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Phytohormones and induction 
of plant-stress tolerance and defense genes 
by seed and foliar inoculation with Azospirillum 
brasilense cells and metabolites promote maize 
growth
Josiane Fukami1,2, Francisco Javier Ollero3, Manuel Megías3 and Mariangela Hungria1* 

Abstract 

Azospirillum spp. are plant-growth-promoting bacteria used worldwide as inoculants for a variety of crops. Among the 
beneficial mechanisms associated with Azospirillum inoculation, emphasis has been given to the biological nitrogen 
fixation process and to the synthesis of phytohormones. In Brazil, the application of inoculants containing A. brasilense 
strains Ab-V5 and Ab-V6 to cereals is exponentially growing and in this study we investigated the effects of maize 
inoculation with these two strains applied on seeds or by leaf spray at the V2.5 stage growth—a strategy to relieve 
incompatibility with pesticides used for seed treatment. We also investigate the effects of spraying the metabolites 
of these two strains at V2.5. Maize growth was promoted by the inoculation of bacteria and their metabolites. When 
applied via foliar spray, although A. brasilense survival on leaves was confirmed by confocal microscopy and cell 
recovery, few cells were detected after 24 h, indicating that the effects of bacterial leaf spray might also be related to 
their metabolites. The major molecules detected in the supernatants of both strains were indole-3-acetic acid, indole-
3-ethanol, indole-3-lactic acid and salicylic acid. RT-PCR of genes related to oxidative stress (APX1, APX2, CAT1, SOD2, 
SOD4) and plant defense (pathogenesis-related PR1, prp2 and prp4) was evaluated on maize leaves and roots. Differ-
ences were observed according to the gene, plant tissue, strain and method of application, but, in general, inocula-
tion with Azospirillum resulted in up-regulation of oxidative stress genes in leaves and down-regulation in roots; 
contrarily, in general, PR genes were down-regulated in leaves and up-regulated in roots. Emphasis should be given 
to the application of metabolites, especially of Ab-V5 + Ab-V6 that in general resulted in the highest up-regulation of 
oxidative-stress and PR genes both in leaves and in roots. We hypothesize that the benefits of inoculation of Azospiril-

lum on seeds or by leaf spray, as well as of leaf spraying of Azospirillum metabolites, are strongly correlated with the 
synthesis of phytohormones and by eliciting genes related to plant-stress tolerance and defense against pathogens.
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Introduction
Inoculation with Azospirillum spp. has been the subject 

of several studies (Bashan and Holguin 1998) due to their 

remarkable capacity of promoting growth of important 

cereals, i.e. maize (Zea mays L.), wheat (Triticum aesti-

vum L.) and rice (Oryza sativa L.), in addition to several 

grasses (e.g. Hungria et al. 2010, 2016; Cassán et al. 2015; 

Pereg et al. 2016). �e benefits in plant growth have been 

attributed to a variety of single or combined mechanisms 

that act either accumulatively or in cascade (Bashan and 

de-Bashan 2010), including: enhanced uptake of nutri-

ents and water (Ardakani et  al. 2011); production and 
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secretion of phytohormones and other signaling mol-

ecules such as auxins (Spaepen and Vanderleyden 2015), 

cytokinins (Tien et  al. 1979), gibberellins (Bottini et  al. 

1989) and salicylic acid (Sahoo et  al. 2014); biological 

nitrogen fixation (Marques et  al. 2017); and phosphate 

solubilization (Rodriguez et al. 2004). However, although 

Azospirillum spp. seem remarkable in their apparent lack 

of specificity in promoting growth of practically every 

plant genus and species investigated so far (Pereg et  al. 

2016), there are also indications that species and strains 

may vary in determinants of niche-specific adaptation to 

the rhizosphere that affect plant–microbe interactions 

(Wisniewski-Dyé et al. 2012). Examples of determinants 

of adaptation include reactive oxygen species (ROS) as 

shown with A. lipoferum strain 4B in the rice rhizosphere 

(Drogue et  al. 2014). ROS molecules encompass free 

radicals resulting from oxygen metabolism such as super-

oxide radicals  (O2
−), hydroxyl radicals  (OH−), hydrogen 

peroxide  (H2O2) and singlet oxygen (1O2) (Bowler et  al. 

1992; Gill and Tuteja 2010). �e most important ROS 

detoxification mechanism is represented by the activ-

ity of superoxide dismutase (SOD), ascorbate peroxidase 

(APX) and catalase (CAT) enzymes responsible for the 

scavenging of  H2O2 by its conversion to water and  O2 

(Lamb and Dixon 1997; Asada 1999). In general, ROS 

detoxification systems vary with plant species, cultivar, 

and age, and also with the type and duration of abiotic 

and biotic stress (Hodges et al. 1996).

Another intriguing feature of Azospirillum spp. is that 

although the species comprise non-pathogenic bacteria, 

they are also able to induce plant-defense mechanisms 

that may help against further pathogen attacks (Cassán 

et  al. 2014). �is property is called ‘induced systemic 

resistance’ (ISR), in which the bacterium triggers a plant 

reaction by emitting signals—the pathogenesis-related 

proteins (PRs)—that spread systemically throughout 

the plant and enhance the defensive capacity of dis-

tant tissues against infection by pathogens (Van Loon 

and Bakker 2005). Once induced, plants may remain 

protected for prolonged periods (Van Loon 2007). For 

example, there are reports of Azospirillum helping pro-

tection against Colletotrichum acutatum (anthracnose) 

in strawberry (Fragaria ananassa Duch.) (Tortora et  al. 

