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Abstract: Since ancient times, seaweeds have been employed as source of highly bioactive secondary
metabolites that could act as key medicinal components. Furthermore, research into the biological
activity of certain seaweed compounds has progressed significantly, with an emphasis on their
composition and application for human and animal nutrition. Seaweeds have many uses: they are
consumed as fodder, and have been used in medicines, cosmetics, energy, fertilizers, and industrial
agar and alginate biosynthesis. The beneficial effects of seaweed are mostly due to the presence of
minerals, vitamins, phenols, polysaccharides, and sterols, as well as several other bioactive com-
pounds. These compounds seem to have antioxidant, anti-inflammatory, anti-cancer, antimicrobial,
and anti-diabetic activities. Recent advances and limitations for seaweed bioactive as a nutraceutical
in terms of bioavailability are explored in order to better comprehend their therapeutic development.
To further understand the mechanism of action of seaweed chemicals, more research is needed as is
an investigation into their potential usage in pharmaceutical companies and other applications, with
the ultimate objective of developing sustainable and healthier products. The objective of this review
is to collect information about the role of seaweeds on nutritional, pharmacological, industrial, and
biochemical applications, as well as their impact on human health.

Keywords: antioxidant activity; functional foods; health benefits; seaweeds; secondary metabolites

1. Introduction

Seaweeds have received lot of attention in recent years because of their incredible po-
tential. Seaweeds are essential nutritional sources and traditional medicine components [1].
Marine macroalgae, sometimes known as seaweeds, are microscopic, multicellular, photo-
synthetic eukaryotic creatures. Based on their coloration and depending on their taxonomic
classification, they can be classified into three groups: Rhodophyta (red), Phaeophyceae
(brown), and Chlorophyta (green). The global variety of all algae (micro and macro) is
estimated to consist of over 164,000 species with roughly 9800 of them being seaweeds,
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just 0.17% of which have been domesticated for commercial exploitation [2]. In recent
years, seaweed has gained in popularity, making it a more versatile food item that may
be used directly or indirectly in preparation of dishes or beverages [3]. Many types of
seaweed are edible, they provide the body with a different variety of vitamins and critical
minerals (including iodine) when consumed as food, and some are also high in protein and
polysaccharides [4].

Seaweeds are now used in several industrial products as raw materials such as agar,
algin, and carrageenan, but they are still widely consumed as food in several nations [5].
Seaweeds are frequently subjected to harsh environmental conditions with no visible
damage; as a result, the seaweed generates a wide variety of metabolites (xanthophylls,
tocopherols, and polysaccharides) to defend itself from biotic and abiotic factors such as
herbivory or mechanical aggression at sea [6]. Please note that the content and diversity of
seaweed metabolites are influenced by abiotic and biotic factors such as species, life stage,
nutrient enrichment, reproductive status, light intensity exposure, salinity, phylogenetic
diversity, herbivory intensity, and time of collection; thus, fully exploiting algal diversity
and complexity necessitates knowledge of environmental impacts as well as a thorough
understanding of biological and biochemical variability [7,8].

Seaweeds and their products are particularly low in calories but high in vitamins A,
B, B2, and C, minerals, and chelated micro-minerals (selenium, chromium, nickel, and
arsenic), as well as polyunsaturated fatty acids, bioactive metabolites, and amino acids [9].
Although current research revealed that the amount of specific secondary metabolites
dictates the effective bioactive potential of seaweeds, phenolic molecules are prevalent
among these secondary metabolites [10]. Furthermore, integrating seaweed into one’s daily
diet has been linked to a lower risk of a range of disorders, including digestive health and
chronic diseases such as diabetes, cancer, or cardiovascular disease, according to research
mentioned by [11]. As a result, incorporating seaweed components into the production
of novel natural drugs is one of the goals of marine pharmaceuticals, a new discipline of
pharmacology that has evolved in recent decades.

The $4.7 billion worldwide algae products market is predicted to increase at a com-
pound yearly growth rate of 6.3% to $6.4 billion by 2026. North America has the highest
proportion of the algae market [6]. Functional and nutritional attributes, as well as the
potential sustainability benefits of algae, are driving demand and positioning it as a promis-
ing food of the future. The potential uses of different algae are numerous: generation of
energy [12], the biodegradation of urban, industrial and agricultural wastewaters [13,14],
the production of biofuels [15], the exclusion of carbon dioxide from gaseous emissions via
algae biofixation [16], the manufacturing of ethanol or methane, animal feeds [17], raw ma-
terial for thermal treatment [18], organic fertilizer or biofertilizer in farming [17]. The high
protein content and health advantages have fueled an interest in foods derived from entire
algae biomass [19]. Algae can be used as functional ingredients to boost food’s nutritional
value [20]. In cosmeceuticals, marine algae have received a lot of interest [21]. Seaweeds are
one of the most abundant and harmless marine resources, with little cytotoxicity effects on
people. Marine algae are high in bioactive compounds, which have been demonstrated to
have significant skin advantages, especially in the treatment of rashes, pigmentation, aging,
and cancer [22]. The use of algal bioactive components in cosmeceuticals is growing quickly
since they contain natural extracts that are deemed harmless, resulting in fewer adverse
effects on humans. Marine algae were used as a medicine in ancient times to treat skin prob-
lems such as atopic dermatitis and matrix metalloproteinase (MMP)-related sickness [22].
In summary, marine algae represent a promising resource for cosmeceutical production.

This review aimed to study the bioactive compounds in seaweeds and the role
of these compounds as antioxidants, anti-inflammatory, anti-cancer, antimicrobial and
anti-diabetic activities.
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2. Seaweed Resources

The word “seaweed” has no taxonomic importance; rather, it is a popular term for the
common large marine algae.

2.1. Brown Seaweeds

Phaeophyceae have not been well investigated, despite the fact that they have been
shown to offer several health benefits. Fucoxanthin (Fuco), the principal marine carotenoid
(Car), is a commercially important component of brown seaweeds, in addition to sodium
alginate. Fuco contains anti-inflammatory properties. The presence of the xanthophyll
pigment fucoxanthin, which is higher than chlorophyll-a, chlorophyll-c, -carotene, and
other xanthophylls, gives these seaweeds their brown color [23]. Because of its bigger size
and ease of collecting, brown seaweed is used in animal feed more often than other algae
species. Brown algae are the largest seaweeds, with some species reaching up to 35–45 m
in length and a wide range of shapes. Ascophyllum, Laminaria, Saccharina, Macrocystis,
Nereocystis, and Sargassum are the most prevalent genera. Sargassum as a member of brown
seaweeds is low in protein, but high in carbs and easily accessible minerals. They are high
in beta-carotene and vitamins, and they are free of anti-nutrients [24].

2.2. Red Seaweeds

These algae are red because of the pigments phycoerythrin and phycocyanin. The
walls are made of carrageenan and cellulose agar. Both of these polysaccharides with a
lengthy chain are commonly employed in the industry. Coralline algae, which secrete
calcium carbonate on the surface of their cells, are an important category of red algae.
Chondrus, Porphyra, Pyropia, and Palmaria are some of the most common red algae genera.
The antioxidant activity of Phaeophyta (brown seaweeds) is higher than that of green and
red algae [25].

2.3. Green Seaweeds

The majority of the species are aquatic, living in both freshwater and marine habitats.
The green color of these algae is due to chlorophyll-a or chlorophyll-b. Some of them are
terrestrial, meaning they grow in soil, trees, or rocks. Ulva is one of the most common
green seaweeds. Ulva, Cladophora, Enteromorpha, and Chaetomorpha are the most common
genera. Green algae thrive in regions with lots of light, including shallow waterways and
tide pools. Ulva sp. has a high protein content (typically > 15%) and a low energy content
and is abundant in both soluble and insoluble dietary fiber (glucans) [26]. The main types
of seaweeds are shown in Figure 1.
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3. Bioactive Compounds

The chemical composition of algae varies depending on the species, cultivation lo-
cation, meteorological conditions, and harvesting period. Because of the broad diversity
of compounds produced by seaweeds, they are currently considered to be prospective
organisms for contributing new physiologically active chemicals for the production of
novel food (nutraceutical), cosmetic (cosmeceutical), and medical compounds. Polyphe-
nolic compounds, carotenoids, minerals, vitamins, phlorotannins, peptides, tocotrienols,
proteins, tocopherols, and carbohydrates (polysaccharides) are considered to be a great
variety of bioactive compounds (Figure 2).

Mar. Drugs 2022, 20, x FOR PEER REVIEW 4 of 49 
 

 

3. Bioactive Compounds 
The chemical composition of algae varies depending on the species, cultivation loca-

tion, meteorological conditions, and harvesting period. Because of the broad diversity of 
compounds produced by seaweeds, they are currently considered to be prospective or-
ganisms for contributing new physiologically active chemicals for the production of novel 
food (nutraceutical), cosmetic (cosmeceutical), and medical compounds. Polyphenolic 
compounds, carotenoids, minerals, vitamins, phlorotannins, peptides, tocotrienols, pro-
teins, tocopherols, and carbohydrates (polysaccharides) are considered to be a great vari-
ety of bioactive compounds (Figure 2). 

 
Figure 2. Main bioactive compounds from marine seaweeds. 

3.1. Polysaccharides 
Seaweeds have a significant carbohydrate component in their cell membranes, or 

these polysaccharides are unique to every variety from algae: Brown alginate contains 
fucoidan; green Ulvan or red agar contains carrageenan. Polysaccharides are becoming 
increasingly popular as a result of their physicochemical properties [27]. Polysaccharides 
are biopolymers created from natural resources that have developed as a sustainable and 
environmentally friendly alternative to typical polymers and plastics. They are also 
known as an energy store and structural molecules in a variety of species, including plants 
and marine organisms. Polysaccharides are the major macromolecule in seaweed, ac-
counting for more than 80% of its weight. Polysaccharides are classified into two types 
based on where they are found in seaweeds: cell-membrane polysaccharides or storage 
polysaccharides. With the exception of accumulating carbohydrates found in cell plastids, 
the majority of seaweed polysaccharides are cell-membrane polysaccharides. At present, 
they can be classed as food-grade or non-food-grade polysaccharides, depending on how 
they are used [28]. 

  

Figure 2. Main bioactive compounds from marine seaweeds.

3.1. Polysaccharides

Seaweeds have a significant carbohydrate component in their cell membranes, or
these polysaccharides are unique to every variety from algae: Brown alginate contains
fucoidan; green Ulvan or red agar contains carrageenan. Polysaccharides are becoming
increasingly popular as a result of their physicochemical properties [27]. Polysaccharides
are biopolymers created from natural resources that have developed as a sustainable
and environmentally friendly alternative to typical polymers and plastics. They are also
known as an energy store and structural molecules in a variety of species, including
plants and marine organisms. Polysaccharides are the major macromolecule in seaweed,
accounting for more than 80% of its weight. Polysaccharides are classified into two types
based on where they are found in seaweeds: cell-membrane polysaccharides or storage
polysaccharides. With the exception of accumulating carbohydrates found in cell plastids,
the majority of seaweed polysaccharides are cell-membrane polysaccharides. At present,
they can be classed as food-grade or non-food-grade polysaccharides, depending on how
they are used [28].

3.1.1. Role of Polysaccharides in Medicine

Algal polysaccharides differ from those found in terrestrial plants because they include
unique poly-uronides, some of which are pyruvylated, methylated, sulfated, or acetylated.
Sulfated polysaccharides including fucan sulfate, ulvan, and carrageenan have received the
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most interest because of their biological features [29]. Some of polysaccharide’s structures
are presented in Figure 3. Sulfated polysaccharides (SPS) are found in edible seaweeds such
as ulvan (Chlorophyta), fucoidan (Phaeophyta), or carrageenan (Rhodophyta), and have
numerous applications in pharmaceutical, nutraceutical, and cosmeceutical sectors. An-
tioxidant, anticancer, anti-inflammatory, anti-diabetic, anticoagulant, immunomodulatory,
or anti-HIV activities have been discovered in SPS. The interaction between polysaccharide
or intestinal microbes is widely credited with these actions, indicating functional or thera-
peutic feature of sulfated polysaccharides [30]. In most circumstances, smaller molecular
weight SPS has more antioxidant activity than high molecular weight SPS because proton
donor action occurs in cells in low molecular weight SPS. Furthermore, this antioxidant
property is vital in preventing generation of free radicals in cell, which prevents oxidative
cell wall damage [31]. The antigenotoxic property of alginate oligosaccharide in form of
nanocomposites extracted from brown alga has received significant attention [32]. Table 1
shows some of the activities and qualities of polysaccharides from seaweeds that are useful
as antioxidants and anticancer agents.
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Table 1. Seaweeds polysaccharides and their roles in medicine.

