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REVIEW Open Access

Phyto-polyphenols as potential inhibitors of
breast cancer metastasis
Dimiter Avtanski1,2* and Leonid Poretsky1

Abstract

Breast cancer is the most common cancer among women as metastasis is currently the main cause of mortality.

Breast cancer cells undergoing metastasis acquire resistance to death signals and increase of cellular motility and

invasiveness.

Plants are rich in polyphenolic compounds, many of them with known medicinal effects. Various phyto-polyphenols

have also been demonstrated to suppress cancer growth. Their mechanism of action is usually pleiotropic as they

target multiple signaling pathways regulating key cellular processes such as proliferation, apoptosis and differentiation.

Importantly, some phyto- polyphenols show low level of toxicity to untransformed cells, but selective suppressing

effects on cancer cells proliferation and differentiation.

In this review, we summarize the current information about the mechanism of action of some phyto-polyphenols that

have demonstrated anti-carcinogenic activities in vitro and in vivo. Gained knowledge of how these natural polyphenolic

compounds work can give us a clue for the development of novel anti-metastatic agents.

Keywords: Polyphenols, Breast cancer, Metastasis, Plant products, Resveratrol, EGCG, Kaempferol

Background
Breast cancer is the most common cancer in women, ac-

counting for nearly 1 in 3 diagnosed cancers or 16% of

all female cancers. The incidence of breast cancer in-

creases with age and is expected to escalate due to the

increase in life expectancy and the adoption of the West-

ern lifestyle and rising rates of obesity. In spite of the ad-

vances in treatment, metastasis remain the main cause

of mortality in cancer patients contributing to 90% of

deaths from solid tumors (Gupta & Massagué 2006).

Natural products are used in traditional medicine over

the millennia for prevention and treatment of variety of

maladies, including cancer. Plants are rich in polyphenolic

compounds and many of these compounds have proven

beneficial effects in preventing the initiation and develop-

ment of metastasis. Natural polyphenols have generally

pleiotropic effects in the cell, activating multiple signaling

pathways thus affecting many aspects of cellular fate, in-

cluding cell apoptosis, proliferation, and differentiation. In

this regard, it is worth studying the mechanism of action

of the natural polyphenols which can give us clues for the

development of new synthetic therapeutic molecules.

In this review, we summarize the main in vitro and in

vivo effects of some promising phyto-polyphenols that

have shown suppressing actions in the initiation and

progression of metastasis in breast cancer. Some of these

polyphenolic compounds are already in phase I, II, or III

clinical trials.

Breast cancer and metastasis
Epidemiology of breast cancer and metastasis

According to the American Cancer Society, the average

age at the time of breast cancer diagnosis is 61 years. Al-

though, breast cancer predominates in women, about of

1% of all cases occur in men. Among the different eth-

nicities, breast cancer incidence rates are higher in

non-Hispanic Caucasian women compared to African

American women, but mortality rates are higher among

African Americans (32%) compared to non-Hispanic

Caucasians (24%). The most recent data for American

women diagnosed with breast cancer demonstrate sur-

vival rates of 89, 82, and 77% at 5, 10, and 15 years after

diagnosis (American Cancer Society, 2011).
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Human breast cancer is a heterogenous disease, which

can be classified into different groups depending on the

presence or absence of estrogen receptor (ER), progester-

one receptor (PR), and human epidermal growth factor re-

ceptor 2 (HER2) expression. The expression of these three

receptors strongly defines breast cancer behavior and treat-

ment options. For example, HER2-positive breast cancers

are more aggressive in nature, but respond better to the

current therapy resulting in more favorable prognosis.

Much more challenging are the triple-negative breast can-

cers (TNBC) (ER/PR/HER2-negative), constituting between

10 and 20% of all breast cancers, which are characterized

by most aggressive behavior and lack effective therapies.

The prognosis in breast cancer strongly depends on the

presence or absence of metastasis in other organs. Today,

around 155,000 people in the United States live with

metastatic breast cancer and approximately 6–10% of all

newly diagnosed breast cancer patients are present with

metastatic disease at the time of diagnosis (American

Cancer Society, 2011) (NCI SEER 2018). Cancer metasta-

ses occur in 20–30% of all breast cancer cases and the me-

dian survival of metastatic breast cancer patients is on

average 3 years (O’Shaughnessy 2005).

Mechanism of breast cancer metastasis

Metastasis is a process involving interplay between

the cancer cells with their biological properties and

the host distant site providing specific microenviron-

ment. Particular tumors have the affinity to spread in

particular organs. In 1889 Stephen Paget formulated

the so called “seed and soil” theory, which is based

on autopsy records of 735 women with breast cancer

(Paget 1989). According to this theory, the ‘seed’ is

the metastatic cell, and the ‘soil’ the metastatic site.

The basic idea behind the Paget’s theory is that in

order to metastasize, cancer cell must find a suitable

location bearing certain characteristics. Later, in 1928,

the American pathologist James Ewing challenged the

“seed and soil” theory, suggesting that the organ spe-

cific metastases could be explained by pure anatom-

ical and mechanical circulatory patterns between the

primary tumor and the distant organs (Ewing 1928).

In fact, the compatibility between the cancer cells and

the host environment as well as the circulatory pat-

terns play roles in the metastatic process. The deter-

mination which organ would be a target for cancer

invasion depends on the proximity of the tumor side

to the host organ and the connection between the

primary tumor and the metastatic site through the

vascular circulatory system. For example, breast can-

cer commonly metastasizes to bones or the ovaries.

In addition to using blood vessels, cancer cells (e.g.

breast carcinoma cells) can migrate by invading the

lymph nodes and using the lymphatic system, but

they ultimately rely on the blood vessels to find their

way to the distant site.

To be able to metastasize the cancer cell must undergo

physiological changes and overcome numerous obstacles.

Generally, the metastatic process could be divided into sev-

eral defined stages: (1) loss of cellular adhesion, (2) increase

of cellular motility and invasiveness, (3) entry and survival

in the circulation, (4) spread into distant tissue, and (5)

colonization of the distant site (Chambers et al. 2002). At

the beginning of the metastatic process, the primary tumor

needs to develop its own blood circulatory system which

also provides a route for tumor migration. Progression to-

ward metastasis requires acquiring a resistance to cell death

signals accomplished by overexpression of anti-apoptotic

effector genes such as B-cell lymphoma 2 (BCL2), BCL-XL,

and X-linked inhibitor of apoptosis protein (XIAP) (Mehlen

& Puisieux 2006). Cancer cells undergoing metastasis are

characterized by increased expression of matrix metallopro-

teinases (MMPs), which proteolytically disrupt the protect-

ive basal membrane (MacDougall & Matrisian 1995).

