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Gut microbiota (GM) plays several crucial roles in host physiology and influences several relevant functions. In more than one
respect, it can be said that you “feed your microbiota and are fed by it.” GM diversity is affected by diet and influences metabolic
and immune functions of the host’s physiology. Consequently, an imbalance of GM, or dysbiosis, may be the cause or at least
may lead to the progression of various pathologies such as infectious diseases, gastrointestinal cancers, inflammatory bowel
disease, and even obesity and diabetes. Therefore, GM is an appropriate target for nutritional interventions to improve health.
For this reason, phytochemicals that can influence GM have recently been studied as adjuvants for the treatment of obesity and
inflammatory diseases. Phytochemicals include prebiotics and probiotics, as well as several chemical compounds such as
polyphenols and derivatives, carotenoids, and thiosulfates. The largest group of these comprises polyphenols, which can be
subclassified into four main groups: flavonoids (including eight subgroups), phenolic acids (such as curcumin), stilbenoids (such
as resveratrol), and lignans. Consequently, in this review, we will present, organize, and discuss the most recent evidence
indicating a relationship between the effects of different phytochemicals on GM that affect obesity and/or inflammation, focusing
on the effect of approximately 40 different phytochemical compounds that have been chemically identified and that constitute
some natural reservoir, such as potential prophylactics, as candidates for the treatment of obesity and inflammatory diseases.

1. Introduction

Obesity is a chronic state of low-grade inflammation con-
stituting a well-known risk factor for multiple pathological
conditions, including metabolic syndrome and insulin
resistance [1], and it has also been implicated as a proac-
tive factor and associated with a nonfavorable disease
course of chronic autoimmune inflammatory disorders,

such as multiple sclerosis (MS) [2]. Several studies over
the last decade report interest in fermentation products
from gut microbiota (GM) in the control of obesity and
related metabolic disorders [3]. GM denotes an entire
ecosystem inhabiting each organism, thus constituting a
“superorganism” [4]. GM plays several crucial roles in host
physiology and influences several relevant functions: it
harvests energy from indigestible food, influences fatty
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acid oxidation, fasting, bile acid production, satiety,
and lipogenesis, and even influences innate immunity
(reviewed in [3]). In more than one respect, we are able
to establish that you “feed your microbiota and are fed
by it.” GM provides signals that promote the production
of cytokines, leading to the maturation of immune cells
modulating the normal development of immune functions
of the host immune system [5, 6]. Consequently, an imbal-
ance of GM, or dysbiosis, can be the cause or at least lead
to the progression of several pathologies such as infectious
diseases, gastrointestinal cancers, cardiovascular disease,
inflammatory bowel disease, and even obesity and diabetes
[7, 8]. Additionally, a pathological state can cause an
imbalance in this microbial ecosystem. For instance, a dys-
function of the innate immune system may be one of the
factors that favor metabolic diseases through alteration of
the GM [9].

In terms of immune response, the immune system recog-
nizes conserved structural motifs of microbes, called PAMPs
(pathogen-associated molecular patterns), by mean of toll-
like receptors (TLR), which are expressed in the membrane
of sentinel cells [10]. This interaction induces immune
responses against microbes through the activation of inflam-
matory signaling pathways. Therefore, GM, which interacts
with epithelial TLR, critically influences immune homeosta-
sis [9]. Although the complete etiology of inflammatory
diseases remains unknown, intestinal gut dysbiosis has been
associated with a variety of neonatal and children’s diseases
[4], in which chronic intestinal inflammation and mucosal
damage derives from alteration of GM [11].

Diet provides the nutritional supplies for life and
growth, and some components exert valuable effects when
consumed regularly. These components are called “func-
tional foods” or “nutraceuticals” [12]. Consequently, func-
tional foods contain bioactive substances, nutraceutics,
which can be classified as micronutrients (vitamins and
fatty acids) and nonnutrients (phytochemicals and probio-
tics) (see Table 1 in [13]). These components, with a wide
range of chemical structures and functionality, provide
different beneficial effects beyond simple nutrition, result-
ing in improved health.

