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T
he Arctic climate is in the process of irretrievably moving 
into a new state, forced by increases in atmospheric levels 
of carbon dioxide and other greenhouse gases1,2. As a result, 

the years 2010 to 2015 were the warmest five years on record in 
the Arctic, with a dramatic 5 °C increase in January since 1900 
(ref. 1). This heat trapped by greenhouse gases triggers a cascade 
of feedbacks that collectively amplify Arctic warming1. Over the 
next two decades, an additional 4–5 °C increase is predicted in the 
autumn and winter across the Arctic in conjunction with the pro-
jected increase in greenhouse gases concentrations1. This expected 
temperature increase is more than twice that projected for the 
global average.

Associated with the increased temperatures, the Arctic Ocean 
is experiencing radical modifications in its hydrographic proper-
ties (that is, freshwater, salt and heat content) and in its overall 
circulation. Driven by increasing inputs from multiple freshwater 
sources (that is, river inflow, net precipitation and melting sea ice 
and glaciers), the volume of freshwater in Arctic surface waters has 
increased by 8,000 km3 (more than 11%) compared to the 1980–
2000 period1,3. Below the surface over much of the Arctic Ocean, 
a strong halocline layer acts as a barrier separating Atlantic water 
heat from the cold and fresh upper Arctic waters4,5. Increased sta-
bility of the Arctic halocline, a potential consequence of climate 
change, would likely reduce both the vulnerability of sea ice to 
upward heat fluxes from the ocean interior and the vertical mixing 
of carbon and nutrients6,7.

At the atmosphere–ocean interface, the traditional Arctic ices-
cape is changing largely due to atmospheric forcing and, to a lesser 
extent, winter ocean heat flux, particularly in the Eurasian Arctic 
sector6. Since the 1970s, the extent of summer sea ice has decreased 
by >40% (Fig. 1a) and its thickness by 65%, with first-year ice 
largely replacing the thick multiyear pack ice (Fig. 1b,c)1,8. In addi-
tion to the increased open-water area and duration that amplify 
ice albedo feedbacks, sea ice is becoming increasingly fragmented 
and dynamic, resulting in drastically altered under-ice light fields 
that significantly impact both pelagic and sympagic (that is, 
sea-ice-associated) ecosystem dynamics.

Together, these climate-driven changes within the atmosphere, 
cryosphere and ocean have wide-ranging consequences for Arctic 

marine ecological dynamics, influencing productivity, species 
interactions, population mixing and pathogen and disease trans-
mission9–11. To advance knowledge of these unique ecosystems in 
an era of rapid change, here we have synthetized recent develop-
ments over the last decade to study phytoplankton dynamics (the 
base of marine ecosystems) by examining current changes in pri-
mary productivity, phenology and assemblage composition, and 
how these changes could alter the ecology and biogeochemistry of 
the Arctic Ocean.

Arctic primary production in a changing icescape
The reduction in sea-ice extent in the Arctic Ocean over the last few 
decades has resulted in both a longer phytoplankton growing season 
and increased open-water habitat for phytoplankton growth12–14. 
Consequently, phytoplankton blooms now begin earlier13,15 and 
end later16 in the year, and annual net primary production (NPP) 
in open waters over the entire Arctic Ocean increased 30% between 
1998 and 2012 (ref. 17), the year that summer sea-ice extent reached 
its historical minimum. This increase in NPP might have been even 
larger if it were not for a concomitant increase in cloudiness and 
decrease in light availability over the Arctic14. Over this period, the 
largest increases in annual NPP were restricted to the interior Arctic 
shelves (Laptev, Kara and Siberian), where NPP increased 70–112% 
over the 15-yr study and sea-ice loss was most severe (4.2–5.4% yr–1).  
In contrast, NPP on the outflow shelves showed a much smaller 
increase (8%, Baffin) and even a decrease (–15%, East Greenland) in 
response to much smaller declines in sea-ice cover (0–0.9% yr–1)17.