Secreted proteases generate a variety of bioactive

cleavage peptides which further modulate cancer cell

migration, proliferation, survival, and tumor angiogen-

esis (Gupta & Massagué 2006). Once the cancer cells

enter the bloodstream, they increase the secretion of

proteins such as autocrine motility factor (AMF) and

motility-stimulating protein (MSP) which enable them

to survive the harsh conditions in the bloodstream

(Watanabe et al. 1991). Finally, the cancer cells ex-

travasate from the circulation and enter the new site

where they form pre-angiogenic micrometastases

(Chambers et al. 2002).

Underlying event in metastasis is the epithelial-to-

mesenchymal transition (EMT), a process in which

particular cells lose their epithelial characteristics and

gain more mesenchymal-like features. During EMT

the cellular expression of cell adhesion molecules

(CAMs) decrease resulting in the formation of

spindle-shape morphology. EMT is a fundamental

process occurring during the embryonal development

(designated as Type I EMT), fibrosis or wound heal-

ing (or Type II EMT), but EMT also plays a key role

in cancer metastasis (also known as Type III EMT)

(Kalluri & Weinberg 2009). Main event during EMT

is the cleavage of the tight junction cell surface pro-

tein E-cadherin and inhibition of its expression by

SNAIL, SLUG, ZEB and TWIST transcription factors

accompanied by overexpression of N-cadherin, fibro-

nectin, vimentin and other proteins (Peinado et al.

2007; Yang & Weinberg 2008). Cancer cells involved

in EMT undergo dynamic cytoskeletal rearrange-

ments interacting intensively with the cell-matrix.

This process is governed by growth factors, which

directly or indirectly modulate plasma membrane
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proteases and focal adhesion disassembly (Gupta &

Massagué 2006).

Migratory cancer cells show elevated expression

MMPs, which are Calcium-dependent Zinc-containing

endopeptidases capable of degrading extracellular matrix

(ECM) proteins (Verma & Hansch 2007). There is a

strong correlation between the MMP expression and

cancer invasion and metastasis (Kanadaswami et al.

2005). MMPs participate in all stages of carcinogenesis

and are particularly important for tumor invasion

(McCawley & Matrisian 2000). Generally, overexpression

of MMPs is linked to higher metastasis capacity in many

tumors (Kanayama 2001; Saito et al. 2007; Castellano et

al. 2008; Lee et al. 2008). Expression of MMPs is induced

by growth factors (like epithelial growth factors [EGFs])

and receptor tyrosine kinase (RTKs) (such as EGF

receptor [EGFR]) involving PI3K (phosphatidylinositol-3-ki-

nase) and NF-κB (nuclear factor kappa-light-chain-enhancer

of activated B cells) signaling cascades (Sen & Chatterjee

2011). Experimental results have shown that inhibition of

MMPs results in abolishment of tumor cell invasiveness

(Matrisian 1990; Rhee & Coussens 2002; Van den Steen et

al. 2002; Kanadaswami et al. 2005). For this reason, MMPs

are considered as important molecular targets for the anti-

cancer therapy. Among the 23 currently known human

MMPs, the gelatinases (also known as type IV collagenases)

MMP-2 (s. gelatinase A) and MMP-9 (s. gelatinase B) play

key roles in the metastatic process. MMP-2 and -9 are sup-

pressed by tissue inhibitors of metalloproteinases (TIMPs)

(Visse & Nagase 2003). There are four different TIMPs,

TIMP1, 2, 3, and 4, which bind non-covalently to MMP

thus inhibiting their expression (Brew & Nagase 2010).

NF-κB is a main player in the metastatic process be-

cause it is crucial regulator of cell proliferation and sur-

vival. NF-κB levels may predict the potential of the

tumor cells to metastasize (Jin et al. 2014). In resting

cells NF-κB exists in inactive form, located in the cyto-

plasm, bound to a family of inhibitory proteins referred

as IκB (inhibitors of κB). Members of IκB family include

IκB-α, IκB-β, IκB-γ, IκB-ε, IκB-ζ, p105, p100, and bcl3,

as IκB-α (also known as nuclear factor of kappa light

polypeptide gene enhancer in B-cells inhibitor-alpha

[NFKBIA]) is the most abundant among them. The con-

trol of NF-κB activity is carried out by IκB kinase (IKK)

kinases which include mitogen-activated protein kinase

kinase (MAPKK) family comprising of NF-κB-inducing

kinase (NIK) and MAPK/ERK kinase kinase (MEKK) 1,

2, and 3. When activated, NF-κB translocates to the nu-

cleus where it serves as transcription factor regulating

genes controlling cell cycle, apoptosis, transformation,

and other processes. Constitutively active NF-κB is char-

acteristic for many cancers. It protects the activation of

apoptotic signal by inhibiting p53 activity thus promot-

ing the survival and neoplastic transformation of the

cancer cells. The NF-κB signaling induces the expression

of a number of target genes involved in angio- and lym-

phangiogenesis among them the vascular endothelial

growth factor (VEGF). NF-κB directly induces the ex-

pression of urokinase-type plasminogen activator (uPA)

(Sliva et al. 2002), MMP-9, and chemokine receptor

CXCR4 (Helbig et al. 2003), which in turn results in pro-

motion of ECM degradation and metastasis. The regula-

tion of tumor metastasis by NF-κB is exerted by

reciprocal regulation of prometastatic (heparanase, etc.)

and antimetastatic (MMP-1, MMP-2, plasminogen acti-

vator inhibitor [PAI]-2, etc.) factors. Thus NF-κB is con-

sidered as an attractive candidate for metastasis

treatment. Number of developed therapeutic agents aim

to target NF-κB activity and function by different ap-

proaches such as induction of IκBα expression or pre-

vention of its degradation, inhibition of NF-κB nuclear

translocation, suppression of NF-κB binding to DNA, in-

hibition of IKK functions, etc. (Wu & Kral 2005)

It is widely accepted that tumors are initiated by small

proportion of cancer stem cells (CSCs) that possess cap-

acity for indefinite self-renewal. CSCs bear CD44+/

CD24−/low lineage characteristics and differentiate into

all other cellular phenotypes in the solid tumor as well

as they can initiate the formation of secondary tumors.

Recent experimental results suggest that microRNAs

(miRs) play a critical role in the formation of CSCs and

the acquisition of EMT (Li et al. 2010).

Role of tumor microenvironment in breast cancer

metastasis

Tumor is a complex structure comprised not only by

the neoplastic cells, but also by other cellular types of a

different origin, all of them residing in a specific ECM

microenvironment and communicating via soluble sub-

stances (Yu & Di 2017). Tumor-infiltrating lymphocytes

(TILs) are component of the tumor microenvironment

that play a major role in cancer development. Most of

the TILs are CD8+ T cells, CD4+ helper T cells (Th), and

CD4+ regulatory T cells (Tregs), as evidence suggest that

TILs are predictor of tumor outcome (Haanen et al.

