
Biogeosciences, 15, 4271–4289, 2018

https://doi.org/10.5194/bg-15-4271-2018

© Author(s) 2018. This work is distributed under

the Creative Commons Attribution 4.0 License.

Phytoplankton size class in the East China Sea derived from

MODIS satellite data

Hailong Zhang1,2, Shengqiang Wang1,2, Zhongfeng Qiu1,2, Deyong Sun1,2, Joji Ishizaka3, Shaojie Sun4, and

Yijun He1,2

1School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China
2Jiangsu Research Centre for Ocean Survey Technology, NUIST, Nanjing, Jiangsu, China
3Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
4College of Marine Science, University of South Florida, St. Petersburg, Florida, USA

Correspondence: Zhongfeng Qiu (zhongfeng.qiu@nuist.edu.cn)

Received: 28 November 2017 – Discussion started: 5 February 2018

Revised: 28 May 2018 – Accepted: 29 June 2018 – Published: 13 July 2018

Abstract. The distribution and variation of phytoplankton

size class (PSC) are key to understanding ocean biogeo-

chemical processes and ecosystems. Remote sensing of the

PSC in the East China Sea (ECS) remains a challenge, al-

though many algorithms have been developed to estimate

PSC. Here based on a local dataset from the ECS, a re-

gional model was tuned to estimate the PSC from the spec-

tral features of normalized phytoplankton absorption (aph)

using a principal component analysis approach. Before ap-

plying the refined PSC model to MODIS (Moderate Resolu-

tion Imaging Spectroradiometer) data, reconstructing satel-

lite remote sensing reflectance (Rrs) at 412 and 443 nm was

critical through modeling them from Rrs between 469 and

555 nm using multiple regression analysis. Satellite-derived

PSC results compared well with those derived from pig-

ment composition, which demonstrated the potential of satel-

lite ocean color data to estimate PSC distributions in the

ECS from space. Application of the refined PSC model to

the reconstructed MODIS data from 2003 to 2016 yielded

the seasonal distributions of the PSC in the ECS, suggest-

ing that the PSC distributions were heterogeneous in both

temporal and spatial scales. Micro-phytoplankton were dom-

inant in coastal waters throughout the year, especially in the

Changjiang estuary. For the middle shelf region, the seasonal

shifts from the dominance of micro- and nano-phytoplankton

in the winter and spring to the dominance of nano- and

pico-phytoplankton in the summer and autumn were ob-

served. Pico-phytoplankton were especially dominant in the

Kuroshio region in the spring, summer, and autumn. The sea-

sonal variations of the PSC in the ECS were probably af-

fected by a combination of the water column stability, up-

welling, sea surface temperature, and the Kuroshio. Addi-

tionally, human activity and riverine discharge might also

influence the PSC distribution in the ECS, especially in the

coastal region.

1 Introduction

Phytoplankton size class (PSC) is fundamentally important

for ocean biogeochemical processes and ecosystems, espe-

cially for photosynthesis efficiency (Bouman et al., 2005;

Uitz et al., 2008), primary production, and the carbon trans-

port (Kiørboe, 1993; Guidi et al., 2009; Hirawake et al.,

2011). Thus, knowledge of the PSC dynamics can contribute

to the improvement of our understanding of marine ecolog-

ical and biogeochemical cycles. The classical size fractions

of phytoplankton proposed by Sieburth et al. (1978) include

three classes, namely, micro- (> 20 µm), nano- (2–20 µm),

and pico-phytoplankton (< 2 µm). Among the methods to

measure PSC from water samples, including microscopy

(Montagnes et al., 1994), the Coulter counter method (Shel-

don and Parsons, 1967), and flow cytometry (Sun et al.,

2000), pigment concentration by high-performance liquid

chromatography (HPLC) is the most systematic and quality-

controlled method (Van Heukelem and Hooker, 2011). How-

ever, these methods are time-consuming and methodologi-

cally complex. Furthermore, large spatial and temporal vari-
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abilities make it difficult to continuously monitor PSC using

the field sampling methods.

Realistically, satellite ocean color data can provide syn-

optic observations, which are ideal for investigating PSC at

large spatial and temporal scales. In recent years, various al-

gorithms have been designed to estimate PSC using in situ

data and ocean color data on both global and regional scales

(IOCCG, 2014). Most algorithms can be partitioned into two

categories, namely, “abundance-based” and “spectral-based”

methods. The “abundance-based” methods are based on the

statistical relationship between phytoplankton size fraction

and phytoplankton abundance using measurements such as

chlorophyll a concentration (Chl a) (refer to Bracher et al.,

2017, Table 2). These approaches rely on the assumption that

high and low Chl a waters are dominated by large and small

phytoplankton, respectively. The “spectral-based” methods

utilize the relationship between the variations in inherent op-

tical properties with changes in the PSC using measurements

such as phytoplankton absorption (aph), remote sensing re-

flectance (Rrs), and particulate backscattering (bbp) (refer to

Bracher et al., 2017, Table 2).