A more recent satellite-based study18 that was extensively vali-
dated using a large in situ database has shown that since reaching the 
minimum sea-ice extent in 2012, the rate of increase in open-water 
area in the Arctic Ocean has slowed considerably, decreasing 
from 88,000 km2 yr–1 between 1998 and 2012 to only 620 km2 yr–1 
between 2012 and 2018 (Fig. 2a). In addition, the average ice-free 
period in the Arctic only increased from 147 to 152 open-water 
days (five days) between 2012 and 2018. Thus, neither the extent 
of open-water phytoplankton habitat nor the length of the grow-
ing season changed significantly during this time. Nevertheless, 
annual NPP in ice-free waters continued to increase at rate of  
6.8 TgC yr–1 between 1998 and 2018, peaking at 391 TgC yr–1 in 2018 
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(Fig. 2c). Notably, despite the flattening in the trend in open-water 
area between 2012 and 2018, the increase rate in annual NPP over 
the Arctic during that time period (13.5 TgC yr–1) was double that 
between 1998 and 2012 (6.4 TgC yr–1). This suggests that the factors 
controlling annual net primary production changed between the 
early and late phases of the 1998–2018 time series.

Whereas the increase in annual NPP between 1998 and 2012 
was highly correlated to the decline in sea ice and an increase 
on open-water phytoplankton habitat, the increase in annual 
NPP between 2012 and 2018 was associated with increased sur-
face chlorophyll a (Chl a) concentrations (Fig. 2b,d). Prior to 
2012, concentrations of Chl a across the Arctic Ocean were rela-
tively constant, increasing by only 0.002 mg m–3 yr–1 (or 0.27%). 
However, between 2012 and 2018, mean Chl a concentration 
in Arctic Ocean surface waters increased at a rate of 4.3% yr–1,  
16 times faster than the rate prior to 2012. The largest increases 
in Chl a between 1998 and 2018 were measured on the inflow 
shelves of the Chukchi Sea (26%) and Barents Sea (61%), and at 

the recently exposed shelf break of the Laptev Sea (Fig. 2d). If 
we assume that increases in Chl a concentration are indicative of 
increases in phytoplankton biomass, the latter of which cannot 
increase without additional nutrients, these results suggest that 
increased nitrogen (N) supply from either increased vertical mix-
ing near the shelf break or advection from lower latitude waters 
may be responsible for the NPP increase in ice-free Arctic waters 
since 2012 (ref. 18). However, we cannot eliminate the possibility 
that changes in grazing pressure also may have impacted phyto-
plankton populations, and hence NPP19–23.

Biogeography shaped by changing environmental drivers
The complexity of Arctic biogeography makes it particularly chal-
lenging to fully comprehend the interplay of environmental driv-
ers and their change and impacts on phytoplankton dynamics 
(Figs. 3 and 4). Here, we attempt to highlight at the regional scale 
(that is, between inflow, interior and outflow shelves and the cen-
tral Arctic; following the terminology of Carmack et al.24) how the 
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Fig. 1 | Changing sea-ice extent and age. a, time series of the summer sea-ice extent (in 106 km2) from 1979 to 2019. b,c, Maps comparing winter Arctic 

sea-ice age in 1984 (b) and 2018 (c). the satellite-derived sea-ice data are from the National Snow and Ice Data Center (NSIDC; Cavalieri et al.185 and 

tschudi et al.186).
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major environmental drivers will change and how new ones might 
emerge in a changing Arctic Ocean.

Nutrient supply and vertical mixing. Nutrient supply (primarily 
nitrate25,26 and, to a lesser extent, silicate27–29 and rarely iron30) drives 
the biogeography and trophic status (that is, oligotrophic or eutro-
phic) of the Arctic Ocean, while light availability modulates the rate 
of NPP within each region29,31,32. These key factors (that is, nutrients 
and light) are in turn regulated by a complex interplay of processes 
altering stratification and mixing as well as the presence of sea ice 
and snow cover superimposed on seasonal and latitudinal controls 
on light availability33 (Fig. 3). Winter nutrient inventories show a 
strong linear relationship with annual NPP via their role in regu-
lating phytoplankton biomass, except for areas where wind-driven 
and topographically enhanced mixing (that is, driving resuspen-
sion and upwelling events) resupply nutrients during the growing 
season31. Locally, depending on the interplay between atmospheric 
forcing (that is, intensity, duration and direction of the wind stress) 
and the strength of vertical stratification, the injection of nutrients 
into surface layers can easily vary by two orders of magnitude across 
the Arctic Ocean31,34,35. Stratification is expected to increase in the 
Canada Basin36 but decrease in other regions (for example, in the 
Eurasian sector6,37; Fig. 4). On the other hand, the loss of sea ice 
is expected to increase winds and strong wind events by the end 

