al., 2003), prostate carcinoma
(Berger et al., 2005), colon carcinoma (Stevenson et al.,
2012), HNSCC (Misawa et al., 2008), and SCLC cell lines
(Wittau et al., 2000).

In 1994, GAL1 was cloned from the human Bowes
melanoma cell line (Habert-Ortoli et al., 1994) and is
the most prominently expressed galanin receptor in
human meningioma, glioblastoma (Berger et al., 2003)
and neuroblastoma (Berger et al., 2002), and elevated
GAL1 expression is associated with increased malig-
nancy (Perel et al., 2002). Increased GAL1 expression
was also observed in human pituitary adenomas
relative to levels in normal human pituitaries (Tofighi
et al., 2012), suggesting cancer-promoting properties
for GAL1, at least in these tumors. Recently, GAL1 was
proposed to contribute to resistance to chemothera-
peutic drugs in colon cancer, because GAL1 silencing
led to enhanced chemosensitivity of human colon
cancer cell lines (Stevenson et al., 2012). This is
somewhat contrary to the finding that advanced
colorectal carcinomas often display chromosomal alter-
ations with a loss of the GAL1 locus on 18q (Knosel
et al., 2002). Chromosomal imbalances also occur in
HNSCC cell lines, similarly affecting the GAL1 locus
(Takebayashi et al., 2000). Additionally, epigenetic
inactivation of GAL1 via promoter methylation was
found to occur frequently in HNSCC and to correlate
with reduced disease-free survival. Therefore, GAL1

was suggested to be a tumor suppressor gene in
HNSCC (Misawa et al., 2008, 2013). GAL1 methylation
was also reported as one of the most common molecular
alterations in endometrial cancer (Doufekas et al.,
2013). Furthermore, activation of GAL1 induces cell-
cycle arrest and suppresses proliferation of HNSCC
cell lines (Henson et al., 2005; Kanazawa et al., 2007;
Misawa et al., 2008). Antiproliferative effects via GAL1

signaling have also been observed in human SH-SY5Y
neuroblastoma cells transfected with GAL1 (Berger
et al., 2004).

In contrast, the presence of GAL2 is less common in
human glioma (Berger et al., 2003) and neuroblastoma
(Tuechler et al., 1998). GAL2 expression is low in the
majority of human pituitary adenomas compared with
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levels in normal human pituitaries (Tofighi et al.,
2012). However, elevated GAL2 expression was ob-
served in human pheochromocytoma tissue (Tofighi
et al., 2008). Although analysis of tumor tissues of
HNSCC patients revealed no differences in GAL2

mRNA levels compared with normal tissue (Sugimoto
et al., 2009), elevated GAL2 expression was reported in
several HNSCC cell lines along with increased cell
proliferation and survival and growth of xenografts in
mice (Banerjee et al., 2011). These results are
discrepant with earlier reports of silencing of detect-
able GAL2 expression (Kanazawa et al., 2007) due to
methylation in a p53 mutant HNSCC cell line and
inhibition of cell proliferation and induction of apopto-
sis in these cells by GAL2 re-expression (Kanazawa
et al., 2009). Interestingly, the same group reported
detectable GAL2 expression levels in this cell line in an
earlier publication (Kanazawa et al., 2007). Recently,
GAL2 promoter methylation was associated with a sta-
tistically significant decrease in disease-free survival
and higher odds ratio for recurrence in HNSCC patients
(Misawa et al., 2014).
GAL2 promoter methylation leading to suppressed

levels of GAL2 mRNA was also observed in breast,
prostate, and colorectal cancer as well as in a panel of
prostate cancer, breast cancer, leukemia, and colon
cancer cell lines (Chung et al., 2008). In the colon cancer
cells, GAL2 methylation was found to reduce chemo-
sensitivity to certain therapeutic regimens, whereas
GAL2 overexpression was correlated with enhanced
sensitivity to these chemical regimens (Kim et al., 2011).
It is noteworthy that transfection of GAL2 into human