Gut bacterial diversity is mainly affected by the diet,
which may also affect its functional relationships with the
host [14–17]. During their gastrointestinal passage, the com-
ponents of the diet are metabolized by intestinal bacteria
[18]. Diets rich in carbohydrates and simple sugars lead to
Firmicutes and Proteobacteria proliferation, while those rich
in saturated fat and animal protein favor Bacteroidetes and
Actinobacteria [19]. Microbial diversity of the intestine
decreases in diets with higher fat content [16]. Several phys-
iological aspects of the gut environment can be influenced by
the diet, then, including absorption of micronutrients,
vitamins, and nutraceutics, and changes in pH of the gut
environment, which in turn alters the balance of the GM
[20]. Therefore, GM influences the biological activity of food
compounds but is also a target for nutritional intervention to
improve health [18].

On this basis, phytochemicals, like nutraceuticals
that can influence GM, are being studied as coadjuvants

to treat obesity and inflammatory diseases. In this
review, we will present, organize, and discuss the most
recent evidence that points to a relationship of the
phytochemical effect on GM that affects obesity and/or
inflammation, focusing on the effect of phytochemicals as
potential prophylactics and candidates for the treatment of
these diseases.

2. Phytochemicals Can Influence Obesity and
Inflammatory Diseases through
Affecting GM

Phytochemicals canbedefinedas “bioactivenonnutrient plant
compounds present in fruits, vegetables, grains, and other
plants, whose ingestion has been linked to reductions in the
risk of major chronic diseases” [21]. Held to be phytochemi-
cals, prebiotics are nondigestible food components (mainly
carbohydrate polymers, such as fructooligosaccharides and
mannooligosaccharides) that benefit the human body because
theymodulate GM through selective stimulation of some bac-
terial species proliferation in the colon, named “probiotics”
[22]. These include endosymbionts such as lactic acid bacteria,
bifidobacteria, yeast, and bacilli, which participate in the
metabolism of their hosts [13]. Regarded as functional foods,
both prebiotics and probiotics have been considered potential
constituents of therapeutic interventions that modify GM in
an attempt to modulate in turn some inflammatory diseases
(comprehensively reviewed in [23]). On the other hand, the
remaining phytochemical compounds may be classified on
the basis of some common structural features into groups as
follows: polyphenols and derivatives, carotenoids, and thiol-
sulfides, among others (see Table 1 in [13]). Of the latter, the
polyphenols represent the largest group.

Polyphenols are secondary metabolites of plants and
represent vastly diverse phytochemicals with complex
chemical structures. They are commonly present in plant
foods, such as cacao, coffee, dry legumes (seeds), fruits
(like apples and berries), nuts, olives, some vegetables
(such as lettuce and cabbage), tea, and wine. The daily
intake of dietary phenols is estimated to be above 1 g,
which is 10 times higher than the vitamin C intake from
diet [24]. The interaction between polyphenols and GM
has been well established [25]. Polyphenols are frequently
conjugated as glycosides, which derive in aglycones when
metabolized by GM. Generally, the intestinal metabolism
of polyphenols includes hydrolysis of glycosides and esters,
reduction of nonaromatic alkenes, and cleavage of the
skeletons [26, 27]. Studies have reported that only a low
number of polyphenols can be absorbed in the small intes-
tine. The remaining (90–95%) nonabsorbed polyphenols
reach the colon in high concentrations (up into the mM
range), where they are degradated by microbial enzymes
before their absorption [28]. Compared to their parent
compounds, the permanence in plasma for metabolites is
extended and they are finally eliminated in urine [29, 30].
GM, then, can regulate the health effects of polyphenols,
and reciprocally, polyphenols can modulate GM and even
interfere with its own bioavailability [31].
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Approximately 8000 structures of polyphenols have
been identified [32], which can be classified into four main
groups (Figure 1) as follows: (a) flavonoids (with eight
subgroups), (b) phenolic acids (curcumin), (c) stilbenoids
(resveratrol), and (d) lignanes. Polyphenols have been
extensively studied over the past decade because of their
strong antioxidant and anti-inflammatory properties and
their possible role in the prevention and cotreatment of
several chronic diseases, such as hypertension, diabetes,
neurodegenerative diseases, and cancer [33–36]. In addi-
tion, polyphenols have recently attracted interest in the
media and in the research community because of their
potential role in reducing obesity, an increasingly serious
health issue in different population age ranges [37, 38].
Polyphenols such as catechins, anthocyanins, curcumin,
and resveratrol have been suggested as exerting beneficial
effects on lipid and energy metabolism [39–41] and poten-
tially on weight status. Multiple mechanisms of action
have been proposed mostly as a result of animal and cell
studies, such as inhibition of the differentiation of adipo-
cytes [40], increased fatty acid oxidation [42], decreased
fatty acid synthesis, increased thermogenesis, the facilita-
tion of energy metabolism and weight management [43],
and the inhibition of digestive enzymes [44].

