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Abstract

Melatonin, a derivative of tryptophan, was first detected in plant species in 1995 and it has been shown to be a 
diverse regulator during plant growth and development, and in stress responses. Recently, great progress has been 
made towards determining the detailed functions of melatonin in plant responses to abiotic stress. Melatonin priming 
improves plant tolerance to cold, heat, salt, and drought stresses through regulation of genes involved in the DREB/
CBF, HSF, SOS, and ABA pathways, respectively. As a scavenger of free radicals, melatonin also directly detoxifies 
reactive oxygen species, thus alleviating membrane oxidation. Abiotic stress-inhibited photosynthesis is partially 
recovered and metabolites accumulate in the presence of melatonin, leading to improved plant growth, delayed leaf 
senescence, and increased stress tolerance. In this review, we summarize the interactions of melatonin with phy-
tohormones to regulate downstream gene expression, protein stabilization, and epigenetic modification in plants. 
Finally, we consider the need for, and approaches to, the identification of melatonin receptors and components during 
signaling transduction pathways.

Keywords:  Abscisic acid, abiotic stress, auxin, leaf senescence, melatonin, osmolytes, phytohormone, reactive oxygen 
species.

Introduction

Environmental stresses adversely affect plant growth and 
development. As sessile organisms, plants develop different 
approaches to cope with harsh environmental conditions. 
Abiotic stress tolerance is a complex trait. Phytohormones 
including abscisic acid (ABA), ethylene (ETH), gibberellic 
acid (GA), jasmonic acid (JA), salicylic acid (SA), indole 
acetic acid (IAA), strigolactone (SL), brassinosteroids 
(BR), and cytokinins (CTK) play key roles during stress 
responses and plant development (Balbi and Devoto, 2008; 
Lee et  al., 2013; Kapulnik and Koltai, 2014; Zhao et  al., 
2016). Additionally, several other small molecules such as 
melatonin (MT) and polyamines (PA) are involved in plant 

stress responses (Chan and Shi, 2015; Huang et  al., 2015; 
Reiter et al., 2015).

Melatonin (N-acetyl-5-methoxytryptamine), a derivative 
of the essential amino acid tryptophan, was identified in 
bovine pineal tissue and structurally identified by Lerner and 
co-workers (Lerner et al., 1958). It was initially shown to be 
an important molecule in animals that regulates reproduc-
tive physiology, circadian rhythms, sleep, retinal physiology, 
mood, antioxidative activity, sexual behavior, temperature 
homeostasis, and immunological enhancement (Galano et al., 
2011; Venegas et al., 2012; Calvo et al., 2013). In 1995, pioneer 
studies independently conducted by Dubbels et al. (1995) and 
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Hattori et  al. (1995) verified that melatonin is also ubiqui-
tously present in higher plants and plant products. Since then, 
melatonin has been found in leaves, roots, stems, fruits, and 
seeds of various plant species, including crops (rice, wheat, 
barley, corn, tobacco, grass, carrot, and oats) and fruit (sweet 
cherry, grape, cucumber, and apple), as well as plant products 
used to make popular beverages (tea, coffee, beer, and wine) 
(Manchester et al., 2000; Chen et al., 2003; Garcia-Parrilla 
et  al., 2009; Huang and Mazza 2011; Stürtz et  al., 2011; 
Arnao and Hernández-Ruiz 2013, 2015, 2017a; Arnao, 2014; 
Feng et al., 2014; Kocadağh et al., 2014; Hernández-Ruiz and 
Arnao 2016). Evidence has shown that melatonin is involved 
in flowering, circadian rhythms, photosynthesis, senescence 
(Byeon et al., 2012; Wang et al., 2012, 2013a, 2013b; Lee et al., 
2014; Shi et al., 2015b), root system architecture (Arnao and 
Hernandez-Ruiz, 2007; Pelagio-Flores et  al., 2012; Zhang 
et al., 2014b; Arnao and Hernández-Ruiz, 2017b), seed ger-
mination (Posmyk et  al., 2009), and in response to various 
environmental stresses (Table 1).

To date, melatonin has been shown to be a diverse regu-
lator during plant growth and development, and in stress 
responses (Arnao and Hernández-Ruiz, 2014; Reiter et  al., 
2015; Zhang et al., 2015). Recently, great progress has been 
made towards determining the detailed functions of mela-
tonin in plant responses to abiotic stress, and a number of 
reviews related to this have been published. In this review, 
we focus on how melatonin interacts with phytohormones 
and affects transcriptomic and proteomic changes in plants, 
and we summarize how melatonin modulates plant abiotic 
stress signaling pathways. We also consider the need for, and 
approaches to, the identification of melatonin receptors and 
signaling transduction pathways.

Melatonin detoxifies free radicals and 
alleviates oxidative stress

In plant cells, reactive oxygen species (ROS) such as the 
hydroxyl radical (•OH), the superoxide anion (O2

•–), singlet 
oxygen (1O2), and hydrogen peroxide (H2O2) are produced 
continuously and coincidentally. To scavenge ROS, plants 
have developed an efficient enzymatic and non-enzymatic 
antioxidative system to protect against oxidative damage, 
together with fine modulation of low levels of ROS for sig-
nal transduction. Enzymatic antioxidants in plants include 
superoxide dismutase (SOD), catalase (CAT), peroxid-
ase (POD), glutathione reductase (GR), dehydroascorbate 
reductase (DHAR), glutathione S-transferase (GST), and 
peroxiredoxin (PRX) (Noctor et al., 2014; Song et al., 2014). 
Non-enzymatic antioxidants including glutathione (GSH), 
ascorbic acid (AsA), carotenoids, tocopherols, and flavonoids 
are also crucial for ROS homeostasis in plants (Gill and 
Tuteja, 2010).