SH-SY5Y neuroblastoma cells, which do not endoge-
nously express galanin receptors, and into human
HNSCC cells, which naturally express one or more
galanin receptors (Kanazawa et al., 2007), and into rat
pheochromocytoma cells (Cheng and Yuan, 2007) led to
suppressed cell proliferation and induction of caspase-
dependent apoptosis (Berger et al., 2004; Tofighi et al.,
2008; Kanazawa et al., 2009, 2014). On the other hand,
in SCLC, where GAL2 is the only endogenous galanin
receptor (Wittau et al., 2000), activation of GAL2 resulted
in growth-promoting effects, possibly via pathways
involving the protein tyrosine kinase 2b and proto-
oncogene protein tyrosine kinase Src (Sethi and
Rozengurt, 1991; Roelle et al., 2008).
The impact of GAL3 signaling on the biologic activity

of cancer cells is less well studied. GAL3 mRNA is
expressed in human HNSCC cell lines (Henson et al.,
2005; Kanazawa et al., 2007), human Bowes melanoma
cells (Lang et al., 2001), and rat PC12 pheochromocy-
toma and rat B104 neuroblastoma cell lines (Cheng
and Yuan, 2007). GAL3 expression was also detected in
clinical tumor samples, including neuroblastoma
(Berger et al., 2002; Perel et al., 2002) and glioma
(Berger et al., 2003). Analysis of human HNSCC
revealed significantly increased GAL3 expression in

the tumors compared with normal tissue (Sugimoto
et al., 2009). Similarly, GAL3 expression was detected
in human pituitary adenomas associated with tumor
relapse, whereas it was absent in postmortem pituitaries
(Tofighi et al., 2012). These data suggest a role for GAL3

in cancer biology and support the idea that, like GAL2,
this galanin receptor deserves further experimental
investigation, not only as a potential diagnostic tool but
as a drug target to modify the activity of certain tumor
types, particularly as a specific GAL3 antagonist (SNAP-
37889) is available.

Efficacious therapeutic application of galanin ago-
nists or antagonists will likely depend on the re-
spective expression levels of the different galanin
receptors and on the downstream signaling pathways
in different tumor types. This is reflected in an animal
model, in which exogenous application of galanin in
a triple therapy with serotonin and the somatostatin
analog octreotide was effective in the treatment
of human colon cancer xenografts (El-Salhy and
Dennerqvist, 2004; El-Salhy, 2005) either via direct
antiproliferative effects (El-Salhy and Starefeldt,
2003) and/or reduction of the tumor blood supply
(El-Salhy and Dennerqvist, 2004; El-Salhy, 2005).
Notably, a significant reduction in the vascularization
of transplanted rat colon carcinoma was achieved only
when galanin was added to the therapy regimen (El-
Salhy et al., 2003). In contrast, this same therapeutic
regimen was without any discernible effects in human
pancreas cancer xenografts in terms of apoptotic
index, necrosis, and number of tumor blood vessels,
but significantly increased the proliferation index (El-
Salhy et al., 2005). An increased number of viable
cells and higher proliferation index was also observed
with the aforementioned human pancreatic cancer
cells in vitro when galanin was added to the treatment
regimen containing octreotide and/or serotonin (Tjomsland
and El-Salhy, 2005).

X. Emerging Role of the Galanin Peptide Family

in Inflammation

The regulation of inflammatory processes by galanin
family peptides was reviewed recently (Lang and
Kofler, 2011), and therefore only key aspects will be
highlighted here.

A. Innate Immunity

Innate immunity is the first line of defense against
microbes. The skin, the respiratory tract, the gastroin-
testinal tract, and the genitourinary tract are the main
interfaces between the environment and the body and
are a common portal of entry for a variety of microbes.
Specialized epithelia in these sites not only provide
a physical barrier to microbes and produce an array
of antimicrobial substances but also perform many
physiologic functions.
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The presence of galanin has been demonstrated in
epithelial cells of human skin (Kofler et al., 2004) and
human colon (I. Rauch and B. Kofler, unpublished
data), and treatment of human primary cultured
keratinocytes with lipopolysaccharide (LPS) or live C.

albicans led to an increase in GAL mRNA levels
(Rauch et al., 2007), which was also observed in the
human colonic T84 epithelial cell line (I. Rauch and
B. Kofler, unpublished data). Treatment of adult
cultured mouse microglia with LPS resulted in a sig-
nificant increase of the responsiveness of the microglia
to galanin (Pannell et al., 2014). Two other members of
the galanin family of peptides, GMAP and alarin, have
been identified as components of the innate immune
system with different spectra and mechanisms of
antimicrobial activity. GMAP inhibits the growth of
the major human fungal pathogen C. albicans and
other Candida species (Rauch et al., 2007; Holub
et al., 2011) and interferes with hyphal development,
whereas alarin is only effective against the Gram-
negative bacteria E. coli, inducing bacterial membrane
blebbing (Wada et al., 2013; see section IX.B).
Interestingly, infection of human colonic T84 cells