2006). Huang et al. (2015) demonstrated that although

both, CD8+ and CD4+ cells have a role in cancer, during

breast cancer development the number of Th cells in-

crease concomitantly with a change of their dominant

subsets from Th1 to Treg. On the other hand, CD8+

cells are inverse indicator of ER and PR status in the

breast tumor and may predict the clinical outcome

(Mahmoud et al. 2011). Another component of the

tumor microenvironment are the tumor-associated mac-

rophages (TAMs) which are monocytes recruited by cy-

tokines (such as the chemokine (C-C motif ) ligand 2

[CCL2]) from the peritumoral tissues or bone marrow.

TAMs can be divided into M1 and M2 machrophages, but
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studies also suggest that they may actually possess charac-

teristics of both (Yu & Di 2017). Driven by interleukin

(IL)-4 and IL-10, tumor necrosis factor-alpha (TNFα),

macrophage colony-stimulating factor (M-CSF), or hyp-

oxia, breast tumor microenvironment facilitate M1 differ-

entiation into M2 (Laoui et al. 2011). Hypoxia of the white

adipose tissue may be induced by obesity and can further

lead to endocrine alterations promoting the secretion of

proinflammatory and angiogenic cytokines, and downreg-

ulating CCAAT-enhancer binding protein-alpha (C/EBPα)

thus inhibiting apoptosis and stimulating cell proliferation

(Ye et al. 2007; Khan et al. 2013). Since the cytokines re-

leased by the M1 macrophages in the early stages of can-

cer development have anti-proliferative effects on tumor

cells, the increased proportion of M2 macrophages in the

later stage of tumor development facilitate cancer growth

(Quail & Joyce 2013). Cancer-associated fibroblasts

(CAFs) are other component of the tumor microenviron-

ment. It is suggested that these cells have heterogeneous

origin and derive from neighboring tissue fibroblasts, bone

marrow mesenchymal cells, epithelial cells undergoing

EMT or other cellular types (Shiga et al. 2015). CAFs dir-

ectly modulate tumor progression and metastasis by se-

creting growth factors and cytokines that promote ECM

remodeling, cellular proliferation, EMT, and angiogenesis

(Cirri & Chiarugi 2011). Adipocytes are main component

of the mammary gland. In human, fat volume comprises

an average of 25% (7–56%) (Vandeweyer & Hertens 2002)

of the non-lactating and an average of 35% (9–54%) (Ram-

say et al. 2005) of the lactating breast tissue. Mammary

adipose cells share characteristics with the subcutaneous

WAT adipocytes, but are distinctive from these cells

by their response to menstrual cycle and permanent

interactions with the surrounding epithelial cells

(Choi et al. 2017). Adipose cells are also a major

component of the tumor microenvitonment and are espe-

cially prominent in the breast tumors. Cancer-associated ad-

ipocytes (CAAs) are smaller than the non-tumor-associated

adipocytes and are highly secretory cells reprogrammed by

the tumor cells into dedifferentiated preadipocyte stage. The

role that CAAs play in tumor development is supported by

epidemiological observations of higher breast cancer inci-

dence in obese postmenopausal women (Calle & Kaaks

2004) and associations of obesity with poorer clinical out-

come (Reeves et al. 2007; Chan et al. 2014). CAAs affect

cancer cells proliferation, survival and invasion potential by

secreting various adipokines, lipids and reactive oxygen spe-

cies (ROS) thus provoking ECM remodeling and metabolic

transformations (Choi et al. 2017; Nieman et al. 2013;

Berstein et al. 2007). Another component of the tumor

microenvironment are the endothelial cells (tumor endothe-

lial cells [TEC]). These cells differ from the normal epithelial

cells in their responsiveness to EGF, VEGF and other growth

factors, and are associated with tumor cells adhesion,

invasion, and metastasis (Hida et al. 2013). Besides of the

cellular components, ECM by itself plays a multifaceted role

in tumor development through biochemical and biomech-

anical mechanisms (Yu & Di 2017).

Phyto-polyphenols with promising inhibitory
effects on breast cancer metastasis
Polyphenols (s. polyhydroxyphenols) are class of chemical

compounds, broadly distributed in nature and character-

ized by the presence of phenol structures in their mole-

cules. A vast group of polyphenols universally present in

the plant kingdom is the bioflavonoids. Comprising more

than 4000 distinct members, bioflavonoids are 15-Carbon

skeleton derivatives of beno-γ-pyrone (s. phenylchromone).

Flavonoids are divided into different classes that include

flavonols, glavans and proanthocyanidins, anthocyanidins,

flavanones, flavones, isoflavones, and noeflavonoids.

Phyto-polyphenols are integral part of the human diet.

They have been also used worldwide in traditional medicine

for thousands of years for their anti-bacterial, anti-viral,

anti-inflammatory, anti-allergic, and anti-thrombotic prop-

erties. The effects of phyto-polyphenols are usually pleio-

tropic, and many of these compounds have proven

anti-carcinogenic actions manifested by suppression of can-

cer cell transformation, differentiation, proliferation and in-

vasiveness, angiogenesis and induction of apoptosis. The

anti-carcinogenic properties of the phyto-polyphenols can

be attributed to their direct effects on the activities of key

protein kinases controlling tumor cell proliferation and

apoptosis or to the suppression of MMP function. For ex-

ample quercetin, fisetin or luteolin and other phyto-poly-

phenols inhibit the activity of protein kinase C (PKC). PKC

plays an important role in a variety of processes in cancer,

from tumor initiation and progression to inflammation and

T lymphocyte function. Genistein (Akiyama et al. 1987; Pe-

terson & Barnes 1991; Pagliacci et al. 1994), luteolin (Huang

et al. 1999; Lee et al. 2002), quercetin (Agullo et al. 1997),

and butein (Yang et al. 1998) affect tumor development by

suppressing the activity of epidermal growth factor receptor

(EGFR) tyrosine kinase resulting in downstream effects on

number of substrates such as serine/threonine kinases,

mitogen-activated protein kinases (MAPKs), and rapidly ac-

celerated fibrosarcoma kinases (RAFs) (Carpenter & Cohen

1990). Another protein tyrosine kinase that is targeted by

phyto-polyphenols (luteolin, quercetin, etc.) is the focal ad-

hesion kinase (FAK) (Kanadaswami et al. 2005). FAK is a

key molecule in signaling pathways essential for the cell

cycle, survival, and motility.