2011), and resistance to Clavibacter michiganensis subsp. 

michiganensis (bacterial canker), Xanthomonas campes-

tris pv. vesicatoria (Romero et al. 2003) and Rhizoctonia 

solani (damping-off disease) (Gupta et al. 1995) in tomato 

plants (Lycopersicon esculentum Mill).

Reports of plant-growth improvement by the exoge-

nous application of synthetic growth regulators (e.g. aux-

ins, gibberellins, cytokinins) have long been the subject 

of studies (e.g. Halmann 1990); more recently, emphasis 

has also been given to their effect in increasing tolerance 

of abiotic and biotic stresses (Robert-Seilaniantz et  al. 

2011). Similar effects on stresses have been reported with 

the application of jasmonic acid (Bari and Jones 2009; 

Wasternack 2007; Lorenzo and Solano 2005) and sali-

cylic acid (Bari and Jones 2009), which might induce PR 

(pathogenesis-related) genes and, consequently, enhance 

resistance to several pathogens.

�e commercial use of Azospirillum brasilense strains 

Ab-V5 and Ab-V6 on maize (Z. mays L.) and wheat (T. 

aestivum L.) crops in Brazil has grown exponentially 

since 2010 (Hungria et  al. 2010; Hungria 2011). Our 

research group has started to investigate the effects of 

foliar-spray inoculation of Azospirillum, with the main 

practical purpose of avoiding the contact of the bacteria 

with harmful pesticides that are heavily applied to the 

seeds (Fukami et  al. 2016). In this study we confirmed 

benefits to plant growth by seed and foliar applications 

of Azospirillum, but also verified responses to the appli-

cation of their metabolites. We then investigated phy-

tohormone production and the response of antioxidant 

systems with different methods of application of Azos-

pirillum strains and their metabolites.

Materials and methods
Bacterial strains and inoculation methods

Bacteria consisted of strains Ab-V5 (=CNPSo 2083) 

and Ab-V6 (=CNPSo 2084) of Azospirillum brasilense 

(from the “Culture Collection of Diazotrophic and Plant 

Growth-Promoting Bacteria of Embrapa Soja”, WFCC # 

1213, WDCM # 1054). Both strains were derived from an 

Azospirillum selection program (Hungria et al. 2010) and 

are currently employed in commercial inoculants in Bra-

zil (Hungria 2011).

�e inoculants were initially prepared in DYGS 

medium (Rodrigues Neto et  al. 1986) and, after growth 

for 48 h, cell concentrations were adjusted to  108 mL−1. 

For the production of metabolites, inoculants were pro-

duced under the same conditions and up to the same 

concentration and were centrifuged at 5000  rpm for 

15  min. By plating the supernatants obtained on DYGS 

medium we confirmed that they were free of Azospiril-

lum cells.

�ree methods of inoculation were compared: (i) 

standard seed inoculation (SI)—considered as the con-

trol; (ii) inoculation by leaf spray (ILS) at the V2.5 stage 

of the maize growth cycle (Hickman and Shroyer 1994); 

and (iii) application with metabolites from A. brasilense 

strains Ab-V5 and Ab-V6 by leaf spray (MLS) at the V2.5 

stage (about 7  days after transplanting) (Hickman and 

Shroyer 1994).

Seeds were inoculated 1  h before sowing by thor-

oughly coating them to provide a final concentration 

of 1.6  ×  105 cells  seed−1. For leaf-spray inoculation, an 
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aerograph atomizer was employed to mimic the action of 

a spraying apparatus. �e soil surface was covered with 

aluminum foil to prevent the inoculant reaching it. �e 

final volume of liquid for leaf-spray inoculation was 1 mL 

(water  +  inoculant) per pot containing a single plant, 

and inoculants were diluted with sterile distilled water at 

1:1000 (v:v) for spraying, to achieve an application rate of 

1.6 × 105 cells  plant−1. For leaf spray of metabolites, bac-

terial exudate corresponding to the same cell concentra-

tion as the seed inoculant used for leaf spray was used, 

with the application of 1 mL per plant corresponding to 

1.6 × 105 cells  plant−1. Foliar-spray inoculations of pots 

containing maize plants were performed 7  days after 

transplanting.

Greenhouse experiment

�e experiment was performed under greenhouse con-

ditions, using modified Leonard jars (Vincent 1970) 

containing sterilized substrate, consisting of a mixture 

of sand and pulverized coal (3:1, v/v) with application 

of sterile nutrient solution (Fahraeus 1957). Jars were 

arranged in a completely randomized design with nine 

treatments, a non-inoculated control, and six repli-

cates. Each treatment received 60 kg N ha−1 (50% of the 

N application recommended for the crop). Inoculation 

treatments consisted of mineral-N fertilizer (50% N) and 

different methods of inoculation: SI (standard seed inoc-

ulation at sowing), ILS (inoculation by leaf spray, at the 

V2.5 stage of maize growth) and MLS (inoculation with 

metabolites by leaf spray of A. brasilense strains Ab-V5 

and Ab-V6 at the at the V2.5 stage).