Component Species Molecular
Weight Chemical Composition Doses Properties/Activities References

Carrageenan Tribonema minus 197 kDa
Heteropolysaccharide

composed mainly
of galactose

250 µg mL−1 Anticancer activity [33]

Porphyran Chondrus armatus f 9.7–34.6 kDa Mainly composed of
3,6-anhydro-L-galactose 327.3 µg mL−1 Anticancer activity [34]

Fucoidans

Cladosiphon
okamuranus 75.0 kDa

5.01 mg mL−1 of l-fucose,
2.02 mg mL−1 of uronic
acids and 1.65 ppm of

sulfate

1 mg mL−1 Anticancer
activities [35]

Fucus vesiculosus - Fucose and Xylose - Antioxidant activity [36]

Agar Gelidium amansii 1.21 × 104 Da and
1.85 × 105 Da

(1–4)-linked 3,6-anhydro-
α-L-galactose alternating

with (1–3)-linked
β-D-galactopyranose

25.6 mg L−1 Antioxidant activity [37]

Laminaran Laminaria digitata - β-(1,3)-glucan 10 µg mL−1 Antioxidant
protection [38]

Ulvan Ulva pertusa

83.1 from
143.2 kDa Rhamnose, and xylose 500 mg kg−1

Antioxidant and
antihyperlipidemic

activity
[39]

143.47 kDa Rhamnose and xylose 1.5 mg mL−1 Antioxidant
Activity [40]

Carrageenans are polysaccharides present in cell walls of red algae that are classified
into three categories based on their sulfation level: iota, kappa, or lambda [41]. Car-
rageenans, galactan, or xylomannan sulfates discovered in red seaweeds have antimicrobial
effects that prevent viruses from interacting with cells by inhibiting the formation of struc-
turally similar complexes [42]. Carrageenans derived from Hypnea spp. (including green
alga Ulva lactuca) have antioxidant and antiviral characteristics, as well as strong hypoc-
holesterolemic capabilities, by lowering cholesterol or sodium uptake whereas raising
potassium absorption [43]. Agar is polysaccharide made up of agaropectin or agarose,
which are both derived from red seaweeds and have structural or functional characteristics
that are comparable to carrageenans [41]. Porphyran, a polysaccharide produced from
red Porphyra spp., was shown to have anticancer, immunoregulatory, and antioxidant
effects [44].

Sulfated polysaccharides such as galactose, glucose, rhamnose, glucuronic acid, or ara-
binose isolated from the microalgae Spirulina platensis, as well as those speculated from red
algae Gracilariopsis lemaneiformis (i.e., 3,6-anhydro-l-galactose or d-galactose) demonstrated
antiviral and antitumor action [44]. Fucoidan polysaccharides, usually manufactured by
brown algae, such as Ascophyllum nodosum, Laminaria japonica, Viz fucusvesiculosus, Fucus
evanescens, Sargassum thunbergi, or Laminaria cichorioides, were shown to reduce blood choles-
terol levels and deter metabolic syndrome [43]. Antiproliferative, antiviral, anti-peptic,
antioxidant, anticanceranti-coagulant, antithrombotic, anti-inflammatory, or antiadhesive
characteristics are all found in algae fucoidans. They also have potent anticancer properties
or can prevent lung cancer metastasis through hindering matrix metalloproteinases (MMPs)
or Vascular Endothelial Growth Factor (VEGF) [45]. Fucoidans may have a synergistic
impact on currently used anticancer drugs [46]. To improve the efficacy of existing conven-
tional treatments, these polysaccharides can be added into or mixed with them. Caulerpa
lentilifera, Eucheuma cottonii, Ahnfeltiopsis concinna, Chondrus ocellatus, Sargassum polycystum,
Ulva fasciata, Gayralia oxysperma, or Sargassum obtusifolium soluble dietary fibers have been
found to prevent metabolic syndrome or lower blood cholesterol levels [43].

Alginate (β-d-mannuronic acid, α-l-guluronic acid, d-guluronic, or d-mannuronic) is
non-sulfated polysaccharide isolated from dark brown seaweed Laminaria digitata that is
commercially accessible (in acid and salt forms) [41]. Alginates isolated from brown have a
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nutritional function or are beneficial to gut health, donating to water binding, fecal bulking,
or reduction in colon transfer time that is an important indicator through colon cancer
prevention, according to previous studies [47]. Furthermore, because of their binding
nature, alginates alter mineral bioabsorption, aid in maintaining body weight, discourage
overweight and obesity, and lower hypertension [41].

3.1.2. Role of Polysaccharides in Food Industry

While the global market for healthy ingredients expands, there is significant interest
in the identification of new functional food ingredients from various natural sources [48].
As a result, the prospect of employing algae-derived molecules to create novel functional
food products has piqued the interest of many people in recent years. The largest and most
often used hydrocolloids from marine algae in the food industry include agars, alginates,
and carrageenans, as illustrated in Table 2.

Table 2. Seaweeds polysaccharides and their roles in foods and cosmeceuticals.

Component Species Models Doses MW Activity Results References

Carrageenan Padina
tetrastromatic

Paw edema
in rats 20 mg kg−1 25 kDa Anti-

inflammation
COX-2 and iNOS

inhibitions [49]

Fucoidan Fucus
vesiculosus

Human
malignant

melanoma cells
100–400 µg mL−1 60 kDa Anticancer

activity
Inhibit cell

proliferation [50]

B16 murine
melanoma

cells
550 µg mL−1 - Anti-

melanogenic
Inhibit tyrosinase

and melanin [51]

Ulvans Ulva sp. Human dermal
fibroblast

100 and
500 µg mL−1 4–57 kDa Anti-aging

Increase
hyaluronan
production

[52]

Laminaran Laminaria
japonica In vitro 15 mg mL−1 250 kDa antioxidant

activity
ROS scavenging

potential [53]

Fucoidan Chnoospora
minima

RAW
macrophages 27.82 µg mL−1 60 kDa Anti-

inflammation

Inhibition of
LPS-induced NO
production, iNOS,
COX-2, and PGE2

levels

[54]

Fucoidan Sargassum
hemiphyllum

RAW 264.7
macrophage

cells

dose-dependent
manner - Anti-

inflammation

Inhibit
LPS-induced
inflammatory

response

[55]

Fucoidan Sargassum
hemiphyllum

B16 melanoma
cells

dose-dependent
manner - Anticancer Activation of

caspase-3 [56]

Agar is a type of phycocolloid formed of agarose (a linear polysaccharide) and a
heterogeneous combination of smaller molecules (agaropectin). Agar is a widely recom-
mended food additive in the USA and in Europe (E406), and cannot be digested into the
gastrointestinal system in humans due to the lack of α/β-agarases [57]. Furthermore, gut
bacteria can convert it to d-galactose [58]. At low doses, agar is an excellent gelling agent,
capable of forming a brittle, stiff, and thermally reversible gel [59].

Surprisingly, agarose is the primary gelling agent in agar. In this manner, hydrogen
bonding between nearby D-galactose and 3,6-anhydro-L-galactose create agar gel along its
linear chains of agarose with repeating units. The food sector uses 90% of the agar produced
for its gellifying characteristics. It is used as a gelling agent in the culinary, food, and
confectionery sectors to produce Asian traditional foods, canned meats, confectionery jellies,
and aerated items such as marshmallows, nougat, and toffees [60]. Agar is commonly used
as a food additive in the production of dishes that require warming before consumption,
such as cake, sausage, roast pig, and bacon [61]. Agar fluid gels can be used to make foams
with excellent stability to replace fat in whipped desserts [61].
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Alginates, such as agar, are commonly used in the food manufactures for gelling,
thickening, stabilizing, and film formation. In contrast to other hydrocolloids, alginates
are unique in their cold solubility, allowing the creation of heat/temperature-independent
non-melting gels, cold-setting gels, and freeze–thaw-stable gels [62].

Carrageenan is commonly used in dairy products such as cheese and chocolate milk to
provide thickening, gelling, stabilizing, and strong protein-binding characteristics [63]. Car-
rageenan was used in dairy products at low doses due to its exceptional ability to link milk
proteins. This hydrocolloid was capable of keeping milk solids suspended and therefore
stabilize them. The meat industry is another area where carrageenan (mostly manufactured
by Eu-cheuma) is used. It is commonly used in the manufacture of hamburgers, ham,
seafood, and poultry preparations, due to its water retention properties. Carrageenan is
also found in aqueous gels such jelly, fruit gels, juices, and marmalade [61]. Carrageenans,
as cryoprotecting agents, play an important role in the structural and textural stability of
frozen foods. Additionally, k-carrageenan was used as a supplementary stabilizer in an ice
cream mix [64].

3.1.3. Role of Polysaccharides in Cosmeceuticals

In algal tissues, there are numerous forms of bioactive polysaccharides. These chemi-
cals are often moisturizing and antioxidant substances that are employed in cosmeceuticals
as shown in Table 2. They are also commonly employed in emulsions as gelling agents and
stabilizers [65]. Agar is a common ingredient in creams, used as an emulsifier and stabilizer,
and to control the moisture content in cosmetic products such as hand lotions, deodor-
ants, foundations, exfoliant/scrub, cleansers, shaving creams, anti-aging treatments, facial
moisturizer/lotions, liquid soaps, acne treatments, body washes, and face powder [66].
Alginates are commonly used as gelling agents in drugs and cosmetics, as thickeners,
protective colloids, or emulsion stabilizers, and are effective for hand gels and lotions,
ointment bases, pomades and other hair products, toothpastes, and other products due to
their chelating characteristics. Alginates can also be used to make a skin-protecting barrier
lotion to avoid dermatitis. This type of cream produces flexible films with increased skin
adhesion and is an appropriate component in beauty masks or facial packs [67,68].

Carrageenans are derived from several carrageenophytes, including Betaphycus gelat-
inum, Chondrus crispus, Eucheuma denticulatum, Gigartina skottsbergii, Kappaphycus alvarezii,
Hypnea musciformis, Mastocarpus stellatus, Mazzaella laminaroides, Sarcothalia crispata, from
the order Gigartinales (Rhodophyta). This phycocolloid is found in dentifrices, lotions, hair
products, lotions, medications, sunscreens, shaving creams, shampoos, deodorants sticks,
sprays, and foams. Over 20% of carrageenan manufacture is used in the pharmaceutical
and cosmetic industries [69].

The usage of laminarin in cosmetics is based on its bioactive qualities rather than
its physical characteristics. In terms of use, laminarin is commonly found in anticellulite
cosmetics [70]. Fucoidan can be effectively “cooked” out of edible seaweed by heating
it in water for 20–40 min. It appears to lower the strength of the inflammatory process
and facilitate speedier tissue repair after injuring or surgical trauma when ingested. As
a result, it is recommended for muscle and joint injuries (such as sports injuries), falls,
bruises, deep wounds, and surgery [71]. These sulfated polysaccharides are gaining pop-
ularity due to their numerous bioactivities, which include anticoagulant, antithrombotic,
anti-inflammatory, skin protection against ultraviolet radiation, tyrosinase receptor, an-
ticancer, antimicrobial, anti-obesity, antidiabetic, antioxidative, and antihyperlipidemic
properties [72,73].

According to an ulvans patent, rhamnose and fucose have synergistic skin protecting
and therapeutic benefits against skin aging [74]. The technique of ulvan gel production is
complex, involving the development of spherically shaped ulvan molecules in the presence
of boric acid and calcium ions [75]. Ulvans have moisturizing, protecting, anticancer,
and antioxidative effects in addition to their ability to form gels [76]. The chemical and
physicochemical features of ulvan make it an appealing choice for innovative functional
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and biologically useful polymers in the pharmaceutical, cosmeceutical, agriculture, and
food industries [75].

3.2. Protein and Amino Acids

Protein content in seaweed varies by species, season, and geographic location, and can
be as high as 45% DW. The contents of peptides, proteins, or amino acids in seaweed are af-
fected by seasonal fluctuations and habitat; in general, red algae have larger concentrations
(up to 47%) than green algae (around 9 and 26%), while brown algae have low amounts
(3–15%) [77]. The difference in the amounts of proteinas and amino acids in some seaweeds
are illustrated in Tables 3 and 4. All essential and non-essential amino acids are found in the
proteins of the three macroalgae groups [78]. Seaweed protein and bioactive peptides have
a variety of health benefits as well as significant antioxidant activity, especially through
compounds with low molecular weight compounds that are far secure than produced
substances or have less adverse impacts [79,80].

Table 3. Different proteins accumulation of some seaweeds.

Seaweed Species Name of the Protein Protein Yield % References

Ulva sp. Green algae Glycoproteins (GP)
“UvGP-1” (0.54)

“UvGP-2 DA”(0.52)
“UvGP-2-DS”(1.98)

[81]

Ulva lactuca Green algae GP fraction G ND [82]
Saccharina japonica Brown algae Glycoprotein 0.27 [83]

Solieria filiformis Red algae Lectins “SfL-1” “SfL-2” ND [84]
Solieria filiformis Red algae Lectin “SfL” ND [85]

Capsosiphon fulvescens Green algae “Cf-hGP” ND [86]
Undaria pinnatifida Brown algae “UPGP” ND [87]

ND: Not detected; SfL: Solieria filiformis lectin; Cf-hGP: Capsosiphon fulvescens hydrophilic glycoproteins; UPGP:
Undaria pinnatifida glycoprotein.