Melatonin in both animals and plants is a direct free radical 
scavenger and an indirect antioxidant (Tan et al., 2007, 2012; 
Manchester et  al., 2015). Melatonin controls the burst of 
hydrogen peroxide in plants associated with pathogen attack 
and harsh environmental conditions, possibly by directly 

scavenging excessive ROS and by enhancing the activities 
of antioxidative enzymes and the capacity of the ascorbate–
glutathione cycle (Wang et  al., 2013b). It is estimated that 
via the cascade reaction, one melatonin molecule potentially 
scavenges 10 free radicals, which contrasts with the classic 
antioxidants because they typically detoxify one radical per 
molecule (Tan et  al., 2007). Therefore, it has been deduced 
that the initial function of melatonin in organisms was to 
serve as an antioxidant to scavenge a variety of ROS and 
reactive nitrogen species (RNS), and to protect plants from 
oxidative stress (Dubbels et al., 1995; Hardeland et al., 1995; 
Tan et al., 2007; Manchester et al., 2015). Exogenous appli-
cation of melatonin increases antioxidant enzyme activities, 
while it decreases superoxide, hydrogen peroxide, and malon-
dialdehyde concentrations in apple, grape, maize, sunflower, 
tomato, and wheat (Wang et  al., 2013b; Meng et  al., 2014; 
Turk et al., 2014; Li et al., 2015; Liu et al., 2015; Ye et al., 
2016; Arora and Bhatla, 2017). Moreover, melatonin treat-
ment reduces the accumulation of oxidized proteins, enhances 
the occurrence of oxidative stress-induced autophagy, and 
alleviates photo-oxidation damage in Arabidopsis (Wang 
et  al., 2015). Pre-treatment with melatonin significantly 
alleviates H2O2-modulated plant growth, cell damage, and 
ROS accumulation in bermudagrass (Shi et al., 2015d), and 
reduces paraquat-induced oxidative stress in Arabidopsis 
(Weeda et al., 2014) and cadmium-mediated oxidative stress 
in rice (Byeon et al., 2015). Melatonin possibly interacts with 
nitric oxide (NO) to modulate the production of O2

•– and the 
peroxynitrite anion (ONOO–), the accumulation of tyrosine-
nitrated proteins, and the activity and spatial localization of 
SOD isoforms (Arora and Bhatla, 2017).

Transcriptomic analysis has shown that a large propor-
tion of  differentially expressed genes are involved in oxida-
tion–reduction process after melatonin treatment. Several 
classes of  antioxidant-related genes are significantly regu-
lated by melatonin (Liang et  al., 2015; Shi et  al., 2015a; 
Wei et  al., 2015). NOE1 encodes a rice catalase, and the 
noe1 mutant accumulates high amounts of  H2O2, leading to 
leaf  cell death and senescence (Lin et al., 2012). Melatonin-
treated noe1 mutants show significantly reduced leaf  cell 
death and a decrease in H2O2 when compared to the wild-
type, indicating that melatonin directly participates in 
regulating the cellular H2O2 detoxification system (Liang 
et al., 2015). Studies have also shown that not only exog-
enously applied but also endogenously produced melatonin 
in plants possess a similar antioxidant capacity (Table 1). 
Transgenic plants rich in endogenous melatonin have a 
higher total antioxidative capacity and lower oxidatively 
damaged products compared with the wild-type (Wang 
et  al., 2014a). Arabidopsis plants with transgenic apple 
ASMT1 (encoding N-acetylserotonin methyltransferase) 
or MzSNAT5 (encoding serotonin N-acetyltransferase) 
have significantly lower intrinsic ROS than the wild-type 
and hence these plants exhibit greater tolerance to drought 
stress (Zuo et al., 2014; Wang et al., 2017). Melatonin-rich 
transgenic rice plants treated with ROS-generating her-
bicide also have reduced lipid peroxidation due to scav-
enging of  ROS and stimulation of  antioxidative enzymes  
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Table 1. Exogenous application of melatonin or modulation of exogenous melatonin regulates plant abiotic stress tolerance

Abiotic stress Concentration of  
melatonin or transgene*

Plant species Changes and mechanisms Reference

Cold 10, 30 μM Arabidopsis thaliana Modulation of CBF, COR, ZAT10 and ROS 
genes

Bajwa et al., 2014

20 μM Arabidopsis thaliana Modulation of ZAT6 and CBFs Shi and Chan, 2014

50 μM Arabidopsis thaliana Modulation of CBFs, COR, RD and KIN genes Shi et al., 2015c

43, 86 nM Carrot (Daucus carota) ROS scavenger; Polyamine metabolism Lei et al., 2004

0.05–800 μM Citrullus lanatus ROS; Hormones; Stress-responsive genes Li et al., 2017a

25, 50, 100, and 500 mM Cucumber (Cucumis sativus) Membrane structure; Protein oxidative 
changes

Posmyk et al., 2009

200 μM Cucumber (Cucumis sativus) ZAT12; Polyamine; ABA Zhao et al., 2017

50 μM Elymus nutans ROS changes; ABA Fu et al., 2017

1 mM Barley (Hordeum vulgare) ROS changes; ABA; Photosynthesis Li et al., 2016c

1 mM Maize (Zea mays) Mineral elements; ROS Turk and Erdal, 2015

50 and 500 μM Maize (Zea mays) Stress-related proteins Kołodziejczyk et al., 2016