Hybrid maize seeds (DKB330 VT PRO2) were surface-

sterilized with 70% ethanol and 3% sodium hypochlo-

rite (Vincent 1970). �ey were pre-geminated for 48  h 

at 25  °C in Petri plates containing 1% (v/v) water agar. 

After germination, two seedlings were transplanted per 

jar and thinned to one plant after 3  days. Temperature 

at the greenhouse in controlled by means of air condi-

tioners and average of day and night temperatures were 

of 28 ± 2.3/23 ± 1.9 °C (day/night); the experiment was 

performed at the summer growing season, where light 

intensity is the most adequate for maize growth. Sterile 

nutrient solution was applied as needed.

At 30 days after transplanting, leaf-chlorophyll contents 

(CC) were determined according to Kaschuk et al. (2010), 

based on the “Soil Plant Analysis Development” (SPAD) 

index, with readings taken from the lowermost third of 

the +3 leaf (Trani et  al. 1983). Biometric parameters of 

plant height (cm; PH) and culm diameter (mm; CD) of 

plants were determined with the aid of a digital caliper. 

Plants were harvested, separating leaves and roots, with 

three biological replicates. Fresh weight was determined 

and 2  g of fresh material of each sample were dried at 

60 °C for approximately 72 h, until constant weights were 

achieved; tissues were weighed to estimate the factor for 

conversion from fresh to dry weight of each replicate. �e 

remaining sampled tissues were frozen in liquid nitrogen 

and stored at −80 °C until further analyses.

Data obtained were first evaluated for normality and 

variance homogeneity, followed by the analysis of vari-

ance (ANOVA). Tukey’s test was employed to compare 

means in cases where statistical significance had been 

detected by the ANOVA F test (p ≤ 0.05). Statistica soft-

ware version 7.0 was employed.

Identi�cation of phytohormones produced by A. brasilense 

by UHPLC-HRMS/MS

�e identification of phytohormones produced by A. 

brasilense strains Ab-V5 and Ab-V6 was performed by 

ultrahigh-performance liquid chromatography-high-res-

olution mass spectrometry (UHPLC-HRMS/MS). Strains 

Ab-V5 and Ab-V6 were grown separately in DYGS 

medium (Rodrigues Neto et  al. 1986) without trypto-

phan (TRP) or in DYGS supplemented with 500 µg mL−1 

tryptophan (DYGS-TRP medium). Liquid bacterial 

inocula were incubated at 28 ±  2  °C with orbital shak-

ing at 120  rpm for 14  days. �e bacterial cultures were 

then filtered through nitrocellulose-membrane filters 

Millipore HA 0.45  µm to obtain the supernatants. �e 

samples were filtered again in a microfiltration mem-

brane, and 5-µL aliquots of each sample were analyzed. 

Hormones were identified by mass/charge ratio (m/z) 

values and by the retention times of the standard com-

pounds indole-3-acetic acid (IAA), indole-3-butyric acid 

(IBA), indole-3-ethanol (TOL), indole-3-lactic acid (ILA), 

indole-3-pyruvic acid (IPyA), indole-3-propionic acid 

(IPA), kinetin (Kin), gibberellic acid (GA3), salicylic acid 

(SA) and jasmonic acid (JA); tri-methyl-indole-3-acetic 

acid (TmIAA) was used as internal standard.

RNA extraction, cDNA synthesis and quantitative RT-PCR

RNAs of leaves and roots were extracted with  TRIzol® 

(Life Technologies/�ermo Fisher Scientific), and the 

concentration and purity were evaluated in a  NanoDrop® 

ND1000 spectrophotometer (NanoDrop-Technologies, 

Inc.), while the integrity was evaluated by gel electropho-

resis. Genomic DNA was removed with DNAseI (Inv-

itrogen™) and the first strand of cDNA was synthesized 

using SuperscriptIII™ reverse transcriptase (Invitrogen™), 

according to the manufacturer’s protocol.

Primers for the RT-qPCR targets were designed using 

primer3Plus (http://www.bioinformatics.nl/cgi-bin/prim-

er3plus/primer3plus.cgi/) (Table 1) to obtain amplicons of 

110–150 bp. �e endogenous control genes of maize used 

were UBCE and UBCP, corresponding to the ubiquitin-

conjugating enzyme and the ubiquitin carrier protein, 

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
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respectively (Manoli et  al. 2012). �ese genes were used 

for data normalization of the cycle threshold (Ct) of RT-

qPCR amplifications.

RT-qPCR reactions were performed in a 7500 RT-

qPCR thermocycler (Applied Biosystems/Life Technolo-

gies). �e reactions were performed in triplicate for each 

of the three biological replicates. �e  Platinum®  SYBR® 

Green qPCR SuperMix-UDG (Invitrogen™) was used fol-

lowing the manufacturer’s instructions. Cycling condi-

tions were as follows: 50 °C for 2 min, 95 °C for 10 min, 

45 cycles at 95 °C for 2 min, 60 °C for 30 s and 72 °C for 

30 s, in 45 cycles.

�e data obtained were submitted to the Rest2009 soft-

ware package (Pfaffl et al. 2002), providing a robust statis-

tical analysis (p ≤ 0.05).

