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ABSTRACT
Processors with hardware support for transactional memory
(HTM) are rapidly becoming commonplace, and processor
manufacturers are currently working on implementing sup-
port for upcoming non-volatile memory (NVM) technologies.
The combination of HTM and NVM promises to be a natural
choice for in-memory database synchronization. However,
limitations on the size of hardware transactions and the lack
of progress guarantees by modern HTM implementations
prevent some applications from obtaining the full benefit
of hardware transactional memory. In this paper, we pro-
pose a persistent hybrid TM algorithm called PHyTM for
systems that support NVM and HTM. PHyTM allows hard-
ware assisted ACID transactions to execute concurrently
with pure software transactions, which allows applications
to gain the benefit of persistent HTM while simultaneously
accommodating unbounded transactions (with a high degree
of concurrency). Experimental simulations demonstrate that
PHyTM is fast and scalable for realistic workloads.

1. INTRODUCTION
Non-volatile memory (NVM) is an upcoming technology

that promises to revolutionize computer memory. It is not
currently commercially available, but manufacturers have
developed prototypes, and have released performance in-
formation about these prototypes to the public. NVM is
expected to become cheaper, faster and more power efficient
than DRAM, and will likely become ubiquitous.
Researchers have just begun to understand how machines

with NVM should be programmed. The programming model
for NVM is still in flux, but the following model is currently
leading. Systems can contain only NVM, or a combination of
DRAM and NVM. Data is asynchronously flushed to NVM
at any time, and without the programmer’s knowledge. A
programmer can also explicitly cause data to be flushed to
NVM by invoking a primitive called Flush. Another primitive
called a persistence barrier is provided to allow a process to
block until data has been flushed to NVM.
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There is significant controversy over whether processor
cache and registers will be volatile or non-volatile. Some
researchers are investigating ways to provide enough residual
power to flush this data to NVM in the event of a power
failure [20]. This approach could allow applications to avoid
any runtime overhead associated with providing persistence
(since the entire processor state would be persistent). How-
ever, hardware designers are skeptical about its feasibility,
citing concerns about the amount of energy necessary to
flush processor cache (since the cache is very large, and pro-
cessors are complex and power-hungry). They suggest that
future hardware will only use residual energy to flush data
in volatile buffers on NVM-controllers [14]. Operating under
this assumption, Intel is currently designing new and efficient
flush instructions (CLWB and CLFLUSHOPT) with NVM
in mind [13]. These new instructions assume volatile caches,
and allow the flushed data to stay in cache, to avoid cache
misses. They also accelerate flushes to NVM.
We consider a system in which the processor cache and

registers are volatile. In such a system, the key challenge is
to ensure that NVM is always left in a consistent state if a
power failure occurs and the cache and registers are cleared.
Another recent technology called hardware transactional

memory (HTM), which brings database-style transactions
to shared memory, was recently implemented in Intel pro-
cessors. (HTM has also been implemented in production
systems by IBM, and in various research systems. We focus
on Intel’s implementation.) HTM allows programmers to
execute arbitrary blocks of code in transactions, which either
commit and appear to occur atomically, or abort and have no
effect on the contents of memory. Intel’s implementation of
HTM is best effort, which means that no transaction is ever
guaranteed to commit. Thus, a non-transactional fallback
path must be provided by a programmer to be executed if
a transaction aborts sufficiently many times. The simplest
fallback path one can imagine simply reexecutes the body of
a transaction after taking a global lock (that prevents other
processes from performing transactions). However, this naive
approach does not work with NVM.
The interplay between HTM implementations and NVM

proposals is particularly interesting, because transactions
must appear to be atomic, but writes performed by the
fallback path can trickle asynchronously to NVM at any time.
Therefore, the fallback path must be carefully designed to
avoid exposing partial effects of an in-flight transaction to
other processes in the event of a power failure. An additional
complication arises from the fact that HTM cannot directly
modify main memory: Any modifications to shared memory
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that are made by a transaction are performed on a copy of
the data stored in the private cache of the core running the
transaction. Thus, there is a timing window between when a
transaction commits, and when the changes are flushed from
cache into NVM, when a power failure could cause some or
all of the results of a committed transaction to be lost.
Recent work by Avni et al. [2] introduced an algorithm,

PHTM, that allows hardware transactions to be performed
in a system with NVM. It appears that existing HTM imple-
mentations will have to be modified to support NVM, since
at least one bit should be communicated to NVM atomically,
as part of an HTM commit, to indicate that the transac-
tion has committed (otherwise, power failures might cause
committed transactions to be lost). Avni et al. propose
a modification to Intel’s HTM implementation that allows
a single bit to be flushed to NVM atomically as part of a
transactional commit. This capability is used by PHTM
to maintain redo logs that ensure committed transactions
are not lost. Specifically, it allows PHTM to simultaneously
commit a transaction and flag a record of the redo log in
NVM as complete so that, after a power failure, it will be re-
played if and only if its transaction committed. The fallback
path in PHTM is a software transactional memory (STM)
called PSTM that was designed for use with NVM. Unfor-
tunately, PSTM executes all transactions sequentially, and
the algorithm does not allow concurrency between hardware
and software transactions. This eliminates all concurrency
whenever a process is executing on the fallback path, and
makes the algorithm unlikely to scale as the number of cores
in HTM systems increases.
In the transactional memory (TM) literature, hybrid TM

was introduced to solve similar performance issues. Hybrid
TM algorithms improve performance by using STM algo-
rithms that allow concurrency on the fallback path, and
designing the fast path algorithm so that hardware and
software transactions can run concurrently. However, exist-
ing hybrid TM algorithms do not work with NVM, so new
algorithms are needed.
The main contribution of this work is PHyTM, the first

hybrid TM for systems with NVM. Like PHTM, PHyTM
uses redo logging to facilitate recovery after power failures.
PHyTM provides atomic transactions with deadlock- and
livelock-freedom. It uses three execution paths: Fast HTM,
which has uninstrumented reads, Slow HTM, which has
instrumented reads and writes, and STM, which locks its read-
and write-sets, and buffers all writes until its write-back
phase, which happens at commit time. To avoid livelock in
rare situations, transactions on the STM path may take a
coarse-grained lock that excludes other transactions on the
STM path but allows hardware transactions to continue.
Fast HTM and Slow HTM can run concurrently (because

both use HTM, so data conflicts are resolved by the hard-
ware), and so can Slow HTM and STM (because Slow HTM
acquires locks, just like STM). However, since Fast HTM
has uninstrumented reads, it cannot run concurrently with
STM without an additional mechanism to determine whether
STM has left memory in an inconsistent state. Thus, each
transaction T on Fast HTM subscribes to a counter that
contains the number of transactions on the STM path that
are in their write-back phases. If the counter is ever non-zero
during T, then T may have seen inconsistent state, so it
aborts. If T aborts sufficiently many times, it moves to the
STM path to guarantee progress.