Table 4. Amino acid composition accumulation of some seaweeds (g amino acid 100 g−1 protein).

No. Amino Acids
(AA)

Caulerpa
lentillifera

(Green Algae)
[88]

Ulva
reticulate

(Green Algae)
[88]

Kappaphycus
alvarezii (Red

Algae)
[89]

Gracilaria
salicornia

(Red Algae)
[89]

Turbinaria
ornata
(Brown
Algae)

[90]

Durvillaea
antarctica

(Brown Algae)
[91]

Essential AA
1 Threonine 6.38 5.41 2.49 2.25 0.15 5.84
2 Valine 7.03 6.30 2.49 2.20 0.23 9.97
3 Lysine 6.63 6.02 1.51 - 0.20 4.22
4 Isoleucine 5.01 4.23 2.14 1.98 0.18 8.05
5 Leucine 8.00 7.90 2.34 2.16 0.26 15.88
6 Phenylalanine 4.93 5.26 2.11 1.79 0.19 9.97
7 Methionine - - 1.69 1.61 0.05 3.89

Non essential AA
8 Aspartic 11.56 12.50 3.33 - 0.53 4.17
9 Serine 6.14 6.39 2.68 2.90 0.10 5.38
10 Glutamic 14.39 12.98 11.67 2.79 0.58 17.87
11 Glycine 6.87 6.49 2.97 2.18 0.22 18.36
12 Arginine 7.03 8.65 2.40 2.40 0.19 4.83
13 Histidine 0.65 1.08 1.60 2.29 0.07 2.26
14 Alanine 6.87 8.09 2.93 2.51 0.23 9.57
15 Tyrosine 3.88 3.62 1.81 1.74 0.05 4.45
16 Proline 4.61 5.08 - - 0.17 7.95
17 Cystin - - - - 0.00 0.78
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Various seaweeds contain amino acids such as valine, leucine, isoleucine, or taurine
which have potential biological action as antioxidants [92,93]. Acidic amino acids aspartic
acid or glutamic acid is abundant in most seaweed species, and they comprise most
essential amino acids [94]. While algal proteins were being thought to consist of threonine,
tryptophan, sulfur amino acids (cysteine and methionine), lysine, or histidine-limiting
amino acids, their overall levels are larger than in terrestrial plants [95]. Furthermore,
amino acids are required for the production of hormones and nitrogenous low molecular
weight compounds, both of which are important biologically. Amino acids can be used to
help treat some disorders since they have distinct physiological roles. Supplementing with
methionine, for example, can help people with multiple sclerosis [96]. Despite the fact that
seaweed proteins contain low amounts of some essential amino acids, these seaweeds could
be introduced to cereal foods such as pasta to enhance the amino acid composition [97].

Macroalgal species such as Chlorella sp., Dunaliella tertiolecta, Aphanizomenon flosaquae
and Spirulina plantensis, due to their high protein content or nutritive quality, are often used
as human food sources [98]. Endogenous (threonine, serine, aspartic acid, proline, glutamic
acid, or glycine) and exogenous (histidine, lysine, isoleucine, methionine, phenylalanine,
leucine, valine or threonine) amino acids are abundant in some algae species [43]. Ulva spp.
has glutamic or aspartic acid (26–32% amino acid), Ulva australis has taurine or histidine,
Himanthalia elongata (sea spaghetti) Palmaria palmata (Dulse) and have a lot of glutamic acid,
serin or alanine, and Sargassum vulgare has lot of methionine [99]. Several applications of
seaweeds protein are illustrated in Table 5.

Table 5. Seaweeds proteins and their roles in medicinal.

Component Properties/Activities Seaweed Doses Molecular Weight References

Peptide PPY1 Anti-aging Pyropia yezoensis 250–1000 ng mL−1 532 Da [100]

Peptides PYP1-5 and
porphyra 334

Boost synthesis of
elastin

Porphyra yezoensis f.
coreana Ueda 0–200 µM 1622 kDa [101]

Lactate and progerin
Reduce synthesis,

anti-elastase,
anti-collagenase

Alaria esculenta - 112 KDa [102]

Phycobiliproteins Antioxidant Gracilaria gracilis 0.5–30 mg mL−1 240 KDa [103]

Deoxygadusol, palythene and
usujirene Antioxidant Rhodymenia

pseudopalmata - - [104]

Palythine, palythinol,
porphyra-334, asterina-330,

shinorine, or usujirene

Antioxidant,
antiproliferative

Palmaria palmate,
Mastocarpus stellatus,

Chondrus crispus
2.0–4.0 mg mL−1 244.24 KDa [105]

Porphyra-334, shinorine,
palythine and asterina-330

Antioxidant;
UV-protective effect

Gracilaria
vermiculophylla - 346.33 KDa [106]

3.2.1. Role of Proteins and Amino Acid in Medicine

Furthermore, mycosporine-like amino acids (MAAs) were revealed in a variety of
species, most notably Rhodophyta: Chondrus crispus spp., Grateloupia lanceola,
Porphyra/Pyropia spp., Solieria chordalis, Asparagopsis armata, Palmaria palmata, Gracilaria
cornea, Gelidium, or Curdiea racovit [106–108]. Phycobiliproteins are made up of phycobilins,
which are proteins that are covalently attached to chromophores [43]. Such water-soluble
proteins have antioxidant properties and could be used as a natural food colorant [26].
PC, blue-colored phycobiliprotein derived mostly from cyanobacteria Arthrospira spp.,
or PE (pink-colored protein pigment) derived from cyanobacteria Lyngbya spp., both
demonstrated anticancer activity upon A549 lung cancer cells [22]. Glycoproteins were also
proteins found in marine algae which are made up from proteins linked to carbohydrates.
Rhamnose, galactose, glucose, and mannose make up 36.24% of glycoproteins, with a mole
ratio of 38:30:26:6 [109].

Protein concentrations are high in Rhizoclonium riparium, Dictyota caylinica, Enteromor-
pha intestinalis, Catenella repens, Gelidiella acerosa, Polysiphonia mollis, Capsosiphon fulvescens,
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Osmundea pinnatifida, Sphaerococcus coronopifolius, Ulva lactuca, Gelidium microdon, Fucus
spiralis, Pterocladium capillacea, or Ulva compressa [110]. Anti-aging, antioxidant, anti-tumor,
anti-inflammatory or protective qualities of proteins make them valuable in the prevention
and treatments of neurological illnesses, DNA replication, gastric ulcers, improve response,
molecule transfer, or biochemical reaction catalysis [45]. According to Cicero et al. [111],
bioactive peptides can increase biological defenses against oxidative stress and inflamma-
tory illnesses, hence boosting the real frame of nutraceutical and functional meals. As a
result, MAAs have wide range of properties, such as ability to act like natural sunscreens,
anti-inflammatory, antioxidants or anti-aging agents, skin renewal stimulators, cell prolifer-
ation activators, and so on, making it attractive or secure option for cosmetic industries or
pharmaceutical [112].

3.2.2. Role of Proteins and Amino Acid in Cosmeceuticals

Because several amino acids are components of the natural moisturizing factor (NMF)
in human skin, they are commonly used as moisturizing agents in cosmetic prepara-
tions [113,114]. MAA content is higher in the summer and at a mild depth (0–1 m). MAAs
have the ability to be used in cosmetic products and uses as ultraviolet protectors and cell
proliferation stimulators [115].

Algae protein concentration differs significantly among the different algae groups
(brown, red, and green). Brown algae have a lower protein concentration (5–24%) of dry
weight, while red and green algae have a greater protein concentration (10–47%) of dry
weight [116]. Holdt and Kraan [107] show that protein, peptide, and amino acid concen-
tration, like other bioactive components of algae, is affected by a variety of circumstances,
including seasonal change. During the months from February to May, for example, brown
algae Saccharina and Laminaria had the highest protein content [107]. A similar trend
was observed in red algae species, with a high concentration of protein in the summer
and a significant decrease in the winter [116]. Algae proteins are high in glycine, arginine,
alanine, and glutamic acid, and they include essential amino acids at amounts comparable
to FAO/WHO needs. Lysine and cystine are their limiting amino acids [117]. Taurine,
laminin, kainoids, kainic and domoic acids, and several mycosporin-type amino acids
are also found in algae [118]. Taurine is involved in several physiological activities in the
human body, including immunomodulation, membrane stabilization, ocular development,
and nervous system function [119]. Furthermore, kainic and domoic acids play a role in
the control of neurophysiological functions [120].

3.3. Fatty Acids

Fatty acids (FAs) are required for all organisms to function normally. FAs are com-
ponents of plasma membranes that serve as energy storage materials as well as signal
molecules that control cell development and differentiation as well as gene expression.
Elongation and desaturation can change the structure of FAs [121,122]. The quantity of
unsaturated bonds in FA molecules determines their biological effects. Additionally, lipids
are essential to transport and absorb fat-soluble vitamins (i.e., A, E, D or K). PUFAs (25–60%
of total lipids), glycolipids, phytosterols, phospholipids, or fat-soluble vitamins are all
found in low concentrations (1–5% of dry weight) in seaweed lipids (vitamin A, D, E or K,
carotenoids) [1]. Several seaweeds have a greater total lipid concentration above 10% of dry
weight; however, 50% of these lipids are in the form of extractable fatty acids in the brown
alga Spatoglossum macrodontum. In addition, S. macrodontum showed the maximum fatty
acid concentration (57.40 mg g−1 DW) and a fatty acid profile rich in saturated fatty acids
with a higher concentration of C18:1, making it an excellent biofuel feedstock. Similarly, the
green seaweed Derbesia tenuissima possesses significant quantities of fatty acids (39.58 mg g1
DW), but with a greater amount of PUFA (n-3) (31% lipid) that can be used as nutraceuticals
or fish oil substitutes [123]. The lipid algae concentration is low (1–5%), with neutral lipids
and glycolipids dominating. Because algae generate long-chain polyunsaturated fatty acids,
including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the amount of
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essential fatty acids in algae is greater than in terrestrial plants [124]. In general, red algae
have higher concentrations of EPA, palmitic acid, oleic acid, and arachidonic acid than
brown algae, which have greater amounts of oleic acid, linoleic acid, and α-linolenic acid
but lower amounts of EPA. Green algae have more linoleic acid and α-linolenic acid, as
well as palmitic, oleic, and DHA [125]. Both red and brown algae contain omega-3 and
omega-6 fatty acids [126]. The different in the amounts of lipid in different seaweeds are
illustrated in Table 6.

Table 6. Lipids accumulation of some seaweeds.

Seaweed Species Lipids g/100 g EPA (%) DHA (%) References

Caulerpa lentillifera Green algae 1.11 ± 0.05 0.86 - [127]
Codium fragile Green algae 1.5 ± 0.0 2.10 ± 0.00 - [128]
Ulva lactuca Green algae 1.27 ± 0.11 0.87 ± 0.16 0.8 ± 0.01 [129]

Agarophyton
chilense Red algae 1.3 ± 0.0 1.3 ± 0.01 - [128]

Porphyra/Pyropia
spp. (China) Red algae 1.0 ± 0.2 10.4 ± 7.46 - [128]

Ascophyllum
nodosum Brown algae 3.62 ± 0.17 7.24 ± 0.08 - [130]

Bifurcaria bifurcata Brown algae 6.54 ± 0.27 4.09 ± 0.08 11.10 ± 1.13 [130]
Durvillaea
antarctica Brown algae 0.8 ± 0.1 4.95 ± 0.11 1.66 ± 0.02 [129]

Fucus vesiculosus Brown algae 3.75 ± 0.20 9.94 ± 0.14 - [130]
Himanthalia

elongata Brown algae <1.5 7.45 - [131]

Laminaria spp. Brown algae 1.0 ± 0.3 16.2 ± 8.9 - [132]
Macrocystis pyrifera Brown algae 0.7 ± 0.1 0.47 ± 0.01 - [128]
Sargassum fusiforme Brown algae 1.4 ± 0.1 42.4 ± 11.9 - [132]
Undaria pinnatifida Brown algae 4.5 ± 0.7 413.2 ± 0.66 - [132]

EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid.