Confocal laser scanning microscopy of A. brasilense 

on maize leaves

Maize leaf colonization by A. brasilense strains Ab-V5 and 

Ab-V6 expressing the egfp (enconding for enhanced green 

fluorescent protein) and eyfp (encoding for enhanced yel-

low fluorescent protein) reporter genes were analyzed by 

Confocal Laser-Scanning Microscopy (CLSM). First, plas-

mids pMP4655 (egfp) and pMP4658 (eyfp) (Bloemberg 

et al. 2000) were transferred by conjugation to A. brasilense 

Ab-V5 and Ab-V6. To select the transconjugants of A. bra-

silense, plates with DYGS agar medium (Rodrigues Neto 

et  al. 1986) were supplemented with nalidixic acid (final 

concentration 40  μg  mL−1) and tetracycline (final con-

centration 20  μg  mL−1). �e Azospirillum strains exhibit 

intrinsic resistance to the antibiotic nalidixic acid, whereas 

Escherichia coli containing the transfer plasmid shows only 

tetracycline resistance. Transconjugants were obtained for 

both strains of Azospirillum.

Seeds of maize (hybrid DKB330 VT PRO2) were sur-

face-sterilized (Vincent 1970). Pre-germinated seeds 

(2 days) were transplanted to test tubes containing 70 mL 

of sterilized nutrient solution (Fahraeus 1957), and were 

grown under controlled greenhouse conditions. Mean 

temperatures during the experiment were of 25/18  °C 

(day/night) and relative humidity of 70%. At the V2.5 

stage of maize growth, plants were singly inoculated by 

leaf spray with either A. brasilense strain Ab-V5 or Ab-V6 

harboring the reporter plasmids expressing egfp and eyfp 

genes, respectively. Inoculant concentrations applied to 

the leaves were estimated at 3  ×  105 and 7  ×  105 cells 

 cm−2 of leaf, for strains Ab-V5 and Ab-V6, respectively. 

At 1 h, 1 and 2 days after leaf spraying, the leaves were 

examined for the presence of fluorescent bacteria using 

CLSM equipped with an Ar–Hg laser (Leica TCS SP2, 

Leica, Wetzlar, Germany); the filter sets for fluorescence 

microscopy consisted of a 458-nm band-pass excitation 

and a 520–560  nm emission. Microscopy analyses were 

performed on intact alive plant tissues. Simultaneously 

to the analysis by microscopy, the presence of the bac-

teria on the leaves surface was verified by evaluation of 

colony-forming units evaluated by the drop plate method 

(Miles et al. 1938) 1 h, 1 and 2 days after leaf spraying.

Results
E�ects of inoculation of Azospirillum brasilense and their 

metabolites on plant-growth parameters

In the greenhouse experiment performed to evaluate 

effects of inoculation on plant growth, it is worth men-

tioning that all treatments received the same amount 

of N-fertilizer, corresponding to 50% (60  kg of N  ha−1) 

of the dose recommended for the maize crop in Brazil. 

When different methods (via seed—SI at sowing or by leaf 

spray—ILS at the V2.5 stage) of inoculation of A. brasi-

lense strains Ab-V5 and Ab-V6, in single or combined 

mixtures, or foliar-spray application of their metabolites 

(MLS), also at the V2.5 stage, were evaluated, statisti-

cally significant increases in chlorophyll content (CC) 

in relation to the non-inoculated control were observed 

in all treatments except for the SI with Ab-V5; the high-

est increases were observed in the treatments with MLS 

of Ab-V6 and MLS of Ab-V5 + Ab-V6, of 109 and 143%, 

respectively (Table  2). No statistical differences were 

observed for the parameters of plant high (PH) and 

culm diameter (CC). Shoot dry weight (SDW) was also 

improved by all inoculation treatments, except for MLS of 

Ab-V5. �e best inoculation treatment of MLS of strains 

Ab-V5 and Ab-V6 increased SDW by 72%. In relation to 

Table 1 Primers sequences used in  the RT-qPCR analyses 

and sizes of the PCR products obtained

Target 
gene

Primer sequences (5′–3′) Amplicon 
size (pb)

CAT1 CAT1F: ACAGCGATGAGTTGTGACGT 113

CAT1R: ATCCTTGCTGCATCTGTCCG

SOD2 SOD2F: GAGCACCTCAGGATGTTGCT 133

SOD2R: CAGGTGCGCAACATTGTTCA

SOD4 SOD4F: CGTCACCAGCAGGCTAGAAT 139

SOD4R: AGCCAACAGTCCAACACAGT

APX1 APX1F: GATCTTGTGGCTGCAGCATG 111

APX1R: GGTGGACTCGAATTGCAGGA

APX2 APX2F: ACGAAGATGTGATGAACTCAGC 138

APX2R: GGCATTGGCATCGTTAATCAGT

PR1 PR1F: ACTGCAAGCTGATCCACTCC 134

PR1R: TGTTGGTGTCGTGGTCGTAG

prp2 prp2F: ATTCATCGACGCGTCACAGT 117

prp2R: CAGAGACAAGGACACGGACC

prp4 prp4F: TACGACCACGACACCAACAG 143

prp4R: GCTGCAGATGATGAAGACGC
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this best treatment (T10), we should mention that the 

effect might be attributed mainly to the metabolites of 

Ab-V6, as the single metabolites of Ab-V6 (T9), but not of 

Ab-V5 (T8), resulted in increases in SDW (Table 2).