of the century due to reduced atmospheric stability resulting from 
increased temperature and turbulent fluxes38. These enhanced 
atmospheric forcings occur in all seasons but especially in autumn 
and winter (where they are expected to strengthen by up to 50% 
in the central Arctic and peripheral seas)38. Changing the balance 
between vertical stratification and atmospheric forcing will be sub-
ject to antagonistic and region-specific environmental drivers (that 
is, advection, mesoscale activity, atmospheric forcing and related 
processes, such as upwelling) and will ultimately alter phytoplank-
ton dynamics.

Advection at the Arctic gateways. The Arctic marine biome is 
tightly connected to lower latitudes through the northern Pacific 
and Atlantic oceans. In inflow shelves (Fig. 3), Atlantic and Pacific 
waters flow northward through the European Arctic Corridor and 
the Bering Strait, respectively, carrying heat, nutrients and plank-
tonic organisms to the Arctic Ocean. A twofold increase in North 
Atlantic current velocities over the last 24 years was recently revealed, 
explaining decadal variations in the spatial distribution of the cocco-
lithophorid Gephyrocapsa huxleyi (previously called Emiliania hux-
leyi39), a tracer for temperate ecosystems40–42. Bio-advection, rather 
than the previously assumed water temperature, may be the major 
mechanism responsible for poleward intrusions of southern spe-
cies like coccolithophores40 (and potentially the picocyanobacteria  
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Chl a (b) and NPP (c). the time series is separated into two time periods because from 1998–2012, loss of sea ice was responsible for the increase in 
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Synechococcus43). A similar increase in poleward advection of 
Pacific waters through the Bering Strait suggests that the shrink-
ing Arctic domain may be prone to intrusions of temperate species 
at both of the Arctic gateways44. However, as described previously, 
advective transport can result in a case of life or death in the Arctic 
Ocean depending on the ability of these invasive species to survive 
strong environmental gradients, low water temperature and long 
periods of darkness45. Advective processes alter mostly lower tro-
phic levels that have a limited capacity for mobility (for example, 
phytoplankton, zooplankton and some fish), and consequently can 
impact entire marine ecosystems by shifting species distributions 
and modifying interactions at higher trophic levels46–48. Considering 
the role of bio-advection in ecological models (that is, trait-based 
and niche-based approaches) will be necessary to improve predic-
tions of future ecosystem shifts in the context of climate change49.

Not only are the inflow shelves shaped by advective processes, 
the outflow shelves (for example, the Canadian Arctic Archipelago–
Baffin Bay complex and the East Greenland shelf) also respond 
strongly, and likely differently, to upstream changes in sea-ice 
dynamics and export, hydrographic structure and biogeochemi-
cal cycles33,50. In both northern Baffin Bay and the East Greenland 
shelf, changes in stratification and sea-ice dynamics (that is, extent 
and export) shape spring bloom phenology and nutrient inventories 

for the phytoplankton growing season51,52. On the East Greenland 
shelf, the magnitude of sea-ice export can explain spatial shifts in 
the boundaries between stratification regimes (that is, haline- ver-
sus temperature-based stratification53) and different phytoplank-
ton dynamics (for example, more intense and early phytoplankton 
blooms in haline-based stratification). However, strong haline-based 
stratification reinforced by increasing freshwater input in the North 
Water Polynya within northern Baffin Bay, a biologically produc-
tive oasis for marine mammals and birds, resulted in a sharp decline 
in phytoplankton biomass (especially centric diatoms) and NPP 
during 1999–2011 (ref. 54). In addition, early season nutrient con-
sumption by phytoplankton blooms under the sea ice and/or at the 
sea-ice edge in waters that are advected into North Baffin Bay can 
contribute to this overall productivity decline along with a change 
in the algal community toward smaller cells54. Assessing the impacts 
of climate change on the inflow and outflow shelves clearly requires 
proper consideration of the connectivity between the northern 
Pacific and Atlantic Oceans and the central Arctic Ocean.