In-memory databases (IMDBs) such as HANA (SAP),
Hekaton (Microsoft), TimesTen (Oracle), MemSQL and
VoltDB are frequently used in single-node configurations
for data analytics, and applications where response time is
critical, such as telecommunications networks and real-time
financial services. In their implementations, IMDBs use a
small set of well-known synchronization mechanisms to coor-
dinate access by processes to internal data structures. Com-
mon synchronization mechanisms include 2-phase locking
(2PL), optimistic concurrency control (OCC) and multiver-
sion concurrency control (MVCC). Recent work has shown
that SAP HANA can obtain significant performance benefits
from current HTM implementations [15], and improved fault
tolerance from proposed NVM implementations [22]. One
promising application of our work is, thus, to use PHyTM as
a new synchronization mechanism for IMDBs, harnessing the
power of HTM to reduce synchronization overhead over the
traditional approaches while simultaneously adding support
for NVM.
To demonstrate the potential of such an approach, we

performed experiments on an Intel system with HTM support
and simulated NVM support. Using the Yahoo! Cloud
Serving Benchmark (YCSB) and TPC-C benchmark, we
compared the performance of a simple IMDB implemented
with four different synchronization mechanisms: 2PL, OCC,
PHTM and PHyTM. The results show that PHyTM is highly
efficient and scalable, and often significantly outperforms the
other approaches.
The rest of this paper is structured as follows. Section 2

gives a detailed description of our model. Since PHyTM
builds upon the logging mechanism of PHTM, we use Sec-
tion 3 to motivate and describe its implementation. We then
describe the PHyTM algorithm in Section 4. Correctness and
progress are proved in Section 5. Related work is discussed
in Section 6. Section 7 presents performance experiments.
Finally, we conclude in Section 8.

2. MODEL
We consider an n process asynchronous shared memory

system with support for HTM and NVM.

2.1 Memory
The memory is organized into a hierarchy where the lowest

level, main memory, consists entirely of NVM. (If the system
also contains DRAM, then the logical memory space is typi-
cally partitioned into persistent and non-persistent addresses.
For simplicity, we consider systems with no DRAM.) With-
out loss of generality, we consider the cache line granularity
in main memory as the smallest unit of data. The next levels
of the hierarchy are cache levels, which contain copies of
cache lines that appear in main memory. A cache coherence
protocol ensures that processors see a consistent view of main
memory despite the existence of multiple cached copies of
some memory locations. At the highest level of the memory
hierarchy are registers, special memory locations reserved in
each processor for temporary computations.
Generally, operations lower in the memory hierarchy are

orders of magnitude slower than operations higher in the
hierarchy. NVM is expected to be slower than DRAM for
write operations, but at least as fast for read operations.
Data trickles asynchronously from the cache levels into

NVM, at any time, and without the programmer’s knowledge.
Data can also be explicitly flushed to NVM using a hardware

410



primitive called FLUSH, which takes a memory address addr
as its argument. FLUSH (addr) causes the cache coherence
protocol to flush the most up-to-date copy of the cache line
that contains addr to main memory.

2.2 Failures
We assume that the system can experience power failures,

which result in all contents of volatile memory being lost.
We do not consider any other types of failures, such process
crashes, or byzantine failures. All levels of the cache hierarchy
and all registers are volatile. After a power failure, only NVM
still contains information.
System recovery after a power failure is performed by a

single recovery process which executes a special recovery
procedure. This procedure repairs the data structure before
other processes resume execution. Since the recovery process
runs alone, it has considerable latitude to perform actions
that would otherwise be dangerous, such as forcibly releasing
locks that were held by other processes before the failure.

2.3 Hardware transactional memory
We consider Intel’s implementation of HTM. A process p

begins a transaction by invoking a procedure called xbegin,
which either returns OK, to indicate that the processor is
now executing in transactional mode, or an abort reason
(which we discuss below). In transactional mode, each time
p performs a read (resp., write) at an address, the address
is inserted into the transaction’s read-set (resp., write-set).
We call the union of a transaction’s read-set and write-set
its data-set. If the data-set of one transaction intersects
the write-set of another concurrent transaction, then we
say these two transactions have a data conflict. The HTM
system will abort at least one of the transactions involved in
each data conflict. Process p is able to abort its own current
transaction by invoking xabort.
Transactions also abort for many other reasons, e.g., if they

invoke a system call, or experience an interrupt, a page fault,
or an internal buffer overflow. In particular, transactions
have limitations on the number of memory addresses they can
access, and exceeding these limitations will cause a capacity
abort. Capacity aborts are non-deterministic, and hardware
transactions are more likely to experience capacity aborts
as their data-sets grow in size. To avoid a capacity abort,
a transaction’s data-set must (at least): fit in the L1 cache,
avoid cache associativity conflicts, and avoid evictions of
cache lines loaded by the transaction. Additionally, when
two hyperthreads are running on one core, the core’s cache
is shared between the two hyperthreads. This effectively
halves the L1 cache capacity for each thread, which can
cause additional capacity aborts.
Whenever a transaction T by process p is aborted, p stops

taking steps in the transaction, and its control flow returns to
just before it invoked xbegin (i.e., just before the transaction
began). Consequently, the next step taken by p will be an
invocation of xbegin. This invocation will return a reason for
the abort (e.g., conflict or capacity). Thus, xbegin is typically
invoked with the following pattern: “if xbegin() = OK then
{transaction body} else {abort handler}.”

Adding support for NVM. It is important to note
that hardware transactions do not directly modify main
memory. Instead, all transactional writes are performed in
cache, and all affected cache lines are then flushed to main
memory, one-by-one, after the transaction has committed.

The cache coherency protocol ensures that the affected cache
lines appear to be flushed atomically to main memory when
the transaction commits. However, if a power failure were to
occur in the middle of flushing, then the cached information
needed to maintain the illusion of atomicity would be lost.
One way to avoid this problem is to have each transaction

log its writes and flush the log to NVM before committing,
so that a recovery process would have enough information
to complete any transaction that committed before a power
failure. Naturally, this approach requires an implementation
of FLUSH that can be used inside transactions (without
simply causing them to abort). Following Avni et al. [2],
we assume a transparent flush (TFLUSH ) that does not
cause transactions to abort. Additionally, since the log is
flushed before the transaction is committed, there must be
a way for a recovery process inspecting a transaction’s log
to tell whether the transaction committed before the power
failure. Thus, as in [2], we assume that the xend procedure is
extended to take the address of a single bit as its argument.
This bit is atomically set and flushed to NVM at the same
time as the transaction is committed in cache. Atomically
communicating a single bit to NVM when a transaction is
committed appears to be the smallest reasonable change to
existing HTM protocols.

3. LOGGING IN PHTM
Since we build on the logging mechanism used by PHTM,

we now expand upon the brief description of PHTM that
was given in the introduction.
To eliminate the risk of losing data to a power failure,

PHTM adds transaction logging. Traditional transaction
logs have two major disadvantages: they can contain many
transactions, and they store global information about the
order in which transactions committed, so that a recovery
process can decide what to do if, e.g., two transactions write
x=2 and x=3, respectively. These kinds of logs are very
expensive to maintain, and offer more generality than is
necessary for PHTM.
In order to limit the size of its logs, PHTM requires each

process to flush the results of its last transaction to NVM
before starting another. This way, PHTM only needs to be
able to recover one transaction for each process (namely, the
current one). Consequently, PHTM only needs to store at
most one transaction per process in the log. PHTM is also
able to log transactions without any ordering information,
provided that the log never simultaneously contains two
different writes to the same address. PHTM guarantees this
property by having each transaction lock each addresses it
will write, and hold this lock until its log entry is no longer
necessary (and will no longer be used by a recovery process).
Holding locks until the log entry is no longer needed slightly
lengthens the contention window of the transaction, and may
cause a small amount of additional contention.