3.3.1. Role of Fatty Acids in Medicine

There is an increasing need to assess new food sources that do not involve overex-
ploitation of terrestrial ecosystems [133]. Seaweeds have a lipid output of 0.61% to 4.15%
dry weight (DW) on average. Some seaweed species, on the other hand, can have greater
levels since they are a strong source of unsaturated fatty acids. Although seaweed has
lower lipid content than marine fish, their abundance in coastal areas makes it a viable
source of functional lipid. Recent studies indicated that the levels of total lipid (TL) or
omega-polyunsaturated fatty acids in seaweeds vary seasonally, reaching up to 15% TL per
DW or more than 40% omega-3 PUFAs per total fatty acids [134]. Brown seaweed lipids,
on the other hand, contain up to 5% fucoxanthin. Anti-obesity activities of fucoxanthin
have been demonstrated. It also reduces insulin resistance and lowers blood glucose levels
significantly. Brown seaweed lipids are found in brown seaweed, according to a study.
Excess fat builds up in abdomen white adipose tissue (WAT) is dramatically decreased,
or glucose levels are regained to average limits in obesity/diabetes model mice due to
presence of fucoxanthin in lipids [135].

On the other hand, the group of lipid bioactive chemicals known as sterols is another
appealing lipid bioactive substance found in marine sources. Sterols extracted from macro-
or microalgae, as well as other marine invertebrates, were researched extensively by [136].
Previously, it was discovered that sterols and several of their derivatives have a key role in
decreasing low-density lipoproteins (LDL) cholesterol levels in vivo. Anti-inflammatory
and antiaterogenic action are two further bioactivities linked to sterols. Phytosterols (C28
and C29 sterols) are also key precursors of a wide range of chemicals, including vitamins.
Ergosterol, for example, is a precursor to vitamin D2 and cortisone [137].
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Omega-3 (eicosapentaenoic acid, docosahexanoic acid, stearidonic acid, -linolenic
acid) and omega-6 (arachidonic acid, -linoleic acid, -linoleic acid) are the most common
polyunsaturated fatty acids (PUFAs) [1]. Essential fatty acids (EFAs) are nutraceuticals
that are combined with nutritional supplements or used as part of healthy food [41]. Food
and Drug Administration (FDA) declared in 2004 which foods including PUFA omega-3
substances are medicinally essential, as they provide therapeutic properties byregulating
blood pressure, membrane fluidity, or blood clotting; (ii) lowering risk of cardiovascular
disease, osteoporosis, or diabetes; (iii) correcting brain or nervous system development
and function [138]. Marine algae were found to have elevated high levels from PUFAs
(α-linolenic acid, γ-linoleic, α-linoleic acid, stearidonic acid, arachidonic acid, and icosapen-
taenoic acid) [1]. Moreover, a previous study asserted that green seaweeds such as Ulva
pertusa possess a high concentration of hexadecatetraenoic, oleic, and palmitic acids [139].
Additionally, Undaria pinnatifida contains significant levels of eicosapentaenoic acid, docosa-
hexanoic acid, and monounsaturated fatty acids (C12:1 (lauroleic acid), C14:1 (myristoleic
acid), C16:1 (palmitoleic acid), C17:1 (cis-10-heptadecenoic acid), and C18:1 (cis-10-hepta
(oleic acid) [140].

Upwards of 200 phytosterols (662–2320 mg/g dry weight) were discovered through
marine algae. Phytosterol derivatives are abundant in brown algae such as Laminaria
japonica, Agarum cribosum, or Undaria pinnatifida (for example, fucosterol, which accounts
for 83–97 percent of total phytosterol content) [141,142]. Phospholipids in seaweed con-
tain about 10–20% total lipids which seem to be more resistant to oxidation and contain
elevated concentration from FAs such as eicosapentaenoic or docosahexanoic acid [43].
Glycolipids make up more than half of all algal material and are characterized by high
levels of n-3 PUFAs (e.g., monogalactosyldiacylglycerides, digalactosyldiacylglycerides
or sulfoquinovosyldiacylglycerides) [41]. Carotenoids are a group of lipophilic colorful
chemicals found in nature that include lutein, lycopene, canthaxanthin, β-carotene, or
astaxanthin [143]. Furthermore, these properties make algal lipids more bioavailable or
provide a variety of health benefits to people or animals [109].

3.3.2. Role of Fatty Acids in Foods

Microalgae have a high PUFA content. They are fatty acids with many double bonds
in the carbon chain and have numerous useful qualities. Microalgae may produce members
of the PUFAsω-6 family, such as linoleic acid (LA), γ-linolenic acid (GLA), and arachidonic
acid (ARA), as well as members of the PUFAsω-6 family, such as α-linolenic acid (ALA),
eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) [144,145]. Many microalgae
manufacture the long chain of -3 PUFAs, with yields exceeding 20% of total lipids. The
microalgae most commonly employed for the formation of algal oil rich inω-3 and biomass
are marine members of the Thraustochytriacea and Crythecodiniacea families [146].

Because of their obvious benefits to tissue integrity and health, they are vital ingredi-
ents for food additives and feeds. Microalgae such as Chlorella vulgaris, Arthrospira platensis,
Haematococcus pluvialis, and Dunaliella salina have been identified as safe or permitted as
human and animal food additives. Scenedesmus almeriensis and Nannocholoropsis sp. are two
more species that have been investigated but have not yet been commercialized [147].

Crypthecodinium, Schizochytrium, Thraustochytrids, and Ulkenia microalgal species are
employed in the manufacture important fatty acids [148]. DHA-rich oil derived from
Crypthecodinium cohnii is commercially accessible and contains 40–50% DHA with no EPA
or other longchain PUFAs [149]. Schizochytrium species that synthesize DHA and EPA
are currently employed as an adult dietary supplement in food and drinks, health foods,
animal feeds, and foodstuffs products such as cheeses, yogurts, spreads and sauces, and
breakfast cereals. This microalga’s essential fatty acids are used as supplements in diets for
pregnant and nursing women, as well as cardiovascular patients [149].
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3.3.3. Role of Fatty Acids in Cosmeceuticals

Algae fatty acids and other lipophilic chemicals are also anti-allergic, antioxidant, and
anti-inflammatory [150]. Furthermore, lipids can act as moisturizing ingredients substances,
protecting the skin from water loss [151]. Many fatty acids, including lauric acid, myristic
acid, palmitic acid, and stearic acid, can be used as raw materials. Furthermore, FAs are
skin components that play a crucial role in the maintenance of skin integrity [152].

Waxes are classified as fatty esters, which are a type of fatty acyl [153]. Euglena gracilis is
a microalga that produces a large quantity of wax-ester as a byproduct of the biodegradation
of storage polysaccharides. These wax-esters are now used in biofuel generation but could
possibly be useful in cosmetics [154]. Waxes, for example, are important components
in lipsticks because they give the stick sufficient rigidity, hardness, stability, and texture.
Today’s lipsticks can be made with a range of waxes. Alkenones are a class of lipids,
long-chain ketones that are produced by haptophyte microalgae such as Isochrysis sp. and
employed as structuring agents in some cosmetic preparations in place of animal-derived
and petroleum-derived waxes. They are a vegan and recyclable marine-based component
that will meet customer demands. Because alkenones can be made in a variety of locales,
their supply is not as limited as that of some other waxes. Given their waxy structure and
relatively high melting point, alkenones may offer an appealing class of natural chemicals
with potential applications in a wide range of cosmetic and skin care products [155]. Table 7
highlights the applications of lipids.

Table 7. The seaweeds lipids and their apllications.

Component Molecular Mass Properties/Activities Seaweed References

E-9-oxooctadec-10-enoic acid
E-10-oxooctadec-8-enoic acid 282.46 g mol−1 Anti-inflammatory Gracilaria verrucosa [156]

Essential oil (tetradeconoic acid,
hexadecanoic acid,

(9Z)-hexadec-9-enoic acid)
(9Z,12Z)-9,12-octadecadienoic acid

280.447 g mol−1

Antioxidant: radical scavenging
Antibacterial activity upon
Staphylococcus aureus and

Bacillus cereus

Laminaria japonica [157]

Fucosterol 412.69 g mol−1

Antioxidant: increased
antioxidative enzymes

(glutathione peroxidase,
superoxide dismutase, catalase)

Pelvetia siliquosa [158]

Fucosterol 412.69 g mol−1
Anti-inflammatory,

Ati-photodamage: decreased
UVB-induced MMPs

Hizikia fusiformis [159]

Palmitic acid 256.430 g mol−1 Enzyme inhibition, Antioxidant
Ulva rigida, Gracilaria sp.,

Saccharina latissima,
Fucus vesiculosus

[160]

Omega 3 fatty acids 909.4 g mol−1 Antioxidant Brown algae [161]

Arachidonic acid (ARA) - Improves growth and
development of neonates

P. purpureum, P.
cruentum [162]

Eicosapentaenoic
acid (EPA) 500 mg/day

Cognition, heart health,
protection against

arthrosclerosis,
anti-inflammatory

Nannochloropsis,
P. tricornutum, P.

cruentum
[163,164]

Docosahexaenoic
acid (DHA) 500 mg/day

Brain and eye health,
cardiovascular

benefits, nervous system
development

C. cohnii, Schizochytrium
sp., Ulkenia sp. [162–164]

Fucosterol 1 and 10 µg mL−1 Anti-aging
Inhibit MMP expression Hizikia fusiformis [165]

Polyunsaturated fatty acid 10.3 mg mL−1 Anti-inflammation Undaria pinnatifida [166]



Mar. Drugs 2022, 20, 342 15 of 49

3.4. Pigments

Natural pigments are necessary for photosynthesizing algal metabolism, or macroalgae
are divided into three groups depending on pigment content: Phaeophyceae (brown algae),
Chlorophyceae (green algae), or Rhodophyceae (red algae) are three families of algae
(red algae) [139]. Macroalgae can produce three fundamental types of organic pigments:
chlorophylls, carotenoids, or phycobilins [140]. Macroalgae that are wealthy in chlorophylls
a or b seem green, whereas algae appear greenish-brown owing to a combination of
fucoxanthin (carotenoid), and algae appear red owing to combination of chlorophylls a,
c, or d, and phycobilins. Chlorophylls are natural lipid-soluble greenish pigments with
porphyrin ring [139]. The chemical structures of different types of pigments in seaweeds
are presented in Figure 4.
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Carotenoids have received much interest and are used in nutritional supplements,
fortified foods, animal feed, pharmaceuticals, or cosmetics because of their antioxidant and
antimicrobial characteristics, which assist to decrease the prevalence of cardiovascular
diseases, ophthalmologic diseases, or cancer [138]. Carotenoids are lipophilic, linear
polyenes in two categories: (i) carotenoids, carotenoids, and lycopene; (ii) xanthophylls
(e.g., antheraxanthin, zeaxanthin, lutein, fucoxanthin, violaxanthin) [167]. Ascophyllum
nodosum, Cladosiphon okamuranus, Fucus serratus, Chaetoseros sp., Ishige okamurae, Ecklonia
stolonifera, Himanthalia elongata, and Fucus vesiculosus all contain carotenoid. It is more
efficient upon Gram-positive bacteria (like, Streptococcus agalactiae, Staphylococcus aureus,
Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus epidermidis, or Serratia marcescens)
and Gram-negative bacteria (like, Klebsiella pneumoniae, Klebsiella oxytoca, Serratia marcescens,
Acinetobacter lwoffii, Pseudomonas aeruginosa or Escherichia coli) [139].

Phycobiliproteins are naturally fluorescent, water-soluble proteins classified as PC
(blue pigment), PE (red pigment), and allophycocyanins (light-blue pigment), with PE
being most common in several red macroalgae species [139]. Algae rich in phycobiliproteins
include Spirulina, Botryococcus, Chlorella and Nostoc. These pigments were discovered to
have anti-obesity, anti-inflammatory, anti-angiogenic, antioxidant, anti-carcinogenic or
neuroprotective activities in a recent study [168]. Table 8 illustrates the role of different
carotenoids in human health.
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Table 8. Summarizes the key activities of carotenoids in human health.

Carotenoid Seaweed
Source Effect Model Bioactive

Concentration Target Reference

Astaxanthin Hematococcus
pluvialis

Antioxidant

Human monocytes
(U-937) 10 µM SHP-1 [168]

Mice brain 2 mg/kg/day MDA, NO,
APOP, GSH. [169]

Leydig cells 10 µg/mL StAR [170]

Antiproliferative
human prostatic
adenocarcinoma

(LNCaP)
10 µM prostate specific

antigen (PSA) [171]

immune system
stimulation

transplantable
methylcholanthrene-

induced fibrosarcoma
(Meth-A tumor)

40 mg/kg/day interferon-g
(IFN-γ) [172]

anti-obesity Humans 0, 6, 12 and 18
mg/day adiponectin [173]

Cardiovascular
protective

spontaneously
hypertensive rats

(SHR)
50 mg/kg blood pressure

(BP) [174]

Fucoxanthin
Sargassum

horneri

antioxidant and
protective Vero cells

5, 50, 100 and
200 µM (50 µM

H2O2)
DNA [175]

UV protection Human fibroblasts
5, 50 and 100
µM (50 mJ/cm2

UV-B)
DNA [176]

Antioxidant Retinol deficiency rats 0.83 µM
CAT, GST and
Na+K+ATPase

activity
[177]

Antiproliferative

leukemia cells (HD-60) 11.3 and 45.2
µM

DNA
fragmentation [178]

colorectal
adenocarcinoma cells

(Caco-2)
15.2 µM DNA

fragmentation [178]

colorectal
adenocarcinoma cells

(DLD-1)
15.2 µM DNA

fragmentation [178]

colorectal
adenocarcinoma cells

(CHT-29)
15.2 µM DNA

fragmentation [178]

human colorectal
carcinoma (HCT116) 5 and 10 µM

Bcl-xL, PARP
and caspase 3

and 7
[179]

Antiproliferative human urinary bladder
cancer cells (EJ-1) 20 µM [180]

anti-obesity Rats 2 mg

absorption of
triglycerides,

pancreatic
lipase

[181]
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Table 8. Cont.

