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Microplastics, which serve as sources and vector transport of organic contaminants in

both terrestrial and marine environments, are emerging micropollutants of increasing

concerns due to their potential harmful impacts on the environment, biota and human

health. Microplastic particles have a higher affinity for hydrophobic organic contaminants

due to their high surface area-to-volume ratio, particularly in aqueous conditions. However,

recent findings have shown that the concentrations of organic contaminants adsorbed on

microplastic surfaces, as well as their fate through vector distribution and ecological risks,

are largely influenced by prevailing environmental factors and physicochemical properties

in the aquatic environment. Therefore, this review article draws on scientific literature to

discuss inherent polymers typically used in plastics and their affinity for different organic

contaminants, as well as the compositions, environmental factors, and polymeric

properties that influence their variability in sorption capacities. Some of the specific

points discussed are (a) an appraisal of microplastic types, composition and their fate

and vector transport in the environment; (b) a critical assessment of sorption mechanisms

and major polymeric factors influencing organic contaminants-micro (nano) plastics
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Abbreviations: MPs, microplastics; MNPs, micro (nano) plastics; PMPs, primary microplastics; SMPs, secondary microplastics;
PE, polyethylene; PP, polypropylene; PVC, polyvinyl chloride; PA, polyamide; PS, polystyrene; PU, polyurethane; PET,
polyethylene terephthalate; LDPE, low density polyethylene; HDPE, high density polyethylene; POM, polyoxymethylene; POM,
polyoxymethylene; PLA, polylactic acid; DOM, dissolved organic matter; HOCs, hydrophobic organic contaminants; PPCPs,
pharmaceuticals and personal care products; MS, Mass spectroscopy; GC-MS, Gas chromatography—Mass spectroscopy; GC-
TOF-MS, Gas chromatography coupled to time-of-flight mass spectrometry; UPLC—QMS, Ultra-performance liquid
chromatography—Quadrupole mass spectrometry; HS-SPME/GC-ITMS, Headspace solid phase micro extraction coupled with
gas chromatography/ion trap mass spectrometry; HPLC, high-performance liquid chromatography; GC-QqQ-MS, Gas
chromatograph triple-quadrupole mass spectrometer; PCB, polychlorinated biphenyl; DEHP, di(2-ethylhexyl) phthalate;
DnBP, dibutyl phthalate; DMP, dimethyl phthalatePAHs, polycyclic aromatic hydrocarbons; PBDEs, polybrominated diphenyl
ethers; DDT, dichlorodiphenyltrichloroethane; PBDEs, polybrominated diphenyl ethers; DDE, dichlorodiphenyl dichlor-
oethene; NP, nitrophenol; 4-MBC, 4-methylbenzylidene camphor; PAEs, phthalate Esters; BaP, benzo[a]pyrene; PFOS,
perfluorooctane sulfonic acid; OPEs, organophosphorus esters; TH, tetracycline hydrochloride; 9-NAnt, 9-Nitroanthracene;
HEX, hexaconazole; MYC, myclobutanil; TRI, triadimenol; ACE, acetamiprid; CAP, chlorantraniliprole; FLU, flubendiamide;
HCHs, 4 hexachlorocyclohexanes; CBs, 2 chlorinated benzenes; EVA, ethylene vinyl acetate; ABS, acrylonitrile butadiene
styrene; SDZ, sulfadiazine; AMX, amoxicillin; TC, tetracycline; CIP, ciprofloxacin; TMP, trimethoprim; BPS, bisphenol S; 4.4′-
sulfonyldiphenol; BPF, bisphenol F; 4.4′-dihydroxydiphenylmethane); BPAF, bisphenol AF; 4.4′-(hexafluoroisopropylidene)
diphenol]; bisphenol B [BPB; 2,2-bis(4-hydroxyphenyl) butane]; ROX, roxithromycin; TCS, triclosan; OPFRs, organophos-
phate flame retardants; PFCs, perfluorinated compounds; BFRs, brominated flame retardants; BDE-209, decabromodiphenyl
ether; WWTPs, wastewater treatment plants; HBCD, hexabromocyclododecane; Kf, Freundlich partition coefficient; Kow,
octanol-water partition coefficient; Kd, Langmuir partition coefficient; FA, fulvic acid; HA, humic acid; FDM, film diffusion
kinetic model.
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(MNPs) interactions; (c) an evaluation of the sorption capacities of organic chemical

contaminants to MNPs in terms of polymeric sorption characteristics including

hydrophobicity, Van der Waals forces, π–π bond, electrostatic, and hydrogen bond

interactions; and (d) an overview of the sorption mechanisms and dynamics behind

microplastics-organic contaminants interactions using kinetic and isothermal models.

Furthermore, insights into future areas of research gaps have been highlighted.

Keywords: microplastics (MPs), nanoplastics (NPs), persistent organic pollutants (POPs), plastic additives,

sorption—desorption isotherms, kinetic sorption model, emerging micropollutants

INTRODUCTION

Plastic pollution in the terrestrial environment and marine
ecosystems is pervasive and has evolved as an emerging global
challenge due to exponentially increasing production rates,
distribution and consumption of single-use plastics. Although
plastics have significantly contributed to improvements in
healthcare industry, building construction, electronics and
contemporary human life in general, burgeoning build-up of
improperly managed plastic wastes has raised concerns over their
long-term health and ecotoxicological risks (Fahrenkamp-
Uppenbrink, 2018; Ha and Yeo, 2018; Lei et al., 2018; Yu
et al., 2018; Barletta et al., 2019; Besseling et al., 2019; Savoca
et al., 2019; Adika et al., 2020; Benson and Fred-Ahmadu, 2020;
Bakir et al., 2020; Ding et al., 2020; Everaert et al., 2020; Fred-
Ahmadu et al., 2020a; Fred-Ahmadu et al., 2020b; Lu et al., 2020;
Na et al., 2020; Wilcox et al., 2020; Wong et al., 2020; Yu and
Chan, 2020). Microplastics (MPs; 0.1 µm—5 mm) and
nanoplastics (NPs; <0.1 µm) are ubiquitous and can
accumulate in marine and freshwater ecosystems and exposed
organisms, carrying chemical contaminants that are capable of
posing considerable threats to human health, environment and
aquatic life (de SouzaMachado et al., 2018; Hartmann et al., 2019;
Benson and Fred-Ahmadu, 2020; Cole et al., 2020; Xu et al.,
2020). Micro (nano) plastics (MNPs) are generally speculated to
have increased environmental and health threats to marine
organisms primarily due to their small size, predicted
ubiquitousness, direct and indirect intake of plastic particles,
bioavailability and enhanced concentrations of sorbed toxic
chemicals (Setälä et al., 2018; Yu et al., 2018; Cole et al., 2020;
Fred-Ahmadu et al., 2020a; Fred-Ahmadu et al., 2020b; Xu et al.,
2020; Yu and Chan, 2020).

Primary MNPs are directly produced and could get into the
environment through various sources like packaging in industrial
processes, textiles, and personal care cosmetics, while secondary
MNPs originate from the physico-chemical fragmentation of
larger plastic particulates (Fred-Ahmadu et al., 2020c;
Menéndez-Pedriza and Jaumot, 2020). However, on escape
into the environment, they get eroded into lakes, rivers, seas,
and the ocean. They are pollutants that do not readily biodegrade,
thus causing persistent pollution. Plastics comprise chemical
additives that are usually not chemically bonded to the plastic
particles molecules and are likely to get leached into the
surrounding aqueous medium (Benson and Fred-Ahmadu,
2020; Wright and Kelly, 2017). Several additives, including

UV-stabilizers, plasticizers, antioxidants, and flame retardants
contained in plastics have been widely reported (Jang et al., 2017;
Sun et al., 2019; Tanaka et al., 2019; Fred-Ahmadu et al., 2020a;
Fred-Ahmadu et al., 2020b; Jeong and Choi, 2020; Xu et al., 2020).
Chemical additives such as esters of phthalic acids, which are
commonly known as phthalate esters (PAEs) are ubiquitous,
highly toxic, and commercially used as plasticizers for
enhancing the durability, flexibility, lightness, and
transparency of plastics (Xu et al., 2020; Zhang P. et al., 2019;
Hahladakis et al., 2018; Avio et al., 2017; Kang et al., 2017). There
are growing concerns that exposure to these chemical additives
through direct and indirect ingestion of micro (nano) plastics
could have severe reproductive, respiratory, neurotoxicological
and stress responses on marine organisms, as well as potential
health effects on humans (Xu et al., 2020).

Humans are readily exposed to the health risks of
microplastics by daily ingestions through the use of products
like toothpaste or skincare products made with plastic
microbeads. Studies showing contamination of food suggest
the presence of microplastics in the atmosphere (Liebezeit and
Liebezeit, 2014). In 2017, 83% of tap water sampled from
countries globally were found to be contaminated with
microplastics (Carrington, 2017; Tyree and Morrison, 2017).
Workers at facilities producing plastics, fish farming
industries, wastewater treatment, or aquaculture facilities are at
risk as well because they have direct contact with microplastics.
Microplastics are small enough to be mistaken for food by fishes,
and this results in fishes not feeling the need for food as they have
a belly full of these substances that never break down in the
digestive system, eventually resulting in starvation. Intestinal
blockage, which could increase mortality rate, is also a hazard
associated with the ingestion of microplastics (Ashton et al., 2010;
Besseling et al., 2013; Cole et al., 2013; Wright et al., 2013; Ham̈er
et al., 2014).

Microplastics vary in sizes and are classified either as primary
or secondary microplastics taking into consideration whether
they originate from physical or chemical fragmentation of larger
plastics (macroplastics) or are micron-sized industrially
produced plastics (Wright et al., 2013; Jaikumar et al., 2019).
Mostly, primary microplastics (PMPs) are largely manufactured
for commercial applications, including plastic pellets,
microbeads, personal care products, and microfibers (Andrady,
2011; Cole et al., 2013). Primary microplastics are also known to
find use in the healthcare industry as vectors for drugs (Patel et al.,
2009). Conversely, secondary microplastics (SMPs) are generated
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from the degradation of plastics into smaller pieces after plastics
have entered the environment (Andrady, 2011). This breakdown
could be fueled by biological, geological, physical and chemical
degrading agents, including photodegradation caused by sunlight
(UV-B) exposure (Eriksen et al., 2014; Ekvall et al., 2019;
Jaikumar et al., 2019; Fred-Ahmadu et al., 2020a). Most
microplastics in the marine environment are secondary
microplastics (UNEP, 2015; da Costa et al., 2016).
Microplastics of this type are usually from plastic water
bottles, bags, electronic parts, and equipment made of
polyethylene (Boucher and Friot, 2017). Moreover, both
classes of microplastics are not easily degradable but could
persist as organic-vector pollutants in the environment,
causing havoc to aquatic life and humans. Microplastics can
further degrade into much smaller sizes overtime, the smallest
known to exist are 1.6 μm (6.3 × 10−5) in diameter, and report
states they are frequently found in oceans (Hasenmueller et al.,
2017). This process of breaking down large plastics into smaller
ones is known as fragmentation. It is a crucial source of the
uneven shape of microplastics (Grossman 2015).

On the other hand, nanoplastics (NPs) are polymer particles
within the size range from 1 to 1000 nm that are unintentionally
produced as a result of the degradation of microplastics, and are
capable of exhibiting a colloidal behavior (Gigault et al., 2017,
Gigault et al., 2018; Wagner and Reemtsma, 2019; Wahl et al.,
2021). While degradation of aged-plastic or the fragmentation
particles of especially macro- and/or microplastics is the principal
mechanism of nanoplastics formation in the terrestrial and
marine environments, NPs could be released from intentional
channels such as manufacturing process, washing fibrous
materials, plastic object usage (Bouwmeester et al., 2015;
Gilgault et al., 2018; Hartmann et al., 2019; El Hadri et al.,
2020). According to Gilgault et al. (2018) and El Hadri et al.

(2020), NPs are mono- and polydispersed mix of several
polymeric substances that are capable of undergoing
heteroaggregation with various natural and man-made species
including metal (loids), organic molecules and metal oxides
during the process of formation and transformation in the
environment. Although there are very limited studies on the
sorption potentials and the sparse information associating
chemical additives and organic pollutants with NPs, a recent
study has suggested that the relatively smaller size, morphology,
enhanced surface reactivity and diffusion properties could
influence the sorption behavior of NPs (El Hadri et al., 2020;
Wahl et al., 2021).