4. PHYTM ALGORITHM
In PHyTM, transactions can execute on three paths: Fast

HTM, Slow HTM and STM. Each path provides a set of
operations for starting and committing transactions, and
reading and writing memory locations. Pseudocode for these
operations appears in Figure 2. These operations are not
directly invoked from user code. Instead, a user simply
invokes operations provided by the compiler for starting
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1 type log_entry
2 int wsize // size of the write-set
3 word* wset[] // addresses in the write-set
4 word wdata[] // data to be written by the txn
5 bool logged // true if the log entry is complete
6 // process-local read-set data
7 process_local int rsize // size of the read-set
8 process_local word* rset[] // addresses in the read-set
9 // shared data

10 log_entry entries[]
11 rwlock_t locks[]
12 rwlock_t stmLock
13 int numSTMWriteback = 0

Figure 1: Data structures for PHyTM

and committing transactions, and the compiler automatically
instruments the user’s code so that it executes transactions
(on the appropriate path) using the operations we provide.
We begin by describing the underlying data structures.

4.1 Data structures
The data structures for the PHyTM implementation ap-

pear in Figure 1. Broadly, they consist of: a reader/writer-
lock (stmLock), a counter (numSTMWriteback), per-address
locks, per-process log entries, and process-local read sets.
stmLock and numSTMWriteback are described in Section 4.2.
We now describe the other data structures.

Per-address locks. Each memory location conceptually
has an associated lock that guards it. To allow greater concur-
rency between read-heavy transactions, we use reader/writer-
locks, which can be acquired by one writer or multiple read-
ers. To avoid the enormous space overhead of dedicating
a unique lock to each memory address, we use a smaller
number of locks, which are stored in an array called locks.
These locks are accessed via a function, GetLockAddr(addr),
which hashes a memory address addr into the array of locks
(effectively guarding multiple addresses with each lock). This
dramatically reduces the space complexity of PHyTM, but
it can cause false conflicts if processes simultaneously try
to acquire locks on two different addresses that are associ-
ated with the same lock. The same approach was taken by
Dice et al. in possibly the most well known STM, TL2 [8].
Observe that, since current HTM implementations detect

conflicts at a cache line level of granularity, storing multiple
locks per cache line may cause suprious conflicts. If this is a
concern, then locks in the array can be padded.

Per-process write-log entries. Each process has a
write-log entry (in the entries array) containing four vari-
ables: wsize, wset, wdata and logged. wsize is the number
of addresses in the write-set. wset is an array that contains
all of the addresses in the write-set. wdata is an array that
contains the values written to these addresses. logged is true
if the log entry is complete, meaning that all of its contents
have been written and flushed to NVM, and false otherwise.
This bit indicates to the recovery process that this log entry
should be replayed if a power failure occurs.

Process-local read-sets. Each process also has a local
read-set represented by two variables, rsize and rset, which
are analogous to wsize and wset. Unlike the write-set, the
read-set is not (explicitly) flushed to NVM or used by the
recovery process. The read-set is used only by transactions
on the STM path, which use it simply to keep track of which
addresses they have locked as readers (so the addresses can
be unlocked once the transaction commits or aborts).

4.2 The STM path
Our STM algorithm implements two-phase locking (2PL)

with encounter-time order (ETO). Each transaction first
locks all of the addresses it will access (in the order it first
encounters them), then it performs any modifications to these
addresses, and finally releases all locks. To avoid deadlock,
we use try-locks, which immediately return false, instead of
blocking, when a lock cannot be acquired. If a process fails
to acquire a (try-)lock, it releases all of its locks and tries
again. In the unlikely event that a process repeatedly fails
to acquire the locks it needs (after many attempts), it locks
the entire STM path. (As an alternative to try-locks, one
could use a standard deadlock detection algorithm. However,
this would likely be less efficient, except under very high
contention.)
2PL and ETO make it fairly straightforward to prove the

common transactional memory correctness condition opac-
ity [10], which is stronger form of serializability. Whereas
serializability requires committed transactions to be consis-
tent with a single execution history, opacity requires all
transactions to be consistent with a single execution history
(even transactions that will eventually abort). Intuitively, it
guarantees that processes cannot observe partial effects of
transactions. (I.e., a process cannot see any of a transactions
writes until all have been performed.) Consider a transaction
T that writes to several addresses. 2PL and ETO require
T to lock each address before accessing it, and to hold all
locks until it has finished writing. Furthermore, any other
transaction T ′ that attempts to read an address written by
T cannot do so until T has unlocked it. Therefore, T ′ cannot
see any of the writes by T until all have been performed.
At a high level, the STM path locks each address it en-

counters, performs all of its reads and logs its writes, then
enters its write-back phase. In its write-back phase, a trans-
action flushes its log to NVM, performs all of its writes,
and then flushes its writes to NVM. The implementation
ensures that the log is atomically flushed to NVM, so that
it is accessible to the recovery process, precisely when it is
committed. (Otherwise, committed transactions might be
lost, or uncommitted transactions might be replayed by the
recovery process.)

Detailed description. The STM path provides four
operations: STMBegin, which starts a transaction, STMRead,
which replaces a standard read from memory, STMWrite,
which replaces a standard write, and STMFinalize, which
commits a transaction.
An STMBegin operation acquires stmLock as a reader (if

the transaction has not exhausted its budget for attempts)
or a writer (if it has). Acquiring stmLock as a writer prevents
other transactions from running on the STM path.
An STMRead operation first invokes GetLockAddr(addr)

to determine which lock in locks protects addr. Then, it
invokes TryReadLock(lock) to acquire a read-lock, reads the
address, and saves addr in its read-set. An STMWrite oper-
ation also starts by invoking GetLockAddr(addr) to identify
the appropriate lock. It then invokes TryWriteLock to ac-
quire a write-lock, which serves two purposes. This lock
grants exclusive access to the address being written, and
exclusive permission to store that address in the write-log.
(If the process executing TryWriteLock currently holds the
lock as a reader, and there are no other readers, then Try-
WriteLock upgrades the read-lock to a write-lock.) Next,
STMWrite adds addr and val to its write-log entry. (Note
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STM path
14 void STMBegin(log_entry* rec)
15 if budget of transaction attempts is exhausted then
16 WriteLock(stmLock)
17 else ReadLock(stmLock)
18 word STMRead(word* addr, log_entry* rec)
19 rwlock_t* lock = GetLockAddr(addr)
20 if !TryReadLock(lock) then
21 ResetLogEntry(rec)
22 unlock all locks
23 retry the transaction (goto line 15)
24 val = *addr
25 // remember addr so we can unlock it later
26 rset[rsize++] = addr
27 return val
28 // precondition: txn already invoked STMRead(addr, rec)
29 void STMWrite(word* addr, word val, log_entry* rec)
30 rwlock_t* lock = GetLockAddr(addr)
31 if !TryWriteLock(lock) then
32 ResetLogEntry(rec)
33 unlock all locks
34 retry the transaction (goto line 15)
35 // add <addr, val> to the write-log
36 rec->addr[rec->wsize] = addr
37 rec->wdata[rec->wsize] = val
38 rec->wsize++
39 bool STMFinalize(log_entry* rec)
40 FlushLogEntry(rec) // flush the log entry to NVM
41 // log entry is ready to be replayed
42 FetchAndIncrement(&numSTMWriteback)
43 rec->logged = 1
44 TFLUSH(rec->logged)
45 // replay the log entry to perform & flush all writes
46 ReplayLogEntry(rec, true /* perform writes */)
47 FetchAndDecrement(&numSTMWriteback)
48 unlock all locks
49 ResetLogEntry(rec)
50 rec->attempts = 0
51 return true