Phenolic compounds from tea [45], wine [29], olives
[46] and berries [47, 48] have demonstrated antimicrobial

properties. Depending on their chemical structure, tea
phenolics inhibit the growth of several bacterial species,
such as Bacteroides spp., Clostridium spp., Escherichia coli,
and Salmonella typhimurium [29]. Furthermore, tea cate-
chins are able to change the mucin content of the ileum,
affecting the bacterial adhesion and therefore their coloni-
zation [48]. Another study revealed that (+) catechin
favored the growth of the Clostridium coccoides-Eubacter-
iumrectale group and E. coli but inhibited that of Clostrid-
ium histolyticum. In addition, the growth of beneficial
bacteria, such as Bifidobacterium spp. and Lactobacillus
spp., was nonaffected or even slightly favored [45, 49].
Both flavonoids and phenolic compounds reduce the
adherence of Lactobacillus rhamnosus to intestinal epithe-
lial cells [50]. The anthocyanins, a type of flavonoid,
inhibit the growth of several pathogenic bacteria, including
Bacillus cereus, Helicobacter pylori, Salmonella spp., and
Staphylococcus spp. [47, 48]. Consequently, phytochemicals
that affect the balance of the GM may influence obesity
and inflammatory diseases.

Therefore, through the modulation of GM, polyphe-
nols have the potential to generate health benefits.
Although there is accumulative evidence concerning the
polyphenolic effect on GM, the effects of the interaction
between polyphenols and specific GM functions remain
mostly uncharacterized; thus, much research remains to
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HO
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Figure 1: Chemical structure of representative molecules for the four main polyphenol groups.
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be conducted. We will focus on specific polyphenols that
have been reported as able to affect GM and, in addition,
influence obesity and/or inflammation.

3. Experimental Nutritional Interventions with
Phytochemicals That Modify Gut Microbiota
Exert an Effect on Obesity and/or
Inflammatory Parameters

According to the United States National Agricultural Library,
a “nutritional intervention” is “A clinical trial of diets or
dietary supplements customized to one or more specific risk
groups, such as cancer patients, pregnant women, Down
syndrome children, populations with nutrient deficiencies,
etc.” [51]. In a broader sense, we review herein the use of phy-
tochemicals in experimental models (mainly polyphenols),
which are able to modify GM and exert an effect on obesity
and/or inflammatory parameters, in order to analyze and
discuss their potential use for the prophylaxis and treatment
of obesity and inflammatory diseases by the maintenance and
control of GM.

To compile the information from scientific literature on
the polyphenols that can be related with GM, we considered
the following terms for search in PubMed: “gut microbiota”
OR “intestinal microbiota” OR “gut flora” OR “intestinal
flora” OR “gut microflora” OR “intestinal microflora,” and
we added the specific compound (as listed in Figure 2). From
this search, we can conclude that there is at least one report
that correlates every polyphenol listed with GM. In addition,
of the 40 listed compounds, there are 15 that yield at least 10
works that support the relationship between polyphenols and
GM. However, there is still much work to be done in this area
in terms of exploring in greater detail the specific actions of
each compound on GM. Later, we added to these searches
the following terms: “anti-inflammatory OR antiinflama-
tory” on one subsequent search, or “obesity” for another
search. In both cases, the numbers of articles were scarce with
a total of 116 and 71, respectively, although this number does
not represent a real situation, because there are several arti-
cles that are repeated, and those that include more than one
compound. From these articles, we extracted information
that led to the indication of a relationship among the effects
of different phytochemicals on the GM that affects obesity
and/or the immune response (Table 1).