Identi�cation of phytohormones produced by A. brasilense 

by UHPLC-HRMS/MS

UHPLC-HRMS/MS results obtained in the analysis 

of the supernatants from Azospirillum strains grown 

in DYGS or DYGS +  TRP (tryptophan) media are pre-

sented in Table 3. For all samples, supplemented or not 

with tryptophan, the following main compounds were 

detected in the metabolites: indole-3-acetic acid (IAA), 

indole-3-ethanol (TOL), indole-3-lactic acid (ILA) and 

salicylic acid (SA). Other compounds have also been 

identified, but in relatively low amounts. In the super-

natant of Ab-V5 grown without TRP, we detected gib-

berellic acid  (GA3) and jasmonic acid (JA) and, when 

supplemented with TRP, we detected indole-3-propionic 

acid (IPA). In the supernatant of strain Ab-V6 supplied 

with TRP we detected  GA3 (Table 3).

Expression of genes related to defense mechanisms 

in maize

Effects of inoculation with Azospirillum or their metabo-

lites on the expression of genes encoding for antioxidant 

and PR proteins were determined by RT-qPCR (Figs. 1, 2, 

3). When compared to the non-inoculated control (T1), 

the gene of the cytosolic isoform APX1 in maize leaves was 

significantly up-regulated by inoculation in all treatments 

except for with the inoculation with strain Ab-V5 by leaf 

spray (T5) (Fig. 1a). �e highest expression was achieved 

with treatment T10, with inoculation of metabolites of 

both strains, with an increase of 2.8-fold in comparison 

to the non-inoculated control. Contrarily, the expression 

of APX1 in roots was down-regulated in all treatments 

(Fig.  1a). �e expression of the APX2 gene in leaves was 

up-regulated in all treatments, and statistically significant 

in six out of the nine inoculation treatments (Fig. 1b). Con-

trarily to APX1 gene-expression in roots, APX2 was signifi-

cantly up-regulated with the metabolites of Ab-V5 (T8), 

and the metabolites of Ab-V5  +  Ab-V6 (T10) (Fig.  1b). 

�e same trend as for APX genes was observed with CAT1 

(Fig. 1c). �e highest expression in leaves was achieved by 

seed inoculation with Ab-V5 (T2, 5.5-fold) and spraying 

of the metabolites of the same strain (T8, 6.9-fold). CAT1 

was down-regulated in roots, except for the seed inocula-

tion with Ab-V5 + Ab-V6 (T4) and the metabolite-spray 

treatments (T8, T9, T10) (Fig. 1c). When SOD genes were 

Table 2 E�ects of  inoculation with  Azospirillum brasilense 

strains Ab-V5 and  Ab-V6 applied via  seeds (seed inocula-

tion, SI, at  sowing) or by  foliar application (inoculation 

by  leaf spray, ILS, at  the V2.5 stage) and  of application 

of their metabolites (MLS) at the V2.5 stage on the chloro-

phyll content (CC), plant height (PH), culm diameter (CD) 

and  shoot dry weight (SDW) of  maize plants (DKB330 VT 

PRO2)

All treatments received the equivalent of 60 kg of N ha−1 at sowing, plants 

were grown under greenhouse conditions and harvested at 30 days after 

transplanting

a Means (six replicates) followed by the same letter on the same column are 

not statistically di�erent according to the Tukey’s test (p ≤ 0.05); ns statistically 

non-signi�cant

Treatment CC (µg cm−2) PH (cm) CD (mm) SDW (g  pl−1)

T1: non-inoculated 
control

4.45  ea 57.33 a 12.22ns 3.24 c

T2: SI Ab-V5 5.03 e 57.00 a 13.46 4.56 ab

T3: SI Ab-V6 7.00 d 63.60 a 13.35 5.71 a

T4: SI 
Ab-V5 + Ab-V6

8.51 c 59.17 a 12.84 4.85 ab

T5: ILS Ab-V5 6.80 d 58.40 a 13.23 4.84 ab

T6: ILS Ab-V6 8.04 c 63.00 a 12.74 4.67 ab

T7: ILS 
Ab-V5 + Ab-V6

7.07 d 59.67 a 12.97 4.67 ab

T8: MLS Ab-V5 7.08 d 65.40 a 12.16 4.15 bc

T9: MLS Ab-V6 9.30 b 60.50 a 12.49 5.39 ab

T10: MLS 
Ab-V5 + Ab-V6

10.80 a 64.67 a 13.34 5.57 a

p value <0.0001 0.03915 0.2609 <0.0001

CV (%) 10.11 8.50 8.69 13.81

Table 3 Identi�cation by  ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-

HRMS/MS) of  phytohormones produced by  A. brasilense strains Ab-V5 and  Ab-V6 after  14  days of  growth on  DYGS 

medium supplemented or not with tryptophan (TRP, 500 µg mL−1)

a Indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), indole-3-ethanol (TOL), indole-3-lactic acid (ILA), indole-3-pyruvic (IPyA), indole-3-propionic acid (IPA), kinetin 