Land–ocean continuum. Through the land–ocean continuum, 
peripheral environmental pressures play an increasing role in the 
functioning of Arctic marine biogeochemical cycles. In particular, 
increased inflow of glacial meltwater and freshwater from fjords 
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and river mouths (Fig. 3) will dramatically alter coastal biogeo-
chemical cycles. Outflow from fjords impact near-shore nutri-
ent inventories (phosphorus, silicate and iron)55–58 and can even 
fuel large summer phytoplankton blooms21. Interestingly, in the 
Greenlandic fjords, two types of glaciers (that is, marine- and 
land-terminating glaciers) have contrasting effects on phytoplank-
ton productivity. Rising subsurface meltwater plumes originating 
from marine-terminating glaciers trigger upwelling of nutrient-rich 
deep water, which supports high summer phytoplankton produc-
tivity59. On the other hand, fjords with land-terminating glaciers 
or anomalously strong freshening events lack such upwelling pro-
cesses and result in increased stratification, which lowers produc-
tivity59,60. As a result, future transitions from marine to terrestrial 
glaciers, and the associated increases in stratification intensity, will 
noticeably alter local productivity with potentially cascading effects 
on trophic levels.

The increase in pan-Arctic river inputs, driven by an intensifying 
Arctic water cycle, is also expected to affect marine coastal biogeo-
chemical cycles. However, while nutrient supply by rivers can be 
locally important, it does not seem to support a significant fraction 
of Arctic NPP31. For example, field observations and modelling at 
the mouth of the Mackenzie River in the Beaufort Sea have shown 
that inorganic N from rivers was contained and entirely consumed 
within a few tens of kilometres of delta outlets61–64, creating potential 
near-coastal biological hotspots. On the other hand, large river out-
flow will intensify the freshwater stratification and light-absorbing 
properties (that is, mainly via coloured dissolved organic matter 
and, to a lesser extent, particles65,66). However, recent findings sug-
gest that it does not appear to decrease phytoplankton productiv-
ity by limiting wind-driven shelf-break upwelling and decreasing 
light transmission18. Shelf-break waters have been shown to har-
bour massive phytoplankton blooms67,68 and are likely to form an 
‘Arctic Green Belt’64 as they become increasingly sea-ice-free and are 
exposed to atmospheric forcing50.

Wildfire and Arctic aerosol deposition. In recent years, an 
unexpected increase in the frequency of wildfire events has been 
observed in summer in boreal forest69 and tundra ecosystems at a 
pan-Arctic scale70. Although wildfires are common in the northern 
hemisphere, they are becoming particularly unusual by their lati-
tude, duration and intensity69,70. Such extreme wildfire activity has 
been clearly correlated to high temperatures and dry conditions, 
and increased atmospheric disturbances (that is, thunderstorms)71. 
Increased wildfire activity in these areas can release large amounts 
of carbon (C) and N to the Arctic atmosphere72,73 and, by deposi-
tion, could alter sea-ice optical properties and, potentially, marine 
biogeochemical cycles (Fig. 3). Light-absorbing particles (including 
black C) is well recognized to be an efficient absorber of solar radia-
tion74, and its deposition onto, or incorporation into, snow and sea 
ice can decrease the surface reflectance and increase melt rates74–77. 
More uncertain is whether wildfire-derived aerosols can be used as 
a new source of nutrients (mainly N species) in the summer, when 
N limits the Arctic phytoplankton NPP. Estimates of atmospheric 
nutrient deposition are scarce in the Arctic Ocean, but some global 
modelling budgets suggest that N and phosphorus inputs are low78–80.  
Further evaluation is clearly needed to quantify and incorporate 
these intensifying climate-driven changes in Arctic biogeochemical 
models (Fig. 4).