3.1. Flavonoids. The first and largest subgroup of polyphenols
is integrated by flavonoids, with >6000 compounds identified
and isolated from different plant sources [52], a large family
of chemical compounds that constitutes plant and flower pig-
ments and that shares the common function of being free
radical scavengers. Due to the thousands of structurally dif-
ferent compounds, it becomes quite difficult to analyze all
of them. Therefore, we performed a wide search of different
specific compounds that have been reported in the literature
and compiled them into eight subgroups, including the most
representative compounds within each group (Figure 2).
Essentially, all of these are widely recognized by their antiox-
idant [32, 53, 54] and anti-inflammatory [34, 55, 56]

properties. Indeed, they inhibit reactive oxygen species
(ROS) synthesis and hypoxia-signaling cascades, modulate
cyclooxygenase 2 (COX-2), and block epidermal growth fac-
tor receptor (EGFR), insulin-like growth factor receptor-1
(IGFR-1), and nuclear factor-kappa B (NF-κB) signaling
pathways. In addition, flavonoids are able to modulate the
angiogenic process [57], and the majority of these have been
recently involved with obesity [58, 59].

3.1.1. Flavones. Numerous studies have been undertaken on
the influence of GM on the intestinal absorption and metab-
olism of particular flavones, such as apigenin, luteolin, and
chrysin, both in rodents and in human cells [60–63]. On
the other hand, there are multiple studies that associate
different flavones with anti-inflammatory effects. This is the
case for apigenin [64–67], luteolin [68, 69], and chrysin
[34]. Furthermore, recent studies involve apigenin with the
amelioration of obesity-related inflammation [70] and regu-
lating lipid and glucose metabolism [71], luteolin with the
amelioration of obesity-associated insulin resistance, hepatic
steatosis and fat-diet-induced cognitive deficits [72–75], and
chrysin, which inhibits peroxisome proliferator-activated
receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein
A (C/EBPα), major adipogenic transcription factors in prea-
dipocytes [75] and which also modulate enhanced lipid
metabolism [76]. However, to the best of our knowledge,
there is still no study that considers together these following
three aspects: GM, inflammation, and obesity as positively
affected by these flavones. Consequently, this constitutes a
whole new avenue for studying these interactions.

3.1.2. Flavanones. Like the previous subgroup, flavanones
also influence and interact with GM [28, 77, 78]. The main
compounds included here also exhibit anti-inflammatory
properties, such as hesperetin [79, 80], naringenin [81],
morin [82–84], and eriodictyol [85–87]. Additionally, they
influence lipid metabolism as a potential preventive strategy
for obesity. For instance, hesperetin exhibits lipid-lowering
efficacy [88, 89]; naringenin regulates lipid and glucose
metabolism [71] and also prevents hepatic steatosis and glu-
cose intolerance [90] by suppressing macrophage infiltration
into the adipose tissue [91]. In addition, both compounds
improve membrane lipid composition [92]. Furthermore,
morin exhibits antihyperlipidemic potential by reducing lipid
accumulation [31, 93]. Finally, eriodictyol ameliorates lipid
disorders and suppresses lipogenesis [94]. Taken together,
all of this evidence strongly indicates that these compounds
can be usefully applied to prevent or treat obesity and its
associated inflammation, but it is relevant to take GM into
account in order to incorporate it into the organism’s metab-
olism. Again, there are to our knowledge no studies that cor-
relate all three of these aspects.

3.1.3. Flavonones. In this case, nomenclature represents a
problem in the literature search, because the term “flavo-
nones” is usually substituted by “flavanones,” which in fact
represent a different subgroup. Due to this, compounds
included in this subgroup were individually searched in
databases. Three compounds were considered: hesperidin,
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naringin, and baicalein. In fact, the former two can be con-
fused with similarly named compounds from the flavanone
subgroup (see above) but constitute different compounds.
As for all the polyphenols, the latter is metabolized by the
GM [93, 95] and exhibits strong anti-inflammatory proper-
ties [79, 96, 97]. Additionally, these compounds also influ-
ence lipid metabolism as follows: hesperidin improves lipid
metabolism against alcohol injury by reducing endoplasmic
reticulum stress and DNA damage [98] and exhibits an
antiobesity effect [99]; naringin also influences the lipid
profile and ameliorates obesity [100], and finally, baicalein
regulates early adipogenesis by inhibiting lipid accumulation
and m-TOR signaling [101]. Again, there is a need for studies
that take into account the following elements together, that
is, GM metabolism of the polyphenols and their specific
effect on lipid metabolism, obesity, and inflammation.