Sorption of organic compounds on MNPs increases the
likelihood of these particulates being transported further into
the environment and also may portend complex ecological and
health effects. The capacity for different plastic polymers to
adsorb organic compounds varies with type structures, surface
area (Teuten et al., 2007), size (Koelmans et al., 2013), and
crystallinity (Rusina et al., 2007). However, the sorption
capacity of organic compounds to microplastics varies with
chemical and physical conditions of environment like
temperature, salinity, hydrophobicity, diffusivity (Rusina et al.,
2007; Karapanagioti and Klontza, 2008; Smedes et al., 2009).

This paper provides a detailed overview of the current state of
knowledge on the potential environmental impacts of micro
(nano) plastics and elucidates their interactions with emerging
organic contaminants. The identification of specific sorption
mechanisms and environmental factors could help us better
understand the possible risks associated with contaminant
bioavailability and long-distance transport in aquatic and
terrestrial environments. Furthermore, understanding the
possibilities of desorption of organic compounds into the
marine environment after they have been transported by

FIGURE 1 | Summary of publications on interactions between plastic polymers with contaminants.
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microplastics and the time it takes could also help weigh the
impacts of plastic marine debris on the marine environment and
its organisms. In order to achieve this, we conducted a thorough
search on Scopus and Google Scholar for the terms
“microplastics”, “nanoplastics”, “plastic pollution”, “plastic
marine pollution”, “plastic additives”, “marine litters”,
“sorption in plastics”, and “plastic interaction with organic
contaminants.” A search for sorption mechanisms in
connection with flame retardants, polycyclic aromatic
hydrocarbons, pharmaceuticals and personal care products,
and stabilizers was also conducted. We discovered that
between 2007 and 2020, the number of peer-reviewed articles
rose year after year (Figure 1). We also observed that about
28 peer-reviewed articles provided a descriptive overview of
studies on the interactions of microplastics with organic and
toxic inorganic chemicals.

The mechanisms and factors regulating the interactions and
sorption of microplastics onto hydrophobic organic
contaminants (HOCs) have been widely studied, with many
articles documenting the findings. The microplastics-organic
contaminants interaction is essential for predicting the fate
and vector transport of microplastics in the environment. As a
result, the sorbent-sorbent partitioning mechanism provides
supporting information for determining the behavior of HOCs
on microplastic surfaces, as well as their potential interactions
(Atugoda et al., 2020; Fred-Ahmadu et al., 2020c). Organic
micropollutant sorption onto micro (nano) plastics has been
shown to be a function of plastic type as well as their properties
(Guo et al., 2019). For example, the sorption of HOCs such as
polycyclic aromatic hydrocarbons onto polyethylene (PE)
microplastic pellets have been found to have a proportional
relationship with the octanol-water partition coefficients (Kow)
(Fries and Zarfl, 2012). Microplastic composition and
properties and surface charge have also been shown to play
important roles in regulating their ability to sorb organic
contaminants (Wang et al., 2015; Zhang et al., 2018b).
Furthermore, pH, ionic strength, salinity, sorbate
concentration, and dissolved organic matter have been
reported to play a significant role in the adsorption of
HOCs onto microplastics (Guo et al., 2019; Atugoda et al.,
2020).

To date, no literature reviews dedicated entirely to provide a
broader analysis of HOCs-microplastic interactions and the
evaluation of associated underlying environmental conditions
and sorbate-sorbent assumptions in order to explicate the
partitioning of organic contaminants based on kinetic and
isothermal models. Therefore, this review aims to objectively
examine and summarize existing findings and knowledge on the
interactions of microplastics and HOCs. The specific objectives of
this review were to appraise and synthesize existing scientific
information about: a) microplastic types, composition and their
fate and vector transport in the environment; b) the sorption
mechanisms and major polymeric factors influencing organic
contaminants-micro (nano) plastics (MNPs) interactions; c) the
sorption capacities of organic chemical contaminants to MNPs in
terms of polymeric sorption characteristics including
hydrophobicity, van der Waals forces, π–π bond, electrostatic,

and hydrogen bond interactions; and d) the sorption mechanisms
and dynamics behind microplastics-organic contaminants
interactions using kinetic and isothermal models.

MICROPLASTICS: TYPES, COMPOSITION
AND THEIR ENVIRONMENTAL FATE

Plastics are composed of long-chain polymers that are bound
together by additives. Microplastics of various major shapes,
including fragments, foams, pellets, films, fibers, and
microbeads, are ubiquitous in both aquatic and terrestrial
environments and are extensively used by humans for a
variety of applications. Microfibres and microbeads are
mostly secondary microplastics that are formed as a result
of clothing washing. Microplastic pollution in aquatic
ecosystems is mainly caused by the abundance of fibers,
fragments, films, foams, microbeads, and pellets, which
marine organisms can ingest and also have the potential
for long-distance transport.

Microfibres
Polyesters, polyamides (e.g. nylon), polypropylenes and
polyacrylonitrile (e.g. acrylic) are polymers used to produce
microfibres. They make up 71% of the total microplastic in
the Great Lakes, and they have ranked the third-largest
microplastic pollutant (by weight) in the ocean. They are
secondary microplastics that enter the environment from
clothing, diapers, and cigarette butts. Microfibres enter the
environment through a variety of ways, one of which is
abrasive action on synthetic fishing gear and marine ropes
(Welden and Cowie, 2017). Research funded by Patagonia
shows that 2,000 microfibres get into our waterways by
washing a fleece jacket just once and synthetic textiles can
lose between 0.7 and 1.3 g of microplastic fibers per wash or
over 100,000 microplastic fibers per wash (Kalčíková et al.,
20117). They also quickly enter water bodies through
wastewater discharged from domestic and industrial
washing machines or breakdown of plastic-based textiles
during production or use. According to the report, about
40% of microfibres are estimated not to be filtered out at
wastewater treatment plants, thus they could find their way
into ocean and lakes. Sometimes, sewage sludge could entrap
microbeads from treatment plants which are often used for
fertilizers, thus, causing soil pollution and can eventually be
eroded by rain or wind into the marine environment
(Kalčíková et al., 2017; Jemec et al., 2016). They are non-
biodegradable and usually become persistent pollutants that
not only clog sewage drains but can be harmful to aquatic life.

Microbeads
Microbeads are plastic particles that are less than 1 mm in
diameter. They are primary microplastics intentionally added
to personal care products like facial cleansers, exfoliating soaps,
toothpaste, and cosmetics (Leslie, 2014). Polyethylene,
polystyrene, polypropylene, polylactic acid and polyethylene
terephthalate are synthetic polymers used to make microbeads

Frontiers in Environmental Science | www.frontiersin.org May 2021 | Volume 9 | Article 6785744

Agboola and Benson Organic Chemical Contaminants-Micro(nano)plastics Interactions

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


(Norwegian Environmental Agency, 2014). Microbeads exist as
needs to replace natural ingredients in cosmetic increased
along the years and is reported by the United Nations
Environment Program to first appear in personal products
50 years ago. They are tiny enough to easily pass through
water filtration systems (GESAMP, 2015) ending up in the
ocean and lakes where they clog the digestive tracts of fishes.
A recent study has indicated that up to 94,000 minuscule
beads can be flushed down the drain each time someone uses
a facial or body wash containing microbeads. Recent work by
Napper et al. (2015) showed that microbeads extracted from
cosmetics products have the potentials to adsorb organic
pollutants. A study by Napper et al. (2015) also revealed a
sorption capacity of PE found in microbeads.

Fragments
Fragments are the most common type of microplastics. They
originate from the breakdown of larger pieces of plastics into
smaller pieces after they are discarded into the environment, thus,
secondary microplastics (Eriksen et al., 2014). They are
commonly from pieces of cutlery, lids, or single-use product
made of polyethylene. Studies that identify the onset of
fragmentation are quite little. However, a study shows that
fragmentation of polyethylene films occurs through weathering
and other processes, but most likely on the subjection of plastic to
UV radiation in the presence of atmospheric oxygen (Kalogerakis
et al., 2017). Fragments are tiny in size and can be mistaken for
food or prey by fishes, and most of the ingested plastics found in
the digestive tracts of fishes are in the form of fragments (Lusher
et al., 2013).

Nurdles
Nurdles, also known as pellets, are the second most common
type of microplastic found in freshwater (Mason et al., 2020).
They are the elementary units that make up almost every plastic
product. Polyethylene, polypropylene, polystyrene, and
polyvinylchloride are synthetic polymers used to produce
nurdles. They mostly escape into the environment during
shipping or transfer periods, after which they erode into
water bodies, before getting washed ashore on a beach. The
Environmental Protection Agency, in the early 1990s
recognized nurdles as life-threatening products to fishes and
wildlife. Nurdles are sponge-like materials that absorb toxins
like DDT (dichloro-diphenyl trichloromethane) and PCBs
(polychlorinated biphenyls) and can cause further defects
upon ingestion by fishes.

Foams
Foams are lightweight microplastics commonly used in food
containers, cups, and packing materials. The primary
polymer present in foams is polystyrene. They are bonded
by chemicals that can be released into food, especially when
heated, thus exposing human health to danger. Foams just
like other types of microplastics can act as carriers of
hydrophilic pollutants such as antibiotics (Zhou et al.,
2017), and organophosphorus esters and phthalates due to
their porosity (Zhang et al., 2018a).

PHYSISORPTION, CHEMISORPTION AND
MAJOR FACTORS GOVERNING OF
SORPTION OF ORGANIC CONTAMINANTS
TO MICRO (NANO) PLASTICS

It has been reported that MNPs are capable of serving as vectors
for transporting hydrophobic organic microcontaminants such as
polybrominated diethers (PBDs), polyfluorinated alkyls (PFAS),
polychlorinated biphenyls (PCBs), polycyclic aromatic
hydrocarbons (PAHs), phthalates surfactants, personal care
products (PCPs), pharmaceuticals (tetracycline, ciprofloxacin,
sertraline, propranolol, and sulfamethoxazole) in terrestrial
and aquatic environments (Guo and Wang, 2019; Atugoda
et al., 2020; Benson and Fred-Ahmadu, 2020; Puckowski et al.,
2021). The adhesion of these contaminants to microplastics in the
environment is a function the high surface area to volume ratio
and hydrophobicity of microplastic particles. Furthermore, the
degree of adsorption has been shown by various studies to depend
on the polymeric properties of microplastics including polymer
type, particle size, surface area, charge, crystallinity, compound-
specific factors, and environmental factors including pH, salinity,
ionic strength, and dissolved organic matter (Li et al., 2018; Guo
et al., 2019; Atugoda et al., 2020).

The strong interactions between these contaminants and
microplastics are largely associated with the prevailing
sorption mechanisms. Sorption is an important process that
governs the fate and transport or partitioning of organic
pollutants between solid microplastic particles and water. It
facilitates the accumulation of molecules of contaminants
(adsorbate molecules) in contact with microplastics
(adsorbent) in aquatic or terrestrial environments. The degree
of interaction by which the adsorbates molecules are accumulated
onto the adsorbents defines the nature and type of adsorption.
Furthermore, the mechanism can either be classified as
physisorption (physical adsorption) or chemisorption
(chemical adsorption). Physisorption is the adsorption in
which the molecular interactions between the adsorbate
molecules and the adsorbent are primarily governed by van
der Waals forces whereas chemisorption involves the valence
forces of the kind found in the formation of chemical
contaminants. Worded differently, chemisorption is the
adsorption that takes place if there are chemical bonds
between adsorbate molecules and the adsorbent.

Physisorption is non-specific in nature and is generally
regarded as a weak, reversible process governed by competitive
adsorption and desorption which takes place at different rates at
the heterogenous surface of the microplastics (Heinrich et al.,
2020). According to a report by Atugoda et al., 2020 on the
adsorptive molecular interaction between polyethylene
microplastics and ciprofloxacin molecules, it was observed that
the adsorbate molecules were accumulated and adsorbed onto the
heterogenous polymeric surface of the polyethylene microplastics
through weak van derWaal’s forces and electrostatic interactions.
This implies that the adsorption mechanism between the
molecules of the adorbate and adsorbent were governed
primarily by physisorption accompanied by partitioning into
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the porous monolayer surface of the microplastics (Atugoda et al.,
2020). In general, aliphatic polymers including polyethylene and
polypropylene microplastics particularly have adsorbate-
adsorbent molecular interactions through the van der Waals
forces facilitated primarily by the non-specific functional
groups (Hüffer et al., 2018; Xu et al., 2018). On the other
hand, chemisorption is irreversible and very specific in nature,
and depends primarily on the proportionality of the surface area
(Zhang et al., 2018b). The following are the major polymeric
properties of microplastics affecting the sorption of organic
contaminants.