Whole extracts or specific polyphenols derived from

green tea or grape vines have been shown to possess

anti-carcinogenic and anti-metastatic properties in mul-

tiple in vitro and in vivo studies. Extracts from peach (Pru-

nus persica) (Noratto et al. 2014), olive (Olea europaea)

(Hassan et al. 2012), promegranate (Punica granatum)
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(Kim et al. 2002), evening primrose (Oenothera paradoxa)

(Lewandowska et al. 2013a; Lewandowska et al. 2013b),

the spotted (s. prostrate) spurge (Euphorbia suprina, (s. E.

maculata)) (Ko et al. 2015), Japanese quince (Chaenomeles

japonica) (Lewandowska et al. 2013c), Himalayan rhubarb

(Rheum emodi) (Kumar et al. 2015; Naveen Kumar et al.

2013) or Phyllanthus sp. (P. niruri, P. urinaria, P. watsonii,

P. amarus) (Lee et al. 2011), and others inhibit tumor

growth and suppress breast cancer metastasis.

Grape polyphenols

Grape vine plant consists of three main species: the

European grapes (Vitis vinifera), the North American

grapes (V. lanrusca and V. rotundifolia), and French hy-

brids. Grape vines belong to the Vitaceae family and

were domesticated as early as in the Neolithic period.

Grapes contain variety of polyphenolic compounds

largely anthocyanins, flavonols (catechin, epicatechin,

quercetin, procyanidin polymers), stilbenes (resveratrol),

and phenolic acids. Grape polyphenols are distributed

mostly in the seed, skin, leaf and the stem of the plant,

and in considerably less amount in its juicy middle sec-

tion. Resveratrol, quercetin and catechin polyphenols

represent about 70% of the polyphenols present in the

grape plant and have the most potent anti-carcinogenic

activities (Damianaki et al. 2000). Importantly, grape

polyphenols are easily absorbed and metabolized in the

body in their intact form (Soleas et al. 2002). Experimental

data demonstrate that grape polyphenols have cardio- and

neuro-protective, anti-microbial (Lagneau et al. 1998;

Xia et al. 2010; Castillo-Pichardo et al. 2013),

anti-oxidant (Torres et al. 2002; Negro et al. 2003;

Makris et al. 2007) and variety of anti-carcinogenic

(anti-proliferative, pro-apoptotic, anti-invasive, anti-angio-

genic, antioxidant, and cancer-preventive) properties

(Soleas et al. 2002; Asensi et al. 2002; Nifli et al. 2005;

Morré & Morré 2006; Hakimuddin et al. 2008; Gulati et

al. 2006; Kim et al. 2004; Dechsupa et al. 2007; Aggarwal

& Shishodia 2006; Kaur et al. 2009).

The suppressing effects of the grape polyphenols on

breast cancer initiation and cell growth are demonstrated

in multiple in vitro and in vivo systems (Singletary et al.

2003; Hakimuddin et al. 2004) (Singh et al. 2004) (Schlach-

terman et al. 2008). Using nude mice xenografted with

GFP-tagged highly metastatic ER-negative MDA-MB-468

breast cancer cells, Castillo-Pichardo et al. (2009) found

that low concentrations of grape polyphenols can inhibit

breast cancer metastasis initiation, specifically to liver and

bone. Experiments using BALB/c 4 T1 mammary xeno-

graft mouse model showed that treatment with dietary

grape skin extracts in drinking water resulted in decrease

of lung metastasis incidence and stimulate cell survival

(Sun et al. 2012). Resveratrol, quercetin and catechin are

particularly important in estrogen receptor (ER)-positive

breast tumors since they also act as selective estrogen re-

ceptor modulators (SERMs) (Harris et al. 2005). Grape

polyphenols exert their effects by modulating the activities

of Akt, extracellular-signal-regulated kinases (ERKs), and

MAPKs (Lu et al. 2009; Kaur et al. 2011; Sun et al. 2012).

These polyphenols inhibit the expression and activity of

EGFR1 and EGFR2 (s. HER2) (Azios & Dharmawardhane

2005; Fridrich et al. 2008), and elevated EGFR tumor ex-

pression is generally associated with higher cancer pro-

gression and metastasis (Buret et al. 1999). HER2 plays a

major role in the metastatic process and its overexpression

is often observed in metastatic cancers. Inhibition of

HER2 by grape polyphenols leads to inhibition of

phosphatidylinositol-3-kinase (PI3K)/Akt and mammalian

target of rapamycin (mTOR) as well as activation of 5’

AMP-activated protein kinase (AMPK) – all of these en-

zymes are involved in the process of metastasis. Addition-

ally, grape polyphenols upregulate forkhead box O1

(FOXO1) and IκBα thus inhibiting NF-κB activity

(Castillo-Pichardo et al. 2009).

Resveratrol

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a stilbenoid

and phytoalexin produced by grapes, peanuts, berries, and

the Japanese “Kojokon” (Polygonum cuspidatum) in re-

sponse to injury or pathogen invasion (Burns et al. 2002).

Chemically, resveratrol is a precursor of a family of poly-

mers named viniferins. It quickly enters the bloodstream

from the gastro-intestinal tract, reaching significant plasma

concentrations (Bhat et al. 2001). Resveratrol has been

used for centuries in the traditional Asian medicine since it

has broad range of effects, including anti-oxidant proper-

ties, modulation of lipid and lipoprotein metabolism,

anti-platelet aggregation, vaso-relaxation, wound-healing,

estrogenic activities and multiple anti-carcinogenic effects.

The anti-carcinogenic properties of resveratrol have

been demonstrated in many types of cancer including

those of the breast (Fig. 1) (Delmas et al. 2006; Bus-

quets et al. 2007; Castillo-Pichardo et al. 2009). They

include tumor cell proliferation arrest, induction of

apoptosis, suppression of tumor cell mobility and mi-

gration, prevention of tumor-derived nitric oxide syn-

thase expression, inhibition of tumor progression, etc.

(Jang et al. 1997; Nakagawa et al. 2001; Garvin et al.

2006) Resveratrol is a SERM that acts in different tis-

sues as a pro- or anti-estrogen (Bowers et al. 2000).

Current literature exploring the in vivo doses of res-

veratrol needed to achieve beneficial anti-carcinogenic

effect is still not consolidated. In fact, low doses of reser-

vatrol achievable from dietary sources (such as red wine)

seem to be sufficient in suppressing tumor growth

(Tessitore et al. 2000). Resveratrol might be an effective

chemopreventive agent and the mechanism behind this

effect includes direct inhibition of cyclooxygenase
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(COX) activity and indirect suppression of ornithine

dacarboxylase (ODC) (Jang et al. 1997; Subbaramaiah et

al. 1999; Baur & Sinclair 2006). The effect of resveratrol

on COX and ODC activities could also explain its

anti-neovascularization and anti-angiogenic properties.