Slow STM path
52 void SlowHTMBegin(log_entry* rec)
53 if xbegin() == OK then // transaction is started
54 else // abort handler
55 if budget of transaction attempts is exhausted then
56 move to STM path
57 else goto line 53 // try again
58 word SlowHTMRead(word* addr, log_entry* rec)
59 // check if addr is write-locked
60 rwlock_t* lock = GetLockAddr(addr)
61 if IsWriteLocked(lock) then xabort() // abort & retry
62 return *addr
63 void SlowHTMWrite(word* addr, word val, log_entry* rec)
64 // try to write-lock addr
65 rwlock_t* lock = GetLockAddr(addr)
66 if !TryWriteLock(lock) then xabort() // abort & retry
67 // add <addr, val> to the write-log
68 int wsize = rec->wsize
69 rec->wset[wsize] = addr
70 rec->wdata[wsize] = val
71 rec->wsize++
72 *addr = val // perform the write
73 void SlowHTMFinalize(log_entry* rec)
74 FlushLogEntry(rec) // flush the log entry
75 // atomically: commit in cache & set logged in NVM
76 xend(rec->logged) // (completing the log entry)
77 // replay the log entry to flush all writes
78 ReplayLogEntry(rec, false)
79 unlock all locks
80 ResetLogEntry(rec)
81 rec->attempts = 0

Fast HTM path
82 void FastHTMBegin(log_entry* rec)
83 if xbegin() == OK then // transaction is started
84 if numSTMWriteback > 0 then xabort()
85 else // abort handler
86 if budget of transaction attempts is exhausted then
87 move to Slow HTM path
88 else goto line 83 // try again

Figure 2: Operations for each execution path

that STMWrite does not explicitly flush these changes, but
they may trickle asynchronously to NVM.) If STMRead or
STMWrite fails to acquire a lock, the transaction is aborted,
all locks are released, and the transaction is retried.
To commit an STM transaction, a process invokes STM-

Finalize. STMFinalize first flushes the write-log entry to
NVM, and then indicates that the transaction has entered its
write-back phase by invoking FetchAndIncrement on num-
STMWriteback. (We will see how numSTMWriteback is used
in Section 4.4.) It then sets and flushes the logged bit in the
log entry, which indicates that the log entry is ready to be
replayed by the recovery process if a power failure occurs.
The transaction is committed precisely when the logged bit
reaches NVM. Next, STMFinalize invokes a function called
ReplayLogEntry (which appears in Figure 4) to replay the
transaction’s log entry, performing all of its writes and flush-
ing them to NVM. ReplayLogEntry also clears and flushes the
logged bit to indicate that the log entry no longer needs to be
replayed. After all of the transaction’s writes are performed
and flushed, STMFinalize performs fetch and decrement on
numSTMWriteback (which indicates that the transaction is
no longer in its write-back phase). Finally, STMFinalize
unlocks all of its locks and prepares its log entry for reuse
by the process’s next transaction.

4.3 The Slow HTM path
Like the STM path, Slow HTM acquires locks on all of

the addresses it will write to, and then logs its writes. As
we described above, this prevents the log from containing
two writes to the same address. However, Slow HTM differs
from the STM path in two ways. First, Slow HTM actually
performs its writes immediately after logging them (without
waiting for the log to be replayed). This works in a hard-
ware transaction because all writes remain in the processor’s
private cache until the transaction commits. Second, Slow
HTM does not acquire any locks when it reads addresses.
Instead, it simply reads the state of the lock for each of these
addresses. If the lock is currently locked by a writer (write-
locked), then the transaction aborts. Reading the lock state
causes the HTM transaction to subscribe to the lock, so that
if it is unlocked when the transaction first checks its state,
but is locked by another process at some later point before
the transaction commits, then the transaction will abort.
At a high level, Slow HTM subscribes to locks for the

addresses it reads, and locks the addresses it writes, logging
and performing its writes as it locks each address to be
written. When all of its writes are finished, it flushes its log
to NVM and uses xend to atomically: commit the transaction
and mark its log as completed, so that a recovery process will
replay it, should a power failure occur. Finally, Slow HTM
replays its log entry, flushing all of its writes to NVM, and
then clears its log entry. If a transaction fails sufficiently
many times on Slow HTM, it moves to the STM path.

Detailed description. A SlowHTMBegin operation in-
vokes xbegin to start a hardware transaction, then verifies
that it is executing in transactional mode (i.e., that xbegin
returns OK). If not, then we jumped to this line in the
code when our previous Slow HTM transaction aborted. So,
SlowHTMBegin checks whether it has exhausted its budget
of attempts. If so, the transaction moves to the STM path.
Otherwise, SlowHTMBegin retries in hardware.
A SlowHTMRead operation reads the lock state for the

address being read, and aborts (jumping to line 53) if another
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process holds the lock as a writer. Otherwise, SlowHTM-
Read simply reads the address and returns the result. A
SlowHTMWrite operation tries to lock an address as a writer,
and aborts if it fails to do so. This lock grants exclusive
access to the address being written, and exclusive permission
to store that address in the write-log. If SlowHTMWrite
acquires the lock, then it adds the address and the value to
be written to the transaction’s write-log entry. Finally, it
performs the actual write.
To commit a transaction on Slow HTM, a process invokes

SlowHTMFinalize. This flushes the write-log entry to NVM,
and then invokes xend. Invoking xend simultaneously com-
mits the transaction, and sets and flushes the logged bit in
the log entry (indicating that the log entry is ready to be
replayed by the recovery process if a power failure occurs).
After this, SlowHTMFinalize invokes ReplayLogEntry (see
Figure 4) to replay its own log entry, flushing its writes to
NVM. ReplayLogEntry also clears and flushes the logged bit
to indicate that the log entry no longer needs to be replayed.
(Unlike the invocation of ReplayLogEntry in STMFinalize,
this invocation of ReplayLogEntry does not need to perform
the transaction’s writes, since they were already performed
as part of the hardware transaction.) Finally, SlowHTMFi-
nalize unlocks all of its locks and prepares its log entry for
reuse by the process’s next transaction.

4.4 The Fast HTM path
Each transaction begins on Fast HTM. Writing and com-

mitting in Fast HTM transactions is the same as in Slow
HTM transactions. Reads in Fast HTM transactions are
more efficient, since they do not need to subscribe to locks
to guarantee that the transaction sees a consistent state (i.e.,
that the addresses it read contained the values it saw at some
point during the transaction). There are two reasons for this.
First, the HTM system guarantees that transactions on Slow
HTM cannot cause transactions on Fast HTM to see incon-
sistent state (or vice versa). Second, each transaction T on
Fast HTM starts by verifying that numSTMWriteback is zero
(and aborting, otherwise). As we saw in Section 4.2, num-
STMWriteback is incremented whenever an STM transaction
starts its write-back phase, and decremented whenever an
STM transaction finishes its write-back phase. Thus, T will
abort if it runs concurrently with any STM transaction in
its write-back phase. Consequently, FastHTMRead is imple-
mented as a simple read, with no additional synchronization.
FastHTMBegin first invokes xbegin, and then verifies that

it is executing in transactional mode. Suppose it is. Then,
FastHTMBegin verifies that numSTMWriteback is zero (abort-
ing, otherwise), and returns. Suppose not. Then, we jumped
to this line in the code when our previous Fast HTM trans-
action aborted. So, FastHTMBegin checks whether it has
exhausted its budget of attempts. If so, the transaction
moves to Slow HTM. Otherwise, FastHTMBegin tries again
to execute the transaction on Fast HTM.