Plastic Polymers: Types and Composition
The composition of plastics includes synthetic polymers which
are made of units called monomers and can have average
molecular weights up to several million (GESAMP, 2015).
Polymers have long chain-like molecules with robust Van der
Waal attractive forces between them, and these chain-like
molecules contribute to properties such as strength and
fracture toughness, which also makes them degradable to a
limited extent (Andrady, 2011). Chain length also influences
melting point and physical properties like glass transition
temperature (Tg) of a polymer. Polymers are categorized
either as rubber-like polymers or glass-like polymers based on
their glass transition temperature (Hüffer and Hofmann, 2016).
Glass-like polymers have relatively rigid chains, and an example is
a polystyrene. In contrast, rubber-like polymers like polyethylene
have chains that have a high degree of flexibility and lower Tg

which contribute to their environmental fate and sorption
capacity (Ten Hulscher and Cornelissen, 1996; Rogers, 2018).
The structural properties of a polymer that influence their
sorption capacity are surface area, acid-base character, or

molecular chain arrangements which contribute to polymer
crystallinity.

In general, it is imperative to note that during plastic sorption
(chemisorption and physisorption) of chemical pollutants, the
properties of the plastic polymer (micro- and nanoplastics)
coupled with various factors of the environmental matrix
could play major roles in modulating the sorption rate (Fred-
Ahmadu et al., 2020a; Fred-Ahmadu et al., 2020b). The polymer
types and properties, environmental factors and sorption
characteristics that could assist in furthering our
understanding of the mechanisms influencing the sorption
processes is presented in Figure 2 below. Overall, sorption
depends on the type of organic compound being studied and
the weathering process the polymer might have gone through in
the environment which affects size of the polymer and influences
sorption.

Polymer Size and Surface Area
In addition to polymer type, polymer size is a factor that plays a
major role in sorption process of organic pollutants unto micro
and nanoplastics. Plastic polymer size determines the surface area
available for uptake of organic pollutants (Holmes et al., 2012;
Wang and Wang, 2018). While sorption on plastic polymers of
the same size would depend on the polymer type as shown in
study by Rogers (2018), where PE-10 had a higher sorption
capacity than PS-10 In contrast, polymer size is an important
determining factor of sorption process for plastic polymer with
different sizes. Studies have shown that nanoplastics which are
smaller in size have a higher sorption capacity than microplastics
because of the presence of higher specific surface area. However,
further decrease in polymer size could result in aggregation of
plastic polymer particles, thus causing an overall decline in

FIGURE 2 | The main properties of micro (nano) plastic polymers and factors that govern the sorption of organic pollutants.
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specific surface area of available adsorption sites as shown in
study by Wang et al., 2019.

Polymer Crystallinity
Earlier X-ray diffraction analysis of polymers showed that plastic
polymers have structures that vary between ideally crystalline
solids and liquid-like amorphous materials. Synthetic organic
polymers are categorized into three major structure types on the
basis of the different arrangements of their molecular chains.
These are crystalline, semi-crystalline and amorphous polymers
(Zhao et al., 2020). They consist of numerous carbon chains
randomly distributed through the solid structure and linked by
the intermediate amorphous areas (Kavesh and Schultz, 1969;
Frost et al., 2009). The degree of crystallinity of a plastic polymer
is attributed to these polymer carbon chains and their
arrangement. A more ordered and fixed carbon chains suggest
a higher degree of crystallinity which hinders movement of
organic compound molecules, because of higher energy
required for movement, resulting in lower sorption capacity of
such polymer (Karapanagioti and Klontza, 2008). A lower degree
of crystallinity however, suggests an amorphous structure where
carbon chains are disordered, disorderliness in carbon
arrangement promotes free movement of organic compounds
molecules around the structure of the polymer hence influencing
a greater sorption (Hartmann et al., 2017). According to reports,
the crystallinity and rubbery domains of micro (nano) plastics are
capable of influencing the sorption of organic chemical
contaminants to MNPs (Rochman et al., 2013a; Hüffer and
Hofmann, 2016; Zhao et al., 2020).

THE SORPTION MECHANISMS OF
ORGANIC CONTAMINANTS TO MICRO
(NANO) PLASTICS

Hydrophobicity
This is the inability of both microplastics and organic pollutants
to dissolve in water, thus having affinity for each other.
Hydrophobic interaction is one of the predominant sorption
mechanisms influencing the sorption of micropollutants
especially undissociated hydrophobic organic contaminants
(HOCs) to micro (nano) plastics (Llorca et al., 2018; Liu G.
et al., 2019; Tourinho et al., 2019; Wu et al., 2019; Yu et al., 2019).
The hydrophobic nature of microplastics contributes significantly
to the sorption of organic pollutants on MPs, and hydrophobic
interactions are generally associated with the aggregation of
nonpolar molecules to nonpolar micro (nano) plastics in an
aqueous medium (Hüffer and Hofmann, 2016; Liu F. F. et al.,
2019; Tourinho et al., 2019). In general, hydrophobic interaction
would usually increase with the organic pollutant-water partition
coefficient of the sorbate (Zhoa et al., 2020). The organic
pollutants partition between the aqueous phase and the MPs is
explained to be characterized by the linear sorption isotherm
(Zhu and Chen, 2000). Some studies have reported that the
sorption capacity of HOCs such as 17β-estradiol (E2) and
antibiotics is largely regulated by the chemical structures

(amorphous nature and crystallinity) of the polar and
nonpolar MNPs (Zhoa et al., 2020; Liu G. et al., 2019; Li
et al., 2018). In broad terms, increased sorption capacity has
been generally observed for the polar MNPs in comparison with
relatively low capacity indicated for the regular nonpolar MPs
(Zhoa et al., 2020; Wang et al., 2018). However, NPs have been
shown to have strong hydrophobicity and enhanced sorption
capacity to HOCs owing to its increasing surface area ratio
associated with fragmentation and other weathering processes
(Yu et al., 2019). Thus, chemical contaminants with high
hydrophobicity are generally prone to exhibit high adsorption
affinity to micro (nano) plastics (Razanajatovo et al., 2018).

Van der Waals Force
This is the relatively weak electric force between the plastic
polymers and the organic compounds that allow them adhere
to each other. It describes the attraction of intermolecular forces
between molecules. Sorption process usually stem from van der
Waals interaction when they cannot be explained by either
electrostatic interaction or hydrophobic interaction (Wang
et al., 2020). The sorption of chemical contaminants by
aliphatic polymeric sorbents such as polyethylene microplastics
and polyvinyl chloride takes place through van der Waals
interactions (Hüffer and Hofmann, 2016; Fred-Ahmadu et al.,
2020a; Torres et al., 2021).

The Pi-Pi (π–π) Bond Interaction
This interaction contributes to the sorption capacity of plastic
polymers that have benzene rings in their structure (Tourinho
et al., 2019). The π–π electron— donor— acceptor interaction is a
noncovalent attraction between an electron donor and an
electron acceptor either of which could belong to the
microplastic or the organic pollutant (Figure 2). In biomedical
field and biotechnology, the π–π stacking interactions are widely
employed in loading biological and chemical drugs into delivery
systems for controlled release in environmental-responsive
systems (Zhuang et al., 2019). Hüffer and Hofmann (2016)
reported that the enhanced adsorption of pharmaceutical
molecules on polystyrene microplastics could be linked to the
strong interaction between the aromatic moiety of the polymeric
particles (sorbent) and the conjugated π cloud of the aromatic
structure of the adsorbate contaminants. Furthermore, it has been
reported that the intermolecular binding between Naphthalene
(NAP) and naphthalene derivative molecules 1-
Methylnaphthalene NAP-CH3, 1-Naphthoic acid NAP-COOH,
1-Naphthol NAP-OH, and 1-Naphthylamine (NAP-NH2) with
polystyrene microplastics occurred mainly through the π–π
interaction. However, the strength of the π-π interaction was
primarily governed by the presence of functional groups in NAP
derivatives (Liu L. et al., 2016; Yu et al., 2020). Additionally, the
π–π interactions have been reported to play major role in the
sorption of diclofenac, ibuprofen, and naproxen on polystyrene
microplastics (Elizalde-Velázquez et al., 2020), the sorption of
phenanthrene and pyrene on polyurethane microplastics (Zhao
et al., 2020), and the sorption of ciprofloxacin, sulfadiazine, and
trimethoprim on polystyrene microplastics (Li et al., 2018).
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Electrostatic Interaction
Another important and predominant mechanism that governs
the sorption of micropollutants to MNPs is the electrostatic
interaction, which has been widely reported by many studies
(Wang et al., 2015; Guo et al., 2018; Xu et al., 2018; Tourinho
et al., 2019; Wu et al., 2019). Electrostatic interaction owes to the
electric charges that exist between a plastic polymer and an
organic compound. Electrostatic sorption occurs when a
plastic polymer comes in contact with an organic compound
or attracts molecules with an electric charge opposite that of its
own, while an electrostatic repulsion occurs when both plastic
polymer and organic compound have the same electric charge
(Wang et al., 2015; Guo et al., 2018; Xu et al., 2018). The medium
pH and the pH of point of zero charge (pHpzc) are significant
contributing factors to electrostatic interaction. In general, the
adsorbent is negatively charged when the pH is higher than the
pHpzc (Mato et al., 2001; Zhang et al., 2018b; Tourinho et al.,
2019; Xu et al., 2019). In contrast, the adsorbent is positively
charged when the pH is lower than the pHpzc (Wang et al., 2020).
According to a study by Razanajatovo et al. (2018), conducted to
evaluate the sorption and desorption of three pharmaceuticals
including sertraline, propranolol, and sulfamethoxazole on
polyethylene (PE) microplastics in aqueous environment, it
was indicated that electrostatic forces played a major role in
the sorption process. It was reported that the pHpzc of the PE was
lower than the medium pH and accordingly indicated a
negatively surface charge on the microplastic particle. Thus,
the negatively charged molecule of the surface of the
polymeric substance (PE) attracted the oppositely charged of
the pharmaceuticals, and therefore increased the rate of
absorption of the micropollutants unto the microplastic
surface (Razanajatovo et al., 2018; Xu et al., 2018). Conversely,
lower sorption capacity is likely associated with electrostatic
repulsion between the negative charges of microplastics and
contaminants that exhibit anionic characteristics (Razanajatovo
et al., 2018; Tourinho et al., 2019; Xu et al., 2019). Generally, the

electrostatic repulsion or sorption (attraction) between charged
molecules of contaminants and net surface charge on polymers is
primarily influenced by three key factors including the medium
pH, the pH of point of zero charge of the MPs, and the acid
dissociation constant associated with the micropollutant
(Razanajatovo et al., 2018; Tourinho et al., 2019; Puckowski
et al., 2021).

Hydrogen Bond Interaction
This is another factor that contributes to surface sorption on
microplastics. Hydrogen bond interaction is one that involves
hydrogen atoms located in microplastics and organic compound.
The presence of proton donor and proton acceptor groups
influence attraction between organic compound and MPs
(Tourinho et al., 2019). It is a bond that is weaker than an
ionic or covalent bond, but stronger than van der Waals force
(Figure 3). Zhang S. et al. (2019) has reported that specific
hydrogen bonding interaction solely influences the sorption of
naphthalene on polyuria microplastics.

POLYMERS TYPES AND ASSOCIATED
SORPTION MECHANISMS

The six most commonly produced polymers are polyethylene
(PE), high-density polyethylene (HDPE), low-density
polyethylene (LDPE), polyvinyl chloride (PVC), polystyrene
(PS) and polypropylene (PP) (Andrady, 2011; Rochman et al.,
2013a).