In vitro and in vivo studies have showed that resvera-

trol inhibits NF-κB and decreases its DNA binding

resulting in modulation of transcription of genes in-

volved in tumor growth and metastasis (Tsai et al. 1999;

Banerjee et al. 2002; Benitez et al. 2009). Results from a

study using Sprague-Dawley rats where resveratrol was

given in the diet two weeks before vein injection with

the tumor-initiating agent 7,12-dimethylbenz(a)anthra-

cene (DMBA) demonstrated that resveratrol acts as a

strong antioxidant and significantly induces apoptosis

with concomitant upregulation of TGFβ1 expression and in-

hibition of NF-κB in these carcinogen-challenged animals

(Chatterjee et al. 2011). Experiments using female FVB/N

HER2/neu transgenic mice spontaneously developing mam-

mary tumors revealed significant reduction of lung metasta-

ses incidence after oral resveratrol supplementation

(Provinciali et al. 2005). Contrary to the previous results,

resveratrol was found to promote tumor growth and metas-

tases incidence in immunocompromised mice grafted with

low-metastatic ERα-negative/ERβ-positive MDA-MB-231 or

highly-metastatic ERα/ERβ-negative MDA-MB-468 breast

cancer cells (Castillo-Pichardo et al. 2013). The reason for

the discrepancy between the experimental in vivo data may

be explained with the different protocols followed for drug

administration, the variable concentration of reservatrol

used or combination of multiple other factors.

Besides acting on tumor cells, reservatrol have modulat-

ing effects on tumor microenvironment. It induces CD8+

T cells antitumor immunity, decreases the percentage of

Tregs in the tumor, increases the levels of interferon-gamma

(IFNγ) and reduces those of IL-6, IL-10, and VEGF, as

shown in renal tumor model (Chen et al. 2015).

Reservatrol also reduces oxidative stress by acting as

a direct scavenger of ROX, by inhibiting NADPH

oxidase expression or xanthine oxidase activity

(Pelicano et al. 2004; Lin et al. 2000), or by increasing

sirtuin 1 (SIRT1) activity (Xu et al. 2012).

In summary, although the anti-carcinogenic and

cancer-preventive properties of resveratrol are proven in

multiple studies, the real efficacy of this compound in

vivo is still unclear. The clinical evidence for resveratrol

as an effective supplement for cancer prevention and

treatment is scarce as at this time there is very little clin-

ical data for the efficacy of resveratrol in cancer

treatment.

Green tea polyphenols

Green tea is a product of leafs and the leaf buds of

Camellia sinensis plant that belongs to Theacea fam-

ily. Green tea contains more than 200 bioactive com-

pounds, among them polyphenols (catechins and

flavonols), alkaloids (caffeine), amino acid analogs

(theanine), vitamins, minerals, etc. Polyphenols are

the largest and most active group of chemical compounds

in the green tea comprising about 40% of the leave dry

weight. Polyphenols found in green tea include:

epigallocatechin-3-gallate (EGCG) (48.6%), epicathechin

gallate (ECG) (12.3%), epigallocatechin (EGC) (4.1%), epi-

catechin (EC) (4.1%), gallocatechin gallate (GCG) (1.8%),

gallocatechin (GC) (1.8%), catechin (1.2%), and gallic acid

(0.2%) (Slivova et al. 2005).

Green tea polyphenols demonstrate beneficial effects

in different pathological conditions including obesity,

diabetes and cancer. Polyphenols contained in the green

tea were also found to inhibit tumor growth and

Fig. 1 Effects of reservatrol on breast cancer metastasis
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invasion of cancers such as leukemia, those of prostate,

lung, liver, and breast (Dreosti et al. 1997; Isemura et al.

1993) (Sartippour et al. 2001). In vitro studies using hu-

man MDA-MB-231 and MCF-7 breast cancer cells

showed downregulation of MMP-2 and -9, EGFR and

upregulation of TIMP-1 and -2, involvement of FAK/

ERK/NF-κB signaling pathways with concomitant inhib-

ition of cellular invasion (Farabegoli et al. 2011; Sen et

al. 2010). Aqueous extract of green tea induced apop-

tosis and inhibited cell proliferation, migration and

invasion in metastasis-specific mouse mammary car-

cinoma 4 T1 cells in vitro. Green tea extract was ef-

fective in vivo in decreasing tumor weight and

significantly reduced lung and liver metastases inci-

dence in female BALB/c mice bearing 4 T1 tumors

(Luo et al. 2014). In vivo, green tea polyphenols inhibited

the development and progression of lung, prostate,

esophagus, stomach, intestine, skin, and other cancers

(Katiyar & Mukhtar 1996; Yang et al. 2002). The induction

of apoptosis by green tea polyphenols was found to be

driven by mitochondria-targeted, caspase 3-executed

mechanism (Hsu et al., 2003). The anti-invasive properties

of the green tea polyphenols in breast cancer might be a

result of preventing the formation of molecular complexes

controlling cell adhesion and migration, specifically inhib-

ition of activator protein-1 (AP-1) and NF-κB and conse-

quent suppression of uPA secretion (Slivova et al. 2005).

Epidemiological studies, though inconclusive, suggest

possible cancer preventive action of the green tea poly-

phenols. Nevertheless the beneficial effect of tea con-

sumption for cancer prevention or progression is

doubtful. In order to reach sufficient serum concentra-

tions, high doses of polyphenols consumption are

needed. Still, regular consumption of green tea has been

associated with better prognosis in breast cancer pa-

tients (Nakachi et al. 1998) and possibly a decreased risk

of recurrence (Inoue et al. 2001).

Epigallocatechin gallate (EGCG)

EGCG is the ester of epigallocatechin and gallic acid and

it is the most abundant polyphenol in the green tea. In

addition to green tea, EGCG is present in trace amounts

in apples, plums, onions, hazelnuts, pecans, etc.

Experimental data demonstrate that EGCG inhibits

tumor cell proliferation, adhesion and invasion and in-

duces apoptosis in variety of cancers including those of

the breast (Fig. 2) (Ahmad et al. 1997; Yang et al. 2009;

Shammas et al. 2006). Treatment of 4 T1 cells with

EGCG decreases Bcl-2 expression and mitochondrial

disruption thus releasing cytochrome C as well as up-

regulating Apaf-1, leading to the cleavage of caspase

3 and poly [ADP-ribose] polymerase (PARP) proteins

(Baliga et al. 2005). In the same study, oral administra-

tion of green tea polyphenols to 4 T1-xenografted BALB/c

mice resulted in reduction of tumor growth and lung metas-

tasis incidence. The 67-kDa laminin receptor (67LR) has

been identified as an essential cell surface target for EGCG

action (Tachibana et al. 2004; Umeda et al. 2008). The

mechanism of the tumor-suppressive and anti-metastatic ac-

tions of EGCG is a result of involvement of Akt/eNOS/NO/

cGMP/PKCδ signaling cascade (Kumazoe et al. 2013). Simi-

larly to other polyphenolic compounds, the effect of EGCG

in cancer cells is pleiotropic. It inhibits the activities of PTKs

(EGFR, FGFR, PDGFR, HER2/neu tyrosine kinases) and

Akt kinase (Liang et al. 1997; Pianetti et al. 2002) via

STAT3, PI3K, mTOR, and NF-κB signaling pathways

(Masuda et al. 2002; Van Aller et al. 2011). Results

from in vitro study by using MDA-MB-231 cells dem-

onstrated that EGCG modulates cell matrix adhesion

molecules and growth factor receptors through FAK/ERK

signaling pathway mechanism (Sen & Chatterjee 2011).