4.5 Executing on different paths
In this section, we describe when transactions on different

paths can run concurrently. The results are summarized in
Figure 3. Recall that each transaction on the STM path ac-
quires stmLock as either a reader or writer. For convenience,
we say that transactions which acquire stmLock as a reader
(resp., writer) run on the STM-R (resp., STM-W ) path.

Path Fast HTM Slow HTM STM-R STM-W
Fast HTM Yes Yes Yes* Yes*
Slow HTM Yes Yes Yes Yes
STM-R Yes* Yes Yes No
STM-W Yes* Yes No No
Figure 3: Table showing which paths can run concurrently.

89 void FlushLogEntry(log_entry* rec)
90 TFLUSH(rec->wsize)
91 int wsize = rec->wsize
92 for i = 1..wsize
93 TFLUSH(rec->wset[i])
94 TFLUSH(rec->wdata[i])
95 void ResetLogEntry(log_entry* rec)
96 // prepare log entry for the next txn attempt
97 rec->lockfail = 0
98 rec->wsize = 0
99 rec->rsize = 0

100 void Recovery(int nprocesses)
101 unlock all locks for all processes
102 for i = 1..n
103 ReplayLogEntry(entries[i], true)
104 void ReplayLogEntry(log_entry* rec, bool doWrites)
105 if rec->logged then
106 int wsize = rec->wsize
107 if doWrites then
108 for i = 1..wsize // perform all writes
109 *rec->wset[i] = rec->wdata[i]
110 // transparently flush all writes
111 for i = 1..wsize
112 TFLUSH(*rec->wset[i])
113 // the log entry no longer needs replaying
114 rec->logged = 0
115 TFLUSH(rec->logged)

Figure 4: Functions common to all paths

A transaction T on Fast HTM can run concurrently with
transactions on Slow HTM, since any conflicts are resolved
by the HTM system. Additionally, T can run concurrently
with any STM transaction, as long as it is not executing
its write-back phase (denoted by Yes* in Figure 3). (If T
is concurrent with an STM transaction in its write-back
phase, then T might see only some of the writes performed
by the STM transaction). Transactions on Slow HTM are
always able to run concurrently with STM transactions, since
both use locks. Since any transaction on STM-W acquires
stmLock as a writer, it cannot run concurrently with any
other transaction on STM-W or STM-R. (Note, however, that
transactions on STM-W still acquire fine-grained locks, which
is why they can always run concurrently with transactions on
Slow HTM, and sometimes with transactions on Fast HTM.)

4.6 Recovery
After a power failure, the recovery process runs a simple

procedure called Recovery (see Figure 4). Locks are not
flushed explicitly to NVM, but some of them may have
been flushed to NVM automatically by the hardware, and
they have to be released before processes can resume normal
operation. So, Recovery unlocks all processes’ locks. (It can
safely do this because it is running alone in the system.)
Next, it invokes ReplayLogEntry for each log entry in the
log. This is the same procedure that is used by processes to
complete a transaction once a log entry is flushed.
ReplayLogEntry first checks if the log entry has its logged

bit set. If so, the transaction was committed, and its log was
flushed to NVM. Next, the transaction’s writes are performed
at line 109. (Note that the recovery process performs these
writes even for hardware transactions, despite the fact that
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SlowHTMFinalize and FastHTMFinalize invoke ReplayLo-
gEntry with doWrites = false, and do not perform these
writes. Here, these writes are necessary, because after a hard-
ware transaction commits, but before its writes are flushed to
NVM, they may be lost to a power failure.) ReplayLogEntry
then concludes by flushing all of the writes to NVM, and
setting the logged bit to zero and flushing it to NVM.
We briefly argue that, when the power failure occurred,

the process performing the transaction held write-locks on all
of the addresses in the transaction’s write-set (so it is correct
to perform the transaction’s writes). Observe that the log
entry’s logged bit is reset to zero at the end of ReplayLo-
gEntry. It follows that the power failure occurred before the
process running this transaction could finish its invocation of
ReplayLogEntry in STMFinalize (line 46), SlowHTMFinalize
(line 78), or FastHTMFinalize. In each case, the process held
write-locks on all addresses in the transaction’s write-set.

4.7 Optimizing with non-transactional reads
In this section, we describe an optimization to PHyTM

that can be applied in an HTM system that allows processes
to perform non-transactional reads and writes while inside a
transaction. This is currently possible only with the tsuspend
and tresume instructions provided by IBM’s implementation
of HTM in its POWER7/8 processors, but other architectures
are expected to provide support in the future.
Note that the SlowHTMRead function reads both the value

stored at an address and the state of its lock. A paper by
Riegel et al. [21] observed that it is sufficient to subscribe only
to the lock, and to use a non-transactional read for the data
protected by the lock. PHyTM can also use non-transactional
reads and writes to maintain the per-process write-log entries
(since each write-log entry is accessed only by the single
process that writes to it, and by the recovery process, which
runs alone in the system). These optimizations would reduce
the number of locations to which transactions subscribe,
which would reduce the likelihood of capacity aborts.

5. CORRECTNESS
An execution history H of a transactional memory system

is opaque [10] if one can choose a serialization point during
each transaction T such that, if T ’s reads were all executed
atomically at T ’s serialization point, they would return the
same values as they do in H. (Note that, unlike serializability,
opacity also requires aborted transactions to see a consistent
view of memory up until they abort. This turns out to
be a crucial safety property in transactional memory.) A
transactional memory system is opaque if all possible histories
are opaque. In this section, we prove that PHyTM is opaque.
Due to space constraints, the progress proof is relegated to
the full version of this paper [1].
We start with a few definitions. A transaction attempt

by a process p is any interval starting with an FastHTMBe-
gin (resp. SlowHTMBegin or STMBegin) by p and ending
with the next FastHTMFinalize (resp. SlowHTMFinalize
or STMFinalize) by p. In the course of trying to perform
a transaction, a process may make several transaction at-
tempts. One can think of a transaction as a collection
attempts by one process. A transaction attempt on Fast
HTM commits at its execution of xend. A transaction at-
tempt on Slow HTM commits at its execution of xend (at
line 76). A transaction attempt on the STM path commits
at its execution of TFLUSH (at line 44).

We now give serialization points for all transactions. In
this section, we suppose no power failures occur, and prove
that PHyTM is opaque with these serialization points. In
the next section, we consider power failures.

Serialization points
• Each committed transaction is serialized precisely when
it commits (see the definition above).

• Each aborted transaction attempt on Fast HTM is seri-
alized at the last time it accesses a lock in FastHTMWrite.

• Each aborted transaction attempt on Slow HTM is se-
rialized at the last time it accesses a lock in SlowHTM-
Read (line 61) or SlowHTMWrite (line 66).

• Each aborted transaction attempt on the STM path is
serialized at the last time it accesses a lock in STMRead
(line 20) or STMWrite (line 31).

Lemma 1. Suppose a transaction attempt T changes an
address addr in main memory that is not a lock or part of a
log entry. Then, the following statements hold.

1. T must commit.
2. T adds addr to its write-log entry in STMWrite (lines 36-

38), SlowHTMWrite (lines 69-71) or FastHTMWrite.
3. T locks addr as a writer (in STMWrite at line 31,

in SlowHTMWrite at line 66, or in FastHTMWrite),
before adding addr to its write-log entry, before writing
to addr, before committing and before flushing addr
to NVM. T continuously holds this lock until after it
writes to addr, after it commits and after it flushes
addr to NVM.