Carotenoid Seaweed
Source Effect Model Bioactive

Concentration Target Reference

Fucoxanthinol Corbicula
fluminea

Antiproliferative human prostate cancer
(PC-3) 2.0 µM

Bcl-xL, PARP
and caspase 3

and 7
[179]

anti-obesity Rats 2 mg

absorption of
triglycerides,

pancreatic
lipase

[181]

Halocynthia-
xanthin

Mastocarpus
stellatus Antiproliferative human neuroblastoma

cells (GOTO) 5 µg/mL [182]

β-carotene Kappaphycus
alvarezii

Antioxidant Smokers 20 mg Breath pentane [183]

Cure of
erythema Humans 30 to 90

mg/day [184]

Antiproliferative murine osteosarcoma
(LM8) 30 µM [185]

Antiinfiammatory
human umbilical vein

endothelial cells
(HUVECs)

0.02 µmol/L
VCAM-1,

ICAM-1 and
E-Selectin

[186]

Lutein Zostera noltii

ADM
prevention

Human Dermal
Lymphatic Endothelial

Cells (HLEC)
5 µM DNA, lipid and

protein level [187]

Cardiovascular
protective Human monocytes 0.1, 1, 10 and

100 nM
LDL associated
with artery wall [182]

Zeaxanthin Pyropia
yezoensis

ADM
prevention

Human Dermal
Lymphatic Endothelial

Cells (HLEC)
5 µM DNA, lipid and

protein level [187]

Abbreviations: SHP-1: protein tyrosine phosphatase non-receptor type 6; MDA: Malondialdehyde; NO: nitric
oxide; APOP: protein oxidation product; GSH: glutathione; CAT: catalase; GST: glutathione S-transeferase; Bcl-
xL: antiapoptotic factor; PARP: poly-ADP-ribose polymerase; (VCAM-1, ICAM-1): genes coding for vascular
adhesion proteins.

3.5. Phenolic Compounds

Phenolic acids, tannins, flavonoids, and catechins are some of the phenolic compounds
found in marine algae. The method of phenolic chemical extraction and the yield are
strongly dependent on seaweed species. Brown seaweeds (Pheophyceae: P) are known
for their high content of phlorotannins, complicated polymers made up of oligomers of
phloroglucinol (1,3,5-trihydroxybenzene), while red or green seaweeds (Rhodophyceae: R)
are known for their phenolic acids, flavonoids or bromophenols [10]. Polyphenols extracted
from seaweeds were linked to variety of biological functions, containing antimicrobial, an-
ticancer, antiviral, anti-obesity, antitumor, antiproliferative, antidiabetic, anti-inflammatory,
or antioxidant effects [10]. Previous studies [101,188] demonstrated the anti-inflammatory
activity of polyphenol-rich fraction derived from Rhodophyceae. Furthermore, phlorotan-
nins and bromophenols derived from green or red algae possess strong inhibitory activity
upon in vitro cancer cell proliferation or in vivo tumor growth, as well as antidiabetic and
antithrombotic activities in vitro.

The phenolic active ingredients in seaweeds differ depending on whether they are red,
green, or brown. Different phyla create different chemicals; for example, brown seaweeds
produce phlorotannins, but red seaweeds produce a greater range of mycosporine-like
amino acids (MAAs) than green species [189,190]. As a result of cellular mechanisms and
genetic codification, the synthesis and diversity of phenolic chemicals are intimately tied to
the seaweed taxonomic group and individual species [191]. Furthermore, phenolic acids
such as benzoic acid, p-hydroxybenzoic acid, salicylic acid, gentisic acid, protocatechuic
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acid, vanillic acid, gallic acid, and syringic acid have been found in the genus Gracilaria
(Rhodophyta, red alga) [192,193]. Phlorotannins are well-known phenolic chemicals that
brown seaweeds produce [194]. Flavonoids such as rutin, quercitin, and hesperidin were
detected in many Chlorophyta, Rhodophyta, and Phaeophyceae species [195]. Chon-
drus crispus and Porphyra/Pyropia spp. (Rhodophyta), as well as Sargassum muticum and
Sargassum vulgare (Phaeophyceae), may synthesis isoflavones, as can daidzein and genis-
tein [196]. Furthermore, several flavonoid glycosides were found in the brown seaweeds
Durvillaea antarctica, Lessonia spicata, and Macrocystis pyrifera (also known as Macrocystis
integrifolia) [195].

Terpenoids are belonging to secondary metabolites discovered in seaweeds [190].
Meroditerpenoids (such as plastoquinones, chromanols, and chromenes) were discovered
in brown seaweeds, primarily from the Sargassaceae family (Phaeophyceae). These com-
pounds are produced in part from terpenoids and are distinguished by the presence of
a polyprenyl chain connected to a hydroquinone ring moiety [197]. In Rhodomelaceae,
red seaweeds manufacture phenolic terpenoids such as diterpenes and sesquiterpenes.
Callophycus serratus, for example, synthesizes a particular diterpene called bromophycol-
ide [198]. Some studies revealed the existence of phenolic and flavonoids acids in marine
algae as seen in Figure 5 and the chemical structure of phenolics also presented in Figure 6.
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Figure 5. Several seaweeds synthesize phenolic substances. Adapted from ref [194] obtained from
mdpi journals. (A)—Ascophyllum nodosum (P); (B)—Bifurcaria bifurcata (P); (C)—Fucus vesiculosus (P);
(D)—Leathesia marina (P); (E)—Lobophora variegata (P); (F)—Macrocystis pyrifera (P); (G)—Asparagopsis
armata (R); (H)—Chondrus crispus (R); (I)—Gracilaria sp. (R); (J)—Kappaphycus alvarezii (R); (K)—
Neopyropia sp. (R); (L)—Palmaria palmata (R); (M)—Dasycladus vermicularis (Chl); (N)—Derbesia
tenuissima (Chl); (O)—Ulva intestinalis (Chl); P—Phaeophyceae, R—Rhodophyta; Chl—Chlorophyta.
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3.6. Minerals

Seaweeds comprise greater numbers of important minerals, such as macroelements
(e.g., Na, Ca, P, Mg, K) and trace minerals (like, Fe, Zn, Mn, Cu) due to their marine
environment [118]. Minerals and cell wall polysaccharides (such as agar, alginic acid,
alginate, or cellulose) play critical roles in the formation of human tissues or the regulation
of crucial reactions as cofactors of some enzymes as cofactors among some enzymes [107].
As a result, seaweeds are important source of minerals and, when consumed regularly,
have been recognized as advantageous functional foods (i.e., food supplements) [98]. It is
worth noting that brown algae have greater mineral content than red algae [118].

Furthermore, elements such as Fe or Cu are found in higher concentrations in seaweeds
than in meats and spinach [43]. Seaweeds were identified to be a promising supplier of
iodine, which occurs at different chemical components, or brown algae, which contains
more than 1% moisture content; its buildup in seaweed tissues may be 30,000 times greater
than its concentration in sea water [45]. Iodine, which comes in a variety of forms, is
anti-goiter, anticancer, antioxidant agent or a key nutrient in metabolic control. However,
excessive intake may result in some unfavorable effects [43].

Green seaweeds have a Na+/K+ ratio of 0.9 to 1, red seaweeds have a ratio of 0.1 to
1.8, and brown seaweeds have a ratio of 0.3 to 1.5. This ratio was found to be especially low
in Palmaria palmata (0.1) and Laminaria spp. (0.3–0.4) from Spain [199]. Because the World
Health Organization (WHO) recommends a Na+/K+ ratio close to one, consumption of
food products with this proportion or lower should be examined for healthy cardiovascular
purposes [199]. In contrast, using seaweeds as NaCl replacements in processed meals could
be a useful technique for reducing overall Na+ consumption while boosting intake of K+

and other lacking components that would otherwise not be present in NaCl salted foods. In
addition to Na+ and K+, Ca2+ and Mg2+ intake is linked to cardiovascular health. Indeed, it
was proposed that enough Mg2+ intake may lower blood pressure by acting as a calcium
antagonist on smooth muscle tone, inducing vasorelaxation [200].

Green seaweeds accumulate Mg2+ more than Ca2+, whereas brown seaweeds do the
opposite. In turn, with the exception of Phymatolithon calcareum, which can accumulate
exceptionally high concentrations of Ca2+ [201], red seaweeds generally have lower, but
balanced, amounts of these two minerals compared to the two other macroalgae types. It
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should be noted that the Ca/Mg ratio is also important in terms of calcium absorption
because a lack of magnesium can result in a buildup of calcium in soft tissues, resulting in
the production of kidney stones and the formation of arthritis [202].

Finally, phosphorus (P) levels appear to be similar in the three macroalgae groups,
with values ranging from 0.5 to 7 g/kg DW. Notably, Fe is prevalent in all three macroalgae
types, while Chlorophyta has a greater rate than Rhodophyta and Phaeophyta. However,
at low doses, some species from the chlorophyta phylum (e.g., Alaria esculenta, Saccharina
latissima, and Fucus spp.) might also be proposed to be a good source of Fe, as accumulation
in some cases can exceed 1 g/kg DW [203]. In turn, the maximum Mn concentrations
were found in red seaweeds, specifically Chondrus crispus, Palmaria palmata, and Gracilaria
spp. [204]. Dawczynski et al. [205] also described the preferential deposition of Mn by red
macroalgae over brown macroalgae.

The production of seaweed-fortified foods with the goal of reducing NaCl consump-
tion and increasing nutritive value has been notably emphasized in meat-based products.
López-López et al. [206] conducted outstanding work in the reformulation of many meat
products, partially replacing the application of sodium chloride with diverse species of
edible seaweeds while retaining their textural and sensory qualities. This research group
created meat emulsions, meat patties, and frankfurters enriched with Undaria pinnatifida,
Himanthalia elongata, or Porphyra umbilicalis that were both low in Na+ and rich in K+,
presenting Na+/K+ ratios below 1, which is much smaller than the ratios above 3 observed
in their traditional recipes [207,208].

Furthermore, increasing the mineral content of meat, fish, and other animal-derived
products can be accomplished by providing algae-supplemented diets to animals. Similarly,
supplementing fish with seaweed-fortified meals has been shown to be an efficient way of
increasing the iodine content of their fillets. Milk, dairy products, and, more recently, plant
“milks” (e.g., soy, almond, oat, and rice) are another category of food products that play a
critical role in the dietary routines of specific geographical areas of the world and, as such,
are ideal candidates for macroalgae supplementation [209].

3.7. Vitamins

Vitamins are needed for a variety of skin functions and can be obtained from food or
by topical application. Supplementation is indicated for skin protection against dryness
and premature aging, aesthetic UV protection, and sebaceous gland secretory activity
modulation. Vitamins are frequently found in skin care products or cosmetics. Vitamins A,
C, E, K, or vitamin complex B seem to be the most essential or medically proven vitamins for
skin photoaging treatment or prevention [77], as well as most abundant vitamins through
algae have been vitamins A, B, C, or E [210].

Some seaweeds contain vitamins with several health benefits and antioxidant activity,
which help to lower a variety of health issues such as high blood pressure, cardiovascular
illnesses, and the risk of cancer [211]. Various seaweeds have been found to include water-
soluble vitamins B1, B2, B12, and C, as well as fat-soluble vitamins E and β-carotene with
vitamin A activity [212].

Vitamin A (β-carotene), in the form of retinol, has antioxidant and anti-wrinkle qual-
ities [213] and is used in cosmetics to reduce hyperpigmentation or fine wrinkles on the
face [214]. Vitamin B complex is found with higher concentrations in green or red seaweeds
(B1, B2, B3 or niacine, B6, B9, B12, or folic acid) [215]. Active forms of vitamin B3 found in
skincare products contain nicotinate esters, niacinamide, or nicotinic acid. Niacinamide
is antioxidant that lowers hyperpigmentation (also caused by blue light) and enhances
epidermal features by lowering trans-epidermal water loss [216]. Red algae or other species
are good sources of vitamin B12, which has anti-aging characteristics or is required for hair,
nail growth, or health in vegetarians [217].