IGCG also inhibits the expression and activities of

MMP-2 and -9 (Sen et al. 2009; Yang et al. 2005;

Sen et al. 2010) (Farabegoli et al. 2011), and this

seems to be the main driver for its anti-metastatic

actions (Yang & Wang 1993). The inhibition of

Fig. 2 Effects of epigallocatachin gallate (EGCG) on breast

cancer metastasis
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MMPs can be explained by the fact that EGCG sup-

presses FAK, PI3K, and ERK which further leads to

downregulation of EGF (Sen & Chatterjee 2011). In

addition, the suppression of MMPs involves epigen-

etic induction of TIMP-3 levels through inhibition of

the enhancer of zeste homolog 2 (EZH2) and class I

histone deacetylases (HDACs) (Deb et al. 2014).

Short-term supplementation with the active compounds

in green tea in men with prostate cancer showed that

EGCG significantly reduces serum levels of VEGF

(McLarty et al. 2009). Based on experimental data, it ap-

pears that plasma concentrations of EGCG comparable to

those observed in regular green tea consumers are suffi-

cient to inhibit MMPs and thus to affect negatively the in-

vasion potential and metastasis in breast cancer patients

(Garbisa et al. 2001).

In addition of suppressing tumor growth, ECGC was

found to modulate tumor microenvironment by redu-

cing TAM infiltration (Jang et al. 2013). In the same

study, ex vivo incubation of TAM with exosomes from

ECGC-treated mouse mammary tumor 4 T1 cells

skewed macrophages from tumor-promoting M2-like

to tumor-inhibitor M1-like phenotype (Jang et al.

2013). Further, EGCG targets tumor microenviron-

ment by preventing and reversing the advancement of

fibroblast-mediated effects by inhibiting signaling cas-

cades downstream of TGFβ (Gray et al. 2014).

Other phyto-polyphenols

Along with the above discussed phyto-polyphenols, a num-

ber of other compounds have been investigated for their

anti-carcinogenic properties, including anti-metastatic ac-

tions. Plants rich in these polyphenolic compounds have

been used for centuries in culinary and traditional medicine.

Kaempferol

Kaempferol (3,5,7-Trihydroxy-2-(4-hydroxyphenil)-4H-chro-

men-4-one) is a naturally occurring flavonol in broad range

of plants from Pteridophyta, Pinophyta and Angiospermae

divisions. Among the commonly consumed foods contain-

ing kaempferol are grapes, green tea, apples, tomatoes, pota-

toes, onions, broccoli, squash, Brussels sprouts, cucumbers,

lettuce, green beans, peaches, blackberries, raspberries,

spinach, etc. Kaempferol is actively absorbed in the

small intestine and can be found in the plasma in nanomo-

lar concentrations (Calderón-Montaño et al. 2011). This

polyphenol is easily metabolized in the liver and is delivered

to various other organs in the form of glucuronides and

sulfoconjugates (Calderón-Montaño et al. 2011).

To date, kaempferol has been shown to exert a variety

of effects including antioxidant, anti-inflammatory,

anti-microbial, anxiolytic, anti-allergic as well as

anti-carcinogenic and cancer preventive activities

(Calderón-Montaño et al. 2011). Multiple in vitro

and in vivo studies demonstrated that kaempferol has

pleiotropic effects in cancer targeting cancer cell pro-

liferation, apoptosis and mobility, tumor growth,

angiogenesis and metastasis (Fig. 3) (Kim & Choi

2013; Calderón-Montaño et al. 2011; Boam 2015; Sri-

nivas 2015). Kaempferol is an endocrine-disruptor

that influences the activity of ER, having both, estro-

genic and anti-estrogenic properties (Calderón-Mon-

taño et al. 2011). This makes kaempferol potentially

useful in ER-positive breast cancers, where it sup-

presses tumor growth by ER-dependent mechanism

(Oh et al. 2006).

Kaempferol interacts with major signaling pathways

such as ERK1/2 (Aiyer et al. 2012), MAPK (Li et al.

2015), and p53 (Calderón-Montaño et al. 2011), and is a

potential anti-metastasis agent. It inhibits the invasion,

adhesion, and migration of U-2 osteosarcoma cells

(Chen et al. 2013). Anti-metastatic effects of kaempferol

were observed in SCC4 oral cancer cells where it downreg-

ulated MMP-2 and TIMP-2 mRNA and protein expression

by suppressing c-Jun activity (Lin et al. 2013). Recent study

found that kaempferol inhibits MDA-MB-231 breast can-

cer cell adhesion, migration and invasion, and reduces lung

metastasis incidence in mice (Li et al. 2015).

The mechanisms behind the anti-metastatic effects of

kaempferol include supression of MMPs (MMP-2 and

MMP-9) and uPA expression and activity via ERK, p38,

JNK, and MAPK signaling (Chen et al. 2013). Kaemp-

ferol inhibits the translocation of the MAPK upstream

regulator PKCδ from the cytoplasm to the plasma mem-

brane where it is physiologically active, thus suppressing

MAPK signaling pathway (Li et al. 2015). Another mech-

anism by which kaempferol suppress metastasis is by

inhibiting VEGF production as demonstrated in ovarian

cancer OVCAR-3 cells in vitro (Luo et al. 2008). In the

same cell line, kaempferol was also shown to downregu-

late cMyc and promote apoptosis (Luo et al. 2010). Add-

itionally, kaempferol inhibits lymphangiogenesis, which

is an integral step in the metastatic process. It reduces

the density of tumor-associated lymphatic vessels as well

as the incidence of lymph node metastases in breast can-

cer xenograft models in a VEGFR2/3 kinase manner

(Astin et al. 2014).

Curcumin

Curcumin (s. diferuloylmethane, E100 (Natural Yellow 3))

((1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-hepta-

diene-3,5-dione) is a natural diarylheptanoid polyphenol

derived from turmeric plant (Curcuma longa) belonging

to the ginger family (Zingiberaceae). Turmeric is common

ingredient of the traditional Indian cuisine (main ingredi-

ent of curry) as well as it is used worldwide as a food addi-

tive for coloring (bright-yellow agent E100). Additionally,

turmeric is known for its medicinal properties.
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Powdered turmeric underground stems (rhizomes)

have been used for more than 6000 years for treating

broad range of conditions related to inflammation, al-

lergies, parasitic infections, respiratory diseases, dia-

betes, neurodegenerative diseases and many others.