Proof. Suppose T executes on the STM path. Then T
must write to addr at line 109 of ReplayLogEntry. Prior to
invoking ReplayLogEntry at line 46, it commits at line 44
(Claim 1). Claims 2 and 3 are immediate from the code.

Now, suppose T executes on Slow HTM. Since addr is not
a lock or a part of a log entry, T writes to it in SlowHTM
Write at line 72 (inside a hardware transaction). Therefore,
T must commit in order to change addr in main memory
(Claim 1). Claim 2 is immediate from the code. We now
prove Claim 3. Before T commits, it writes to addr. Just
before T writes to addr, it tries to lock addr as a writer
in SlowHTMWrite at line 66. Since T commits, it must
successfully lock addr. From the code, T continuously holds
this lock until it releases all locks in SlowHTMFinalize at
line 79, which is after T flushes addr to NVM in its invocation
of ReplayLogEntry (at line 78 of SlowHTMFinalize), which
is after T commits in SlowHTMFinalize at line 76. The case
where T executes on Fast HTM is proved similarly.

Lemma 2. Let T be a transaction attempt with addr in
its write-set that commits at time tc, and tu be when T
releases its write-lock on addr. Starting from some time tv

(tc ≤ tv ≤ tu), addr continuously contains the last value v
written by T until a write-lock is next acquired on addr after
tu by a transaction attempt that commits.

Proof. Let tw be when T writes to addr and tf be when
T flushes addr to NVM. By Lemma 1, T continuously holds
a write-lock on addr from before min{tw, tf , tc} until af-
ter max{tw, tf , tc}. Furthermore, no other transaction can
change addr while T holds a write-lock. It follows that addr
contains v immediately after tf , which is before tu. This
value is not changed again by T , and cannot be changed by
another committed transaction attempt until a write-lock is
next acquired on addr after tu (by Lemma 1).
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Lemma 3. Let R be an invocation of STMRead(addr, rec)
by a transaction attempt T . If R returns at line 27 (as
opposed to causing the transaction retry at line 23), then R
returns the value v written by the last committed transaction
T ′, with addr in its read-set, that is serialized before T .

Proof. Let tr be when R executes line 24. Our goal is
to prove that addr contains v at tr.

Claim: addr contains v at some time after T ′ commits
and before tr. By Lemma 2, addr contains v at some time
tv after T ′ commits, and before it releases its locks. Just
before tr, T must execute line 20 in STMRead, where it sees
that addr is not locked by a writer. Thus, T ′ must release
its write-lock on addr before tr, and, hence, tv is before tr.

Claim: addr does not change between tv and tr. Suppose,
to obtain a contradiction, that addr changes between tv and
tr. By Lemma 2, addr does not change until a committed
transaction attempt acquires a write-lock on addr after tv.
Thus, a committed transaction T ′′ must acquire a write-lock
on addr between tv and tr. By Lemma 1, T ′′ must commit
before T acquires its write-lock on addr, which implies that
T ′′ is committed between T ′ and T (and, hence, is serialized
between T ′ and T ). However, we assumed that T ′ is the
last committed transaction with addr in its write-set that is
serialized before T .

Lemma 4. Let R be an invocation of SlowHTMRead(addr,
rec) by a transaction attempt T . If R returns at line 62 (as
opposed to aborting the transaction at line 61), then R returns
the value v written by the last transaction T ′, with addr in
its write-set, that is serialized before T .

Proof. Although R does not explicitly acquire read-locks,
it reads the state of the lock for each address it reads, and
sees that the lock is not held by a writer. (Moreover, since
reading the lock state causes the HTM system to subscribe
to it, T will abort if any concurrent transaction attempt
acquires the lock after it is read by R.) Thus, the value it
reads at line 62 is identical to value it would read if it had
explicitly acquired a read-lock on the address. Consequently,
the proof is the same as the proof of Lemma 3.

Lemma 5. Let R be an invocation of FastHTMRead(addr,
rec) by a transaction attempt T . R returns the value v
written by the last transaction T ′, with addr in its write-set,
that is serialized before T .

Proof. Let tr be when R reads addr. Our goal is to
prove that addr contains v at tr.

Claim: addr contains v at some time after T ′ commits
and before tr. By Lemma 2, addr contains v at some time
after T ′ commits, and before it releases its locks. Let tv be
the earliest such time. It follows that tv is before T commits.
Suppose tv is after tr to obtain a contradiction. Then addr
is changed after tr and before T commits. Therefore, the
HTM system will abort T due to a data conflict. However,
we assumed that T commits, which is a contradiction.

Claim: addr does not change between tv and tr. Suppose,
to obtain a contradiction, that addr changes between tv and
tr. By Lemma 2, addr does not change until a committed
transaction attempt acquires a write-lock on addr after tv.
Thus, a committed transaction T ′′ must acquire a write-lock
on addr between tv and tr. By Lemma 1, T ′′ must commit
before T acquires its write-lock on addr, which implies that
T ′′ is committed between T ′ and T (and, hence, is serialized

between T ′ and T ). However, this is a contradiction, since
we assumed that T ′ is the last committed transaction, with
addr in its write-set, that is serialized before T .

Together, Lemmas 3, 4 and 5 imply that each read per-
formed by a transaction T returns the value written by the
last committed transaction serialized before T . Consequently,
T performs the same sequence of steps as it would in the
serialized execution. Therefore, PHyTM is opaque.

5.1 Recovery
In this section, we prove the correctness of the Recovery

procedure that is invoked by the recovery process after a
power failure. Intuitively, this entails showing that the log is
always well formed, and that no committed transactions are
lost to a power failure.
We start with a definition. A transaction attempt is

logged when the logged bit in its log entry is set in NVM.
Observe that a committed transaction attempt is serialized,
and becomes committed and logged, at precisely the moment
that its logged bit is flushed to NVM (so that it will be
replayed by the recovery process if a power failure occurs).

Lemma 6. At all times, the set of log entries that have
their logged bits set contains at most one instance of each
memory address.

Proof. By inspection of the code, a transaction attempt
can be logged only while it holds write-locks on all addresses
in its write-set.

Lemma 7. Every transaction attempt that commits before
a power failure either terminates (meaning its invocation of
FastHTMFinalize, SlowHTMFinalize or STMFinalize termi-
nates) prior to the power failure, or it is logged.

Proof. Let T be a transaction that commits (and, con-
sequently, is serialized) before a power failure. Suppose T
does not terminate prior to the power failure. Then, since T
commits before the power failure (and transactions commit,
and are logged, at precisely the same time), T is also logged
before the power failure.

Theorem 8. Immediately after the recovery process fin-
ishes executing the Recovery procedure, the contents of NVM
are exactly what they would be if all transaction attempts
that had committed but not yet terminated when the power
failure occurred had actually run to completion.