1 mM Wheat (Triticum aestivum) ROS changes; Osmoprotectants Turk et al., 2014

100 μM Bermudagrass (Cynodon 

dactylon)
Photosynthesis; Metabolites Hu et al., 2016

150 μM Watermelon (Citrullus lanatus) siRNA, miRNA, Cold-responsive genes Li et al., 2016b

100 μM Tomato (Solanum lycopersicum) Alleviation of photoinhibition Ding et al., 2017

Suppression of SNAT or ASMT Rice (Oryza sativa) Growth; Yield; Gene expression Byeon and Back, 2016
Overexpression of human 
SNAT

Rice (Oryza sativa) Elevated chlorophyll synthesis Kang et al., 2010

Drought 10 μM Alfalfa (Medicago sativa) Nitric oxide; Proline Antoniou et al., 2017

100 μM Apple (Malus prunifolia) ABA; ROS Li et al., 2015

100 μM Apple (Malus prunifolia) Photosynthesis; Modulation of SAG12 and 
PAO

Wang et al., 2013b

50, 100, 300, 500 mΜ Cucumber (Cucumis sativus) Photosynthesis; ROS; Cell membrane Zhang et al., 2013

50 nM Grape (Vitis vinifera) Photosynthesis; ROS Meng et al., 2014

100 μM Maize (Zea mays) Photosynthesis; Transpiration rates; ROS Ye et al., 2016

50, 100 μM Soybean (Glycine max) Growth; Seed production; Gene expression Wei et al., 2015

100 μM Tomato (Solanum lycopersicum) Photosynthesis; ROS Liu et al., 2015

Overexpression of apple ASMT Arabidopsis thaliana ROS Zuo et al., 2014
Overexpression of apple 
MzSNAT5

Arabidopsis thaliana ROS Wang et al., 2017

Salt 100 μM Apple (Malus hupehensis) CBL-CIPK; ROS Li et al., 2016a

1 μM Arabidopsis thaliana Ion homeostasis; ROS Chen et al., 2017

1 μM Citrus (Citrus aurantium) ROS; Metabolites; Ion accumulation Kostopoulou et al., 2015

50, 100, 150, and 200 μM Cucumber (Cucumis sativus) Growth; Photosynthetic capacity Wang et al., 2016a

1 μM Cucumber (Cucumis sativus) Antioxidant systems, ABA and GA4 Zhang et al., 2014a

1 μM Cucumber (Cucumis sativus) 157 proteins Zhang et al., 2017b

0.1 μM Malus hupehensis Ion homeostasis; ROS Li et al., 2012

10, 20 μM Rice (Oryza sativa) Photosynthesis; Senescence; ROS Liang et al., 2015

75 μM Rice (Oryza sativa) Ion homeostasis; ROS Li et al., 2017b

15 μM Sunflower (Helianthus annuus) Root growth; Hypocotyl elongation Mukherjee et al., 2014

15 μM Sunflower (Helianthus annuus) Cu/Zn SOD, Mn SOD; Tyrosine-nitration of 
proteins

Arora and Bhatla, 2017

0, 50, and 100 μM Soybean (Glycine max) Growth; Seed production; Gene expression Wei et al., 2015

Suppression of SNAT or ASMT Rice (Oryza sativa) Growth; Yield; Gene expression Byeon and Back, 2016
Heat 5 and 20 μM Arabidopsis thaliana Expression of HSF and HSP Shi et al., 2015d

20 μM Perennial ryegrass (Lolium 

perenne)
ABA and cytokinin pathway; Photosynthesis Zhang et al., 2017a

20 μM Tomato (Solanum lycopersicum) HSP abundance and expression Xu et al., 2016

Overexpression of tomato 
ASMT

Tomato (Solanum lycopersicum) HSP abundance and expression Xu et al., 2016

0.3, 1, 6, 12, 30, 60, 90 μM Phacelia tanacetifolia Seed germination Tiryaki and Keles, 2012

* SNAT, serotonin N-acetyltransferase; ASMT, N-acetylserotonin methyltransferase.
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(Park et  al., 2013). These results indicate that melatonin 
functions as a powerful antioxidant to detoxify free radicals 
and thus improve the oxidative stress tolerance in plants.

Melatonin alleviates electrolyte leakage (EL) and lipid per-
oxidation caused by malondialdehyde (MDA) during plant 
stress responses. Abiotic stresses including drought, salt, 
and cold increase MDA and ROS levels, which have a dir-
ect impact on cell membranes, resulting in increased EL in 
bermudagrass (Shi et al., 2015a), and probably other plants 
as well. Pre-treatment with melatonin decreases both EL 
and MDA under abiotic stress conditions (Shi et al., 2015a, 
2015d). Cold stress results in disrupted membranes and a 
collapsed nucleus, while melatonin pre-treatment alleviates 
cold-induced cell damage in suspended carrot cells (Lei et al., 
2004). In tomato, pre-treatment prevents cadmium (Cd)-
induced increases in EL and MDA to varying degrees (Hasan 
et al., 2015). Treatment with 200 mM NaCl increases EL and 
MDA in cucumber plants, while melatonin-treated plants 
show significantly lower EL and MDA than the control in the 
presence of NaCl (Wang et al., 2016a). These results are con-
sistent with the ability to prevent the oxidation of membrane 
lipids in particular.