Ocean acidification. Some of the fastest rates of ocean acidifica-
tion have been recorded in the Arctic Ocean due primarily to the 
higher capacity of cold water to absorb CO2, but also due to inputs 
from river run-off and ice melt and the inflow of naturally low pH 
waters from the Pacific81. However, the severity of acidification is 
not homogeneous across the Arctic Ocean, resulting in high tem-
poral and spatial variability82–84 (Fig. 4). Overall, Arctic and sub-
arctic phytoplankton communities seem to be relatively resilient to 
ocean acidification, with no significant change in productivity and 
little change in species assemblages under enriched scenarios up to 
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1,000 μatm pCO2 (refs. 85–87). Contrasting responses between spe-
cies, however, seem to be characteristic of more acidic subarctic and 
Arctic waters81. For example, small picoeukaryotes seem to benefit 
from higher pCO2 (refs. 88,89), while prymnesiophytes (including 
coccolithophores) are generally negatively impacted90,91, and vary-
ing responses are noted in diatoms85–87,92. Predicting the complex-
ity of the biological effects of ocean acidification—in particular, on 
Arctic phytoplankton dynamics (given varying species, life cycle 
stage, location and seasonal responses) as well as the phytoplank-
ton–zooplankton interactions—remains poorly constrained and 
poorly understood61.

A new non-traditional Arctic phenology
The growth of phytoplankton at high latitudes is generally thought to 
begin in open waters of the marginal ice zone (MIZ) once the highly 
reflective sea ice93,94 retreats in spring, as solar elevation increases 
and surface waters become stratified by the addition of sea-ice melt 
water95–98. In fact, virtually all recent large-scale estimates of NPP 
in the Arctic Ocean assume that phytoplankton NPP in the water 
column under sea ice is negligible14,17,26,99–101. Accordingly, phyto-
plankton blooms in Arctic waters have been considered to be tightly 
coupled to the timing of sea-ice retreat15,17,96.

Changing spring algal dynamics blooms. Recent observations 
contradict this paradigm that waters beneath the consolidated ice 
pack harbour little planktonic life. High concentrations of phyto-
plankton beneath Arctic sea ice have been reported in areas as wide-
spread as Resolute Bay102–108, north of Svalbard108,109, Baffin Bay88,108, 
the Greenland Sea110, the Barents Sea111,112, the Laptev Sea97,113 and 
the Chukchi Sea67,68,108,114,115 (Fig. 5a–c). The largest and most well 
documented of these blooms was observed in the Chukchi Sea 
beneath fully consolidated sea ice67,68. Physiological characteristics 
of the phytoplankton beneath the ice on the Chukchi shelf in early 
spring indicate that they were ‘primed’ to bloom once light levels 
became high enough to support net photosynthesis116. At their peak, 
these under-ice phytoplankton blooms (UIBs) reached Chl a con-
centrations in excess of 20 mg m–3 and extended from the ice–water 
interface to a depth of 25–70 m and from the ice edge to >100 km 
into the ice pack. The algal biomass associated with these features 
rivalled that of the most productive ocean ecosystems on Earth67.

The observation of intense UIBs beneath fully consolidated sea 
ice has necessitated a re-examination of many aspects of Arctic 
marine ecology and biogeochemistry. Because these UIBs are invis-
ible to satellite sensors, recent estimates of annual NPP in waters 
where UIBs develop may be at least an order of magnitude too low67, 
indicating that seasonally ice-covered waters on Arctic continental 
shelves have the potential to support vastly higher rates of NPP than 
has been attributed to them in the past14,17,101. In addition, the pres-
ence of UIBs shift maximum nutrient consumption and NPP to 
earlier in the season and farther into the ice pack relative to MIZ 
blooms. This is important because the timing and location of NPP 
and associated zooplankton grazing can directly influence the par-
titioning of organic C between the upper water column and ben-
thic communities, and thus the efficiency of the biological pump 
and C sequestration117. Furthermore, in productive Arctic waters 
where diatoms dominate, food webs tend to be short and even small 
changes in NPP export pathways can have large cascading effects on 
higher trophic level organisms118. Therefore, it is important to deter-
mine how export rates of newly fixed C and the degree of benthic–
pelagic coupling will respond to a shift in location and timing of 
peak rates of NPP from the MIZ119,120 to deeper within the ice pack.