Polyethylene (PE)
Polyethylene is the most widely used plastic with a global
production of about 80 million tons (Merrington, 2011). It
comes in low-density polyethylene (LDPE) and high-density
polyethylene (HDPE) that differ in their susceptibility to
weathering and fragmentation. These differences play a

FIGURE 3 | The sorption mechanisms of organic contaminants to microplastics.
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significant role in their fate, behavior and ecological impact in the
environment (Andrady, 2011). The LDPE is soft and ductile with
a density of 0.910–0.925 g/cm3 and a molecular weight of
40,000 Da (Kurtz and Manley, 2009). On the other hand,
HDPE has a density of 0.959–0.965 g/cm3 and a molecular
weight of 100,000–250,000 Da (Kurtz and Manley, 2009). PE is
a thermoplastic that is reusable, cost-effective, and finds
application in films for plastic bags, bottles, milk carton lining,
bowls, and buckets, thus widely used and quickly released into the
environment. A study has showed that PE has a high sorption
capability that stems from its enhanced diffusivity due to their
larger free volume, greater flexibility, and mobility that allows
organic compounds to diffuse quickly through them (Pascall
et al., 2005). Additionally, Razanajatovo et al. (2018) reported
that PE made microplastics adsorb compounds with high
hydrophobicity readily. A report by Uber et al. (2019) shows
that sorption of organic compounds onto HDPE is usually
described by both absorption and adsorption process because
of the glassy properties of this polymer and amorphous segments
of its structure. However, sorption on LDPE, a rubbery polymer is
controlled by its density and low crystallinity (van Krevelen et al.,
2009). Consequently, more side branches imply higher amount of
free volume within its chain network and higher sites for organic
compounds to adhere onto (Peacock, 2000).

Polypropylene (PP)
Polypropylene belongs to the polyolefin family and is considered
one of the most versatile of all polymers as not only does it find
robust applications both as fiber and plastic, but it is also highly
recyclable. The utilization of PP includes the production of
materials like kitchen utensils, athletic apparel, rugs, and car
batteries. PP like PE is a rubbery polymer with higher diffusivity
that enhances sorption (Bakir et al., 2012). Polypropylene is the
second most widely produced plastic polymer after polyethylene
and has a slightly higher chemical resistance than PE (Kenneth
et al., 2005). It is created by polymerization of polypropylene gas,
obtained from high temperature cracking of petroleum
hydrocarbons and propane (Shanmuganathan and Ellison,
2014). Its high flexibility is another property that contributes
to its sorption capacity (Koerner and Koerner, 2018). It has a low
density and high thermal stability. Furthermore, PP has a lower
surface area that influences lower sorption capacity when
compared with PE (Fotopoulou and Karapanagioti, 2012).
Aging and weathering processes lead to increase of this
polymer surface area and effective diffusivity, however,
introduction of oxygen-containing groups during weathering
process increases polarity of the surface, thus eventually
decreasing its sorption capacity (Endo et al., 2005; Zhan et al.,
2016).

Polystyrene (PS)
Polystyrene is the most widely used aromatic thermoplastic
polymer (Lynwood, 2014), with a global production capacity
of 15.5 million metric tons in 2018 and might have a slight
increase reaching 15.56 million metric tons by 2023. They are
non-polar, like PE (Hüffer and Hofmann, 2016). Naturally
transparent and available as foam materials used in packaging

and solid plastics used in medical devices. Generally, their uses
include protective packaging, containers, lids, bottles, trays,
tumblers, and disposable cutlery. The PS just like other
polymers are non-biodegradable as they contain carbon to
carbon bonds that cannot be broken by microorganisms.
However, recent studies show that some organisms can
degrade PS, albeit very slowly (Ho et al., 2017). A research in
2015 showed that mealworms, the larvae form of the darkling
beetle Tenebrio Molitor could digest expanded PS (Yang et al.,
2015). Aumentado also reported that super worms Zophobas
Morio in comparison to Tenebrio Molitor consume more
significant amounts of EPS over more extended periods. The
π-electron system (Nakano, 2010) and amorphous structure
(Frick and Stern, 2013) of PS contribute to its high sorption
capacity.

Polyesters (PES)
Polyesters are synthetic fiber derived from coal and petroleum.
They find the most use in textile industries, food packaging, and
the manufacturing of plastic bottles due to their lightweight,
durability, and resilience. They make up fiber products that do
not significantly get recycled, thus having a higher probability of
ending up in the marine environment (Dris et al., 2017).
Polyethylene terephthalate (PET) is a plastic polymer that
belongs in the polyester group. The presence of positive
functional group and crystalline structure increases the
sorption capacity of PET (Miandad et al., 2018). The film,
intra-particle diffusion, hydrophobic interaction and pH of
solution are some of the significant factors that contribute to
the sorption capacity of PET (Liu G. et al., 2020). It is commonly
used as container for water and packaging products like
beverages, food, cosmetic products, and pharmaceutical
products. Studies have shown that adsorption on PET plastic
polymer is usually accompanied by change in Tg and degree of
crystallinity which results in swelling of the polymer. Sorption on
PET decreases with increase in organic compound present and is
also dependent on the chemical’s microstructure, meaning that
sorption also varies with degree of crystallinity which in turn
varies with change in temperature (Limam et al., 2005). Data
from study by Limam et al. (2005) illustrated that diffusion
coefficient increases with increase in temperature, but
decreases with increase in degree of crystallinity.

Polyvinyl Chloride (PVC)
Polyvinyl chloride is recorded to be one of the most widely
produced polymers. It comes third to polyethylene and
polypropylene (Allsopp and Vianello, 2000). It is frequently
employed in the production of various materials that are
widely used in homes, offices, and schools around the world,
thus making them abundant in the environment. They have
sponge-like properties that enable them to soak up persistent
organic pollutants (POPs). Research shows that PVC has a lower
sorption capacity for POPs compared to other polymers;
Rodrigues pointed out that the size and shape of PVC
polymer particles contribute to its lower sorption capacity.
They have glass-like properties that make them more
condensed and present higher cohesive force. These properties
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lead to a reduction in desorption rates as it creates stronger
adsorption of organic compounds to the adsorption sites
(Rodrigues et al., 2019). However, investigation of sorption
process of tylosin; a PPCP on PE, PP, PS and PVC by Guo
et al. (2018) revealed that PVC had the highest sorption capacity
for tylosin. The high sorption can be attributed to the hydrophilic
property of tylosin.

ORGANIC POLLUTANTS AND THEIR
INTERACTIONS WITH MICRO (NANO)
PLASTICS

Recent studies have shown that microplastics are susceptible to
contamination by organic compounds after long term exposure
and interaction. Sorption is influenced by not only the properties
of plastic polymers but also that of the organic compound getting
sorbed. These properties include hydrophobicity and
hydrophilicity, the surface charge, and the functional groups
(Liu Y. et al., 2020). A research by Hirai et al. (2011) showed
that fragments (10 mm) taken from remote and urban beaches
contained polychlorinated biphenyls (PCBs), polycyclic aromatic
hydrocarbons (PAHs), dichloro-diphenyl-trichloroethane and its
metabolites (DDTs), polybrominated diphenyl ethers (PBDEs),
alkylphenols and bisphenol. PAH and PCBs were suspected to
have been sorbed from seawater and this was owed to the
hydrophobicity of the organic pollutants. Microplastics have
been suggested by recent studies to act as sinks or sources of
organic pollutants. According to regulatory bodies, organic
compounds are priority pollutants when they are persistent,
accumulate in living organisms, and are toxic. These bodies
include the United States Environmental Protection Agency

(USEPA), the American Institute for Environment and Health
(AIEH), and the International Agency for Research on Cancer
(IARC), the European Union (EU). Polycyclic aromatic
hydrocarbons (PAHs), organochlorinated pesticides (OCP)
polychlorinated biphenyls (PCBs), organophosphorus esters,
and phthalate esters (PAEs) are some of these priority
pollutants. These persistent organic pollutants (POP) are
synthetic organic compounds found in both marine and
terrestrial environments (Rios et al., 2007; Benson et al., 2020).
They are hydrophobic and lipophilic compounds, that partition
firmly to solids in the aquatic system and partition to lipids in
organisms. The various types of these chemical additives present
in plastics and their interactions with micro- and nanoplastics are
depicted in Figure 4.

Polycyclic Aromatic Hydrocarbons (PAHs)
Polycyclic aromatic hydrocarbons (PAHs) are pollutants
associated with petroleum and arise from incomplete
combustion of organic materials. (Lima et al., 2005). They
occur naturally in crude oil, the ingredient for plastic; thus,
the plastic being a source of PAHs is expected. PAHs can also
act as a sink for PAHs, due to the hydrophobic nature that does
not allow them to dissolve in water, but rather associate with
particles (Lima et al., 2005). This is why plastics can be used as
measures of PAHs in seawater indirectly (Reitsma et al., 2013). It
is well known that PAHs are largely sorbed onto polyethylene
(Lohmann, 2012), and polyurethane foam (Dmitrienko et al.,
2001). PAHs on ingestion cause short terms effects such as eye
irritation, nausea, vomiting, diarrhea, and confusion. The
long-term effects of exposure to PAHs include jaundice,
cataracts, kidney, and liver damage (Illinois Department of
Public Health).

FIGURE 4 | Organic chemical contaminants and chemical additives adsorbed to plastics.
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For example, Teuten et al. (2007) compared the sorption
capacity of PE, PP, and PVC for phenanthrene from seawater
and recorded that sorption magnitude that followed the order PE
>> PP > PVC. The desorption rate of phenanthrene from these
polymers was also studied in order to understand the
bioavailability of sorbed phenanthrene, and the result
suggested significant desorption rate, thus, confirming the
toxicity of phenanthrene sorbed PE. In addition, Rochman
et al. (2013b) examined polystyrene (PS) as a source and a
sink for polycyclic aromatic hydrocarbons (PAHs) in the
marine environment. This research was conducted to study
the amount of PAHs associated with virgin PS, sorption of
PAHs on PS in the marine environment, and the
concentration of PAHs on different types of plastic debris.
The results suggested that polystyrene particles are vectors for
polycyclic aromatic hydrocarbons, i.e. PAHs are associated with
PS debris through absorption andmanufacturing. The sorption of
PAHs on PS was compared to the sorption on the five most
common polymers high-density polyethylene (HDPE), low-
density polyethylene (LDPE), polyethylene terephthalate
(PET), polypropylene (PP) and polyvinyl chloride (PVC). It
was discovered that PS sorbed higher concentrations of PAHs
than PP, PET, and PVC, similar to HDPE and LDPE.

Rogers (2018) investigated the sorption of 1,3-dimethyl
naphthalene, phenanthrene, and fluoranthene on polyethylene
(PE), polystyrene (PS), and polyester (PES). It was observed that
1,3-dimethyl naphthalene has a higher solubility in water than
phenanthrene and fluoranthene indicating that a higher amount
of 1,3-dimethyl naphthalene remains in the water and lesser
quantity is sorbed on the microplastics. Emily stated that sorption
of phenanthrene and fluoranthene to microplastics could save
marine organisms from the toxicity the PAHs present because
where adsorption is possible, there will be a lesser concentration
of PAH readily available in the marine environment as they
would have been picked up by the microplastics instead. A
possible solution will be capturing the microplastics in the
ocean, with the PAHs sorbed to them. While this appears to
be a good argument, one can add that high solubility of 1,3-
dimethyl naphthalene in the aquatic system rather than its
sorption on microplastics indicates limited long-range
transport of 1,3-dimethyl naphthalene to the marine
environment which in turn reduces the bioavailability of this
particular PAH to marine organisms.

The metrics mass and surface area in agreement with other
studies showed that PE-10 had a higher sorption capacity than
PS-10, irrespective of temperature. This is reflected by PE-10
particle sizes being more massive than PS-10 as shown by
Scanning Electron Microscope (SEM), a higher distribution
coefficient (Kd), and the possible ability of PE to change form
and be more receptive of PAHs. Unfortunately, little could be
concluded from the results of the study about the sorption of
PAHs to polyesters (PES).

Sørensen et al. (2020), studied the relative bioavailability of
MP-sorbed PAHs (fluoranthene and phenanthrene) to two
marine copepod species (Acartia Tonsa and Calanus
finmarchicus) under co-exposure conditions representing those
occurring in the marine environment. The results showed that

adsorption occurred more at lower temperatures and for smaller
microplastics with sizes 10 μm, while absorption was dominant
for microplastics with sizes 100 µm. Results indicated that only
free dissolved PAHs were significantly bioavailable to copepods
under co-exposure conditions with MP-sorbed PAHs because
there was a decrease in the concentration of free PAHs in the
water as more MPs were introduced. Research by Teuten et al.
(2007) showed that amongst the three polymers investigated
which were PE, PP and PVC, PE had the highest sorption
capacity for phenanthrene and sorption followed the order PE
> PP > PVC. Sorption of PAHs was higher for polyethylene
microplastic than for polystyrene microplastic of the same size.
This finding is supported by previous studies where the sorption
of PAHs to PS and PE particles of comparable sizes was
investigated (Wang et al., 2018; Wang and Wang, 2018). The
greater segmental mobility and free volume in the molecular
segments of polyethylene capable of facilitating solute diffusion
into the polymer may be contributing factors to its higher PAH
sorption capacity than polystyrene (Pascall et al., 2005;
Karapanagioti and Klontza, 2008).