The East China Sea (ECS) is the base of the marine fish-

ery resources in China and is one of the most productive

ocean areas in the world (Furuya et al., 1996). Ascertain-

ing the distribution of PSC can provide valuable informa-

tion on the state of the marine ecosystem and primary pro-

duction in the area. Recent efforts have been focused on in-

vestigating the phytoplankton community and size classes

in the ECS and have suggested that the PSC exhibited ob-

vious spatiotemporal heterogeneity in this region (Li et al.,

2007; Luan et al., 2007; Jiang et al., 2014). For instance,

Chen (2000) investigated the PSC and primary productivity

in the marginal regions of the southern ECS using field data.

The results showed that the phytoplankton size structure and

their contributions to primary production displayed signifi-

cant spatial differences in the shelf waters, upwelling waters,

and Kuroshio water. Furuya et al. (2003) presented the phy-

toplankton dynamics in the ECS in the spring of 1994 and the

summer of 1996 using HPLC-derived pigment signatures. A

distinct horizontal heterogeneity in phytoplankton composi-

tion was observed in the spring, and a “two-layer” distribu-

tion of phytoplankton appeared both off and on the shelf in

the summer. Liu et al. (2016) used 7-year (2006–2012) field

measurements to investigate the seasonal and spatial varia-

tions of major phytoplankton groups in the ECS, and found

that monsoon forcing was a key factor in impacting phyto-

plankton dynamics at the seasonal scale.

Note that previous investigations on the PSC in the ECS

have been conducted based on field observations, which may

not reflect the real variation patterns of PSC. To our knowl-

edge, no study has attempted to examine the PSC distribu-

tions in the ECS at synoptic scales from satellite observa-

tions. Consequently, the PSC dynamics in the ECS at dif-

ferent spatial and temporal scales and their mechanisms are

still poorly understood. In the ECS, Wang et al. (2014) found

that the correlation between the variation patterns of the

PSC and total Chl a was not valid, and pointed out that the

“abundance-based” methods for estimating PSC were proba-

bly not applicable in the ECS. Therefore, Wang et al. (2015)

proposed a model to estimate the PSC in the ECS using

the spectral shape of normalized aph(λ) through principal

component analysis (PCA). This model showed good perfor-

mance for estimating the PSC from both in situ measured

aph and Rrs. However, this model was developed using a

field dataset mainly from offshore waters of the ECS and off

the coast of Japan; more importantly, the Wang et al. (2015)

model has not been implemented in satellite data yet.

Therefore, the goals of this study were to (1) refine the

Wang et al. (2015) model for regional application in the

ECS using an extensive dataset covering highly varied wa-

ter conditions and various seasons, (2) apply the refined PSC

model to Moderate Resolution Imaging Spectroradiometer

(MODIS) satellite data, and (3) then preliminarily investigate

previously unknown seasonal and spatial variation patterns

of the PSC in the ECS.

2 Materials and methods

2.1 Study area and sampling stations

The East China Sea is one of the largest marginal seas in

the western North Pacific and is bounded by China, Korea,

and Japan (Fig. 1a). Nearly 70 % of the ECS is occupied by a

continental shelf shallower than 200 m. Numerous rivers flow

into the ECS from mainland China, including the Changjiang

(Yangtze) River which provides nearly 90 % of the riverine

discharge to the ECS (Zhang et al., 2007). In addition, the

ECS experiences strong currents and multiple water masses,

such as Changjiang diluted water (CDW), shelf mixed wa-

ter, and the Kuroshio (Ichikawa and Beardsley, 2002; Su and

Yuan, 2005). Here we analyzed the mean shape and coef-

ficient of variation (CV) of in situ Rrs(λ) collected in the

ECS, to better show the ocean color variability in the ECS

which covers many water types (Fig. 2). The in situ Rrs(λ)

of all samples exhibited large variability in both magnitudes

and spectral shapes (Fig. 2a and b). For the samples in the

coastal region of Zhejiang (Zhe) and Fujian (Min), all 10

wavebands showed larger variability in Rrs(λ) magnitude,

with CV larger than 55 % (Fig. 2c). For the samples in south-

ern Jeju, CV varied from 20 to 60 %, with a minimum around

531 nm and 547 nm (Fig. 2d). Overall, they showed a large

dynamic range with significant variability. Because of highly

variable environmental conditions, the ECS exhibits complex

marine biogeochemical processes and ecosystems.

The field measurements used in this study were collected

from approximately 10 cruises over the last decade. These

sampling stations were distributed irregularly in the ECS and

a few were in the Tsushima Strait (Fig. 1a). The field dataset

encompassed various seasons and environmental conditions
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Figure 1. Distribution of in situ and matchup datasets and locations of the selected subareas (black boxes) (a), namely MCJR (mouth area of

the Changjiang River), MSR (middle shelf region), and KR (Kuroshio region); locations of sampling stations collected in the North Pacific

and North Atlantic oceans from the NASA SeaBASS archive (b); the average satellite Rrs(λ) spectra from 2003 to 2016 in the Kuroshio

region, North Pacific Ocean, and North Atlantic Ocean (blue circles in b) (c). Error bars represent standard deviations of the means.

of the ocean, including turbid waters in the mouth area of

the Changjiang River, less turbid coastal water, and clear

water away from the coast. This field dataset consisted of

in situ measured aph(λ), measured Rrs(λ) data, and phyto-

plankton pigments measured by HPLC. In total, 69 samples

with synchronous measurements of pigments, aph, and Rrs

data, 101 samples with coincident pigments and measured

aph data, and 27 samples with only measured Rrs were avail-

able, and Fig. 1a shows the spatial distribution of samples.