Vitamin C is employed in cosmeceutical production because it contains L-ascorbic
acid, the bioactive version of which is most well-known [213]. In this context, Ceramium
rubrum and Porphyr leucosticta are red algae with elevated vitamin C content. This vitamin
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possesses antioxidant, antiviral, anti-inflammatory, antibacterial, detoxifying, or anti-stress
properties when applied topically and could be used to improve tissue growth, repair
blood vessels, teeth or bones [218]. A previous study found that if it is present in optimum
concentration in cosmetic product, it can improve complexion, reduce pigmentation, and
inflammation [219]. Vitamin C suppresses tyrosinase by interacting to copper ions that
reduces melanogenesis, according to several studies [213].

Water-soluble vitamins, such as vitamin C, are abundant in Ulva lactuca, Eucheuma cot-
tonii, Caulerpa lentillifera, Sargassum polycstum, and Gracilaria spp. and aid in the inhibition of
low-density lipoprotein (LDL) oxidation and the creation of thrombosis/atherosclerosis [220].
Red algae have significantly higher levels of dried carotene (e.g., 197.9 mg/g in Codium
fragile and 113.7 mg/g in Gracilaria chilensis) than other vegetables (e.g., 17.4 mg/g in
Macrocystis pyrifera) [98], while brown seaweeds (e.g., Undaria pinnatifida) have greater con-
centrations of a-tocopherol/vitamin E (99% vitamins) than green and red seaweeds [107].

The primary fat-soluble vitamins (A and E) boost nitric oxide (NO) and nitric oxide
synthase (NOS) activity, which aids in the prevention of CVDs [220]. Furthermore, vitamin
E has antioxidant properties that can limit the oxidation of LDL [211]. Many disorders,
such as chronic fatigue syndrome (CFS), anemia, and skin problems, are caused by a
lack of water-soluble vitamins such as B12. Most terrestrial plants do not synthesize
vitamin B12, but numerous prokaryotes that can synthesize vitamin B12 interact with
seaweeds, and this interaction enhances vitamin levels in macroalgae [221]. Arthrospira
(previously Spirulina) (Cyanobacteria) contains four times more vitamin B12 than raw
liver [222]. Brown and green seaweeds are high in vitamin A, with 500–3000 mg/kg dry
weight on average, but red algae have 100–800 mg/kg dry weight [223]. When compared
to terrestrial plants, seaweeds such as Crassiphycus changii (previously Gracilaria changii),
Porphyra umbilicalis (Rhodophyta), and Himanthalia elongata (Ochrophyta, Phaeophyceae)
are high in vitamins [224]. Vitamins (A, B, C, D, and E) are found in seaweeds and are
widely used in skincare [225].

Vitamin C minimizes the severity of allergic reactions to infection, boosts the immune
system, regulates the creation of conjunctive tissue, and aids in the removal of free radicals.
It also plays an important role in many diseases and disorders such as diabetes, atheroscle-
rosis, cancer, and neurodegenerative problems [226]. The brown seaweeds Ascophyllum
and Fucus sp. have higher levels of vitamin E (α-tocopherols) than other red and green
seaweeds [227]. The seaweed Macrocystis pyrifera (Ochrophyta, Phaeophyceae) is high in
vitamin E, similar to plant oils recognized for their vitamin E content, such as soybean oil
(Glycine max), sunflower seed oil (Helianthus annuus), and palm oil (Elaeis guineensis) [227].
Vitamin E prevents the oxidation of low-density lipoprotein and is also effective in reducing
the risk of cardiovascular disease [228].

4. Biological Activities
4.1. Antioxidant Activity

An imbalance in the creation and neutralization of free radicals causes oxidative stress,
which leads to a variety of degenerative illnesses [229]. Several free radicals, particularly
reactive oxygen species (ROS), were created in living organisms as a result of metabolic
activity, and hence have an impact on health (Figure 7). ROS were formed in form of
hydrogen peroxide (H2O2), superoxide radical (O2

−), hydroxyl radical (·OH), or nitric
oxide (NO). Oxidative stress causes unconscious or prominent enzyme activation, as
well as oxidative damage for cellular systems [230]. ROS attack or damage important
macromolecules including lipids membrane, proteins, or DNA, resulting in a variety of
conditions include inflammatory or neurodegenerative diseases, diabetes mellitus, cancer,
or severe tissue injuries [231,232] (Figure 7).
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Antioxidants may have a favorable impact on human health because they may protect
the body from damage caused via reactive oxygen species (ROS) [234]. To determine the
antioxidant activity of marine derived bioactive peptides, researchers used electron spin
resonance spectroscopy as well as intracellular free-radical scavenging assays.

ROS can produce several detrimental biological events, such as DNA oxidative lesions,
membrane peroxidation, structural changes in proteins and functional carbohydrate, and
so on. All of these structural and functional changes have direct clinical effects, speed up
the aging process while also causing pathological phenomena, such as increased capillary
permeability and impaired blood cell function [235]. All of these antioxidant systems
behave differently depending on their structure and characteristics, whether hydrophilic or
lipophilic, and where they are located (intracellular or extracellular, in cell or organelles
membrane, in the cytoplasm, etc.). All of the above processes work in concert to es-
tablish a network that protects live cells from the damaging impacts of reactive oxygen
species (ROS).

Figure 8 represents reactive oxygen species and neutralization with several biomolecu-
les [236]. Hydrophobic amino acids in peptide chain contribute to their possible antioxidant
effect [237]. Seaweeds also include nutraceutical and medicinal chemicals such phenols that
have antioxidant activity. Polyphenols generated by seaweeds received special attention
because their pharmacological action and broad range of health-promoting advantages, as
polyphenols play a vital role in a variety of seaweed biological activities. Seaweed phenolic
compounds are metabolites with hydroxylated aromatic rings that are chemically defined
as molecules. In this context, Al-Amoudi et al. [25] stated that sulfated polysaccharides
from three marine algae (Phaeophyta Sargassum crassifolia (S), Chlorophyta Ulva lactuca (U)
and Rhodophyta Digenea simplex (D) exert antioxidant activity.
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4.2. Antimicrobial Activity

Susceptibility testing of harmful microorganisms (e.g., bacteria and fungi) in the
presence of possible compounds of interest is the focus of antimicrobial activity assays.
Microbial infections can cause life-threatening illnesses, resulting in millions of deaths each
year. Despite the fact that the discovery of penicillin pushed many aggressive pathogenic
bacteria back, many strains evolved and developed remarkable resistance mechanisms
to most antibiotics [238]. Variable solvents have different antibacterial action depending
on their solubility and polarity. As a result, chemical compounds isolated from various
seaweeds should be optimized for antibacterial activity by selecting the optimal solvent
system [239]. Micro-algal cell-free extracts are already being studied as food and feed
additives in an attempt to replace synthetic antibacterial chemicals currently in use. Ac-
cording to Tuney et al. [240], the antibacterial action of the extract is attributable to various
chemical agents found in the extract, such as flavonoids, triterpenoids, and other phenolic
compounds or free hydroxyl groups. Extraction procedures, solvents used, and the time
window in which samples were collected all have the potential to alter antibacterial activ-
ity [241]. A variety of organic solvents had previously been recommended for screening
algae for antibacterial activity.

Pérez et al. [242] demonstrated that seaweed extracts are effective at suppressing a
variety of pathogens, including E. coli and Salmonella. The majority of the research looked at
crude seaweed extracts of the chemicals in ethanol or methanol crude extract. It is unclear
from these investigations whether the antibacterial activity is due to a single molecule
or a combination of chemicals working together. Phytochemicals were shown in several
investigations to produce significant bacterial cell-membrane damage by disrupting mem-
brane integrity [243]. The active phytochemical substances can penetrate the bacterium
after the membrane has been disrupted and interfere with DNA, RNA, protein, or polysac-
charide formation, resulting in bacterial cell inactivation [244]. Two of the most common
types of seaweeds, namely, the total phenolic, total flavonoid, and antibacterial properties
of Padina boryana Thivy and Enteromorpha sp. marine algae were extensively examined,
and the authors revealed that both seaweeds show antimicrobial activity against multiple
pathogens [245].



Mar. Drugs 2022, 20, 342 24 of 49

4.3. Anticancer Activity

Cancers are life-threatening diseases that are considered to be a major public health
issue around the world [246,247]. Uncontrolled cell development spreads into the sur-
rounding tissues, resulting in the formation of a tumor mass [248]. Much research has
looked into the anticancer potential of natural compounds derived from seaweeds, as well
as the signaling pathways involved in anticancer activity [249]. Because those secondary
metabolites have no hazardous effects, they have seen a lot of progress in the treatment of
numerous diseases, including cancer. Thymoquinone (TQ) is one of the most important
bioactive elements of black seeds, and it has been found to have numerous health advan-
tages, including cancer prevention and treatment. Following on this, Algotiml et al. [250]
studied the effect of biosynthesized Red Sea marine algal silver nanoparticles AgNPs on
anticancer and antibacterial properties and the authors stated that due to their relatively
moderate side effects, marine resources are currently being increasingly examined for
antibacterial and anticancer medication prospects.

According to Palanisamy et al. [251], Fucoidans derived from Sargassum polycystum
show antiproliferative characteristics at 50 g/mL. Additionally, Usoltseva et al. [252] also
showed that native and deacetylated fucoidans (at 200 g/mL) from the brown seaweeds
Sargassum duplicatum, Sargassum feldmannii, impeded colony formation in human colon
cancer cells (DLD-1, HCT-116 or HT-29). According to findings of previous study [253],
fucoidan extracted from the Brown seaweed Sargassum cinereum displays potent anti-
cancer or apoptotic effects via preventing metastasis. In B-16 (mouse melanoma), CT-26
(murine colon cancer), HL-60 (human promyelocytic leukemia), or U-937 (human leukemic
monocyte lymphoma) cell lines, polysaccharides produced through Pheophyceae Ecklonia
cava show putative antiproliferative properties [254].

In addition, kappa-carrageenan extracted from Hypnea musciformis (Hm-SP) decreased
proliferation of MCF-7 or SH-SY5Y cancer cell lines [255]. Additionally, polysaccharides
derived from Sargassum fusiforme (SFPS) reduced SPC-A-1 cell proliferation in vitro and
tumor formation in vivo [256]. Additionally, Ji and Ji [257] found that commercial lami-
naran (400–1600 g/mL) inhibited the growth of human colon cancer LoVo cells through
stimulating mitochondrial or DR pathways. Additionally, Fucoidans isolated from Undaria
pinnatifida have anticancer potential comparable to commercial fucoidans in cell lines Hela
(human cervical), PC-3 (human prostate), HepG2 (human hepatocellular liver carcinoma),
or A549 (carcinomic human alveolar basal epithelial) [258]. Moreover, previous study re-
ported that fucoidan isolated from Sargassum hemiphyllum may increase miR-29b expression
in human hepatocellular carcinoma cells, which aids in the lowering of DNA methyltrans-
ferase 3B expression [259]. Moreover, Fucoidans from Fucus vesiculosus were revealed to
have anticancer potential, inducing apoptosis in MC3 human mucoepidermoid carcinoma
cells via caspase-dependent apoptosis signaling cascade [260] (Figure 9).
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4.4. Antidiabetics Activity

As a result of an unhealthy lifestyle, obesity, and stress, diabetes is becoming a global
illness. Additionally, obesity has been on the rise in Saudi Arabia as a result of changing
lifestyles and socioeconomic status [260,261]. There is a close association between obesity
and type 2 diabetes. Drugs that suppress the enzymes α-glucosidase and α-amylase, which
break down starch into glucose before it is absorbed into the bloodstream, could be used
to treat diabetes [262]. It is necessary to look for effective therapeutic natural medications
with less side effects. Garcimartn et al. [263] showed that a α-glucosidase inhibitory
effect on restructured pork treated with seaweeds such as Undaria pinnatifida, Himanthalia
elongata, and Porphyra umbilicalis caused a reduction in the blood glucose absorption.
Padina tetrastromatica phenolic extracts inhibited both α-glucosidase and α-amylase, with
higher inhibition linked with a higher phenolic concentration in the extracts. The extracts
inhibited α-glucosidase (IC50 value of 28.8 g mL−1) and -amylase (IC50 value of 47.2 g
mL−1) by 38.9 and 26.8%, respectively [264]. Similarly, α-glucosidase inhibitory action
was observed in methanol, ethanol, and acetone extracts of Durvillea antarctica, methanol
extracts of Ulva sp., and acetone extracts of Lessonia spicata [265]. Methanol extracts of
Padina tenuis (400 µg mL−1) and ethanol extract of Eucheuma denticulatum (10 mg mL−1)
and Sargassum polycystum (10 mg mL−1) significantly inhibited α-amylase by 60%, 67%, and
46%, respectively [266]. Recently, the acetone extract (80%) of brown seaweed Turbinaria
decurrens was studied for its antihyperglycemic effects in alloxan induced diabetic wistar
male rats [267]. The results showed a significant reduction in postprandial blood glucose
levels of seaweed extracts treated rats to 180.33 mg dL−1 and 225.33 mg dL−1 at the dose of
300 mg/kg body weight and 150 mg/kg body weight, respectively, compared to diabetic
control (565.0 mg dL−1) and positive control (115.33 mg dL−1). The bioactive compounds
derived from algae and their application is illustrated in Table 9.
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Table 9. Bioactive compounds derived from algae and their applications.