Melatonin improves plant photosynthesis 
and delays leaf senescence

In plants, photosynthesis is the key biological process that 
determines plant survival and productivity. Generally, abiotic 
stress conditions inhibit photosynthesis and reduce growth, 
resulting in decreased transpiration and elevated water use 
efficiency (Gururani et  al., 2015). In tomato, pre-treatment 
with 0.1  mM melatonin significantly increases drought tol-
erance. Pre-treated tomato plants show elevated net pho-
tosynthetic rate, transpiration rate, stomatal conductance, 
quantum yield of PSII, electron transport, and maximum 
quantum yield (Fv/Fm) (Liu et al., 2015). Exposure to moder-
ate light under chilling causes substantial reduction of Fv/Fm 
and of the effective photochemical efficiency (F´v/F´m) in 
tomato, while melatonin mitigates the photoinhibition (Ding 
et al., 2017). Chlorophyll is extremely sensitive to water defi-
cit, and reduction in pigment levels caused by drought stress 
has been reported in several plant species. However, these pig-
ments are largely preserved after melatonin pre-treatment (Li 
et  al., 2012, 2015; Wang et  al., 2013a, 2013b; Zhang et  al., 
2013). Long-term supplement of 100  μM melatonin to the 
soil increases photosynthetic activity, chlorophyll content, 
and sugar contents in apple leaves (Wang et al., 2013a). In 
Chara australis (Characeae), supplementing melatonin in the 
water growth medium increases the quantum yield of PSII by 
34% (Lazár et al., 2013). In addition, exogenous application 
of melatonin under stressed conditions helps maintain the 
chlorophyll content in rice (Liang et al., 2015), grape (Meng 
et al., 2014), cherry (Sarropoulou et al., 2012a), and turfgrass 
(Shi et al., 2015a; Zhang et al., 2017a). Transgenic rice seed-
lings with the human SNA gene exhibit high levels of mela-
tonin and elevated chlorophyll synthesis under cold stress 
conditions (Kang et al., 2010). As noted above, melatonin is a 

direct free radical scavenger that attenuates ROS/RNS forma-
tion and protects against stress-induced damage at multiple 
levels. In photosynthetic organisms, ROS/RNS are continu-
ously produced that can damage key macromolecules, in par-
ticular DNA, lipids, and proteins, and that can severely inhibit 
photosynthesis. Melatonin synthesized on-site might relieve 
chloroplasts from stress-induced damage and thus help to 
maintain photosynthesis under stress conditions. Hence, mel-
atonin effectively alleviates decomposition of chlorophyll and 
preserves chloroplast physiology when plants are subjected to 
abiotic stresses.

Melatonin is known to regulate phloem-loading of sucrose 
in plants. Application of 10 μM melatonin accelerates starch 
catabolism at night, whereas 100 μM significantly suppresses 
this process and leads to starch accumulation in photosyn-
thetic tissues (Zhao et  al., 2015). Melatonin alleviates the 
decline in content of carotenoids and chlorophyll during 
leaf senescence in apple. Concentrations of nitrogen, total 
soluble proteins, and Rubisco decrease in parallel with the 
aging process, but the levels of these metabolites are sig-
nificantly higher in melatonin-treated plants. In addition, 
the contents of starch, sorbitol, sucrose, fructose, and glu-
cose tend to increase after melatonin treatment (Wang et al., 
2013a, 2013b). Using an ‘omics’ approach, 54 metabolites 
were examined in bermudagrass plants before or after mela-
tonin treatment. Interestingly, without abiotic stress treat-
ments, melatonin was only found to affect a small portion 
of the detected metabolites, while under stressed conditions, 
a much larger number of metabolites showed increased con-
tents after melatonin pre-treatment, especially those involved 
in the carbon metabolic pathway (Shi et al., 2015a; Hu et al., 
2016). These results indicate that melatonin might function as 
a regulator of plant sugar metabolism in response to abiotic 
stress. The stomata are important passages through which 
air and water vapor are conveyed in plant leaves. Melatonin 
pre-treatment leads to greater stomatal conductance in apple 
and grape (Meng et al., 2014; Li et al., 2015). In apple, the 
imposition of drought results in significantly shorter and 
narrower stomata and also causes stomatal closure. Apple 
plants pre-treated with melatonin have longer and wider sto-
mata than the control plants. After melatonin pre-treatment, 
stomata remain open under stress conditions; however, sto-
matal density in apple leaves is not altered by melatonin (Li 
et al., 2015). In grape, drought conditions decrease the length 
and width of stomata in mature leaves, as well as the degree 
to which they open. Pre-treatment with melatonin leads to 
greater stomatal length and width, and the degree of opening 
of stomata is greater than that in control plants (Meng et al., 
2014). Hence, pre-treatment with melatonin results in greater 
stomatal conductance and improves photosynthetic capacity 
because of the ability of melatonin to maintain the stomata 
in an open state.

Leaf senescence is a type of programmed cell death that 
results in the degradation of macromolecules including 
chlorophyll and the subsequent mobilization of components 
to other parts of the plant (Liang et  al., 2014). Melatonin 
pre-treatment suppresses the up-regulation of senescence-
associated gene 12 (SAG12) and pheophorbide a oxygenase 
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(PAO) in apple, and helps to maintain better function of PSII 
under drought conditions (Wang et al., 2013b). In addition, 
Arnao and Hernández-Ruiz (2009) found that melatonin 
pre-treatment significantly slowed the senescence process in 
barley leaves, with the maximal chlorophyll content being 
observed after application of 1 mM melatonin. In rice, Liang 
et al. (2015) also found that melatonin significantly inhibited 
chlorophyll degradation, suppressed the expression of senes-
cence-associated genes, and delayed leaf senescence. Several 
transcription factors including senescence-related SGR and 
NAC are regulated by melatonin in rice, as shown by high-
throughput RNA sequencing, indicating that a reduction in 
melatonin is an essential feature of plant senescence (Liang 
et al., 2015). Using proteomic approaches, senescence-related 
protein has been shown to exhibit decreased intensity after 
melatonin pre-treatment (Sun et  al., 2016). In perennial 
ryegrass, melatonin reduces transcript levels of senescence-
associated genes (LpSAG12.1 and Lph36) and alleviates heat-
induced leaf senescence (Zhang et al., 2017a).