(Kin), gibberellic acid  (GA3), jasmonic acid (JA), salicylic acid (SA)

b + detected; − no detected; * low relation

Treatment IAAa IBA TOL ILA IPyA IPA Kin GA3 JA SA

Ab-V5 +b − + + − − − * * +

Ab-V5 + TRP + − + + − * − − − +

Ab-V6 + − + + − − − − − +

Ab-V6 +TRP + − + + − − − * − +
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Fig. 1 RT-qPCR analysis of the expression of a APX1, b APX2 and c CAT genes in maize leaves and roots when induced by Azospirillum brasilense 
strains Ab-V5 and Ab-V6 inoculated on seeds or by foliar spray, and also buy their metabolites applied by foliar spray. Data ± standard deviation 
from three biological replicates, each with three technical replicates. Data were normalized in relation to the endogenous control (UBCE and UBCP). 
The asterisks indicate statistically significant expression at the level α = 5%, determined by REST2009 software. Black bars leaf and dark gray bars root
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investigated, up-regulation in leaves was achieved in all 

treatments, except for when both strains were leaf sprayed 

for SOD2 (Fig. 2a) and when Azospirillum cells were leaf 

sprayed for SOD4 (Fig.  2b). Contrarily, both genes were 

down-regulated in roots when living cells were applied 

to seeds or sprayed, whereas the application of metabo-

lites on leaves resulted in up-regulation, with the highest 

expression of 2.5-fold for SOD2 and of 3.2-fold for SOD4 

with the metabolites of Ab-V5 (Fig. 2a, b).

Analyzing the PR group of genes (PR1, prp2 and prp4) 

(Fig. 3a–c), in general seed inoculation with single strains 

(Ab-V5 or Ab-V6) up-regulated gene expression in 

leaves, whereas seed co-inoculation, and foliar inocula-

tion with single strains down-regulated the genes. Seed 

inoculation with Ab-V5 (T2) increased by 10.4-fold the 

expression of PR1 gene in leaves, whereas, with Ab-V6 

(T3), up-regulation was of 5.1- and 5.5-fold for PR1 and 

prp2, respectively. In relation to the effects of metabo-

lite sprays on gene expression in leaves, emphasis should 

be given to the Ab-V5 + Ab-V6 treatment (T10), always 

showing up-regulation, in particular of prp2 (6.4-fold). 

In relation to the gene expression in roots (Fig.  3a–c), 

in general all treatments resulted in up-regulation, but 

emphasis should be given to the co-inoculation of seeds 

on the expression of PR1 (20.2-fold) and prp4 (4.2-fold), 

respectively; down-regulation of prp2 with the metabo-

lites of Ab-V6 of Ab-V5 + Ab-V6 was not statistically sig-

nificant (Fig. 3b).

Colonization of maize leaves by A. brasilense

In order to check whether A. brasilense cells are 

able to colonize maize leaves, strains Ab-V5 and 
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Fig. 2 RT-qPCR analysis of the expression of a SOD2 and b SOD4 genes, as described in the legend of Fig. 1
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Ab-V6—harboring reporter plasmids expressing egfp 

and eyfp genes, respectively—were inoculated by leaf 

spray. After 1  h, 1 and 2  days of inoculation, the leaves 

were visualized by CLSM (Fig.  4). After 1  h of inocula-

tion with both strains, (EGFP)-l and (EYFP)-labelled cells 

indicated that they were able to colonize leaves surface 
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Fig. 3 RT-qPCR analysis of the expression of several a PR1, b prp2 and c prp4 genes, as described in the legend of Fig. 1
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(Fig.  4a, d), and the same was observed after 1  day of 

inoculation (Fig. 4b, c). However, after 2 days of inocula-

tion, we were unable to detect the strains on the leaf sur-

faces. Simultaneously, bacteria counts on leaves surface 

were performed after 1 h, 1 and 2 days of leaf spraying. 

Values obtained for colony-forming units (CFUs) were 

as follows: 2 × 105, 1 × 105 and 5 × 102 CFUs  cm−2 of 

leaf for strain Ab-V5 and 6 × 105, 5 × 105 and 5 × 102 

CFU cm−2 of leaf for strain Ab-V6 after 1 h, 1 and 2 days, 

respectively. �e low bacterial counts at 2 days after inoc-

ulation might explain why the bacteria were not visual-

ized by CLSM.

Discussion
When maize growth was evaluated under greenhouse 

conditions, the benefits of inoculation with A. brasi-

lense Ab-V5 and/or Ab-V6 applied to seeds or by foliar 

application at the V2.5 stage of plant growth were con-

firmed. �e benefits of inoculation with Azospirillum at 

sowing, via seeds or in-furrow, have been demonstrated 

under greenhouse and field conditions in cereals, with an 

emphasis on maize (Dobbelaere and Okon 2007; Hungria 

et al. 2010; Hungria 2011; Okon et al. 2015; Fukami et al. 

2016), and increasing use of strains Ab-V5 and Ab-V6 

has been exponential in Brazil since 2010 (Hungria 2011). 

Improvements in grain yields of maize and wheat by 

foliar application of Azospirillum have also been reported 

(Clemente et al. 2016; Fukami et al. 2016), but the physi-

ological and genetic basis of such improvements have yet 

to be elucidated.

Intriguing were the positive responses observed in our 

study to foliar application of metabolites of Azospiril-

lum—especially with Ab-V5 + Ab-V6—at the V2.5 stage. 