Turmeric-derived curcumin has also well established

anti-carcinogenic activities on cell transformation,

proliferation, apoptosis, survival, invasion, metastasis,

adhesion as well as angiogenesis. The anti-carcinogenic

effects of curcumin have been demonstrated in different

studies on hematogenous, multiple myeloma, glioblastoma,

skin, head and neck, lung, colon, prostate, breast, and other

types of cancer (Bachmeier et al. 2007; Kuo et al. 1996; Sung

et al. 2009; Dhandapani et al. 2007; Limtrakul et al. 1997;

Wilken et al. 2011; Moghaddam et al. 2009; Chen et al.

1999; Kawamori et al. 1999; Johnson & Mukhtar 2007;

Chendil et al. 2004; Mehta et al. 1997; Huang et al. 1998;

Killian et al. 2012).

Curcumin is poorly metabolized and extensively ex-

creted. It can be found in low concentrations in plasma

and variety of tissues (Anand et al. 2007). Despite its lower

bioavailability, curcumin in low concentrations has been

shown to possess toxicity selectively to cancer, but not to

untransformed cells (Syng-Ai et al. 2004). For example,

experimental data showed that human multidrug-resistant

breast cancer MCF-7/TH cells are approximately 3.5-fold

more sensitive to curcumin than the non-carcinogenic

epithelial MCF-10A cells (Ramachandran & You 1999).

The anti-carcinogenic properties of curcumin are

pleiotropic and are based on its effects on both, the

tumor cells and the tumor microenvironment. For

example, curcumin can modulate inflammatory

pathways and tumor progression and metastasis, af-

fecting tumor cell survival, proliferation, and invasiveness

(Gupta et al. 2010). Curcumin as well as other plant-derived

natural polyphenols such as EGCG or resveratrol, induce

epigenetic changes (inhibition of DNA methyltransfer-

ases (DNMTs), regulation of histone acetyltransferases

(HATs) and HDACs, or microRNA modulation)

(Gonwa et al. 1989) that lead to suppression of EMT

and metastasis (Bandyopadhyay 2014; Bachmeier et al.

2007; Kunnumakkara et al. 2008).

The anti-metastatic action of curcumin involves

inhibition of MMP-2, − 9, and MT1-MMP (Ohashi et

al. 2003; Kim et al. 2012) (Fig. 4). Curcumin acts as spe-

cific supressor of p300/CREB-binding protein and affects

major signalling pathways, protein tyrosine kinases and

cytokines such as MAPK (Kim et al. 2012), JAK2/STAT3,

Src/Akt (Saini et al. 2011), c-Jun/AP-1 (Collett &

Campbell 2004), PKC (Garg et al. 2008), sonic hedgehog

(Elamin et al. 2010), CXCL1 and 2 (Killian et al. 2012), etc.

It also inhibits HDACs 1, 3, and 8 and HATs enzyme

Fig. 3 Effects of kaempferol on breast cancer metastasis

Avtanski and Poretsky Molecular Medicine  (2018) 24:29 Page 9 of 17



activities and modulates chromatin modification

(Balasubramanyam et al. 2004; Reuter et al. 2011). In

addition, curcumin suppresses NF-κB signaling by

negative modulation of IKK, either directly or through

action of its upstream activators (Bharti et al. 2003;

Jobin et al. 1999), preventing in such a way phos-

phorylation of IκB (Plummer et al. 1999). Curcumin

abolishes the DNA binding of NF-κB and inhibits re-

porter gene expression in H1299 non-small cell lung

carcinoma cell line, thus downregulating MMP-9

activation (Shishodia et al. 2003). In mice, where

MDA-MB-231 breast cancer cells were injected intra-

cardiac, oral curcumin administration significantly re-

duced the number of lung metastases (Bachmeier et

al. 2007). This effect was most likely a result of in-

hibition of NF-κB activity and transcriptional down-

regulation of AP-1 and downregulation of cyclin D1,

COX-2, and MMP-9, which further leads to inhibition

of the breast cancer cell metastasis (Aggarwal et al.

2005; Kim et al. 2012).

Chronic inflammation is considered to be a major factor

in tumor progression. For example, chronic prostatitis,

chronic obstructive pulmonary disease, inflammatory

bowel disease or chronic pancreatitis – all represent risk

factors for developing prostate, lung, colon or pancreatic

cancer. Curcumin inhibits chronic inflammation by dis-

rupting the feedback loop between NF-κB and the

pro-inflammatory cytokines, CXCL-1 and -2 (reviewed by

Bandyopadhyay (Bandyopadhyay 2014)).

By inhibiting NF-κB signaling, curcumin suppresses me-

tastasis in the very early stages of EMT. In lipopolysacchar-

ide (LPS)-induced EMT in MCF-7 and MDA-MB-231

cells, curcumin downregulated the expression of vimentin

and upregulated those of E-cadherin as well as inhibited

LPS-induced morphological transformation of the cells

through inactivation of NF-κB-SNAIL signaling pathway

(Huang et al. 2013).

Curcumin acts also as a phytoestrogen (Bachmeier

et al. 2010). The anti-proliferative effects of curcumin

were found to be estrogen-dependent in ER-positive

MCF-7 counteracting the estrogen responsive element

(ERE)-CAT activities of estradiol (Shao et al. 2002).

HER2/neu-positive or tamoxifen-resistant breast tu-

mors are associated with specific microRNA signa-

ture, including overexpression of miR-181 (Miller et

al. 2008; Lowery et al. 2009). In breast cancer, curcu-

min was shown to inhibit metastasis by inducing the

expression of miR-181b and downregulatinng those of

CXCL-1 and -2 (Kronski et al. 2014).

A variety effects on tumor microenvironment were de-

scribed after curcumin treatment. In colon cancer, curcu-

min interacts with the stromal fibroblasts in the colon

tumor microenvironment thus suppressing their crosstalk

with CSCs (Buhrmann et al. 2014). Treatment with

curcumin-polyethylene glycol conjugate (an amphiphilic

curcumin-based micelle) suppressed the percentage of

myeloid-derived suppressor cells (MDSCs), which was

suggested to be the reason behind the observed

Fig. 4 Effects of curcumin on breast cancer metastasis
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inhibition of Treg and the activation of the effector T-cells

(Lu et al. 2016). Combination of curcumin and ECGC in-

hibits colorectal carcinoma microenvironment-induced

angiogenesis by activating JAK/STAT3/IL-8 signaling

pathway (Jin et al. 2017). Curcumin downregulates

the expression of VEGF as shown in prostate cancer

cells (Gupta et al. 2013) and blocked IL-1 and VEGF

expression in chondrosarcoma cells (Kalinski et al. 2014).