with pathogenic E. coli upregulated GAL1 expression,
possibly via nuclear factor-kB activation, which led to
increased chloride ion secretion in response to galanin
in these cells in vitro (Hecht et al., 1999). Increased
GAL1 mRNA levels have also been observed in mouse
bladder in the early phase of acute cystitis induced
by LPS (Zvarova and Vizzard, 2006). The importance
of GAL1 activation as part of an innate intestinal
epithelial defense mechanism has been confirmed in
the mouse colon after infection with E. coli (Hecht
et al., 1999) or other bacterial pathogens such as
Shigella and Salmonella (Matkowskyj et al., 2000), as
well as with Rhesus rotavirus (Hempson et al., 2010a).
GAL3 might also be important in the regulation of

innate immune responses, because it is highly expressed
in murine neutrophil, monocyte, and macrophage im-
mune cell subsets (Chiu et al., 2013). Data on galanin
levels in peripheral tissues in the early phases after
bacterial infection are scarce. In the rabbit intestine,
galanin levels were not altered 8 and 16 hours after
experimental Shigella infection (Svensson et al., 2004).
Galanin also interacts with the major proinflamma-

tory cytokines of the innate immune system. Incuba-
tion of cultured primary bovine chromaffin cells with
TNF-a or IL-1 led to increased GAL mRNA levels in
a time- and dose-dependent manner (Ait-Ali et al.,
2004). This could represent a negative regulatory
feedback mechanism abrogating the inflammatory
response, because galanin inhibited TNF-a production
in the BV2 murine microglia cell line stimulated with
LPS by a posttranscriptional mechanism (Su et al.,
2003) and decreased TNF-a and IL-1b mRNA levels in
an injured mouse calvaria (McDonald et al., 2007).
Furthermore, galanin suppressed TNF-a release of

murine macrophages in vitro in response to Staphylo-

coccus aureus stimulation (Chiu et al., 2013). On the
other hand, galanin induced upregulation of IL-1a,
TNF-a, and IL-8 mRNA expression in cultured human
keratinocytes (Dallos et al., 2006a), suggesting a proin-
flammatory role of galanin. Similarly, intracerebroven-
tricular injection of GALP into Sprague-Dawley rats
stimulated production of IL-1a and IL-1b in macro-
phages and/or microglia in some brain areas (Man and
Lawrence, 2008). The BV2 mouse microglia cell line
and cultured rat microglial cells solely express GAL2

(Su et al., 2003; Ifuku et al., 2011), which mediates
galanin-induced cell migration and upregulation of
class II major histocompatibility complex expression in
these innate immune brain cells (Ifuku et al., 2011).
Microglial cells also participate in the events leading to
multiple sclerosis (Weissert, 2013), and a recent study
detected a marked upregulation of galanin expression
in microglia associated with multiple sclerosis lesions
in postmortem brain tissue from chronic multiple
sclerosis patients (Wraith et al., 2009).

B. Acute Pancreatitis

Acute pancreatitis (AP) is a disease with a complex
pathophysiology (Yadav and Lowenfels, 2013), which
undoubtedly involves inflammation (Gukovsky et al.,
2013), and in recent years, evidence has accumulated
that galanin participates in the pathogenesis of
experimental AP. Galanin-KO mice display reduced
myeloperoxidase (MPO) activity and a lower acinar cell
necrosis score than their WT littermates in a mouse
model of cerulein-induced AP (Bhandari et al., 2010b).
After galanin administration, MPO activity and the
acinar cell necrosis score returned to normal levels
in the galanin-KO mice, (Bhandari et al., 2010b).
However, the reduction in neutrophil accumulation,
reflected by reduced MPO activity, in galanin-KO mice
is not exclusively restricted to AP and seems to be
a more general phenomenon of inflammation, because
it has also been observed with inflammatory skin
responses (Schmidhuber et al., 2008).