Previously, we reported benefits to the maize crop by the 

Fig. 4 Confocal laser scanning microscopy analysis of maize leaf surface colonization by A. brasilense expressing EGFP when inoculated by leaf 
spray. a A. brasilense Ab-V5 after 1 h, b A. brasilense Ab-V5 after 1 day, c A. brasilense Ab-V6 after 1 h, d A. brasilense Ab-V6 after 1 day of inoculation
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application of metabolites of rhizobia, suggesting that the 

effects could be attributed to lipo-chitooligosaccharides 

(LCOs) or Nod factors (Marks et al. 2013, 2015) synthe-

sized by the bacteria. Positive effects with application of 

Nod factors in maize, cotton (Gossypium hirsutum) and 

beet (Beta vulgaris) were also reported by Smith et  al. 

(2015). However, as far as we are aware, this is the first 

scientific report of effects of Azospirillum metabolites on 

cereal growth.

To achieve a better understanding of the effects of leaf 

spraying with Azospirillum cells, we investigated the 

bacterial colonization of leaves by microscopy. Strains 

Ab-V5 and Ab-V6 were detected on leaves surfaces up 

to 24  h after inoculation, but the numbers of surviving 

cells (CFU) were markedly reduced, and, after 48 h, cells 

were not detected by microscopy. It is possible that the 

number of recovered cells after 24  h was too low to be 

detected by CLSM, but the mortality in 24 h was of the 

order of 1000-fold. Furthermore, we must bear in mind 

that our experiment was performed under controlled 

optimized conditions, and that mortality under stressful 

field conditions—UV light, desiccation, high tempera-

ture—would certainly be far higher. �erefore, it is rea-

sonable to suggest that the benefits observed in our study 

from foliar spraying of Azospirillum cells resulted from 

metabolites present in the inoculant rather than from the 

living cells.

�e first hypothesis to explain increased plant growth 

by spraying cells or metabolites of A. brasilense Ab-V5 

and Ab-V6 relies on phytohormone production. We have 

identified the main molecules in the supernatants of the 

Ab-V5 and Ab-V6 strains, induced and non-induced with 

tryptophan, as being indole-3-acetic acid (IAA), indole-

3-ethanol (TOL), indole-3-latic acid (ILA) and salicylic 

acid (SA). Although the physiological functions of TOL 

and ILA remain unknown, it is possible that intermedi-

ates of IAA biosynthesis pathways are converted into 

these storage compounds whenever necessary (Cassán 

et al. 2014). In addition, in some combinations of strains 

and tryptophan we detected traces of gibberellic acid 

 (GA3) and jasmonic acid (JA). �e synthesis of phytohor-

mones by Azospirillum has been broadly reported, and 

may differ between species and strains. �e well studied 

A. brasilense strains Cd and Az39 produce IAA, zea-

tin,  GA3, abscisic acid and ethylene (Perrig et  al. 2007), 

strain UAP154 produces IAA and indole-butyric acid 

(IBA) (Martínez-Morales et  al. 2003), strain 703Ebc 

produces IAA, TOL, ILA and indole-3-methanol (Cro-

zier et al. 1988), and Sp13t produces IAA, ILA,  GA3 and 

kinetin (Tien et al. 1979). Tien et al. (1979) also detected 

gibberellin-like molecules in the supernatants of A. bra-

silense Sp13t at low concentrations, of about 0.05  µg of 

 GA3  mL−1. However, when applied at concentrations as 

low as 0.005 µg mL−1 to lettuce (Lactuca sativa), hypoco-

tyls elongation was promoted and, in pearl millet (Pen-

nisetum americanum L.), the number of lateral roots was 

increased. �e benefits confirmed in our study of inocu-

lation of seed with Azospirillum at sowing may be attrib-

uted to the effects of phytohormones in the rhizosphere, 

and we propose that these effects also occur from the 

application of cells and metabolites to the leaves.

Plants synthesize a variety of secondary metabolites 

that are involved in several physiological processes, and 

main functions of these compounds lie in providing 

stress tolerance and defense against pathogens (Sudha 

and Ravishankar 2002). Previous studies have reported 

that maize inoculation with Azospirillum results in sig-

nificant changes in the secondary metabolic profiles of 

roots and shoots, suggesting the presence of finely-tuned 

interacting mechanisms (Walker et al. 2011). In addition, 

reactive oxygen species (ROS) in plants contribute to 

resisting biotic stresses such as pathogens and even sym-

biotic bacteria (before plant perceives benefit from the 

symbiosis) (Lamb and Dixon 1997; Santos et al. 2001), as 

well as to tolerating abiotic stresses (Ozyigit et al. 2016), 

such as saline conditions (Barakat 2011). However, ROS 

accumulation results in oxidative damage to cells such 

as lipid peroxidation with membrane destruction, pro-

tein inactivation or DNA mutation (Garcı ́a-Limones 

et al. 2002). Oxidative stress is relieved in plants by anti-

oxidant enzymes such as catalase, superoxide dismutase 

and ascorbate peroxidase (Wisniewski-Dyé et  al. 2012; 