Currently, curcumin is an object of more than 120

clinical trials evaluating its effects against different

maladies including cancer.

Honokiol

Honokiol is a biphenolic lignan with bioactive para-allyl

and ortho-allyl phenolic groups, a product of Magnolia

sp. (M. biondii, M. obovate, and M. officinalis) that dem-

onstrates promising actions on tumor metastases. Bark

or seed cones of magnolia plants has been used for

centuries in the traditional Asian medicine for its

anti-inflammatory, antithrombotic, anxiolytic, anti-

depressant, antispasmodic, antioxidant, and antibacterial

effects and its protective action against hepatotoxicity,

neurotoxicity and angiopathy (Fried & Arbiser 2009; Lee

et al. 2011). The anti-carcinogenic activities of honokiol

range from tumor suppression, pro-apoptotic and

anti-angiogenic effects, and inhibition of cancer metasta-

sis incidence by effects on tumor proliferation, migration

and invasion. These properties have been demonstrated

in various cancer types such as sarcoma (Nagase et al.

2001; Su et al. 2013), multiple melanoma (Ishitsuka et al.

2005), leukemia (Hirano et al. 1994; Hibasami et al.

1998; Battle et al. 2005), lung (Yang et al. 2002; Singh &

Katiyar 2013), skin (Konoshima et al. 1991), pancreas

(Bai et al. 2003), ovary (Li et al. 2008), prostate

(Shigemura et al. 2007), colorectal (Wang et al. 2004),

breast (Nagalingam et al. 2012; Avtanski et al. 2014), and

other cancers (Nagase et al. 2001; Garcia et al. 2008;

Deng et al. 2008; Chen et al. 2011; Chang et al. 2013).

One important characteristic of honokiol is that it easily

crosses the blood-brain barrier and achieves significant

serum concentrations because of its hydrophobic and

lipophilic properties (Wang et al. 2011; Lin et al. 2012;

Woodbury et al. 2013).

Honokiol has pleiotropic effects in the cells (Fig. 5),

including modulation of NF-κB (Tse et al. 2005; Lee

et al. 2005; Ahn et al. 2006; Sheu et al. 2008; Arora

et al. 2011), MAPK (Kim et al. 2012; Zhang et al.

2014), STAT3 (Rajendran et al. 2012; Avtanski et al.

2014), Akt [238,], VEGF (Wen et al. 2015), ERK (Zhu et

al. 2014; Yeh et al. 2016), s-Scr (Park et al. 2009), and

Fig. 5 Effects of honokiol on breast cancer metastasis
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other major signaling pathways (Fried & Arbiser 2009).

For example, in SVR angiosarcoma cells, honokiol induces

apoptosis by suppressing the phosphorylation of ERK,

Akt, and c-Src (Bai et al. 2003). In addition to its

anti-proliferative properties, honokiol inhibits the migra-

tion and tube formation of human umbilical vein endothe-

lial cells (HUVECs) and suppresses angiogenesis in

zebrafish angiogenesis model (Zhu et al. 2011). Honokiol

downregulates IKK activation and thus inhibits NF-κB sig-

naling pathway and MMP-9, TNFα, IL-8, ICAM-1, and

MCP-1 expression (Tse et al. 2005; Lee et al. 2005; Ahn et

al. 2006; Sheu et al. 2008). It also inhibits the migration

and invasion of MCF-7 and MDA-MB-231 cells by upreg-

ulating the activity of liver kinase B1 (LKB1) leading to ac-

tivation of AMP-activated protein kinase (AMPK)

(Nagalingam et al. 2012). In vivo, honokiol inhibited

tumor growth of MDA-MB-231 cells-xenografted nude

mice by blocking breast cancer cellular proliferation

(Nagalingam et al. 2012). Our in vitro and in vivo studies

revealed that honokiol inhibits EMT of breast cancer cells

by suppressing STAT3 signaling resulting in repression of

ZEB1 expression and its recruitment on the E-cadherin pro-

moter (Avtanski et al. 2014). Honokiol modulated micro-

RNA profile in the breast cancer cell, specifically amplifying

miR-34a expression in a STAT3-dependent manner, inhibit-

ing Wnt1-metastatic-associated protein 1 (MTA1)-β-catenin

signaling axis (Avtanski et al. 2015a). The mechanism be-

hind the effects of honokiol on EMT and breast cancer mi-

gration involves induction of SirT1, SirT3 and miR-34a

expression and cytoplasmic localization of LKB1 (Avtanski

et al. 2015b).

Aside from directly targeting tumor cells, honokiol

was also demonstrated to have effects on tumor micro-

environment. Honokiol decreased desmoplasia in pan-

creatic tumor xenografts, as characterized by reduced

secretion of extracellular matrix protein (collagen I) and

suppressed myofibroblast marker α-smooth muscle actin

(α-SMA) immunostaining (Averett et al. 2016). Findings

from the same study revealed an inhibitory effect of

honokiol on C-S-C chemokine receptor type 4 (CXCR4)

signaling, which is known to play an important role in

the crosstalk between the tumor and the stromal cells.

Conclusions
Nature is abundant in chemicals with potential thera-

peutic effects that are worth studying. A variety of poly-

phenols from plant origin demonstrate pleiotropic

therapeutic properties against a broad range of patho-

logical conditions, including different types of cancer.

Such polyphenolic compounds can be viewed as promis-

ing candidates for supplements to the traditional cancer

prevention and treatment modalities as well as a basis

for designing novel synthetic drugs. Naturally derived

plant polyphenols have been demonstrated to inhibit

metastasis initiation and progression by targeting both,

cancer cells and cancer microenvironment. Novel strat-

egies for targeting metastasis aim to modulate the levels

of specific microRNAs that play a role in the transform-

ation of the malignant cells. This approach could be

used against CSCs or cells undergoing EMT that are

typically drug resistant (Li et al. 2010). Importantly,

some phyto-polyphenolic compounds have been shown

to exert beneficial effects through direct modulation of

specific microRNAs at low concentrations.

Natural polyphenolic compounds are usually charac-

terized by low level of toxicity, but main disadvantage is

their poor bioavailability and weak resorption reaching.

In this regard, new strategies for target-specific delivery

have been experimentally developed and proven to be ef-

fective. Recent advances in nano-medicine open the

doors for the development of vehicles for drug delivery

with long-circulation that can be used to target trans-

formed cells. Polyphenolic compounds administered by

traditional methods are not always effective because of

they are poorly absorbed and extensively excreted. But

the chemopreventive efficacy of these polyphenols can

be significantly improved by encapsulating them into

nonoparticles. Thus, integration of various disciplines

such as biochemistry, molecular biology, chemistry, and

nanotechnology could contribute to the development of

novel therapies against breast cancer methastasis.

This paper is dedicated to the memory of Rumiana

Cherneva, who lost the battle with breast cancer.
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