In a mouse model of cerulein-induced AP, galanin
receptor antagonists significantly reduced MPO activ-
ity and the acinar cell necrosis score and also reduced
AP-induced plasma amylase and lipase activities
(Bhandari et al., 2010a,b). The ameliorating effect of
the galanin antagonist galantide on MPO activity was
inhibited by coadministration of the somatostatin analog
octreotide, although octreotide alone also significantly
reduced AP-induced MPO activity (Barreto et al., 2010).
Although all three galanin receptors are expressed in
mouse pancreas, a recent study suggests a major role for
GAL3 in mediating the effects of galanin in AP, because
the GAL3-specific antagonist SNAP-37889 reduced
pancreatic MPO activity, damage to pancreatic acinar
cells, and hyperamylasemia in cerulein-induced AP in
mice (Barreto et al., 2011).
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Similar to the skin microvasculature, where galanin
has vasoconstrictor activity (Schmidhuber et al., 2007),
galanin is also thought to reduce blood flow through
the pancreas, which is a contributing factor in pan-
creatic necrosis in AP (Brooke-Smith et al., 2008). It
has been proposed that GAL3 is responsible for the
effects of galanin on the dermal microvasculature
(Schmidhuber et al., 2009), and it seems likely this
also occurs in the pancreatic microvasculature. There-
fore, galanin and its receptors are potential therapeutic
targets for the treatment of AP and other inflammatory
disorders if the pleiotropic actions of galanin at dif-
ferent levels in inflammation can be accounted for and
harnessed successfully.

XI. Final Considerations

Following the 30th anniversary of the discovery of
galanin, this review, along with other recent articles
cited, will, we hope, provide a useful summary of both
early research and recent progress in the field, and in
doing so, provide a valuable reference for scientists and
students interested in galanin biology. The galanin
peptide family plays key roles in the regulation of
numerous physiologic and pathophysiologic functions
via actions in the CNS and PNS and in various
peripheral organs. Galanin is by far the most extensively
investigated family member. Although much attention
has been focused on its modulatory role in the nervous
system, in particular in relation to a number of diseases,
it is now clear that the galanin peptide family also
participates in a number of nonneuronal actions, in-
cluding inflammation, oncology, and skin physiology.
New and intriguing data emerge on a regular basis, for
example, a notable recent report identified additional
peptides that may represent endogenous ligands for
galanin receptors. The novel neuropeptides known as
spexins (SPX), which are currently of unknown function,
were shown to interact with galanin receptors (Kim
et al., 2014). These studies identified that the SPX gene
and a second SPX gene (SPX2), present in vertebrate
genomes, reside in the near vicinity of the galanin and
kisspeptin family genes on their chromosomes. Align-
ment of peptide sequences reveals some sequence
similarity among the three peptide groups, with SPX
more closely related to galanin, and ligand-receptor
interaction studies revealed that SPXs activate human
GAL2/3 but not GAL1, suggesting they may be natural
ligands for GAL2/3. Furthermore, SPXs exhibited higher
potency at GAL3 than galanin (Kim et al., 2014),
suggesting a possible role in endogenous regulation of
GAL3 signaling that should prompt further experimen-
tation, particularly in relation to reproduction (e.g.,
Porteous et al., 2011; Kalló et al., 2012).
The application of cutting-edge mouse molecular

genetics is allowing the generation of transgenic
strains with galanin receptors tagged with a fluorescent

protein or with neurons expressing a receptor gene
specifically within the cell body (cytoplasm) and
proximal and/or distal processes of the neurons
(Table 1). This will allow better "phenotyping" of
galanin receptor-expressing cells in brain circuits and
in other target tissues. Similarly, powerful Cre/Lox
technology (Brault et al., 2007; Wang, 2009), including
mice in which galanin- or galanin receptor-expressing
neurons express both Cre-recombinase and "floxed"

genes, could be used along with viral-based methods
for conditional gene deletion, and state-of-the-art
methods, such as optogenetics and designer receptors
exclusively activated by designer drugs, could be used
for tracing and activating specific galanin-responsive
neural circuits (e.g., Alexander et al., 2009; Zhang
et al., 2010; Yizhar et al., 2011). In fact, such an
approach taking advantage of a GAL-Cre mouse line
was published recently, revealing the importance of
galanin-containing neurons in the anterior hypothala-
mus in the control of parental behavior (Wu et al.,
2014). It is anticipated that further such insights will
be obtained in the future using similar techniques.

In addition, future research on galanin pathophysi-
ology will be best advanced by the application of novel
experimental tools and approaches. For example, the
development of antibodies and small-molecule drugs
that are CNS penetrant (Robertson et al., 2010; Zhang
et al., 2012) and specific for the different galanin
receptors will help provide more detailed information
on the distribution and function of each receptor.
Finally, with many preclinical studies indicating that
the galanin system is of particular importance in a
range of pathologies, the hope is that both current and
new information will be translated through to clinical
studies, resulting in novel pharmacological therapeutic
strategies for a number of diseases.
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