Ozyigit et al. 2016). �e genes encoding the isoenzymes 

are found in different plant-cell compartments, such as 

the cytosolic SOD2, SOD4 (Jung et  al. 2001), APX1 and 

APX2, which are inducible mainly under extreme light 

or heat-stress conditions (Davletova et  al. 2005), and 

CAT1, found in peroxisomes, glyoxysomes and also in 

the cytosol (Scandalios et al. 1997; Jung et al. 2001). We 

evaluated the effects of Azospirillum and its metabolites 

on the expression of genes related to the synthesis of the 

 H2O2-generating enzyme (SOD), the  H2O2-scavenging 

enzymes (CAT and APX) in maize leaves and roots. In 

general, inoculation of seeds with A. brasilense and by 

foliar spraying resulted in down-regulation transcription 

of oxidative stress genes (APX1, APX2, SOD2, SOD4) in 

roots, but genes were always up-regulated by leaf spray 

of metabolites, except for APX1. �e results suggest that 

oxidative stress in roots persisted longer with the appli-

cation of living cells than with their metabolites. Seed 

inoculation up-regulated all genes in leaves, but when 

cells were sprayed on leaves, SOD4 with all strains and 

APX1 with Ab-V5 were down-regulated. Similarly to the 

roots, when the metabolites were sprayed on the leaves 

the genes—now including APX1—were up-regulated. 

�e up-regulation of APX1 in leaves is particularly 
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interesting, as APX genes might be essential for chloro-

plast protection during light stress (Pnueli et  al. 2003; 

Mittler et al. 2004; Davletova et al. 2005).

Another defense mechanism of the plants is mediated 

by ISR (induced systemic resistance), resulting in plant 

resistance to some pathogenic bacteria, viruses and fungi 

(Lugtenberg and Kamilova 2009). ISR is triggered by non-

pathogenic microorganisms and starts in primary infected 

parts, extending to other plant tissues (Dutta et al. 2008). 

Biochemical or physiological changes in plants include 

induced accumulation of pathogenesis-related (PR) 

proteins that have different functions like the proteins 

encoded by PR1 (a member of a multigene family) (Mor-

ris et al. 1998), PR-2 (a β-1-3-glucanase) (Kauffmann et al. 

1987), PR4 (a chitinase family) (Nasser et al. 1988). Tran-

scriptome studies of PR genes with Azospirillum sp. B510 

applied as inoculum to rice (O. sativa L.) reported that one 

gene was up- and five were down-regulated (Drogue et al. 

2014). In another study with Arabidopsis thaliana inocu-

lated with A. brasilense Sp245, PR genes were also up-reg-

ulated (Spaepen et al. 2014). In our study, seed inoculation 

resulted in significant up-regulation of only one PR gene 

in roots, PR1, while foliar application in general resulted in 

up-regulation of PR1, prp2 and prp4 genes on roots. Up-

regulation of PR1 and prp4 was also verified with metab-

olite spray. In relation to the gene expression in leaves, 

emphasis should be given to single-seed inoculation with 

both strains that up-regulated all PR genes. Interestingly, 

it has been shown that the use of more than one micro-

organism optimized ISR responses in pigeon pea (Cajanus 

cajan) (Dutta et al. 2008), similarly to our results with seed 

inoculation of Ab-V5  +  Ab-V6 on roots. Bacillus sub-

tilis also up-regulated PR1 and PR4, but not SOD2 genes 

in maize roots (Gond et  al. 2015). It is also worth men-

tioning that ISR responses in different tissues from those 

where the microorganism is applied occurs, e.g. leaf spray 

with Pseudomonas fluorescens in rice induced ISR against 

the soil-borne plant pathogen Rhizoctonia solani (Vid-

hyasekaran and Muthamilan 1999).

ISR responses to a variety of plant pathogens usually 

have been associated with the signaling compounds jas-

monate and ethylene (Glick 2012; Ahemad and Kibret 

2014), the levels of which are increased in tissue inde-

pendent of SA (Van Loon 2007); this mechanism has 

also been reported in the association of Azospirillum sp. 

B510 with rice (Yasuda et al. 2009). Indeed, several stud-

ies have demonstrated that exogenous applications of SA 

(Bari and Jones 2009) and JA (Agrawal et  al. 2000; Lor-

enzo and Solano 2005; Wasternack 2007; Bari and Jones 

2009) induce PR genes and consequently increase the 

resistance to several pathogens. In addition, exogenous 

applications of JA also increase the activities of CAT and 

SOD enzymes in soybean [Glycine max (L.) Merr.] plants 

stressed by cadmium (Noriega et al. 2012). �e ISR might 

be related also to the reported effects of A. brasilense 

against soil-borne plant pathogens such as Rhizoctonia 

spp. (Russo et  al. 2008) and Fusarium oxysporum f. sp. 

matthiolae (Somers et al. 2005).

It is worth considering that the exogenous application 

of synthetic growth regulators (e.g. IAA, GA, kin) has 

been broadly adopted by foliar spraying due to plant-

growth promotion (Halmann 1990), but the commer-

cial products are usually very expensive. However, in 

our study, the foliar spray of Azospirillum metabolites 

in general improved not only plant growth, but also up-

regulated plant genes related to defense mechanisms, and 

might represent an alternative biological plant regulator.

In conclusion, we reported that, regardless of the 

method of inoculation—on seeds or by foliar applica-

tion—the A. brasilense strains Ab-V5 and Ab-V6 pro-

moted plant growth. Intriguingly, the foliar application 

of their metabolites also improved growth. �e benefits 

of cell and metabolite application can be attributed both 

to the synthesis of phytohormones and to the induction 

of plant defense-related genes. Clearly, the application of 

biological low-cost inoculants containing Azospirillum 

cells or their metabolites, promoting plant growth and 

eliciting plant resistance to biotic and abiotic stresses, 

have important agronomic implications.
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