‘Borealization’ of Arctic phytoplankton phenology. Given the 
ongoing changes in phytoplankton phenology, the ‘polar’ paradigm 
of a single annual phytoplankton bloom and subsequent sedimenta-
tion of organic matter needs to be revised. Not only has the start of 

the growing season been profoundly accelerated, but the end of the 
growing season has been markedly delayed (Fig. 5)121. This finding 
supports an ongoing borealization of the Arctic Ocean and repre-
sents a paradigm shift with respect to Arctic Ocean NPP that is likely 
to impact both ecosystems and biogeochemical cycles in unpredict-
able ways. For example, a new phenological feature, a secondary 
(usually autumn) phytoplankton bloom, is developing in parts of 
the Arctic Ocean16,122–125. Although secondary blooms were already 
prevalent in sea-ice-free regions of the Eurasian Arctic sector influ-
enced by Atlantic waters42,126, they are now developing in seasonally 
ice-covered regions of the Arctic Ocean due to concomitant delayed 
freeze-up (greater light availability) and increased exposure of the 
sea surface to wind stress (wind-driven mixing brings nutrients 
to the surface29,127). However, these secondary blooms are neces-
sarily restricted to low Arctic latitudes where stratification is not 
sufficient to inhibit wind-driven mixing (Fig. 5c), and the growing 
season is long enough to allow phytoplankton growth during any 
vertical mixing events (Fig. 5b,c). In a changing Arctic Ocean, the 
spring bloom will undoubtedly remain the major annual NPP event 
for C export to higher trophic levels and sequestration in the deep 
ocean and sediments121,127,128. However, changes in phytoplankton 
phenology or additional pulses of phytoplankton NPP may alter the 
food web structure and lead to major ecosystem level changes in 
an environment where consumers must make the most of the short 
productive period before the long winter sets in16.

The borealization of the Arctic phytoplankton phenology will 
also be accompanied by a longer period of regenerated production 
and subsurface Chl a maxima (SCM), particularly in low produc-
tivity waters (for example, in the Western Arctic Ocean; Fig. 5).  
Widespread N deficiency in surface waters drives the seasonal per-
sistence of SCM layers and phytoplankton C biomass in several reg
ions29,64,129,130. The contribution of these layers to NPP is possibly 
higher in the Arctic Ocean than in thermally stratified waters of the 
subtropical gyres due to a combination of extreme acclimation to 
low light and a shallow nitracline31,131. Unsurprisingly, the deepen-
ing (related to the length of the growing season and the seasonal N 
consumption) and the steepness (associated to the intensity of the 
vertical stratification) of the nitracline determines the depth, bio-
mass, productivity and assemblage composition of SCMs64,132,133. For 
the deepest SCMs in late summer, even shifts from autotrophic to 
heterotrophic communities have been revealed due to severe light 
limitation132. In the context of current sea-ice loss, the potentially 
increased role of SCM layers on biogeochemical fluxes remain to be 
quantified directly, both regionally and at the pan-Arctic scale31,127.

Arctic phytoplankton assemblage structure
Since the beginning of the nineteenth century, known Arctic and 
subarctic phytoplankton species have increased dramatically from 
115 (ref. 134) to 1,874 (ref. 135) in 2011, and ultimately reaching 2,241 
taxa in the latest updated pan-Arctic taxonomic inventory in 2017 
(ref. 136). Here, our goal is not to describe this expanded understand-
ing of Arctic phytoplankton diversity but rather to delineate the 
ecological niches of phytoplankton ranging from bloom-forming to 
ultra-oligotrophic adapted species in the changing Arctic environ-
ment (Fig. 6).