Melatonin modulates plant growth and 
development

Melatonin affects plant growth partially through photo-
synthesis and metabolism pathways. Transgenic rice seed-
lings expressing sheep serotonin N-acetyltransferase (NAT) 
showed enhanced seminal root growth and an elevated num-
ber of adventitious roots. Moreover, exogenous melatonin 
treatment promoted seminal root growth of the wild-type 
rice under continuous light (Park and Back, 2012). Melatonin 
priming increased yield of corn (Zea mays), mung bean 
(Vigna radiata), and cucumber (Janas and Posmyk, 2013; 
Wang et al., 2016a; Ye et al., 2016). Melatonin-treated soy-
bean plants produced more pods and seeds than the controls, 
although the 100-seed weight was not significantly influenced 
(Wei et  al., 2015). In addition, many genes involved in cell 
division, photosynthesis, carbohydrate metabolism, fatty acid 
biosynthesis, and ascorbate metabolism were differentially 
regulated by melatonin. In etiolated lupin (Lupinus albus), 
melatonin promotes the growth of hypocotyls at micro-
molar concentrations, while it inhibits the same process at 
higher concentrations (Hernández-Ruiz et al., 2004). Recent 
research on Arabidopsis and soybean seedlings has shown 
that high melatonin concentrations adversely affect whole-
plant growth (Bajwa et al., 2014; Wei et al., 2015). In tomato, 
application of melatonin at 50 µM promotes fruit ripening 
and increases fruit softening, pigment accumulation, water 
loss, and flavor formation (Sun et al., 2015). Further prote-
omics analysis has shown that melatonin increases the inten-
sity of proteins involved in ripening-related pathways and in 
the anthocyanin accumulation pathway (Sun et al., 2016).

In roots, melatonin modulates growth in a concentration-
dependent manner, as reported in mustard (Chen et al., 2009), 
cherry (Sarropoulou et  al., 2012b), sunflower (Mukherjee 
et  al., 2014), tomato (Wen et  al., 2016), and several mono-
cot species (Hernández-Ruiz et al., 2005; Liang et al., 2017). 
A  stimulatory effect was observed during root growth of 

mustard after treatment with low concentrations of mela-
tonin, while an inhibitory effect was found with high con-
centrations (Chen et  al., 2009). Salt stress inhibits primary 
root growth and hypocotyl elongation in sunflower seedlings, 
but melatonin-treated seedlings exhibited 13% and 58% 
increases for primary root length and hypocotyl elongation, 
respectively, in the presence of NaCl (Mukherjee et al., 2014). 
Melatonin promotes the rooting of several sweet cherry 
rootstocks at a relative low concentration, but inhibits root 
growth at high concentrations (Sarropoulou et  al., 2012b). 
Wen et al., (2016) observed that the effects of melatonin on 
formation of adventitious root in tomato seedlings are dose-
dependent. Application of an NO scavenger removed the 
function of melatonin, but a melatonin biosynthesis inhibi-
tor had little effect in abolishing the function of NO during 
the formation of adventitious root. Hernández-Ruiz et  al. 
(2005) found that the optimum growth-promoting concentra-
tion for melatonin in several monocot plants was 10−7 M. In 
rice, 10–50 µM melatonin treatments inhibit embryonic root 
growth, but promote lateral root formation and development 
(Liang et al., 2017).

Putative target genes of melatonin

Melatonin modulates a wide range of stress-responsive genes. 
The expression of C-repeat-binding factors (CBFs)/drought 
response element binding factors (DREBs), a downstream cold 
responsive gene (COR15a), and transcription factors involved 
in freezing- and drought-stress tolerance, including CAMTA1, 
ZAT6, ZAT10, and ZAT12 are up-regulated by melatonin 
(Bajwa et al., 2014; Shi and Chan 2014; Shi et al., 2015b; Zhao 
et al., 2017). In Arabidopsis, a low concentration of melatonin 
(100 pM) changed the expression level of 81 genes, while a 
high concentration (1 mM) influenced the expression of 1308 
genes, including the transcription factors (TFs) WRKY, NAC, 
and MYB (Weeda et  al., 2014). Based on the classification 
of the gene ontology (GO) ‘slim’ term, the majority of genes 
were involved in stress response and signal transduction. The 
same results were found in cucumber where 10 μM melatonin 
affected fewer genes (113) than 500 μM melatonin (317), and 
expression levels of the WRKY, MYB, and NAC genes were 
significantly changed by melatonin (Zhang et  al., 2014b). In 
bermudagrass, genome-wide transcriptomic profiling identi-
fied 3933 transcripts that were differentially expressed after 
melatonin treatment. Pathway enrichment analysis showed that 
pathways related to nitrogen metabolism, major carbohydrate 
metabolism, hormone metabolism, metal handling, redox, and 
secondary metabolism were over-represented. Transcription 
factors including DREB, HSF, WRKY, and MYB are highly 
induced by melatonin (Shi et al., 2015a). Melatonin treatment 
also up-regulates expression of genes inhibited by salt stress, 
and hence alleviates the inhibitory effects of the stress on gene 
expression. Genes involved in fatty acid biosynthesis, cell divi-
sion, carbohydrate metabolism, photosynthesis, and ascorbate 
metabolism are activated after melatonin pre-treatment in soy-
bean (Wei et al., 2015). Exogenous melatonin treatment affected 
457 genes in rice, with 191 being up-regulated and 266 being 
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down-regulated. The functions of these genes were mainly 
involved in response to stress and responses to other stimuli 
(Liang et  al., 2015). Several miRNAs, such as miR159-5p, 
miR858, miR8029-3p, and novel-m0048-3p, are down-regulated 
upon melatonin treatment in watermelon. The target genes of 
these miRNA, including CDPK, bHLH, WRKY, MYB, and 
DREB, consistently show increased expression in the presence 
of melatonin (Li et  al., 2016b). In melatonin-rich transgenic 
rice, 260 and 204 genes are up- and down-regulated, respec-
tively, when compared with the wild-type. Representative up-
regulated genes include those for signaling and transcription 
factors such as the leucine-rich repeat and zinc-finger genes. In 
contrast, jasmonate-induced and senescence-associated genes 
are significantly down-regulated. Further GO analysis reveals 
that melatonin is positively involved in plant reproductive 
development (Byeon et al., 2013). Ovine HIOMT and AANAT 
genes were transformed into switchgrass and modulated the 
expression of 405 and 946 genes, respectively. Among them, 186 
unigenes were co-regulated by both transgenes, which might be 
the candidate targets of melatonin (Yuan et al., 2016a, 2016b).