3.1.4. Flavanols. This subgroup mainly comprises catechins,
which are more abundant in the skin of fruits than in fruit
pulp. Catechins found in cranberries may contribute to can-
cer prevention [102]. Catechins are abundant in green tea, to
which has been attributed several beneficial impacts on
health. Traditionally, green tea has been used to improve
resistance to disease and to eliminate alcohol and toxins by
clearing the urine and improve blood flow [103, 104]. Lately,
emerging areas of interest have been the effects of green tea
for the prevention of cancer and cardiovascular diseases, as
well as their effects on angiogenesis, inflammation, and
oxidation [105, 106].

This subgroup of flavonoids is one of the few that has
been studied to date under the lens of their relationship with
GM and their anti-inflammatory actions [107], as well as

their role in lipid metabolism and obesity [105, 108]. Among
the compounds included in this group, we find the following:
catechin, epicatechin, epigallocatechin, epigallocatechin 3-
gallate, and gallocatechin. Practically, all of these have
already begun to be studied in the light of their relationship
between GM and inflammation, as well as that related with
lipid metabolism and obesity (see Table 1 for specific exam-
ples). However, much work remains to ascertain the mecha-
nisms by which these compounds are able to benefit health.

3.1.5. Flavonols. Compounds in this subgroup have also been
studied as related with GM and inflammation or obesity,
mainly quercetin and kaempferol, while another three, rutin,
myricetin, and isohamnetin, have not to our knowledge been
studied within this context. Quercetin protects against high-
fat diet-induced fatty liver disease by modulating GM imbal-
ance and attenuating inflammation [109]. Kaempferol also
exhibits protective properties, both anti-inflammatory and
antioxidant, in adipocytes in response to proinflammatory
stimuli [110]. These two works, by Porras et al., and Le Sage
et al., respectively, constitute some clear examples of the
experimental approximations that need to be done to
increase our knowledge on the relationships already men-
tioned among phytochemicals, GM, inflammation, and obe-
sity. Therefore, this subgroup constitutes that of the leading
compounds in the study of the relationship among these
three elements (Figure 3).

3.1.6. Flavononols. This is another subgroup with nomen-
clature problems for the literature search, because the term
“flavononols” is usually substituted by “flavonols,” which is
a different group (see above). For this reason, compounds

Flavones

Flavanones

Flavonones

Flavanols

Flavonols

Flavononols

Iso�avones

Anthocyanins

Flavonoids

Apigenin, chrysin, luteolin, rutin

Eriodictyol, hesperetin, morin, naringenin

Baicalein, hesperidin, naringin

Catechin, epicatechin, epigallocatechin, epigallocatechin 3-gallate, gallocatechin

Isorhamnetin, kaempferol, myricetin, quercetin, tamarixetin

Astilbin, engeletin, genistin, taxifolin

Daidzein, daidzin, formononetin, genistein, glycitein

Cyanidin, delphinidin, epigenidin, leucocyanidin,
leucodelphinidin, pelargonidin, prodelphinidin, propelargonidin

Figure 2: Classification of the eight foremost flavonoid subgroups.
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included in this group were individually searched. This
subgroup includes genistein, taxifolin, engeletin, and astil-
bin. Again, all of these are metabolized by GM and also
exhibit potent anti-inflammatory properties [111–114], as
well as being able to influence energy metabolism (both
lipid and carbohydrate) [115–117]. Despite this, to our
knowledge there is a lack of research regarding the possi-
ble effects of this subgroup of flavonoids on obesity and/or
inflammation through their effect on GM.