The prevailing view of Arctic Ocean phytoplankton assemblages 
is usually based on large diatom blooms (centric or pennate forms) 
in nutrient-rich waters supporting a cascade of higher trophic lev-
els. What is less recognized is that some Arctic regions (for example, 
the Canada Basin) are as oligotrophic and unproductive as sub-
tropical gyres12. The availability of N (mainly nitrate), which shapes 
the overall biogeography and regional trophic status of the Arctic, 
also drives large-scale shifts from diatom- to picoeukaryote (mostly 
flagellates)-dominated systems29,64,137,138 (Fig. 6). This does not mean, 
however, that in less productive areas no diatom-dominated spring 
blooms can develop (except probably in perennial stratified Arctic 
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waters), but only that these will be less intense and likely shorter 
(Fig. 5). In warmer, stratified and oligotrophic Arctic surface waters 
with a longer sea-ice-free season, the picoeukaryotic systems (in 
particular, the endemic prasinophyte Micromonas polaris)139–141 are 
strongly suspected to rely on mixotrophy; that is, via osmotrophic 

and/or phagotrophic processes. Such an adaptive strategy of picoeu-
karyotes could increasingly be favoured over strictly phototrophic 
phytoplankton as sea ice continues to decline138. In addition, such 
a scenario could considerably increase the risk of the proliferation 
of potentially bloom-forming, harmful or toxic species currently 
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present in the Arctic Ocean (for example: diatom, Pseudo-nitzschia; 
dinoflagellate, Alexandrium, Dinophysis and Karlodinium; and 
prymnesiophyte, Chrysochromulina spp.)135,140,142–144, potentially 
affecting already fragile marine Arctic ecosytems145.

Diatoms, which commonly exhibit seasonal succession from 
pennate to centric species due to different light requirements146,147, 
are not the only bloom-forming taxa observed in the Arctic Ocean 
(Fig. 6). Two other types of phytoplankton blooms have been 
reported, dominated either by the prymnesiophyte Phaeocystis 
pouchetii or by coccolithophores (Fig. 6). P. pouchetii blooms have 
long been observed in the Eurasian Arctic148,149 but are relatively 
recent phenomena in Labrador fjords150,151, Baffin Bay108 and under 
sea ice109. Silicate limitation can likely explain more favourable 
growth conditions for P. pouchetii compared to diatoms108,152 and the 
co-occurrence or succession between diatoms and P. pouchetii153. 
Since the early 1990s, silicate concentration has decreased by 20% 
(and nitrate by 7%) in inflowing Atlantic waters due to natural 
multi-decadal changes in surface circulation and decreased depth of 
winter convection at lower latitudes42,154,155. Thus, as Atlantic Ocean 
silicate supplies continue to decline, P. pouchetii blooms may become 
more common in eastern Baffin Bay waters and perhaps at higher 
latitudes of the Eurasian Arctic sector, while diatom-dominated 
blooms will become less frequent. Coccolithophores, considered as 
new intruders to the Arctic Ocean and sentinel taxa in temperate 
waters, have already been discussed in detail in the previous subsec-
tion titled ‘Advection at the Arctic gateways’.

Understanding overwintering strategies (including mixotrophy, 
dormancy and cyst or spore formation), dark survival and recov-
ery among phytoplankton taxa are also urgent matters to resolve, 
particularly with ongoing environmental changes (for example, 
increasing water temperature and sea-ice loss). Cyst and spore pro-
duction has been reported in polar phytoplankton taxa but remains 
limited to a few diatom and dinoflagellate species147,156. Arctic dia-
toms have also been reported to survive long periods of darkness 

and resume rapid growth as soon as light becomes available due to 
their ability to downregulate their metabolism and to maintain the 
main components of their photosynthetic machinery (PSII, pig-
ments and Rubisco) at low light and temperature157,158. On the other 
hand, mixotrophy seems to be a widespread strategy among dino-
flagellates and other photosynthetic flagellate taxa, keeping them 
active throughout the polar night139,159–161. With higher temperatures 
in the future, photosynthetic flagellate taxa that rely on heterotro-
phy could have an advantage over diatoms that exhaust stored met-
abolic resources more quickly140,162 during the polar night140. The 
taxon-specific survival traits between diatoms and flagellates could 
shape their geographical distribution in high latitude regions and 
thus the community structure during the preconditioning period of 
the spring bloom, thereby impacting both the phenology and mag-
nitude of the bloom163.