Polyhalogenated Compounds
Organochlorides are organic compounds that have at least one
covalently bonded atom of chlorine. They are compounds with
numerous useful applications but are of environmental and
health concerns (Rossberg et al., 2000). They are naturally
occurring in bacteria, plants, and animals from which they
could be isolated. They include dioxins produced during
burning as well as chloromethane that find their way into the
environment by biological decomposition, forest fire, and
volcanoes. Organochlorides have been banned in North
America and Europe due to their toxicity, but they still find
use in the production of Organochlorine pesticides (OCPs) and
Polychlorinated biphenyls (PCBs). OCPs are highly mobile, and
traces have been found in Antarctica, their toxicity varies
according to their molecular size, volatility, and effects on the
central nervous system, they also accumulate in food chains,
causing reproductive problems. Polybrominated diphenyl ethers
(PBDEs) are another example of polyhalogenated compounds,
structurally akin to PCBs consisting of two halogenated aromatic
rings. The levels at which they are found in households are
capable of reducing fertility in humans (Harley et al., 2010)
which is why they have attracted scrutiny. Their industrial
production is restricted under the Stockholm Convention.

Allen et al. (2018), studied the variations in sorption of
organochlorine pesticides (OCPs) and polychlorinated
biphenyls (PCBs) across low-density polyethylene (LDPE),
high-density polyethylene (HDPE), polypropylene (PP),
polyvinyl chloride (PVC), polystyrene (PS), and polyethylene
terephthalate (PET). Results showed that sorption rates for each
contaminant varied widely. Among the six plastic polymers,
LDPE showed the highest sorption for OCPs while both LDPE
and PVC showed the highest sorption rate for PCBs. Polyethylene
terephthalate (PET) showed the lowest sorption for both OCPs
and PCBs. Compared to other similar studies, higher sorption
capacity of PVC could be attributed to the increase in its surface
area due to the filing of microplastic during preparation and
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crystallinity as a result of lack of weathering. The glassy feature of
PET and PVC could, however, result in their lower sorption
capacity for an organic contaminant. In contrast, the rubbery
feature of LDPE and HDPE’s contribute to their high sorption
capacity.

Except for PVC, these results are similar to experimentally
derived plastic-water partition coefficients summarized by other
studies (O’Connor et al., 2014; O’Connor et al., 2016) for a variety
of PCBs and other chemicals, e.g. LDPE ≈ HDPE ≥ PP > PVC ≈

PS. Field studies in the marine environment by Rochman et al.,
2013a also observed relatively low concentrations of PCBs sorbed
to PVC and PET, with higher concentrations of PCBs and PAHs
found in LDPE, HDPE, and PP. Polyethylene terephthalate (PET)
being with the lowest sorption capacity. Scutariu et al. (2019)
examined the sorption processes of organochlorine pesticides
(OCPs) on PET. Results showed that adsorption followed the
order; DDT class (52–58%) > heptachlor class (23%) >

endosulfan class (6–15%)> endrin class (4–12%) > HCHs
isomers class (2–8%). A study by Rocha-Santos and Duarte,
2017 also showed that DDT, DDD, and DDE compounds
exhibited the highest degree of adsorption on PET.

According to (Liu Z. et al., 2020) result in the investigation of
chlorophenols on PET showed that the adsorption process by
PET is controlled by film and intra-particle diffusion.
Hydrophobic interaction was the primary mechanism of
adsorption, but solution pH also played a significant factor in
adsorption capacity. Xu et al. (2019) sorption study of
polybrominated diphenyl ethers on PA, PE, PP, and PS
resulted in adsorption that followed the order PS > PA > PP
> PE. The sorption process and capacity owed to the different
crystallinity, specific surface area, and surface structure of the
microplastics.

Phthalate Esters (PAEs)
Phthalate esters (PAEs) are esters of phthalic acids and chemical
additives used in the production of plastics, making plastics a
source of PAEs in the environment. They are used in enhancing
flexibility, durability, longevity, and transparency of plastics.
However, they are not chemically bound to the polymers of
these plastics and can get leached into the marine environment,
especially at relatively high temperatures (Holahan and Smith
2015; Paluselli et al., 2018; Benson and Fred-Ahmadu, 2020;
Jiménez-Skrzypek et al., 2020). The PAEs include di (2-n-
butoxyethyl) phthalate (DBEP), butylbenzyl phthalate (BBZP),
di (2-ethoxyethyl)phthalate (DEEP), di-ethyl phthalate (DEP), di
(2-ethylhexyl)phthalate (DEHP), di-cyclohexyl phthalate
(DCHP), di-isobutyl phthalate (DiBP), di-methylglycol
phthalate (DMGP), di-methyl phthalate (DMP), di (hexyl-2-
ethylhexyl)phthalate (HEHP), di-n-amyl phthalate (DnAP), di-
n-butyl phthalate (DnBP), di-nhexylphthalate (DnHP), di-n-
nonyl phthalate (DnNP), di-n-octyl phthalate (DnOP), and di
(4-methyl-2-pentyl)phthalate (DMPP) (Benson and Fred-
Ahmadu, 2020). PAEs upon direct or indirect ingestion by
humans can cause disruption of the endogenous hormones
and result in behavioral and reproductive dysfunction
(Diamanti-Kandarakis et al., 2009; Cole et al., 2011; Benjamin
et al., 2017; Benson and Fred-Ahmadu, 2020) PAEs are

endocrine-disrupting compounds (ECDs) that disrupt natural
production, secretion, and metabolic system of the human body
(Diamanti-Kandarakis et al., 2009; Benson and Fred-Ahmadu,
2020) Very little research has been done to study the sorption of
phthalate esters on microplastics.

Liu F. F. et al. (2019) investigated the sorption of phthalate
esters unto three types of microplastic polymers, namely
polyvinyl chloride (PVC), polyethylene (PE), and polystyrene
(PS). According to the study, polystyrene had the highest sorption
capacity for phthalate esters, followed by polyethylene and then
polyvinyl chloride. The higher sorption of PAEs to PS was
suggested to be as a result of the strong π-π interactions
between PS and the two PAEs investigated. The two types of
phthalate esters investigated were diethyl phthalate (DEP) and
dibutyl phthalate (DBP). DEP had lower Kd values than DBP,
indicating that the partition mechanism was governed by
hydrophobic interaction. It was observed that partition was
the primary sorption mechanism as the sorption isotherms of
both DEP and DBP onmicroplastics were highly linear. Chemical
properties of the plastic polymers had the most significant impact
on the sorption behavior of each MP. Natural organic matter and
pH of the solution played no essential role in the sorption of PAEs
on these plastic polymers. However, the salting-out effect caused
by the presence of NaCl (0–600 mM) and CaCl2 (0–300 mM)
increased the sorption rate of DEP and DBP on the microplastics.

Deng et al. (2020) examined the sorption and bioavailability of
four types of PAEs (DEHP, DBP, DEP, and DMP) onto virgin
polyethylene. The study addressed how PE could adsorb PAEs,
transport, and leach them into the gut of a mouse and cause
intestinal accumulation. It was observed that sorption of PAEs
onto virgin PE was in the order of DEHP > DBP > DEP > DMP,
with maximum adsorption 70.27 ± 7.89, 57.13 ± 6.03, 39.15 ±
5.33, and 31.44 ± 4.13 μg/g respectively. Adsorption of these
PAE types on PE is positively correlated with their octanol-water
partition coefficient (Kow) as reported by Bakir et al. (2012).
Accumulation of PAE in the mouse gut also followed the order of
DEHP > DBP > DEP > DMP with maximum accumulation
179.89 ± 14.78, 142.42 ± 9.52, 124.95 ± 8.02, and 106.41 ±

8.58 ng/g dry weight respectively. Increased intestinal
permeability and intestinal inflammation following exposure to
DEHP-contaminated PE for 30 days were observed in the mouse
compared with individual MPs and DEHP according to
biochemical and histological analysis (Deng et al., 2017).

Pharmaceuticals and Personal Care
Products (PPCPs)
In recent years, many synthetic hydrophobic organic chemicals
have found far reaching applications in pharmaceuticals and
personal care products (PPCPs). The broad utilization of these
chemicals has prompted growing concerns over their ecotoxicity
and widespread availability in terrestrial and aquatic
environments as contaminants (Oberg and Leopold, 2019;
Atugoda et al., 2020; Puckowski et al., 2021). Most PPCPs
comprise of complex organic compounds of bioactive
ingredients including pharmaceuticals such as antibiotics
(tetracycline, ciprofloxacin, sertraline, propranolol, and
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sulfamethoxazole), antiseptics, disinfectants, analgesics, and
cytostatic hormones, which when released into the aquatic
environment could exert harmful effects on human health,
biota and the environment (Yin et al., 2017; Dey et al., 2019;
Yang et al., 2021). PPCPs are polar and highly hydrophilic
organic contaminant (Caliman and Gavrilescu, 2009; Ebele
et al., 2017). The sorption strength of PPCPs is largely
influenced by their low volatility and the low octanol–water
partition coefficients (Kow) in aquatic medium. They have
higher percentage sorption particularly to aged microplastics,
because of the increase in surface areas, hydrophilic properties at
the surface and oxygen-containing functional groups of agedMPs
(Zhang et al., 2018b; Liu G. et al., 2019; Zuo et al., 2019)
Partitioning, intermolecular hydrogen bonding, electrostatic
and π-π interactions are the mechanisms that govern
adsorption of pharmaceuticals on microplastics. The pH of
pharmaceuticals in a solution also contributes to their sorption
process as there are variations in the speciation of their cation,
anion, and zwitterion in a specific pH condition (Guo et al., 2018).

Wu et al. (2016) studied the sorption behavior of
pharmaceuticals and personal care products (PPCPs);
carbamazepine (CBZ), 4-methyl benzylidene camphor (4MBC),
triclosan (TCS), and 17α-Ethinyl estradiol (EE2), to polyethylene
(PE) debris (250–280 µm). Hydrophobicity of these selected
PPCPs resulted in linear sorption coefficients (Kow)191.4, 311.5,
5140 and 53,225 l/kg for CBZ, EE2, TCS, and 4MBC respectively.
Enhanced sorption resulting from the salting-out effect was only
observed for TCS on the increase in salinity from 0.05 to 3.5%,
while the sorption for 4MBC, CBZ, and EE2was not affected by the
saline condition. However, the strong affiliation of 4MBC, EE2, and
TCS toAldrich humic acid (HA) resulted in a reduction of sorption
for those three PPCPs. Overall results suggested that polyethylene
may play an essential role in the fate and transport of PPCPs.

Magadini et al. (2020) reported the results of in-situ
experiments in New York City waterways to investigate the
adsorption of pharmaceuticals; atenolol, sulfamethoxazole, and
ibuprofen on to eight types of test materials (pellets from five
types of widely-used polymers, small pieces of straws, fragments
of bags, and glass beads for control). Adsorption coefficients were
calculated based on mass and surface area for each type of
material. Greater surface area to mass ratio of straw and bag
samples influenced higher values for their mass-based
coefficients. In contrast, surface area-based coefficients were
predominant among the plastic materials tested as well as
glass beads. This result is an indication that surface area is a
major determining factor for adsorption of pharmaceutical
irrespective of the material type. It was also observed that
rapid biofouling and formation of biofilms are factors that
control the adsorption of pharmaceuticals onto plastics.

Daugherty et al. (2016) examined the effects of dissolved
organic matter (DOM) on the sorption process of tonalide, 4-
methyl benzylidene camphor (4-MBC), triclosan, and β-estradiol
on aged polypropylene and polyethylene. Results showed thatmatrix
composition and polymer type affected the sorption process, while
compound hydrophobicity was themajor contributing factor. DOM,
however, variedly affected the sorption process based on the
examined compounds. For example, sorption of 4-MBC was

enhanced, while DOM inhibited that of tonalide. Polypropylene
(PP) had a higher sorption capacity for the pollutants than
polyethylene. However, sorption on PP microplastics was weaker,
due to the presence of DOM that might have competed for the
adsorption area. Thus, pollutants on PPmicroplastics could be more
bioavailable to marine life.