Using comparative proteomic technologies, 40 and 34 
proteins in bermudagrass were found to be affected by mela-
tonin in the absence and presence, respectively, of H2O2. 
MapMan pathway analysis showed that several pathways 
were enhanced by melatonin and H2O2 treatments, including 
polyamine metabolism, major carbohydrate (CHO) metab-
olism, photosynthesis, redox status, and amino acid metab-
olism (Shi et al., 2015d). Through use of NanoLC-MS/MS, 
622 and 309 proteins were found to be altered by senescence 
and melatonin, respectively. The functions of these proteins 
were mainly classified into several senescence-related catego-
ries, including degradation of macromolecules, transport, 
photosynthesis, development, redox, and stress responses 
(Wang et al., 2014b). GO analysis has shown that melatonin-
modulated proteins in cucumber are mainly involved in lipid 
metabolism, ribosome biosynthesis, and carbohydrate metab-
olism (Zhang et al., 2017b). In corn plants, proteins involved 
in the ABA pathway, stress response, ROS, and energetic 
metabolism show intensity changes after melatonin priming 
(Kołodziejczyk, et  al., 2016). Exogenous melatonin treat-
ment and overexpression of tomato ASMT genes increased 
the expression level of HSPs and the protein abundance in 
tomato. Proteomics analysis showed decreased accumulation 
of aggregated proteins (Xu et al., 2016). Melatonin pre-treat-
ment also reduces protein degradation through inhibition on 
the expression of autophagy-related genes (ATGs) in apple 
and tomato (Wang et al., 2013a; Xu et al., 2016). These results 
indicate that melatonin is involved in plant stress responses at 
both transcriptional and post-transcriptional levels. Several 
genes, including DREB/CBF, WRKY, and MYB, might 
function as melatonin targets. The detailed function of these 
genes in response to melatonin needs to be further examined.

Melatonin integrates with phytohormones

Many melatonin-affected genes are involved in different hor-
mone signaling pathways, such as auxin, ABA, SA, ETH, 

and JA, indicating possible crosstalk between melatonin and 
other phytohormones, as noted above (Weeda et al., 2014). 
Interactions between melatonin and other phytohormones 
have been well reviewed by Arnao and Hernández-Ruiz 
(2017b, 2017c). One of the first roles proposed for mela-
tonin in plants was its possible action as a growth regulator. 
Melatonin promotes root and vegetative growth in a num-
ber of plant species (Arnao and Hernández-Ruiz, 2007, 2014, 
2015; Erland et  al., 2015; Nawaz et  al., 2015). Melatonin 
modulates root system architecture by stimulating lateral 
and adventitious root formation, but it minimally affects pri-
mary root growth or root-hair development in Arabidopsis 
(Pelagio-Flores et al., 2012; Koyama et al., 2013). In addition, 
melatonin neither activates the expression of the auxin-induc-
ible gene marker DR5:GUS, nor induces the degradation of 
HS::AXR3NT-GUS. Therefore, melatonin is proposed to 
modulate lateral root development through IAA-independent 
pathways (Pelagio-Flores et al., 2012; Koyama et al., 2013). 
However, melatonin and IAA are structurally related, and 
therefore it is suggested that melatonin applied exogenously 
could be metabolized to IAA or to an IAA agonist (Kolár 
and Machácková, 2005); however, this has not been demon-
strated so far. Tryptophan is the precursor for both melatonin 
and IAA. Arylalkylamine N-acetyltransferase (AANAT), 
which encodes a rate-limiting enzyme catalysing melatonin 
biosynthesis in animals, has also been identified in plants 
(Kang et al., 2013). Tomato plants overexpressing the hom-
ologous sheep oAANAT exhibited higher melatonin levels 
and lower IAA contents than controls due to competition for 
the precursor (Wang et al., 2014a). It is reported that exogen-
ously applied melatonin acts as a rooting promoter and its 
action is similar to that of IAA (Sarropoulou et al., 2012a). 
Exogenous melatonin treatment increases the contents of 
IAA and IBA in tomato and mustard seedlings (Chen et al., 
2009; Wen et  al., 2016). At a relatively low concentration 
(50 µM), melatonin has been shown to enhance the expres-
sion levels of auxin signaling-transduction genes (IAA19 and 
IAA24) and auxin efflux genes (PIN1, PIN3, and PIN7) and 
to accelerate adventitious root formation in tomato (Wen 
et al., 2016). In contrast, a high concentration of melatonin 
(600 µM) repressed auxin synthesis and transportation path-
ways, as evidenced by decreased expression of YUC1, YUC2, 
YUC5, YUC6, TAA1, TAR2, PIN1, PIN3, and PIN7 (Wang 
et al., 2016b). In rice, 10–20 µM melatonin treatment up-reg-
ulates the expression of Os01g08320 (OsIAA1), Os02g56120 
(OsIAA9), Os02g57250 (OsIAA10), Os06g07040 (OsIAA20), 
and Os011g11410 (OsIAA27) (Liang et al., 2017). These data 
indicate that melatonin at low concentrations might partially 
function as an IAA mimic.