Proof. Let T be a transaction attempt that committed
but had not yet terminated when the power failure occurred.
Since T committed before the power failure, it is logged, and
it held write-locks on all addresses in its write-set when the
power failure occurred. So, if T ran to completion, then it
would have performed all of its writes and flushed them to
NVM. Since T is logged, the Recovery procedure will perform
all of its writes and flush them to NVM.
It remains to prove that the transactions whose log entries

are replayed by the Recovery procedure will not interfere
with one another. Since all of the transactions whose log
entries will be replayed by the Recovery procedure are logged,
Lemma 6 implies that all logged transactions operate on
disjoint write-sets.
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6. RELATED WORK
Non-volatile RAM is expected to replace DRAM, either

partially or entirely, as main memory [17]. There are already
working prototypes of NVM such as phase-change memory
(PCM) [17], spin-torque-transfer RAM (STT-RAM) [12], and
memristors [23], and the new Intel architecture added special
instructions (CLFLUSHOPT, CLWB) [13] to access data in
NVM. As memory becomes persistent, it is natural to make
persistent transactional memory, i.e. to support full ACID
TM transactions.

NV-Heaps [5] and Mnemosyne [24] are full system solutions.
They include allocating persistent memory to applications,
defining non-volatile variables in the compiler, and prevent-
ing illegal states such as a persistent object pointing to a
volatile one. As part of their NVM support, they also provide
persistent STM.
NV-Heaps includes an object-based persistent STM. It pro-

vides transactional objects, which can be opened for writing.
Once an STM transaction T opens an object for writing, T
copies the object to an undo log, and locks it. NV-Heaps
maintain a volatile read log and a non-volatile undo log for
each transaction. If a power failure occurs, any transactions
in progress are aborted, and the undo log, which is persistent,
is used to reverse any changes they made.
Mnemosyne persistent STM [24], which was published at

the same time as NV-Heaps, is word-based, and is derived
from TinySTM [9]. Mnemosyne buffers writes to avoid the
maintenance of an undo log, and to work around the fact
that writes can be flushed to NVM at any time. Buffering
writes results in slower commits. Mnemosyne logs writes in
per-process redo logs, and logged writes are totally ordered
by a global clock, which is taken from TinySTM.
Unfortunately, these software-based algorithms exhibit

poor performance due to bookkeeping overhead and/or poor
scalability due to locking serialization. Thus database trans-
actions use fine-grained locking and no commercial database
uses STM. Some database implementations [25, 18] use HTM
for synchronization. However, these databases still use flush
data to disk to achieve persistence.
In [26], Wang et al. propose new hardware to track de-

pendencies among transactions, and use it to decide when
to flush transactional data to NVRAM to create a persis-
tent HTM. Their design has a centralized scoreboard, which
is not scalable. Whereas [26] involves nontrivial hardware
additions (with potential scalability issues), PHTM [2] is a
persistent version of HTM, for machines that provide NVM,
which implies only changes in HTM microcode. It writes a
persistent bit to NVM as part of HTM commit execution,
and uses software to log the write-set in a private NVM
buffer for safety. This way if a power or hardware failure
ever occurs, the contents of shared memory can be recovered.
Additionally, PHTM has uninstrumented reads, which can
be executed at hardware speed.
PHTM provides both synchronization and durability for

an in-memory database, but it carries the limitations of best
effort HTM, and cannot commit large transactions (except se-
quentially, on a fallback path). PHyTM improves on PHTM
by offering both persistent HTM and highly concurrent STM,
to gain the performance benefit of HTM while maintaining
parallelism when a transaction must execute in software.
The limitations of HTM were mentioned already in the

seminal paper of Herlihy and Moss [11], but the first algo-
rithms that allow fast path concurrency with the slow path

were introduced in 2006 [7, 16]. Since then, research on
hybrid TM algorithms has been focused on optimizations to
improve performance.

Optimizations for hybrid TMs have moved in two directions:
• Reducing overhead by letting the slow path take a
global sequential lock, which is sampled by the fast
path on each access, in the HyNORec algorithms [6].
(In this direction, HTM is also used in the commit
phase of an STM transaction, which eliminates the
need for HTM to subscribe to locks [19].)

• Attaching a (versioned or traditional) lock to each
address, which is read by each HTM read operation,
and is acquired on both paths for writes, in the HyLSA
algorithm [21]. This greatly increases the size of HTM
transactions, because locks must be read by each HTM
read operation. However, this problem can be mitigated
with the use of non-transactional reads and writes.

The NORec family of algorithms has low overhead, but
is unscalable, so we used a similar approach to HyLSA in
PHyTM. The use of three execution paths to improve con-
currency in PHyTM is based on the work of Brown [3].
As we discussed in Section 4.7, numerous accesses in

PHyTM can be non-transactional. Since both persistent
HTM and STM transactions acquire locks on each address
in their write-sets, it is sufficient for each transaction to
subscribe to the state of the lock for each address (instead
of subscribing both to the lock state and to the address
it guards). Additionally, since each read on the STM path
acquires a lock, separating the STM read-lock from the write-
lock may also reduce unnecessary aborts caused by conflicts
between STM reads and HTM reads.

7. EXPERIMENTAL ANALYSIS
In this section we study how PHyTM can be used to reduce

synchronization costs for simple IMDBs.
Workloads. We implemented a very simple IMDB (VSDB),

and used it to run a subset of the Yahoo! Cloud Serving
Benchmark (YCSB). We also studied the TPC-C benchmark
using DBx1000, the IMDB implementation from [27]. Our
simple YCSB benchmarks demonstrate the low synchroniza-
tion cost of PHyTM, and the TPC-C benchmark illustrates
its performance with more complex transactions.

Synchronization methods. We modified each IMDB
to use several different synchronization methods. In both
IMDBs, we added support for PHyTM and PHTM. In VSDB,
we implemented a simple 2PL scheme which performs fine-
grained locking on rows in encounter order. Our YCSB
workloads cannot cause deadlock, so we did not implement
deadlock detection for 2PL. DBx1000 already featured 2PL
and optimistic concurrency control (OCC) as synchronization
methods. Their 2PL implementation performs fine-grained
locking on rows, and incorporates deadlock detection. These
2PL and OCC implementations were shown to be scalable
in simulations with more than one thousand processors [27].

System. We use an Intel i7-4770 3.4 GHz processor with
4 cores, each with 2 hyperthreads. Each core has a private
32KB L1 cache and a private 256KB L2 cache, and an 8 MB
L3 cache is shared by all cores. We use the HTM provided by
the hardware and emulate NVM. In our experiments, threads
are pinned so one thread runs on each logical processor.

Emulation. We emulate NVM support using the ap-
proach taken in [2]. The atomic assignment and flush of the
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Figure 5: YCSB workloads for different transaction mixes.

logged bit by the commit instruction is emulated by avoiding
any simulated power failures between the HTM commit and
when the bit is set. Since writes in NVM are expected to be
slower than writes to DRAM, we inserted delays to simulate
writes to NVM for all synchronization methods.

7.1 YCSB
In all of our YCSB experiments, we used a single table

with 20 million records and a single primary key column.
We perform four types of transactions: short range queries
(SRQs), long range queries (LRQs), short range updates
(SRUs) and long range updates (LRUs). The short (resp.,
long) transactions lookup 16 (resp., 256) random keys in
the table. The query (resp., update) transactions select a
column (resp., write to a column). These transactions simply
read or write the contents of columns, and do not perform
any additional computation. As an example, SQL code for
a query transaction might be “SELECT name FROM cus-
tomers WHERE id IN (1350, 2107, ..., 571).” SQL code
for an update transaction might be “UPDATE customers
SET orders=7 WHERE id=1350 ; UPDATE customers SET
orders=4 WHERE id=2107 ; ...” All transactions are inde-
pendent. That is, the behaviour of a transaction does not
depend on the result of a previous transaction. Note that,
since long transactions access a fairly large number of rows,
they are somewhat likely to cause capacity aborts.