3.1.7. Isoflavones. This subgroup has been partially studied
with relation to GM and inflammation or obesity. It is made
up of phytoestrogens, which are mainly present in soybeans.
Isoflavones are metabolized by GM [30, 118, 119]. They also
show an anti-inflammatory effect [120], as well as having had
a hypocholesterolemic effect attributed to them [121]. The
following are found included in this group: daidzein, genis-
tein, glycitein, formononetin, and daidzin. Daidzein is
metabolized by GM mainly into equol, which contributes to
the beneficial effects of soybeans [122]; thus, it is relevant that
dietary fat intake diminishes GM’s ability to synthesize equol
[123]. In addition, daidzein and genistein reduced lipid
peroxidation in vivo and increased the resistance of low-
density lipoproteins (LDL) to oxidation [124] and both
exhibit an anti-inflammatory activity [125]. Glycitein affects
gene expression in adipose tissue [126] and demonstrates
antiobese and antidiabetic effects [127]. Additionally,
together with daidzein and genistein, glycitein exhibits an
anti-inflammatory and neuroprotective effect on microglial
cells [128]. Finally, formononetin and daidzin have also
received attention because of their anti-inflammatory
properties [129–131]. Once again, this group would be
interesting for further studies regarding their metabolism
by GM in relation with inflammation and lipid metabo-
lism for obesity.

3.1.8. Anthocyanins. Anthocyanins are a class of flavonoids
that are ubiquitously found in fruits and vegetables and
they possess many pharmacological properties, for example,
lipid-lowering, antioxidant, antiallergic, anti-inflammatory,
antimicrobial, anticarcinogenic, and antidiabetic actions
[132–135]. Strawberries constitute a source of anthocyanins
and have been recently broadly evaluated for their effect on
human health, due to their rich phytochemical content, effec-
tiveness in rodent models, and almost no toxicity observed in
pilot studies in humans [136, 137]. In rodent models, for
example, strawberries have shown anticancer activity in
several tissues [138]. This subgroup includes a long list of
compounds, such as cyanidin, delphinidin, epigenidin, leuco-
cyanidin, leucodelphinidin, pelargonidin, prodelphinidin,
and propelargonidin. Although there are fewer than 70
papers that correlate at least one of these compounds with
anti-inflammatory activity or obesity (or lipid metabolism),
there are only a dozen papers, to our knowledge, which
correlate any of these compounds with their metabolism by
GM, and none of them associate this information among
these aspects. Therefore, this constitutes a nearly complete
virgin area still to be explored.

3.2. Phenolic Acids

3.2.1. Curcumin.A second subgroup of polyphenols is consti-
tuted by phenolic acids, such as curcumin (diferuloyl-
methane), which is abundantly present in the rhizomes of
the Curcuma longa, used both in traditional medicine and
in cooking. Curcumin has been used for the coadjuvant
treatment of a large diversity of diseases, including hepatic
disorders, respiratory conditions, and inflammation and also
obesity, diabetes, rheumatism, and even certain tumors. One
relevant aspect to notice is that even at very high doses, no
studies in animals or humans have revealed significant
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Figure 3: Phytochemicals that affect gut microbiota with anti-inflammatory and/or antiobesity properties.

9Mediators of Inflammation



curcumin toxicity [139]. Curcumin possesses a great protec-
tive impact on acute alcoholic liver injury in mice and can
improve the antioxidant activity of mice after acute adminis-
tration of alcohol. It can increase the activity of antioxidant
enzymes in liver tissues [140]. Curcumin is also metabolized
by GM; the biotransformation of turmeric curcuminoids by
human GM is reminiscent of equol production from the soy-
bean isoflavone daidzein [141]. Curcumin modulates GM
during colitis and colon cancer [142] and improves intestinal
barrier function [141]. In addition, it is largely considered
a potent anti-inflammatory and neuroprotective agent
[143, 144], as well as a possible factor for the treatment
of obesity [145–147]. The research on curcumin is exten-
sive; notwithstanding, there are still very few papers that
deal with the relationship of curcumin metabolism by
GM, its action over intestinal permeability, and effect on
obesity and/or inflammation (Table 1).