Studies by Goedecke et al. (2017) showed sorption of
metformin, a type-2 diabetes drug, and difenoconazole, a
fungicide, onto virgin polymers polyamide (PA), polypropylene
(PP), and polystyrene (PS). The influence of polymer properties,
pH, salinity, and agitation on the sorption process was studied. PP
was cryo-milled to increase its surface area, and PA was chemically
pre-treated to simulate a loss of molecular weight. Sorption
capacity followed the order PS > PP > PA, and it was observed
that sorption was strongly governed by agitation, the effect of
salinity was little, and pH seemed least relevant. Ašmonaitė et al.
(2020) compared the ability of two polymers (PE and PS) and
naturally occurring silica particles to act as a vector for exposure to
17α-ethinylestradiol, chlorpyrifos, and benzo (α) pyrene in fish.
The study showed that while there was a moderate transfer of
hydrophobic organic contaminants into fish through silica
particles, PS and PE particles facilitated the higher chemical
transfer and tissue accumulation of 17α-ethinylestradiol and
chlorpyrifos. PS had higher sorption than PE, and this was
attributed to its surface area. Guo and Wang (2019) study on
the sorption of sulfamethoxazole (SMX), sulfamethazine (SMT),
and cephalosporin C (CEP-C) in freshwater and seawater onto the
naturally aged microplastics [polystyrene (PS) and polyethylene
(PE)], showed that sorptionmechanisms were hydrophobicity, van
der Waals, and electrostatic. Liu F. F. et al. (2019) investigated the
sorption behaviors and mechanism between hydrophilic
ciproflaxin (CIP) on pristine and UV-accelerated aged PS and
PVC. Sorption capacity of aged microplastics was higher than that
of pristine microplastics. Physical interactions, including
electrostatic interactions from pH influence that resulted in a
different charge of CIP, partitioning, and intermolecular
hydrogen bonding, were the dominant mechanism. Table 1

summarizes the previous studies on the characteristics of
microplastics and organic chemical pollutants sorbed to
degradable polymeric particles.

MODELING PHYSICAL AND CHEMICAL
ADSORPTION OF CONTAMINANTS TO
MICRO (NANO) PLASTICS

The kinetic and isothermal models are valuable tools that have
been used in several studies in understanding the desorption and
adsorption dynamics of sorbates (mainly chemical contaminants)
in terms of order of the rate constant (Cazetta et al., 2011). A
variety of kinetic models exists but the most common adsorption
kinetics used in micro (nano) plastics-adsorbents studies are the
first-order adsorption kinetic model (Skrip et al., 2013;
Razanajatovo et al., 2018; Fred-Ahmadu et al., 2020c), pseudo-
second-order model (Liu X et al., 2018; Razanajatovo et al., 2018;
Wang and Guo, 2020), intraparticle diffusion model (Guo et al.,
2019; Qiu et al., 2019), and film diffusion model (Hameed et al.,
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2008; Hu et al., 2011; Martins et al., 2015; Zhang et al., 2018b; Qiu
et al., 2019; Wu et al., 2020). On the other hand, sorption
isotherms are valuable tools used in evaluating the distribution
of the sorbent molecules between the solid phase and the liquid
phase in a system at equilibrium. The isothermal sorption model
can effectively identify the adsorption processes and elucidate the
interaction mechanisms between the sorbates and sorbent
molecules (Guo et al., 2019; Wu et al., 2020). The commonest
types of linear isothermal sorption models used include the linear
adsorption model (Henry’s law) (Bakir et al., 2014; Hüffer et al.,
2018; Razanajatovo et al., 2018; Qiu et al., 2019), Freundlich model
(Hamdaoui and Naffrechoux, 2007; Teuten et al., 2007; Razanajatovo
et al., 2018; Vieira et al., 2021), Langmuir model (Langmuir, 1916;
Hamdaoui and Naffrechoux, 2007; Gonçalves et al., 2020; Yazidi
et al., 2020; Vieira et al., 2021), Temkin adsorption model (Temkin,
1941; Hamdaoui and Naffrechoux, 2007; Tan et al., 2009; Ayawei
et al., 2017; Wang and Guo, 2020), Elovich adsorption models
(Elovich and Larinov, 1962; Hamdaoui and Naffrechoux, 2007),
and Dubinine-Radushkevich adsorption model (Yang et al., 2006;
Hu and Zhang, 2019; Wang and Guo, 2020).

First-Order Adsorption Kinetic Model
The first-order kinetic model postulated by Lagergren in 1898
(Lagergren, 1898) has been widely used to explore the adsorption
kinetic data of chemical micropollutants by polymers
(Valderrama et al., 2008; Ocampo-Pérez et al., 2012, Ocampo-
Pérez et al., 2015; Razanajatovo et al., 2018). The first-order
kinetic model equation is expressed differentially as:

dq

dt
� k1(qe − q) (1)

The integration of Eq. 1 using the boundary conditions, t �
0— t and q � 0 yields a nonlinear form of Lagergren’s first order
rate equation as follows:

qt � qe(1 − e−k1t) (2)

where qt and qe represents the concentrations (µg/g) of chemical
pollutants sorbed to the MNPs at time t and at equilibrium,
respectively. The rate constant (g μg−1 h−1) of the first-order
kinetics is given by K1.

Pseudo-Second-Order Kinetic Model
The second-order kinetic model is expressed using the following
differential equation:

dq

dt
� k2(qe − q)2 (3)

Thus, integrating Eq. 3 and using the initial conditions as q � 0, t �
0— twould yield the following nonlinear form of the pseudo-second-
order equation as indicated below (Blanchard et al., 1984):

qt �
q2e × K2t

1 + (qe × K2t) (4)

where qt is the adsorbed amount (µg g−1) at time t, qe is the
adsorbed amount (µg g−1) at equilibrium, and K2is the rate
constant (g μg−1 h−1) of the second-order kinetic model.

Intraparticle Diffusion Model
The adsorption kinetic data can be evaluated using the
intraparticle diffusion model which is represented by the
following equation (Weber and Morris, 1963):

qt � kp ×
�
t

√
+ Ci (5)

where qt � the concentration of the chemical contaminant
adsorbed to MNPs at time t, kp � the rate constant (h−1) of
the intraparticle diffusion model, and Ci � the intraparticle
diffusion constant associated with the thickness of the
boundary layer. This model assumes that physisorption
mechanism takes place as a result of the diffusion of adsorbate
molecules into the pores of polymer adsorbents (Guo et al., 2019).

Film Diffusion Model
The film diffusion kinetic model (FDM) can also be used to
describe the possible adsorption interactions between MNPs and
sorbate molecules (Martins et al., 2015; Zhang et al., 2018b). The
FDM kinetics basically describes the “diffusion across liquid film”

following the characteristic movement of sorbates across
concentration gradients of solid subsurface regions, and the
existence of adsorption by external film mass transfer followed
by intraparticle pore diffusion to the surface of adsorbates (Boyd
et al., 1947; McKay and Allen, 1980; Quek and Al-Duri, 2007;
Plazinski, 2010). The nonlinear form of the film diffusion model
equation is expressed as:

Bt � −ln(1 − qt

qe
) − 0.4977 (6)

where Bt is the Boyd constant, qt is the adsorbed amount at time t,
and qe is the adsorbed amount at equilibrium. However, the Boyd
equation can be employed in predicting the rate-limiting step
associated with either the intraparticle diffusion or film diffusion
adsorption processes (Rocha et al., 2012; Martins et al., 2015).
Using kinetic data from a study, a plot of Bt against time t would
yield the Boyd plot and this could be used in identifying if the
rate-limiting step is governed by film diffusion adsorption or
intraparticle diffusion. The interpretation follows that if the
experimental datapoints fit linearly and the line passes
through the origin, then it could be deduced that the
intraparticle diffusion involves the rate-limiting step of
adsorption process, or else, the film diffusion governs the
adsorption mechanism if the line of best fit passes further
away from the origin (Hameed et al., 2008; Hu et al., 2011;
Qiu et al., 2019; Wu et al., 2020).

Linear Adsorption Model
The linear isothermal model otherwise known as Henry’s law
represents the fundamental adsorbate-adsorbent isotherm in
which the sorbed amount at equilibrium relates linearly with
the equilibrium concentration of the adsorbate on the adsorbent
(Ayawei et al., 2017; Qiu et al., 2019). The linear model is an
empirical isothermal equation which describes appropriate fitting
of the adsorbate adsorption capacity when the initial adsorbate
concentration is relatively low (Ruthven, 1984). The model has
been widely used in understanding the partitioning of chemical
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pollutants between the solid and liquid phases (Bakir et al., 2014;
Hüffer et al., 2018; Razanajatovo et al., 2018; Qiu et al., 2019;
Wang and Guo, 2020). The linear model equation is as follows:

qe � KH × Ce (7)

where qe (µg g−1) and Ce (µg L−1) � the adsorbed amount and
adsorbate concentrations at equilibrium, and KH (L µg−1) � the
Henry’s constant (partition coefficient).

Freundlich Adsorption Model
The Freundlich model is an empirical adsorption model that can
be used to explore the adsorption or equilibria data into
heterogenous surfaces, which is applicable to mono- and
multilayer sorption and relates to the occupation of high-
energy sites first (Yang, 1998; Hamdaoui and Naffrechoux,
2007; Teuten et al., 2007; Vieira et al., 2021). The Freundlich
isothermal model is considered as an empirical equation that
relates the adsorbate-adsorbent interactions on an heterogenous
surface with adsorbing particles having variable adsorption
affinities (Hameed et al., 2008; Foo and Hameed, 2010;
Martins et al., 2015). The model is given by (Freundlich, 1906):

qe � kf × C
1
n
e (8)

where qe (µg g
−1) and Ce � (µg L−1) the amount of the chemical

contaminant adsorbed to MNPs in the solid phase and in the
aqueous phase at equilibrium, kf is the Freundlich sorption
coefficient, which is corresponds to the relative sorption
capacity of the polymer adsorbent, n is the Freundlich
isotherm exponent (dimensionless), which determines the
nonlinearity (Tolls, 2001; Hamdaoui and Naffrechoux, 2007).
The Freundlich model could basically be used in describing the
nonlinear sorption between the adsorbates and adsorbents. In
general, the higher the concentration of the adsorbates, the higher
the affinity of the adsorbates on the surface of the adsorbents.
Moreover, the linear form of this model is expressed by the
following equation:

ln qe � ln kf + (1
n
× lnCe) (9)

However, it is important to explore the sorption isotherm by
evaluating the optimum adsorption capacity between the MNPs
and sorbates using variable weights of the adsorbent with
constant initial amount Co of the absorbates. Consequently, ln
qmax is equivalent to the extrapolated of ln q for C � Co. Therefore,
following Halsey (1952), Eq. 6 can be expressed as follows:

kf �
qmax

C
1
n
0

(10)

where qmax � the Freundlich maximum adsorption capacity
(µg L−1), and C0 � the initial concentration of the absorbates
in the bulk solution (µg L−1). The Freundlich isothermal model
has been relates the porosity and heterogeneity of micro (nano)
plastic surface in understanding the sorption interactions
between organic pollutants and MNPs. Several studies have
reported that the Freundlich model could fit the sorption
isotherms of organic chemical contaminants (sorbates) such

antibiotics (propranolol, sertraline, sulfamethoxazole)
(Razanajatovo et al., 2018), persistent organic pollutants
(dichlorodiphenyltrichloroethane, phenanthrene and
perfluorooctanoic acid) (Bakir et al., 2014), 2,2′,4,4′-
tetrabromodiphenyl ether (Wu et al., 2020), polyhalogenated
carbazoles (3-bromocarbazole, 2,7-dibromocarbazole, 3,6-
dibromocarbazole, 3,6-dichlorocarbazole, 3,6-diiodocarbazole)
(Qui et al., 2019) to MPs surfaces.