Algae Species Bioactive
Compound/Extract Beneficial Activity Mechanism of Action Experimental Model Reference

Brown algae

Ascophyllum nodosum Ascophyllan Anticancer Inhibit MMP expression B16 melanoma cells [268]

Bifurcaria bifurcata Eleganonal Antioxidant DPPH inhibition In vitro [269]

Chnoospora implexa Ethanol extract Antimicrobial Bacterial growth inhibition Staphylococcus aureus,
Staphylococcus pyogenes [270]

Chnoospora minima Fucoidan Anti-inflammation
Inhibition of LPS-induced

NO production, iNOS,
COX-2, and PGE2 levels

RAW macrophages [53]

Cladosiphon okamuranus Fucoxanthin Antioxidant DPPH inhibition In vitro [271]

Colpomenia sinuosa Ethanol extract Antimicrobial Bacterial growth inhibition S. aureus, S. pyogenes [270]

Cystoseira barbata Fat-soluble vitamin
and carotenoids Antioxidant

High fat-soluble vitamin
and

carotenoid content
In vitro [272]

Dictyopteris delicatula Ethanol extract Antimicrobial Bacterial growth inhibition S. aureus, S. pyogenes [270]

Dictyota dichotoma Algae extract Antimicrobial
Inhibit the synthesis of the

peptidoglycan layer of
bacterial cell walls

Penicillium purpurescens,
Candida albicans,
Aspergillus flavus

[273]

Eisenia arborea Phlorotannin Anti-inflammation Inhibit release of histamine Rat basophile leukemia
cells (RBL-2HE) [274]

Fucus evanescens Fucoidan Anticancer Inhibit cell proliferation Human malignant
melanoma cells [50]

Halopteris scoparia Ethanol extract Anti-inflammation COX-2 inhibition
COX inhibitory

screening
assay kit

[275]

Laminaria japonica Fucoxanthin Anti-melanogenic Suppress tyrosinase activity UVB-irradiated guinea
pig [276]

Padina concrescens Ethanol extract Antimicrobial Bacterial growth inhibition S. aureus, S. pyogenes [270]

Saccharina latissima Phenol Antioxidant
High total phenolic content,
DPPH scavenging activity

and FRAP
In vitro [277]

Red algae

Alsidium corallinum Methanol extract Antimicrobial Bacterial growth inhibition

Escherichia coli,
Klebsiella

pneumoniae,
Staphylococcus

aureus

[278]

Ceramium rubrum Methanol extract Antimicrobial Bacterial growth inhibition
Escherichia coli,

Enterococcus faecalis,
Staphylococcus aureus

[278]

Ganonema farinosum Ethanol extract Antimicrobial Bacterial growth inhibition S. aureus, S. pyogenes [270]

Gelidium robustum Ethanol extract Antimicrobial Bacterial growth inhibition S. aureus, S. pyogenes [270]

Jania rubens Glycosaminoglycan Anti-aging Collagen synthesis Unknown [279]

Laurencia luzonensis Sesquiterpenes Antimicrobial Bacterial growth inhibition Bacillus megaterium [280]

Palisada flagellifera Methanol extract Antioxidant β-carotene bleaching
activity In vitro [281]

Porphyra haitanensis Sulfated
Polysaccharide Antioxidant ROS scavenging potential Mice [282]

Schizymenia dubyi Phenol Anti-melanogenic Inhibit tyrosinase activity In vitro [283]
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Table 9. Cont.

Algae Species Bioactive
Compound/Extract Beneficial Activity Mechanism of Action Experimental Model Reference

Green algae

Bryopsis plumose Polysaccharide Antioxidant ROS scavenging potential In vitro [54]

Cladophora sp. Ethanol extract Antimicrobial Bacterial growth inhibition S. aureus, S. pyogenes [270]

Entromorpha intestinalis Chloroform and
methanol extract Antioxidant SOD activity is reduced Labidochromis caeruleus [284]

Gayralia oxysperma Fucoxanthin Antioxidant High FRAP value
(>6 µM/µg of extract) In vitro [285]

Ulva dactilifera Ethanol extract Antimicrobial Bacterial growth inhibition S. aureus, Streptococcus
pyogenes [270]

Ulva fasciata Fucoxanthin Antioxidant DPPH inhibition (83.95%) In vitro [286]

Ulva pertusa Polysaccharide Antioxidant ROS scavenging potential In vitro [54]

Microalgae/Cyanobacteria

Anabaena vaginicola Lycopene Antioxidant
Anti-aging N/A In vitro [287]

Arthrospira platensis Methanol extracts of
exopolysaccharides Antioxidant N/A In vitro [287]

Chlorella fusca Sporopollenin Anti-aging Protect cells from UV
radiation N/A [288]

Chlorella minutissima MAA Anti-aging Protect cells from UV
radiation N/A [288]

Chlorella sorokiniana
MAA Anti-aging Protect cells from UV

radiation N/A [288]

Lutein Anti-aging Reduce UV induced
damage N/A [289]

Chlorella vulgaris Hot water extract

Anti-aging Reduced activity of SOD Human diploid
fibroblast [290]

Anti-inflammation
Down-regulated mRNA

expression
levels of IL-4 and IFN-γ

NC/Nga mice [291]

Dunaliella salina

β-carotene Antioxidant Protect against oxidative
stress Rat [292]

β-cryptoxanthin Anti-inflammation

Reduced the production of
IL-1β,

IL-6, TNF-α, the protein
expression of iNOS and

COX-2

LPS-stimulated RAW
264.7 cells [293]

Haematococcus
pluvialis

Astaxanthin
(carotenoid)

Anti-aging Inhibit MMP expression
Mice and human

dermal
fibroblasts

[294]

Anticancer ROS scavenging potential Mice [295]

Nannochloropsis
granulata Carotenoid Antioxidant DPPH inhibition In vitro [296]

Nannochloropsis
oculata Zeaxanthin Anti-melanogenic Inhibit tyrosinase In vitro [297]

Nitzschia sp. Fucoxanthin Antioxidant Reduced oxidative stress Human Glioma Cells [298]

Nostoc sp. MAA Antioxidant ROS scavenging potential In vitro [299]

Odontella aurita EPA Antioxidant Reduce oxidative stress Rat [300]

Planktochlorella
nurekis Fatty acid Antimicrobial Bacterial growth inhibition

Campylobacter jejuni, E.
coli, Salmonella enterica

var.
[301]

Porphyridium sp. Sulfated
polysaccharide

Anti-inflammation
Antioxidant

Inhibit proinflammatory
modulator

Inhibited oxidative damage

Unknown
3T3 cells [282]
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Table 9. Cont.

Algae Species Bioactive
Compound/Extract Beneficial Activity Mechanism of Action Experimental Model Reference

Rhodella reticulata Sulfated
polysaccharide Antioxidant ROS scavenging potential In vitro [282]

Skeletonema marinoi
Polyunsaturated

aldehyde and fatty
acid

Anticancer Inhibit cell proliferation Human melanoma cells
(A2058) [302]

Spirulina platensis

β-carotene and
phycocyanin

Antioxidant
Anti-inflammation

Inhibit lipid peroxidation
Inhibit TNF-α and IL-6

expressions

Mouse Human dermal
fibroblast cells
(CCD-986sk)

[303]

Ethanol extract Antimicrobial Bacterial growth inhibition

E. coli, Pseudomonas
aeruginosa, Bacillus

subtilis,
and Aspergillus niger

[304]

Synechocystis spp. Fatty acids and
phenols Antimicrobial Bacterial growth inhibition E. coli, S. aureus [305]

5. Seaweeds in Bio-Manufacturing Applications

Modern consumers are well aware of the nutritional value of food and the negative
impact that synthetic preservatives may have worse effect on their health, so it is unsurpris-
ing that they prefer fresh and lightly preserved foods that are free of chemical preservatives,
but contain natural compounds that may benefit their health [306].

5.1. Fertilizer and Soil Conditioners

Seaweed extracts have been frequently employed in agriculture in recent years to
increase crop yield. This improvement is achieved by stimulating various physiological
processes involved in plant growth and development, as well as improving final product
quality (Figure 10). The use of traditional chemical fertilizers has expanded dramatically
as result of world’s fast-growing population or ever-increasing food demand [307]. The
usage of these chemical fertilizers, as well as their impacts, notably on environment, has
become major source of worry [308]. As a result, farmers began to switch to organic farming
rather than using synthetic agricultural fertilizers. Seaweeds are abundant or long-lasting
resources discovered along the world’s coastlines, and they are important sources of food,
feed, biofuels, cosmetics, fertilizers, nutraceuticals, and pharmaceuticals [309,310]. Due
to their commercial importance or potential applications, seaweeds are used as fodder,
cosmetics, human food, or biofertilizers [311]. Because of availability of various trace
elements, vitamins, growth regulators, or amino acids, macroalgae extracts are currently
being used as foliar sprays or presoaking for boosting growth or production of variety of
plants, particularly crops [312]. Each year, more than 15 million tons of seaweed is produced,
with much of it used as biofertilizers in agriculture or horticulture industries [313,314].
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Figure 10. Illustration demonstrating beneficial effects of seaweed extracts on the entire soil-plant sys-
tem. Such impacts include increased fruit quality and phytohormone content in plants, increased soil
enzymatic activity, improved roots system, and overall physiological properties of plants. Adapted
from ref. [315] obtained from mdpi journals.

5.2. Medical and Pharmaceutical Use
5.2.1. Biomedical Applications of Seaweeds

Bioactive chemicals found in seaweeds have features that make them appealing for
biomedical applications. Many species of seaweeds have been employed in traditional
medicine for a long time, notably in Asian nations, against goiter, nephritic disorders,
anthelmintic, catarrh, and a few other ailments as medicaments or pharmaceutical auxil-
iaries, long before scientific study information [316]. Fucus vesiculosus has been used as a
medicinal drug, primarily due to its iodine content, for obesity defects and goiters [316],
for the treatment of sore knees [317], healing wounds [318], and also as herbal teas for their
laxative effects [319]. The application of different seaweeds is presented in Table 10.

Table 10. Biomedical effects of seaweed bioactive compounds.

Seaweed Compound
Extracted

Cell Lines/Animals
Surveyed

Route of
Administration Dosage (µg/mL) Effect Reference

Laminaria
cichorioides

(Phaeophyceae)
Sulfated fucan Human plasma

The lyophilized
crude

polysaccharide
was dissolved in
human plasma

10, 30, 50
In vitro

anticoagulant
activity

[320]

Fucus evanescens
(Phaeophyceae) Fucoidans Human plasma

Rat plasma
Intravenous

Injection 125, 250, 500, 1000

In vitro and
in vivo

anticoagulant
activity

[321]

Gracilaria edulis
(Rhodophyceae)

Phenolic, Flavonoid
and

Alkaloid compounds

Bovine serum
albumin (protein)

The extracts were
tested on the

protein

20, 40, 60, 80, 100,
120

Hypoglycemic
activity [322]
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Table 10. Cont.

Seaweed Compound
Extracted

Cell Lines/Animals
Surveyed

Route of
Administration Dosage (µg/mL) Effect Reference

Sargassum
fulvellum

(Phaeophyceae)

Phlorotannins,
grasshopper

ketone, fucoidan
and polysaccharides

Mice Oral
administration

Based on weight of
mice

Antioxidant,
anticancer,

antiinflammatory,
antibacterial, and

anticoagulant
activities

[323]

Griffithsia sp.
(Rhodophyceae) Griffithsin (protein)

MERS-CoV and
SARS-CoV

glycoproteins

The extracts were
tested on the

proteins
0.125, 0.25, 0.5, 1, 2

Antiviral activity
against

MERS-CoV virus
and SARS-CoV

glycoprotei

[324]

Ulva rigida
(Chlorophyceae) Ethanolic extract Twenty-four male

Wistar rats
Oral

administration

500 mL of water
with extracts in 2%
wt/vol as drinking
water for exposed

groups per each day
(from 3 to 30 days).