3.3. Stilbenes

3.3.1. Resveratrol. The third subgroup of polyphenols

comprises stilbenoids, such as resveratrol (3,5,4 -trihydrox-

ystilbene) and piceatannol (3,3 ,4,5 -trans-trihydroxystil-
bene). Resveratrol is a natural, nonflavonoid polyphenolic
compound that can be found in grape wines, grape skins
(red wine), pines, peanuts, mulberries, cranberries, and
legumes, among other plant species, which synthesize it in
response to stress or against pathogen invasion [148, 149].
Resveratrol is studied as a potent antioxidant with neuropro-
tective activity. Several in vitro and in vivo studies show
various properties for resveratrol as a potent antioxidant
and antiaging molecule, which also exhibits anti-inflamma-
tory, cardioprotective, and anticancer effects, able to promote
vascular endothelial function and enhance lipid metabolism
[147, 150]. Principally, it is the anti-inflammatory effect of
resveratrol which has been widely reported [151], as well as
its antiobesity effect [152]. Regarding the GM effect, resvera-
trol favored the proliferation of Bifidobacterium and Lacto-
bacillus and counteracts the virulence factors of Proteus
mirabilis [29]. In fact, resveratrol exhibits pleiotropic actions,
modulates transcription factor NF-κB, and inhibits the cyto-
chrome P450 isoenzyme CYP1 A1, as well as suppressing the
expression and activity of cyclooxygenase enzymes, modulat-
ing p53, cyclins, and various phosphodiesterases, suppressing
proinflammatory molecules, and inhibiting the expression of
hypoxia-inducible transcription factor 1 (HIF-1α) and vascu-
lar endothelial growth factor (VEGF), among other actions
[153]. Some studies analyze the effect of resveratrol on GM
combined with their anti-inflammatory and antiobesity
actions (Table 1). It constitutes a good example of the poten-
tial that the profound study of phytochemicals and their
impact on health represents.

3.3.2. Piceatannol. Piceatannol is a hydroxylated analogue of
resveratrol found in various plants (mainly grapes and white
tea). It is less studied than resveratrol but also exhibits a wide
biological activity [154]. It mainly exhibits potent anticancer
properties and also antioxidant and anti-inflammatory activ-
ities, which make it a potentially useful nutraceutical and

possibly an attractive biomolecule for pharmacological use
[59]. Recently, Hijona et al. [155] studied its beneficial effects
on obesity. Although these are limited, it constitutes a prom-
issory phytochemical molecule.

3.4. Organosulfur Compounds

3.4.1. Garlic. In addition to polyphenols, another group of
phytochemicals of relevance for health is the organosulfur
compounds. For instance, garlic (Allium sativum) is a rich
source of organosulfur compounds and exhibits a plethora
of beneficial effects against microbial infections as well as
cardioprotective, anticarcinogenic, and anti-inflammatory
activity [156].

Nearly 80% of garlic’s cysteine sulfoxide is constituted by
alliin (allylcysteine sulfoxide). When raw or crushed garlic is
chopped, the “allinase” enzyme is released which catalyzes
sulfonic acid formation from cysteine sulfoxides and when
the two react with each other, they produce an unstable
compound: thiosulfinate or allicin. The in vitro breakdown
of allicin produces numerous fat-soluble components: diallyl
sulfide; DiAllylDiSulfide (DADS), and DiAllylTriSulfide
(DATS). Likewise, vinyldithiins, S-allylcysteine, ajoene, S-1-
prpenylcysteine, and S-allylmercaptocysteine are important
constituents of garlic powder, oil, and extracts [157, 158].

Naturally occurring products have attracted the attention
of researchers as sources of novel drugs and drug leads for the
treatment of obesity [159–161]. Allium species have been
used in herbolary or traditional medicine for the treatment
of metabolic diseases, and Allium-derived extracts have
recently become of interest for their antiobesity effects [162].