Langmuir Adsorption Model
The Langmuir adsorption model postulated by Langmuir (1916)
describes the sorption relating to homogeneous surfaces on which
the micropollutants will express high sorption affinity and form
monolayers with specific sorption sites of the MNPs (Hamdaoui
and Naffrechoux, 2007; Gonçalves et al., 2020; Yazidi et al., 2020;
Vieira et al., 2021). The nonlinear equation of the Langmuir
model can be described as:

qe �
qmax × b × Ce

1 + [b × Ce]
(11)

where qe (µg g−1) � the concentration of the chemical
contaminant adsorbed to MNPs in the solid phase at
equilibrium, Ce (µg L−1) � the concentration adsorbed in the
aqueous phase at equilibrium, qmax � the maximum adsorption
capacity (µg g−1), and b � the Langmuir constant associated with
the free energy of absorption (L µg−1). Moreover, the Langmuir
isotherm can be transformed into other linear equations as
follows:

qe � − 1
b
× qe

Ce

+ qmax (12)

1

qe
� 1

(b × qmax) ×
1

Ce

+ 1

qmax
(13)

1

Ce

� (b × qmax) 1

(qe) − b (14)

Ce

qe
� 1

qmax
× Ce +

1

(b × qmax) (15)

qe

Ce

� −(b × qe) + (b × qmax) (16)

Temkin Adsorption Model
The Temkin isotherm equation formulated by Temkin
(1941) as an adsorption model assumes that adsorption is
a multi-layer process characterized by uniform aggregation
of binding energies, up to maximum binding energy
(Temkin, 1941). It presumes that the heat of adsorption
of aggregate molecules of adsorbate in the layer decreases
linearly with increase in surface coverage on account of the
adsorbate-adsorbent interactions on the adsorption process
(Hamdaoui and Naffrechoux, 2007; Tan et al., 2009; Ayawei
et al., 2017; Wang and Guo, 2020). Additionally, the model
ignores the relatively high and low concentrations of the
adsorbate in the liquid phase during the adsorption process
(Hamdaoui and Naffrechoux, 2007). Temkin model is
expressed as:
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qe �
RT

b
× lnKTCe (17)

However, the linearized form of the Temkin isotherm model
can be expressed as follows:

qe �
RT

b
× lnKT + RT

b
× lnCe (18)

where R � the universal gas constant (kJ mol−1 K−1), T � the
temperature (K), b � Temkin constant associated with the energy
of adsorption, and KT � the Temkin equilibrium constant
(L µg−1).

Elovich Adsorption Model
The Elovich isotherm model is widely used to describe the
multilayer adsorption process of substances on heterogeneous
surfaces (Elovich and Larinov, 1962). It is based on the kinetic
principle which presumes that adsorption sites increase
exponentially with adsorption (Hamdaoui and Naffrechoux,
2007). The Elovich isotherm can be expressed as follows:

qe

qmax
� KE × Ce × exp

(− qe/qmax
)

(19)

However, the linear form of the Elovich isotherm is
expressed as:

ln
qe

Ce

� ln KE × qmax −
qe

qmax
(20)

where qe is the adsorbed amount (µg g−1) at equilibrium, Ce

(µg L−1) � the concentration adsorbed in the aqueous phase at
equilibrium, KE � the Elovich equilibrium constant (L µg−1), and
qmax � the Elovich maximum adsorption capacity (µg g−1). The
KE and qmax can be calculated from the slope and intercept of the
plot of ln qe

Ce
vs. qe provided the adsorption interactions between

the sorbent and sorbates obeys Elovich equation.

Dubinine-Radushkevich Adsorption Model
The Dubinine-Radushkevich (D-R) adsorption model plays an
important role in explaining the physicochemical properties of
the sorption process through the estimation of the free energy of
sorption on heterogeneous surfaces (Ayawei et al., 2017;Wu et al.,
2020). The D-R isotherm model is widely used to explain single-
solute adsorption and to account for the effect of the porosity of
heterogenous adsorbent surface (Alberti et al., 2012; Hu and
Zhang, 2019). The isotherm model is based on the adsorption
potential theory and the assumption that the adsorption process
is comparable to the micropore volume filling and the
equilibrium of the adsorption in a particular adsorbent-
adsorbate interaction follows a Gaussian energy distribution
(Dubinin and Radushkevich, 1947; Dąbrowski, 2001;
Inglezakis, 2007; Wang and Guo, 2020). The nonlinear
Dubinine-Radushkevich model can be expressed as follows:

qe � qmax exp
−(βε2) (21)

Moreover, the linear form of the D-R isothermal model is
expressed as:

ln qe � ln qmax − βε2 (22)

Therefore, the adsorption potential, ε, involving the
adsorption from aqueous solution is given as:

ε � RT × ln(Cs

Ce

) (23)

where qmax (µg g−1) � the maximum adsorption capacity, qe
(µg g−1) � the amount of adsorbate adsorbed per unit mass of
adsorbent at equilibrium, ε (kJ mol−1) � the adsorption potential
based on Polanyi’s potential theory, β (mol2 kJ−2) � a constant
related to the adsorption energy, T (K) � absolute temperature, R
(8.314 J mol−1 K−1) � universal gas constant, Cs (µg L−1) � the
solubility of adsorbates, and Ce (µg g−1) � concentration of
adsorbate at equilibrium (Yang et al., 2006; Hu and Zhang,
2019; Wang and Guo, 2020). The Dubinine-Radushkevich
adsorption isotherm is an important model employed to
differentiate physisorption from chemisorption (Atugoda et al.,
2020).

Classically, the factors influencing the sorption potential of
micropollutants onto plastic particles is a function of the
polymeric properties of micro (nano) plastics,
micropollutant’s characteristics, and solution chemistry of
the environmental matrix including the pH, salinity, and
dissolved organic matter (DOM) (Daugherty et al., 2016).
Worded differently, the sorption capacity of chemical
contaminants onto micro (nano) plastics will vary as the
environmental matrix conditions changes. The maximum
adsorption efficiency of 3-dimensional reduced graphene
oxide onto PS microplastics has also been shown to be
influenced by the concentration of ionic species, pH,
matrix temperature, initial concentration of sorbate, and
adsorption time (Yuan et al., 2020). According to this
report, the Langmuir adsorption isotherm model and the
pseudo-second-order kinetic model indicated a chemical
adsorption mechanism influenced primarily by strong π–π
interaction through electrostatic attraction and physical
retention. The influence of DOM on the adsorption of
oxytetracycline to weathered microplastic polystyrene
foams using humic acid (HA) and fulvic acids (FA) as the
two representative dissolved organic materials have been
reported by Zhang et al. (2018b).

The report investigated and reported the influence of dissolved
organic matter (DOM) on the adsorption of oxytetracycline to
virgin as well as weathered microplastic PS foams using fulvic
acids (FA) and humic acid (HA) as DOM representatives. The
studies report that the oxytetracycline sorption to weathered PS
foams significant varied with change in pH, ionic strength and
the concentration of HA. Based on the Freundlich isotherm
model, the sorption capacity coefficient Kf value of
oxytetracycline increased considerably from 2420 (mg kg−1)
(mg L−1)1/n (10 mg L−1 HA) to 3640 (mg kg−1) (mg L−1) 1/n

(30 mg L−1HA) and 5340 (mg kg−1) (mg L-1)1/n (50 mg L−1HA)
over an increasing concentration of HA for weathered
microplastic PS foams. However, the sorption capacity
decreased to 3940 (mg kg−1) (mg L−1)1/n when the
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concentration of the organic matter HA was raised to 100 mg
L−1. On the contrary, with increase in the concentration of fulvic
acid from 10 to 100 mg L−1, the sorption capacity coefficient
slightly decreased from 1580 (mg kg−1) (mg L−1)1/n (10 mg L−1

FA) to 1450 (mg kg−1) (mg L−1)1/n (30 mg L−1 HA), and later
increased slightly from 1670 (mg kg−1) (mg L−1)1/n (50 mg L−1

HA) to 1980 (mg kg−1) (mg L−1)1/n (100 mg L−1 HA) (Zhang
et al., 2018b). Li et al. (2018) recently reported the sorption of
multiple antibiotics, including amoxicillin, ciprofloxacin,
tetracycline, sulfadiazine, and trimethoprim, by polyethylene,
polyamide, polypropylene, polystyrene, and polyvinyl
chloride microplastics, indicating that the sorption
processes involved various MPS-antibiotics interaction
mechanisms, such as van der Waals force, electrostatic and
hydrophobic interactions, and hydrogen bonding. On the
other hand, π-π interactions, electrostatic and hydrophobic
interactions have been identified as the primary partitioning
mechanisms regulating the sorption capacity of tetracycline
by polypropylene, polystyrene, and polyethylene
microplastics (Xu et al., 2018).

Several studies have also shown that rising temperature
improves sorbates-MPs sorption, implying that the number of
active surface sites on microplastics may increase as the
temperature of the environmental matrix increases (Choi
et al., 2020; Lin et al., 2021). For example, Lin et al. (2021)
showed that with an increase in temperature to 313 K, the
Langmuir partition coefficient (Qmax) and Freundlich partition
coefficient (Kf) increased slightly from 1.01 to 1.58 μmol g−1 and
0.01–0.03 (µmol g-1) (µmol L−1)1/n, respectively, for virgin
polystyrene microplastics.

In general, most isotherm models such as the Langmuir model
is technically constrained by many environmental conditions and
sorbate-sorbent assumptions, including homogeneous surfaces
on which the micropollutants will show high affinity and
form monolayer sorption with specific sites on microplastics
(Chen et al., 2017). Besides, the Freundlich model presumes
adsorbate-adsorbent interactions on heterogeneous
adsorbent surfaces and extend to both mono- and multi-
layer sorption on MPs (Saadi et al., 2015). For example, Lin
et al. (2021) used several kinetic models to investigate the
mechanisms and factors governing the sorption of tetracycline
by virgin polystyrene microplastics and polystyrene-
hexabromocyclododecane composite microplastics. According to
the findings, intra-particle diffusion and film diffusion were the key
influencing factors for tetracycline sorption into polystyrene-
hexabromocyclododecane composite and polystyrene,
respectively. However, to further provide a broader analysis of
the sorption process and elucidate the sorption mechanisms and
governing factors linking microplastics-tetracycline interactions,
statistical physics models were employed. The findings
explicated that the sorption mechanism was linked with the
formation of monolayer through multi-molecular and non-
parallel processes. In general, multiple mechanisms,
including hydrophobic interaction and π-π interactions,
collectively govern the sorption of tetracycline onto
polystyrene-hexabromocyclododecane composite and
polystyrene microplastics.

PREVALENCE AND IMPACTS OF MICRO
(NANO) PLASTICS IN THE ENVIRONMENT

Micro (nano) plastic particles and hydrophobic waterborne
contaminants are two types of pervasive micropollutants found
in marine ecosystems and terrestrial environments, mostly in
water columns, sediments, beach coastlines, coastal seawaters,
and within mid-abysmal ocean gyres, and their abundances, fate
and vector transports and interactions have piqued the attention
of researchers around the globe (Schwarzenbach et al., 2006; Cole
et al., 2011; Brach et al., 2018; Benson and Fred-Ahmadu, 2020;
Benson et al., 2020; Fred-Ahmadu et al., 2020b; Pereira et al.,
2020; Li et al., 2021). Microplastic ingestion by marine animals
has been widely documented, a phenomenon that may allow the
transmission of hydrophobic organic compounds or toxic
chemical additives to humans via the marine food web.

Plastic particles in aquatic environments could be found as
fragments of 1 μm in diameter and 15 μm in length, rendering
them increasingly ingestible by several smaller planktonic marine
animals present in pelagic and benthic ecosystems (Frias et al.,
2010; Cole et al., 2011). Although these microfibers could be
potentially harmful to aquatic life because they can cluster, knot
and interfere with animal activity, these plastics can typically
prevent egestion once swallowed (Murray and Cowie, 2011). In
both of these scenarios, the probability of voluntary ingestion of
microplastics by aquatic animals, mistaking them for prey, is
high. Microplastic uptake by higher trophic animals may also
occur as a result of consuming lower trophic organisms that have
ingested microplastic particles (Fendall and Sewell, 2009; Farrell
and Nelson, 2013; Setälä et al., 2014; Brennecke et al., 2015;
Pannetier et al., 2020).