In vivo
antihyperglycaemic,

antioxidative and
genotoxic/

antigenotoxic
activities

[325]

Saccharina
japonica

(Phaeophyceae)
polysaccharides SARS-CoV-2

S-protein

The extracts were
tested on the

proteins
50–500 In vitro inhibition

to SARS-CoV-2 [326]

Chondrus crispus (Rhodophyta) carrageens have been used as mucilage against
diarrhea, dysentery, gastric ulcers, and as a component of several health teas, such as for
colds, for a long time. Gelidium cartilagineum (Rhodophyta) has been used in pediatric
medicine in Japan for colds and scrofula [284]. Ulva lactuca (Chlorophyta) has been used for
gout and as an astringent in folk medicine [284]. Rhodophyta extracts are very promising
natural chemicals that could be used in biomedicine. Many species of Asian seaweeds are
employed in traditional medicine, including Gracilaria spp. (Rhodophyta), which is used as
a laxative, Sargassum spp. (Phaeophyceae), which is used to treat Chinese influence, and
Caloglossa spp., Codium spp., Dermonema spp., and Hypnea spp. (Rhodophyta) [327].

Carrageenans’ biological actions make them attractive candidates for future antitu-
moral therapeutics since they activate antitumor immunity [328]. Kappaphycus species
(Rhodophyta), for example, are used to treat ulcers, headaches, and tumors [327]. An-
titumoral efficacy of carrageenans derived from Kappaphycus striatum against human
nasopharyngeal carcinoma, human gastric carcinoma, and cervical cancer cell lines [329].
The bioactivity of chemicals from various Laurencia species (Rhodophyta) was investi-
gated. In vitro, certain halogenated metabolites of Laurencia papillosa showed action against
Jurkat (acute lymphoblastic leukemia) human tumor cells [330]. Laurencia obtuse extracts,
specifically three sesquiterpenes, have been extracted and tested against Ehrlich ascites
cancer cells. The sesquiterpenes were found to have antitumoral action against Ehrlich
ascites cells [331]. Gracilaria edulis ethanol extracts showed antitumor efficacy in mice with
ascites tumors [332].

Undaria pinnatifida (Phaeophyceae) has anti-inflammatory qualities and can be used to
treat postpartum depression in women. This alga can also be used to treat edema and as a
diuretic. Celikler et al. [333] investigated the antigenotoxic effect of Ulva rigida extracts in
human cells in vitro (Chlorophyta).

Seaweeds have been suggested as a way to avoid neurogen-erative illnesses in in-
vestigations over the last decade [334]. Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD), and Amyotrophic Lateral Sclerosis (ALS) are the most
frequent [334]. According to Bauer et al., several studies highlighted the use of algal polysac-
charides for the treatment of neurodegenerative illnesses [335]. Park et al. [336] found that
mice treated with fucoidan extracts from Ecklonia cava had better memory and learning;
consequently, the study implies favorable results in future human trials. In comparison
to the control group, mice treated with polysaccharide isolated from Sargassum fusiforme
demonstrated enhanced memory and cognition [337]. Dieckol and phlorofucofuroeckol,
two phlorotannins from Ecklonia cava, are linked to an increase in the main central neuro-
transmitters in the brain, particularly Acetylcholine (ACh) [338]. Ahn et al. [339] investi-
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gated Eisenia bicyclis phlorotannins and found that 7-phloroeckol and phlorofucofuroeckol
A were powerful neuroprotective agents against induced cytotoxicity, while eckol had a
weaker impact.

5.2.2. Pharmaceutical Applications of Seaweeds

Bioactive chemicals from seaweeds are used in the pharmaceutical industry to help de-
velop new formulations for revolutionary treatments and to replace synthetic components
with natural ones. Bioactive chemicals found in seaweeds have important pharmaco-
logical properties, including anticoagulant, antioxidant, antiproliferative, antititumoral,
anti-inflammatory, and antiviral effects [340] (Table 11).

Table 11. The potential pharmacological activity of brown, red and green seaweeds.

Component Properties/Activities Seaweed Doses Models References

Fucoxanthins

Antitumoral activity on
lung

cancer cells
Laminaria japonica 12.5–100 µM

Female and male (1:1
ratio) BALB/c nude
mice (18–20 g; 6–8

weeks of age)

[341]

Antitumoral activity on
MCF-7, HepG-2,

HCT-116 cells

Colpomenia sinuosa,
Sargassum

prismaticum
100 and 200 mg/kg

Paracetamol-
administered rats (one

dose of 1 g/kg)
[342]

Antitumoral activity on
SiHa, Malme-3M cells Undaria pinnatifida 1.5625, 6.25, 12.5, 25, 50,

80, 100 µM Human cell lines [343]

Antimicrobial activity Cladosiphon
okamuranus 2–2000 µg/mL. Helicobacter pylori [344]

Antimicrobial activity Laminaria japonica 2, 3, 4, 5, 6, 7, and 7.5
mg/mL

Staphylococcus aureus,
Escherichia coli [345]

Antimicrobial activity Fucus vesiculosus 2, 4, 6, 8 and 10 mg/mL

Staphylococcus aureus,
Bacillus licheniformis,

Escherichia coli,
Staphylococcus

epidermidis

[346]

Antiviral activity
against ECHO-1, HIV-1,

HSV-1, HSV-2
Fucus evanescens 200 µg/mL Female outbred mice

(16–20 g) [347]

Sulfate
polysaccharide

Antiviral activity
against

HSV-1, HVS-2
Sargassum patens 0.78–12.5 µg/mL

Vero cells (African
green monkey kidney

cell line)
[348]

Anti-obesity,
antidiabetic activities

Gracilaria
lemaneiformis

5–10% Seaweed
powder

Dawley laboratory rats
(4 to 5 months old,

250–300 g)
[349]

Phloroglucinol Anti-inflammatory
activity Ecklonia cava 1, 5, 10, 50

100 µM
HT1080 and

RAW264.7 cells [350]

Fucoidans extracted from Laminaria cichorioides (Phaeophyceae) [351] and Fucus evanesc-
ens [352] behave like heparin in both in vitro and in vivo experiments, demonstrating
anticoagulant activity by accelerating the development of antithrombin III to inhibit the
effect against thrombin.

Fucoidans have a variety of characteristics. Pozharitskaya et al. [353] investigated the
antioxidant, anti-inflammatory, anti-hyperglycaemic, and anticoagulant bioactivities of
fucoidans isolated from Fucus vesiculosus. Even though their free-radical scavenging activity
was lower than that of synthetic antioxidants, it was comparable to that of the natural
antioxidant quercetin, which is found in plants. Furthermore, inhibition of both isoforms of
the pro-inflammatory cyclooxygenase (COX-1) enzymes has been demonstrated, making fu-
coidans isolated from Fucus vesiculosus interesting substances for anti-inflammatory natural
medicines [353]. Fucoidans from Fucus vesiculosus also have a role in fucoidan’s suppression
of the enzyme DPP-IV. This enzyme is involved in the breakdown of incretin hormones,
which prevents greater levels of glucose in the blood (postprandial hyperglycemia); a new
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pharmaceutical company is developing DPP-IV inhibitors to lower blood glucose levels
and ensure anti-hyperglycaemic effects. As a result, according to Pozharitskaya et al. [353],
fucoidans may be engaged in anti-hyperglycaemic activity via DPP-IV inhibition. Sargas-
sum fulvellum (Phaeophyceae) has been found to contain a variety of bioactive compounds,
including phlorotannins, grasshopper ketone, fucoidan, and polysaccharides, according
to previous research. For years, Sargassum fulvellum extracts have been researched for
their various pharmacological effects, including antioxidant, anticancer, anti-inflammatory,
antibacterial, and anticoagulant properties [354].

Sargassum fulvellum extracts were studied for disorders such a lump, swelling, testic-
ular discomfort, and urinary tract infections [355]. Agar made from red algae is frequently
used in biomedicine as a suspension component in medicinal solutions and prescrip-
tion goods, as well as anticoagulant and laxative agents in capsules [356]. The red algae
Gracilaria edulis is well-known around the world for its biological and medicinal qualities.
Gracilaria edulis extract exhibited antidiabetic, antioxidant, antibacterial, anticoagulant,
anti-inflammatory, and antiproliferative characteristics [357]; consequently, these com-
pounds could be used in new pharmaceutical formulations. Furthermore, Gunathilaka
et al. [358] investigated the in vitro hypoglycemic efficacy of Gracilaria edulis phenolic,
flavonoid, and alkaloid extracts. The suppression of carbohydrate-digesting enzymes,
glucose absorption, and the generation of antiglycation end products demonstrated the red
alga’s hypoglycemic potential. In vivo, Ulva rigida (Chlorophyta) has been shown to have a
hypoglycemic impact [359].

Seaweeds’ antiviral qualities make them an excellent alternative for improving the
health of infected persons; also, their use in pharmaceuticals will provide new and natural
antiviral drugs that can replace synthetic chemicals. Furthermore, when compared to the
creation of synthetic antivirals, the use of bioactive components from seaweeds is less
expensive [360]. Antiviral activity of macroalgae has been discovered to protect against
a variety of viruses, including HIV, Herpes Simplex Virus (HSV), genital warts [361], and
hepatitis C (HCV) [362]. HSV [363], Encephalomyocarditis virus, Influenza “A” virus [364],
and human metapneumovirus [365] are only a few of the viruses that Chlorophyta species
have been shown to be effective against. The antiviral action of macroalgae is linked to a
variety of substances such as as fatty acids and diterpenes, but most notably to the presence
of Seaweed bioactive compounds [366], which can inhibit virus multiplication or help the
immune system combat viral infection.

5.3. Cosmetic Industry

Cosmetics and cosmeceuticals are commonplace therapies for improving the skin’s
appearance and treating several dermatological problems. Seaweeds are a valuable com-
ponent in product development because of their wide range of functional, sensory, and
biological properties. Consumer demand for green or eco-friendly products has risen in
recent years. This pattern can be seen in the globally competitive cosmetics industry, in
need of natural, secure, or effective ingredients to make innovative skin care products [367].
The usage of seaweed-isolated compounds in cosmetic products rose steadily as a result of
various scientific studies revealing prospective skincare properties of seaweed bio-actives.
Biologically active substances include carotenoids, polysaccharides, phlorotannins, fatty
acids, sterols, tocopherol, vitamins, phycocyanins, or phycobilins [368–372]. In this context,
a Sargassum plagyophyllum extract was shown to have antioxidant and anti-collagenase
that can considered to be potent pharmaceutical ingredient for anti-wrinkle cosmetics
action [373–376]. As a form of polyphenol, phlorotannins contain a group of heterogeneous
polymeric molecules with substantial chemical modifications and various chemical struc-
tures [377]. These molecules can play a key role in the interaction between the skin and
UVR, such as preventing radiation from penetrating the skin and lowering inflammation,
oxidative stress, DNA damage, and maintaining signaling pathways intact. They also
attracted a lot of interest because of their participation in several phototoxic pathways and
mechanisms [378]. Brown algae Sargassum fusiforme [379], Halidrys siliquosa [380], Padina
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australis [381], Sargassum coreanum [382], and Polycladia myrica [383] have been explored for
using in cosmetic products.

6. Materials and Methods
Literature Search

The preferred reporting items for systematic reviews were used for the collection,
identification, screening, selection, and analysis of the studies reviewed. A literature
search was performed using different databases, including Scopus, Web of Science, Google
Scholar, Wiley, MDPI, and PubMed. The search criteria included scientific articles on
seaweeds published between 1989 and 2022. The keywords used in the literature search
were “seaweeds” and “bioactivites OR “biological activities” OR “safety” OR “toxicity”
OR “characteristics” OR “structure” OR “anticancer” OR “antidiabitics” OR “lipids” OR
“polysaccarides” OR “phenolic compounds” OR “vitamines” OR “cosometics” OR “foods”
OR “human” OR “minerals” OR “pigments and carotenoids” OR “protein” OR “amino
acids”. The total number of articles found was 650. Studies focusing on the above keywords
were selected, as well as those addressing the biological activity of seaweeds and the
different applications of seaweeds. The figures were obtained from MDPI journals, and the
chemical structure of compounds was designed by Chem windo 6 ver.4.1.1 Biorad edition.

7. Conclusions

Seaweeds include a wealth of bioactive compounds that could be used to develop
novel functional ingredients for food as well as a therapy or prevention strategy for chronic
diseases. Seaweeds could be an alternative source for synthetic substances that may
help to increase consumer well-being via being incorporated into new functional foods
or medications, as consumers have recently paid a lot of attention to natural bioactive
compounds as functional ingredients in foods (Figure 11). However, because of the probable
presence of hazardous pollutants such as heavy metals or their high iodine content, seaweed
eating must be accompanied with an understanding of the hazards to human health.
Because of the presence of numerous of innovative bioactive substances with potential
anti-disease activities, using green extraction or purification processes of compounds from
complex seaweed matrix is a viable or logical strategy for avoiding these health-related
issues or creating added-value functional products.
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