Future Arctic Ocean and open questions
It is evident that the shift of the Arctic Ocean to a new atmospheric, 
cryospheric and oceanic state is resulting in profound and wide-
spread changes in phytoplankton dynamics. Despite the many 
examples of the effects of this new Arctic ‘biogeochemical land-
scape’ on phytoplankton productivity, phenology and assemblage 
composition, foreseeing the consequences of intensifying climate 
change remains difficult. Model predictions can be particularly rel-
evant to identify key climate change-mediated multi-stressors164,165 
and to better portray the future Arctic Ocean166,167. However, the 
taxonomic complexity of phytoplankton assemblages within diverse 
Arctic marine ecosystems remains difficult to model and param-
eterize correctly due to multiple little-known factors affecting 
growth168. For example, no model has been able to reproduce the 
observed changes in phytoplankton phenology (for example, the 
occurrence of under-ice and secondary/autumn blooms) due to 
unique temperature- and light-dependent growth as well as metab-
olism of Arctic phytoplankton communities116,131,169,170. This is best 
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exemplified by recent observations that have challenged the percep-
tion of the polar night, which has been shown to be a more active 
period for marine ecosystems and intense biogeochemical fluxes 
than previously recognized158,171–173. Almost all recent winter expe-
ditions have revealed unexpected scientific breakthroughs172,173, and 
much remains to be done to document the key role of the polar 
night as a true continuum between the autumn and spring, and to 
better integrate it into the Arctic biogeochemical cycles.

Through the mosaic of environmental drivers influenced by 
climate change presented here, it is difficult to highlight par-
ticular ‘sentinel’ regions to be monitored in the near future: the 
interior shelves are mostly shaped by the land–ocean continuum, 
inflow and outflow shelves by advection, and the central Arctic 
by likely irreversible sea-ice loss. With the continued shrinking 
of the Arctic marine biome, however, multiple questions will 
need answers to better anticipate changes in the biogeochemi-
cal cycles of the central Arctic and predict its future. It is not yet 
possible to make definitive predictions about whether the central 
Arctic will become a new oasis or desert within the Arctic marine 
biome. However, we suspect that the shelf break, acting as a ‘green 
belt’, could effectively supply inorganic and organic matter to the 
strongly stratified, but soon-to-be sea-ice-free in summer, central 
Arctic Ocean64,174. The key question is whether or not the disap-
pearance of the summer sea-ice barrier will enhance atmospheric 
forcing and increase the efficiency of mixing on C cycling and 
nutrient exchanges.

As for the Arctic gateways, the importance of Pacific and 
Atlantic inflows that fundamentally shape Arctic biogeochemi-
cal cycles highlight the strong connectivity of the Arctic Ocean to 
the global ocean. In this Review, we mainly focused on the impor-
tance of potential changes in inflows from subarctic latitudes that 
carry heat, nutrients and planktonic organisms towards the Arctic 
Ocean. The reverse, also important but not addressed here, is the 
role of a changing Arctic Ocean on subarctic latitudes and the global 
circulation and climate. The initiation of industrial-era decline in 
subarctic Atlantic Ocean primary productivity, for example, seems 
to coincide with the onset of Arctic Ocean surface warming175,176. 
More importantly, the increasing long-term influx of freshwater 
into northeastern subarctic Atlantic surface waters may be impli-
cated in driving the industrial-era Atlantic Meridional Overturning 
Circulation (AMOC) decline and contributed to this primary 
productivity decline over the late nineteenth and twentieth centu-
ries176–180. Continued weakening of the AMOC, as projected for the 
twenty-first century181,182, may therefore result in further productiv-
ity declines, with important ramifications for future atmospheric 
C drawdown183 and northern Atlantic fisheries184 in the subarctic 
Atlantic Ocean176.
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