Results. The results appear in Figure 5. Broadly speak-
ing, when there are few aborts, PHyTM behaves similarly to
PHTM. This is because, as long as there is no transaction

on the STM path, both algorithms have no instrumentation
overhead for reads, and the overhead of writing to NVM
dominates any performance differences in write-heavy work-
loads. The performance of 2PL in write-heavy workloads
is also dominated by the overhead of writing to NVM. The
NVM overhead for writes is the same for all algorithms in our
benchmark, so they all exhibit similar performance in write-
only scenarios, as Figure 5c shows. However, Figure 5b shows
that reads in PHTM and PHyTM an order of magnitude
faster than in 2PL.
Figure 5d shows a YCSB workload that performs 50%

SRQs and 50% SRUs. In this workload, the overhead of
writing to NVM is more significant than any algorithm-
dependent performance difference, so the performance of
2PL is fairly close to that of PHTM and PHyTM.

The most significant shortcoming of HTM is that the size
of a transaction is limited because of capacity aborts. PHTM
includes an STM fallback path to allow large transactions
to succeed, but the STM path acquires a global lock, so
transactions on the STM path are serialized. This represents
a severe bottleneck, especially as systems with HTM support
become increasingly parallel (with configurations supporting
hundreds of threads currently possible).
To study what happens when a nontrivial fraction of trans-

actions fail in hardware, and must be executed in software,
we added a workload containing large transactions that are
unlikely to commit in hardware. When all transactions are
LRUs, we see in Figure 5a that PHTM is not scalable at
all, while PHyTM is as scalable as 2PL. PHyTM scales
because STM transactions can run concurrently with each
other, and with other hardware transactions. The overhead
that PHyTM incurs by optimistically trying transactions in
hardware before falling back to software does not prevent it
from matching the performance of 2PL (which never has to
abort), even in this workload with many aborts. We believe
this is because PHyTM avoids performing many expensive
writes/flushes to NVM until after it commits. Thus, aborted
transactions avoid this overhead.
In the workload consisting entirely of LRUs, PHyTM and

2PL achieve approximately the same throughput, and per-
form an order of magnitude better than PHTM. In the
workload consisting entirely of SRQs, PHTM and PHyTM
achieve approximately the same throughput, and perform
an order of magnitude better than 2PL.
The most significant advantage of PHyTM over PHTM

and 2PL becomes clear when a small number of threads are
running transactions on the STM path while most threads are
successfully committing transactions in HTM. This situation
is demonstrated in Figure 5e, where one thread is executing
LRQs (which are unlikely to succeed in hardware, and often
run on the STM path), and the other threads execute SRQs
that are typically able to commit in hardware. In this case,
PHyTM is an order of magnitude faster than its competitors
with eight threads. The STM path of PHTM performs reads
with no overhead, so it is much faster than 2PL (which
must acquire locks) at low process counts. However, since
the STM path of PHTM acquires a global lock, it does not
scale. 2PL, which scales in this workload, ties PHTM with
eight concurrent threads, but suffers from the high cost of
acquiring locks. Whenever there is no STM transaction in its
write-back phase, PHyTM transactions can run on Fast HTM,
where their read operations have no overhead. Furthermore,
even when a transaction on the STM path is in its write-
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Figure 6: TPC-C workloads with 8 warehouses.

back phase, PHyTM transactions can run on Slow HTM,
where their read operations can simply read the state of locks
instead of acquiring them.
In order to show how much HTM reduces locking synchro-

nization costs in PHyTM, we ran the read-only workload
shown in Figure 5b with three different variants of PHyTM.
In the first variant, LOCK, reads on all paths acquire locks
(just like the STM path). In the second variant, CHECK,
reads on all paths simply check the state of the lock (just like
the Slow HTM path). In the third variant, UNSYNC, reads
on all paths are simply uninstrumented reads (just like the
Fast HTM path). (Note that these algorithms are correct
only for a read-only workload.) The results, which appear
in Figure 5f, show that checking lock state is more than 5x
faster than acquiring a lock, and uninstrumented reads are
approximately 20% faster than checking the lock state.

7.2 TPC-C
We used the TPC-C implementation provided by DBx1000.

It implements the new-order and payment transactions,
which comprise 88% of transactions executed in the full
TPC-C benchmark. At a high level, new-order transactions
insert several rows into a table, and also access rows of three
other tables. Payment transactions update several rows of
a table, insert rows into another table (history), and access
rows of three other tables.
PHyTM, like all HTM-based algorithms, significantly im-

proves performance only if most hardware transactions com-

mit. New-order and payment transactions can have relatively
large data-sets, and often cause capacity aborts. One way
to reduce the likelihood of a transaction experiencing a ca-
pacity abort is to use a transaction chopping algorithm to
decompose the transactions into smaller pieces [4]. (This
requires analyzing transactions dependencies to determine
where transactions can be split.) For simplicity, we chose to
shrink the transactions so they are better suited to current
hardware limitations: For payment transactions, we skip the
insertion of rows into the history table, and for new-order
transactions, we reduce the number of rows inserted. Fu-
ture generations of Intel’s HTM are expected to have larger
transaction capacities [14].

Results. Our workloads perform different mixtures of
payment and new-order transactions with eight warehouses.
For each workload, we created a graph showing transaction
throughput, and a graph showing the percentage of trans-
actions that completed successfully in hardware (Figure 6).
As expected, as the fraction of transactions succeeding in
hardware decreases, PHyTM performs increasingly better
than PHTM. This is in spite of the fact that the difference in
the fraction of transactions succeeding in hardware between
PHyTM and PHTM is relatively small. For example, at
eight threads in Figure 6a, PHyTM performs 4x as many
transactions as PHTM, but transactions in PHyTM succeed
in hardware only 11% more often than in PHTM.
Recall that, each time a transaction aborts, the HTM

system reports an abort reason that describes why the abort
occurred. We inspected the reasons for aborts in PHyTM
and PHTM, and saw that PHyTM and PHTM experience a
similar number of capacity aborts, but PHTM experiences
many more conflict aborts. This is because PHTM subscribes
to a global lock at the beginning of each hardware transaction,
and, whenever the global lock is acquired, all concurrent
hardware transactions experience conflict aborts.
The 4x difference in performance between PHyTM and

PHTM in Figure 6a is a result of threads being serialized by
the global lock acquired on PHTM’s fallback path. When
the thread count exceeds 4, the number of capacity aborts
increases due to hyperthreading. In PHTM, this causes the
fallback path to be executed more often, which dramatically
decreases concurrency. However, in PHyTM, hardware trans-
actions can run concurrently with software transactions, so
PHyTM manages to commit more transactions in hardware.
All TPC-C transactions include writes and additional com-

putation, so the synchronization overhead is less significant
than in the YCSB. The advantage of PHYTM over OCC and
2PL is a function of synchronization overhead and HTM suc-
cess rate. We can see PHyTM performs better for payment
transactions (Figure 6b) than in the workloads with new-
order transactions. This is because new-order transactions
perform more computation (so synchronization is a smaller
factor), and commit less often in hardware.

8. CONCLUSION
Efficient, persistent hybrid TM will allow databases to

benefit from the research accumulated in the TM literature.
More than two decades ago, transactional memory started
as a hardware proposal for efficient execution of short trans-
actions, and was later expanded to efficient synchronization
of general transactions in memory. Recently, databases have
begun to move away from disks and become fully in-memory.
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PHyTM’s line of research promises to connect transactional
memory with cutting-edge in-memory databases.
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