Melatonin affects ABA biosynthesis and catabolism dur-
ing cucumber (Cucumis sativus) seed germination under 
salt-stress conditions. Pre-treatment with 1  µM melatonin 
down-regulates the ABA biosynthesis gene NCED2 and 
up-regulates ABA catabolism genes including CYP707A1 
and CYP707A2. As a result, the ABA content significantly 
decreases after melatonin treatment (Zhang et  al., 2014a). 
Evidence shows that 100  µM melatonin selectively down-
regulates MdNCED3 and up-regulates MdCYP707A1 and 
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MdCYP707A2, leading to reduced ABA content in drought-
stressed apple plants (Li et al., 2015). The same results have 
been observed in perennial ryegrass, with ABA biosynthesis 
and signaling genes being down-regulated and ABA content 
declining after 20 µM melatonin treatment under heat-stress 
conditions (Zhang et  al., 2017a). However, Jia and Zhang 
(2000) reported that pretreatment with 50–500 μM melatonin 
had no effect on water stress-induced ABA accumulation in 
maize. In chilling-stressed Elymus nutans and cucumber, ABA 
production was reported to increase after 50 and 200  µM 
melatonin treatments, respectively (Fu et al., 2017; Zhao et al., 
2017).The effect of melatonin on ABA content is therefore 
still controversial. Interestingly, the ABA-biosynthesis inhibi-
tor fluridone significantly suppresses melatonin-induced 
ABA accumulation. However, ABA and fluridone pre-treat-
ments do not affect the endogenous melatonin content (Fu 
et  al., 2017), indicating that melatonin functions upstream 
of the ABA pathways (Arnao and Hernández-Ruiz 2017c). 
Further transcriptomic analysis has shown that the ABA 
receptor (PYL5) and PP2C are highly induced by melatonin 
in bermudagrass (Shi et al., 2015a), while PYL8 of Citrullus 
lanatus is suppressed by melatonin under cold-stress condi-
tions (Li et al., 2017a). These results indicate that the ABA 
signaling transduction pathway is modulated by melatonin, 
but the detailed mechanisms need to be further examined.

Melatonin also modulates the expression level of genes 
involved in the ETH, SA, and JA pathways (Arnao and 
Hernández-Ruiz 2017c). In harvested tomato fruit, melatonin 
treatment increases ethylene production through up-regula-
tion of the biosynthesis gene SlACS4 during fruit ripening 
(Weeda et  al., 2014). The ethylene receptor genes NR and 
ETR4 and the signal transduction elements EIL1, EIL3, 

and ERF2 are up-regulated by melatonin (Sun et al., 2015). 
Melatonin influences GA biosynthesis and catabolism during 
seed germination (Zhang et al., 2014a). Notable increases in 
putrescine and spermidine levels have been observed in mela-
tonin-treated carrot suspension cells and cucumber seedlings 
(Lei et al., 2004; Zhao et al., 2017). These data suggest that 
the actions of melatonin may involve other phytohormones.

Conclusions and perspectives

Increasing evidence shows that melatonin functions as a uni-
versal defensive signal to alleviate damage induced by dif-
ferent stressful conditions. In Fig. 1 a model is proposed to 
characterize the potential roles of melatonin during plant 
abiotic stress responses. Melatonin might interact with other 
phytohormones such as ABA, IAA, ETH, and GA to regu-
late gene expression, protein stabilization, and epigenetic 
modification caused by miRNA. Furthermore, downstream 
stress-responsive pathways are activated, including those 
for enhancing antioxidant systems, decreasing free radi-
cals, increasing osmoprotectants, recovering ionic disorder, 
alleviating membrane oxidation, and delaying leaf senes-
cence. Stress-inhibited photosynthesis is partially recovered 
in the presence of melatonin. Plants thus exhibit improved 
growth and increased stress tolerance after melatonin prim-
ing (Fig. 1).

Under abiotic stress conditions, plants have devel-
oped different strategies to buffer the harmful effects on 
growth and development. The key roles of the DREB/CBF 
pathway for cold, the HSF-HSP pathway for heat, the 
SOS3-SOS2-SOS1/NHX pathway for salt, and the ABA 