The potential risk that could also be associated with ingestion
of microplastics by aquatic organisms may be attributed to the
leaching of inherent contaminants from the microplastics, as well
as the release of the extraneous toxic chemicals compounds that
may have adhered to the microplastic debris. Evidence of the
availability and contamination impacts of such chemicals has
been highlighted by many researchers. The adverse effects of
microplastics on fishes and large aquatic animals, zooplankton,
phytoplankton, microalgae, crustaceans, and seabirds have been
widely reported (Boerger et al., 2010; Kögel et al., 2019; Ma et al.,
2020; Corinaldesi et al., 2021; Wang et al., 2021), at the
population levels (e.g., fertility, mortality, growth and
organismal development, feeding activity) (Zarfl et al., 2011;
Sussarellu et al., 2016; Heindler et al., 2017; Mouchi et al.,
2019; Chapron et al., 2020; Liu G. et al., 2020; Issac and
Kandasubramanian, 2021), cellular (e.g., motility; cell
fragmentation, membrane stability, apoptosis) (Von Moos
et al., 2012; Sun et al., 2019; Han et al., 2020; Tallec et al.,
2020), and molecular levels (e.g., mortality, gene expression,
stress defense, and oxidative stress effects) (Balbi et al., 2017;
Liu Z et al., 2018; Yu et al., 2018; Sendra et al., 2020; Capolupo
et al., 2021). Corals readily ingest polypropylene microplastics
upon exposure to plastic particles, resulting in a variety of
biological implications ranging from feeding dysfunction to
mucus formation and distorted gene expression (Corinaldesi
et al., 2021). These multiple effects mean that microplastics, at
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TABLE 1 | A summary on characteristics of microplastics and organic pollutants sorbed to microplastics in previous studies.

Year

of

study

Study

area

Type

of marine

ecosystem

Microplastic

abundance

Polymer

types

Composition

of polymers

Type

of POP

Method of

identification

References

2020 Lagos, Nigeria Beaches Fiber, pellets,

fragments (foam

and hard)

PET, PS,

and PP

Aliphatic carbon

atoms

PAEs (DEHP, DnBP,

and DMP)

GC-MS Benson and

Fred-Ahmadu

(2020)

2020 Southwest coast of taiwan Estuary,

seawater

Fragments PE Aliphatic carbon

atoms

PAHs GC-MS Chen et al.

(2020)

2020 China River and bay Fragments PE, PS,

and PET

Aliphatic carbon

atoms

PCBs GC-MS Fraser et al.

(2020)

2020 Belgrade, Serbia River Fiber and

fragments

PP,

and PES

Aliphatic carbon

atoms

ACE, CAP, and FLU HPLC Šunta et al.

(2020)

2020 New York city Waterways Pellets from

straws, bags

and beads

PE, PP,

PVC, PET,

and PS

Aliphatic carbon

atoms, and

heterochain

polymer

Atenolol,

sulfamethoxazole,

and ibuprofen

Magadini et al.

(2020)

2020 Barcelona, blanes, and cap

de creus, Spain

Seawater Fragments,

fiber, and

nurdles

PP, PE,

and PS

Aliphatic carbon

atoms

OPFRs LC-MS/MS Garcia-Garin

et al. (2020)

2020 Qingdao, China Bay and

seawater

Microbeads PS Aliphatic carbon

atoms

BDE-209 GC-MS Xia et al. (2020)

2019 Beijing, China River Film, fragments,

foam, fiber

PE, PP,

PS, PVC,

and PET

Aliphatic carbon

atoms, and

heterochain

polymer

PAHs GC-MS Tan et al. (2019)

2019 New Jersey, United States. River and

Bays

Fragments PE, PP,

and PS

Aliphatic carbon

atoms

PPCPs HS-SPME/GC-

ITMS

Ravit et al.

(2019)

2018 Germany Seawater Fragments LDPE Aliphatic carbon

atoms

BaP, and PFOS UPLC-QMS,

and GC-MS

O’Donovan

et al. (2018)

2018 North China Beach Foams PS Aliphatic carbon

atoms

Oxytetracycline HPLC and

UPLC

Zhang et al.

(2018b)

2017 China River Pellets LDPE,

POM,

and PP

Aliphatic carbon

atoms and

Heterochain

polymer

DDTs, PAHs, and

PCBs

GC-MS Wu et al. (2017)

2017 Northern China Beaches Pellets, foams,

fragments, and

flakes

PE, PS

and PP

Aliphatic carbon

atoms

OPEs and PAEs GC-MS Zhang et al.

(2018a)

2016 St. George’s, Bermuda.

New England

Beach fragments PE and PP Aliphatic carbon

atoms

Tonalide, 4-MBC,

β-estradiol, and

triclosan

GC-MS Daugherty et al.

(2016)

2016 Hirtshals, Denmark Seawater Pellets LDPE Aliphatic carbon

atoms

PCBs, and BFRs LC-MS/MS

and HPLC-MS

Granby et al.

(2018)

2014 Korea Artificial

Seawater

PE, PP,

and PS

Aliphatic carbon

atoms

PAHs, HCHs, CBs GC-MS Lee et al. (2014)

2013 California, United States Bay Fragments PET,

HDPE,

PVC,

LDPEPP.

Aliphatic carbon

atoms

PCBs and PAHs GC-MS Rochman et al.

(2013a)

2013 California, United States Bay Pellets PS Aliphatic carbon

atoms

PAHs GC-TOF-MS Rochman et al.

(2013b)

2011 Tokyo, Japan Open ocean

and beaches

Fragments PP and PE Aliphatic carbon

atoms

PCBs, PAHs,

PBDEs, POPs and

metabolites (DDTs)

GC-MS Hirai et al.

(2011)

2010 Portugal Beaches Fragments PE and PP PAHs, PCBs, and

DDTs

GC-MS Frias et al.

(2010)

2008 Lesvos island, Greece Beaches Pellets PE, POM,

and PP

Aliphatic carbon

atoms and

Heterochain

polymer

Phenanthrene GC-MS Karapanagioti

and Klontza.

(2008)

2007 Mothecombe, Plymouth,

DevonUnited Kingdom.

Beach,

Estuary, and

River

Fragments PP, PVC,

and PE.

Aliphatic carbon

atoms

Phenanthrene LC-MS Teuten et al.

(2007)

(Continued on following page)
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the concentrations seen in some marine areas and expected for
most oceans in the coming decades, could lead to the death and
eventual extinction of corals. Other larger kinds of plastics
including meso- and macroplastics have been reported to
cause the entanglement of marine organisms which could
result in suffocation, starvation, exhaustion, injuries, decreased
reproduction rates, and death (UNEP and NOAA, 2015).

Moreover, human consumption of microplastic particles via
ingestion of contaminated drinking water, unsafe seafood, or
trophic transfer, inhalation and dermal exposure routes is now
well documented (Barboza et al., 2018; Atugoda et al., 2020).
However, the fate and impacts of microplastics after they enter
the human body are still under investigation.

CONCLUDING REMARKS AND OUTLOOK

The mechanisms controlling the sorption of organic compounds
on plastic polymers are not fully understood yet as most studies
are carried out indoors under conditions that represent the real
environment. However, hydrophobicity of POPs, the surface area
of plastic polymer, and polymer makeup are three significant
factors that influence the sorption of POPs on plastic polymers.
Hydrophobicity of organic compounds increases the likelihood of
OCs getting sorbed onto plastic polymers rather than dissolving
in water, a surface area, especially that of aging MPs contributes
to higher sorption capacity of plastic polymer. Plastic polymers
have different affinities for different organic compounds

TABLE 1 | (Continued) A summary on characteristics of microplastics and organic pollutants sorbed to microplastics in previous studies.

Year

of

study

Study

area

Type

of marine

ecosystem

Microplastic

abundance

Polymer

types

Composition

of polymers

Type

of POP

Method of

identification

References

2007 North Pacific Gyre,

California, Hawaii, and

Guadalupe Island, Mexico

Ocean Fragments and

Pellets

PP and PE Aliphatic carbon

atoms

PCBs, PAHs, and

DDTs

FT-IR, and

GC-MS

Rios et al.

(2007)

2001 Japan Sea, Canal,

and Pacific

Ocean

Pellets PP, PE

and PS

Aliphatic carbon

atoms

PCBs, DDE, and NP GC-MS Mato et al.

(2001)

2020 N/A Laboratory

setup

aqueous

solution

N/A PE, PP,

and PS

Aliphatic carbon

atoms

9-NAnt GC-MS Zhang et al.

(2020)

2020 N/A Milli-Q water

and simulated

intestinal fluid

N/A PLA,

and PVC

Aliphatic carbon

atoms, and

Heterochain

polymer

TC and CIP HPLC Fan et al. (2020)

2019 N/A Lab. setup

aqueous

solution

N/A PS Aliphatic carbon

atoms

HEX, MYC, and TRI UPLC-MS Fang et al.

(2019)

2019 Hong Kong WWTPs Microbeads,

fiber, and foam

PE, PP,

PA,

and PES.

Aliphatic carbon

atoms, and

Heterochain

polymer

HBCD (flame

retardant)

LC-MS Ruan et al.

(2019)

2019 N/A Deionized

water

N/A PVC Heterochain

polymer

BPA, BPF, BPS,

and BPB

HPLC-MS/MS Wu et al. (2018)

2019 N/A Deionized

water

N/A PS Aliphatic carbon

atoms

Triclosan HPLC Li et al. (2019)

2019 N/A Deionized

water

Microbeads PS Aliphatic carbon

atoms

ROX UPLC-MS/MS Zhang P. et al.

(2019)

2019 N/A Sterile artificial

seawater

N/A PE,

PS, PVC

Aliphatic carbon

atoms and

Heterochain

polymer

TCS N/A Zhu et al. (2019)

2019 N/A Ultrapure

water

Granules PS, PA,

PP, and PE

Aliphatic carbon

atoms and

Heterochain

polymer

PBDE HPLC Xu et al. (2019)

2018 N/A Ultrapure

water, and

Seawater

N/A PA, PE,

PS, PP,

and PVC

Aliphatic carbon

atoms and

Heterochain

polymer

CIP, TMP, AMX,

SDZTC.

HPLC Li et al. (2018)

2018 N/A Milli-Q water Pellets LDPE Aliphatic carbon

atoms

PCBs, BFRs, and

PFCs

HPLC-MS/MS Rainieri et al.

(2018)

2018 N/A Tripled

distilled water

Pellets LDPE Aliphatic carbon

atoms

BFRs GC-MS Sun et al. (2019)

2016 N/A Milli-Q water Microbeads PE Aliphatic carbon

atoms

PBDE GC-QqQ-MS Wardrop et al.

(2016)
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Additives in MPs pose threats on marine life as studies show they
are capable of leaching into organs of marine life like fishes after
they have been picked up as food, there is a possibility of some of
these additives increasing concentrations of toxic chemicals in the
environment. There is no fixed order of sorption capacity for
plastic polymers as sorption for each polymer varies depending
on the interaction between the polymers and that of hydrophobic
organic contaminants. However, PE from recent studies has the
highest sorption capacity for organic compounds. In contrast,
PVC has the lowest sorption capacity due to their glassy make up
and possesses substantial adsorption sites that result in lower
desorption rates. Many kinetic and isothermal models including
first-order adsorption kinetic model, pseudo-second-order
model, intraparticle diffusion model, film diffusion
model, linear model, Freundlich model, Langmuir model,
Temkin model and Elovich adsorption model have been
used in understanding the sorbate-sorbent adsorption
mechanisms, more studies are still required to investigate
the most suitable models for different microplastic and
nanoplastic types in order to fully appreciate their
adsorption peculiarities.

Mathematical models that relate the real aquatic conditions
to that of the laboratory set up should be developed to help for
better prediction of sorption processes that can be fully trusted
as it is only then that feasible solutions can be proposed. Since
aging of microplastics contributes significantly to their
sorption capacity, more sorption studies on naturally aged
plastics should be carried out as all microplastics ultimately
age. Studies should be carried out on bioavailability of organic
compounds making up microplastics like microbeads found in
toothpaste and how long it takes for leaching of these OCs into

the human organs to occur if these compounds are not passed
out as feces soon enough. More adsorption and desorption
studies of organic compounds found in microplastics and
nanoplastics are needed to understand their fate,
bioavailability, and sorption distinctions. The non-
biodegradability of most plastics is due carbon to carbon
bonds which microorganisms have not evolved enough to
break. Since plastics are essential, more studies that generate
substances that serve as weak links between these bonds that
could help to biodegrade by microorganisms should be
carried out.
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