The chemical constituents of garlic are enzymes (asallii-
nase) and organosulfur compounds (such as alliin and its
derived agent, allicin). The effect of garlic on different medi-
cal conditions (such as hypertension, hyperlipidemia,
diabetes mellitus, rheumatic disease, the common cold, arte-
riosclerosis, and cancer) has been widely investigated. Garlic
is known as a hypolipidemic agent because of its role in
increasing the hydrolysis of triacylglycerols due to increased
lipase activity [163]. Moreover, garlic reduces the biosynthe-
sis of triacylglycerols through its blocking of nicotinamide
adenine dinucleotide phosphate. On the other hand, garlic
contains abundant antioxidants and can induce antioxidant
enzymes [164]. Thus, garlic is a potential hepatoprotective
agent against liver disorders [165]. Experimental studies have
shown that garlic and its organosulfur compounds might
reduce alcohol-related liver enzymes, glutathione reductase,
alkaline phosphatase, lactate dehydrogenase, and alcohol
dehydrogenase, as well as enhance liver antioxidant
enzymes, and alleviate hepatic-fat accumulation [165–172].
However, there has been no clinical trial on patients with
liver disorders [164].

4. Concluding Remarks and Perspectives

Several issues need to be solved before natural products can
be effectively translated into the clinic. With regard to the
best source of bioactive molecules or compounds, the follow-
ing aspects should be considered: (a) if they are better
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acquired directly from food in the diet or from pharmacolog-
ical sources (purified or through synthetic analogues) and (b)
if they should be used alone or as a cotreatment in combina-
tion with approved drugs. Therefore, there is a need to
develop specific clinical trials. Disadvantages of commercial
nutraceutic preparations include the high variability in for-
mulations (preparation methods and chemical composition),
as well as the dosage quantification and the different means
of administration. Research devoted to the optimization of
phytochemical formulation and dosage has become of critical
importance. Given the low bioavailability of phytochemicals,
the development of more useful synthetic derivatives has
become a great concern [173].

Once nutrients and nutraceuticals have been incorpo-
rated into the body, the gut environment is essential in main-
taining homeostasis; in this sense, like GM, the surface of the
intestinal mucous membrane plays a fundamental role in the
preservation of homeostasis. Consequently, the correct func-
tioning of its permeability is of great importance [174].
Several pathologies, as well as susceptibility to metabolic
diseases, have been linked to alterations in the permeability
of the intestinal barrier. Humans possess two interacting
genomes: their own and that of their host microbiome, the
majority of which resides in the gut, in the layer of mucin gly-
coproteins (mucus) produced by the cells called goblet cells
[168]. The microbiome provides products such as vitamins
and nutrients to host cells, thereby establishing a beneficial
ecosystem for host physiology and preventing the arrival of
pathogens [175]. Thus, a symbiotic relationship is established
between both genomes, through the expression of pattern
recognition receptors (PRRs) for the sense of the presence
of intestinal microbiota, through the microbe-associated
molecular patterns (MAMPs). This communication between
the two genomes results in the accuracy of the mucosal bar-
rier function, by regulating the production of its components:
mucus, antimicrobial peptides, IgA and IL-22, facilitating
homeostasis, and immune tolerance [175–177]. Therefore,
GM and the human host influence each other by exchanging
their metabolic active molecules [178], working together, as a
hologenome, to maintain mutual health [179].

Another current challenge is convincing a skeptical
health sector of the use of such compounds as medicines,
or at least in conjunction with pharmaceutical medicines,
which could serve both practitioners and patients better
[180]. For instance, research on traditional Chinese medicine
has substantially increased recently through the search for its
molecular, cellular, and pharmacological bases, with the
identification of active substances and the investigation of
mechanisms of action [181]. Although the available cumula-
tive data strongly suggest the positive effects of a large variety
of phytochemicals in terms of health, it remains insufficient
in order to directly extract solid conclusions, due mainly to
the lack of confirmation, in human trials, of the results
obtained by the animal model studies. Consequently, more
research must be focused on the analysis of different phenolic
compounds metabolized by GM and their influence on
human health [182]. Results are crucial for the precise under-
standing of the influence of GM on the metabolism of micro-
nutrients and phytochemicals within the human organism,

and their metabolism undergone upon ingestion, in order
to correctly attribute beneficial health properties to specific
polyphenols with a more complete knowledge of their bio-
availability, metabolism, and effects on carbohydrate and
lipid metabolism, and therefore their use in treating obesity
and inflammatory diseases.
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