Fig. 1. Proposed model depicting melatonin-mediated plant abiotic stress responses. Melatonin interacts with other phytohormones and modulates 
gene expression, protein stability, and epigenetic modification directed by miRNA. Activated stress-responsive genes further detoxify free radicals, 
alleviate membrane oxidation, and delay leaf senescence. Stress-inhibited photosynthesis is partially recovered and metabolites accumulate in the 
presence of melatonin. The production of osmoprotectants is increased and ion disorders are balanced to maintain cell integrity. Plant tolerances to 
abiotic stress are hence improved and damage to plant growth is reduced after melatonin treatment.
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(PYR/PYL-PP2C-SnRK2-ABF) pathway for drought have 
been well characterized. Melatonin functions as a general reg-
ulator during plant responses to abiotic stress through modu-
lation of stress-responsive genes directly or indirectly (Fig. 2). 
We hypothesize that the perception of melatonin activates 
downstream signaling transduction pathways. Alternatively, 
melatonin-modulated ROS/RNS function as secondary mes-
sengers during plant growth and stress responses. Melatonin 
or a downstream signaling component induces the expres-
sion of DREB/CBF genes and other cold stress-responsive 
transcription factors such as CAMTA3, ZAT6, ZAT10, and  
ZAT12 to improve plant /cold tolerance (Bajwa et al., 2014; 
Shi and Chan, 2014; Shi et  al., 2015b; Zhao et  al., 2017). 
Expression of HSF and HSP is readily induced by melatonin 
treatment, leading to enhanced heat tolerance (Shi et  al., 
2015c). Moreover, salt overly sensitive 1 (SOS1), SOS2, SOS3, 
NHX Na+/H+ antiporters (NHXs), CBL1, and CIPK23 are 
significantly up-regulated after melatonin treatment (Li et al., 
2012, 2016a, 2017b; Chen et al., 2017), resulting in an acti-
vated SOS pathway and elevated salt tolerance. Exogenous 
melatonin changes the ABA content by modulating its bio-
synthesis and metabolism pathways. Increased expression 
levels of ABA receptors are induced by melatonin and ABA 
signaling transduction pathways are then activated, resulting 
in increased drought tolerance (Jia and Zhang, 2000; Zhang 
et al., 2014a; Li et al., 2015; Shi et al., 2015a). However, the 

effect of melatonin on ABA is still controversial, as noted 
above. ABA is a stress-induced hormone and how melatonin 
integrates with the ABA signal remains unclear. Low concen-
trations of melatonin activate the IAA pathway, while high 
concentrations repress it (Wang et al., 2016b; Wen et al., 2016; 
Liang et  al., 2017). In addition, melatonin inhibits expres-
sion of IAA17/AXR3 and NAC, leading to reduced SEN4 
and SAG12 and delayed leaf senescence (Wang et al., 2013b; 
Liang et al., 2015; Shi et al., 2015b).

Although progress has been made to characterize the func-
tions of melatonin in plants, numerous questions remain 
unanswered. Firstly, whilst the receptors and signaling 
transduction pathways of other phytohormones have been 
identified, including auxin, cytokinin, gibberellins, ethylene, 
brassinosteroids, jasmonic acid, and abscisic acid, no infor-
mation is available regarding melatonin receptors in plants. 
Currently, two melatonin membrane receptors, namely MT1 
and MT2 (originally denoted as Mel1a, Mel1b), have been 
identified in mammalian vertebrates, and two, MT3 or Mel1c, 
in non-mammalian vertebrates (Hardeland, 2009), but the 
perception of melatonin by plant cells and the signaling 
transduction pathways remain to be determined. Secondly, 
ROS are important signaling molecules during the plant 
stress response. Melatonin acts as an effective free radical 
scavenger and antioxidant to alleviate oxidative stress caused 
by drought, salt, cold, and heat amongst others (Tan et al., 

Fig. 2. Melatonin modulates plant stress-signaling pathways, regulates plant growth, and delays leaf senescence. Based on identification of melatonin 
receptors in mammalian and non-mammalian vertebrates (Hardeland, 2009), we hypothesize that the perception of melatonin by receptors either directly 
modulates expression of stress-responsive genes or indirectly through melatonin signaling components or secondary messengers such as ROS/RNS. 
Melatonin up-regulates C2H2-type zinc finger transcription factor ZATs and miRNAs, which act as upstream regulators of the CBFs/DREBs pathway 
during plant responses to cold stress. Melatonin regulates heat and salt stresses through the HSF-DREB2A and SOS pathways, respectively. The ABA 
signaling transduction pathway (PYR/PYL-PP2C-SnRK2-ABF) is modulated by melatonin to regulate the plant drought-stress response. Melatonin 
activates/represses the IAA pathway in a concentration-dependent manner. The senescence-related genes IAA17/AXR3 and NAC are inhibited by 
melatonin, leading to delayed leaf senescence. Dashed lines show pathways possibly regulated by melatonin, as summarized in the text.
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2007, 2012; Reiter et  al., 2015) Therefore, it is not surpris-
ing that melatonin improves plant tolerance to most abiotic 
stresses. However, further work is needed to characterize how 
melatonin interacts with other hormones and how it regulates 
stress-signaling pathways.

Melatonin-mediated transcriptomic changes have been 
identified in bermudagrass, rice, Arabidopsis, soybean, and 
cucumber (Byeon et  al., 2013; Weeda et  al., 2014; Zhang 
et al., 2014b; Shi et al., 2015d; Wei et al., 2015). However, 
relatively little is known about the downstream target genes 
and regulatory networks. Bioinformatics analysis of  genes 
commonly modulated by melatonin would be an effective 
approach to answer this question. Finally, homologous 
genes involved in plant melatonin biosynthesis have been 
cloned in several crop species (Zuo et  al., 2014; Byeon 
and Back, 2016). Overexpression of  biosynthesis-related 
genes increase the endogenous content of  melatonin and 
improve plant abiotic stress tolerance. Several Chinese 
medicinal herbs constitutively exhibit very high melatonin 
contents, especially Chantui (Periostracum cicadae), which 
has 3.7 μg g–1 dry mass melatonin (Chen et al., 2003). In 
beans of  Coffea species, melatonin content even reaches 
5.8–9.6 μg g–1 dry mass, which is much higher than in edible 
plants (Ramakrishna et al., 2012). Functional analysis of 
the genes involved in melatonin biosynthesis and metabo-
lism pathways in these plants might provide more efficient 
genetic resources to increase the endogenous melatonin 
content in crops. In conclusion, melatonin is an important 
stress-signaling molecule that functions as a general abiotic 
stress regulator.
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