The Kuroshio water in our study area suffered from a paucity

of in situ Rrs data. Hence, in addition to the regional dataset,

227 in situ Rrs samples collected in the North Pacific and

North Atlantic oceans (Fig. 1b) from the NASA SeaBASS

archive were used as a supplementary dataset. The SeaBASS

dataset was only used for algorithm development to recon-

struct satellite Rrs data, along with our regional field dataset

(see Sect. 2.4). The average spectral shapes of the 14-year

(2003–2016) MODIS Rrs data in the North Pacific and North

Atlantic oceans were similar to that in the Kuroshio water

(Fig. 1c). Thus, in situ measured Rrs data collected in the

North Pacific and North Atlantic oceans were used in the

present study, although the distribution regions of these data

were beyond our study area.

Meanwhile, three specific subareas were selected for fur-

ther investigation in this study, including the mouth area

of the Changjiang River (MCJR, 122.3–123.5◦ E and 31–

32◦ N), middle shelf region (MSR, 123.5–125◦ E and 28–

29◦ N), and Kuroshio region (KR, 126–127.1◦ E and 25.2–

26.2◦ N), as marked by black boxes in Fig. 1a. These subar-

eas were selected based on geographical locations and driv-

ing forces. Within each subarea, the averages of all valid val-

ues were calculated for further analysis.

2.2 In situ measurements

Surface water samples (0–3 m) were collected with Niskin

samplers mounted on a CTD rosette or a clean bucket. These

water samples were used for measurements of aph(λ) and

pigment concentrations.

2.2.1 Measurement and analysis of HPLC-derived PSC

For pigment analysis, seawater samples were filtered onto

47 mm Whatman GF/F glass fiber filters under gentle pres-

sure (< 0.01 MPa), and then stored initially on board in

liquid nitrogen (−70 ◦C) for later analysis in the labora-

tory. Briefly, the concentrations of 19 pigments were deter-

mined by reverse-phase HPLC following Van Heukelem and

Thomas (2001). To remove measurements with lower pre-

cision, the quality control (QA) process was applied to the

pigment dataset by HPLC according to the rules of Aiken

et al. (2009). In our study, the diagnostic pigment analysis

(DPA) was applied to compute the PSC values from HPLC

pigment data (hereafter called the HPLC-derived PSC). In

brief, the DPA approach uses seven diagnostic pigment con-

centrations to obtain the HPLC-derived PSC, including fu-

coxanthin (Cf), peridinin (Cp), 19′-hexanoyloxyfucoxanthin

(Ch), 19′-butanoyloxyfucoxanthin (Cb), alloxanthin (Ca),

chlorophyll b (CCb), and zeaxanthin (Cz). The DPA approach

www.biogeosciences.net/15/4271/2018/ Biogeosciences, 15, 4271–4289, 2018



4274 H. Zhang et al.: Phytoplankton size class in the East China Sea derived from MODIS satellite data

Figure 2. Rrs(λ) spectra at MODIS wavelengths collected in the coastal region of Zhe–Min (a) and southern Jeju (b); mean spectra and

coefficient of variation (CV) of Rrs(λ) in the coastal region of Zhe–Min (c) and southern Jeju (d). The CV is derived as the standard

deviation (SD) over the mean.

was originally proposed by Vidussi et al. (2001), and subse-

quently improved by Uitz et al. (2006). In addition, Hirata et

al. (2008) used the improved DPA approach to account for

the occurrence of CCb in the nano-phytoplankton class, be-

cause CCb was most abundant at high Chl a (> 0.25 mg m−3)

and was a minor pigment at lower Chl a. Subsequently,

Brewin et al. (2010) and Hirata et al. (2011) further refined

the DPA approach to account for ambiguity of the Cf signal

in diatoms and the occurrence of the Ch signal in picophy-

toplankton. In this study, the HPLC-derived PSC was then

given by

fmicro =
(

1.41Cf + 1.41Cp

)

/
∑

WiPi, (1)

fnano = (0.60Ca + 0.35Cb + 1.01CCb

+x × 1.27Ch)/
∑

WiPi, (2)

fpico = (0.86Cz + y × 1.27Ch)/
∑

WiPi . (3)

where fmicro, fnano, and fpico denote the size fractions of

micro-, nano-, and pico-phytoplankton, respectively. x and

y are the proportions of nano- and pico-phytoplankton in

Hex, respectively. When Chl a > 0.08 mg m−3, x = 1 and

y = 0; when Chl a is between 0.001 and 0.08 mg m−3, x =

12.5 Chl a and y = 1–12.5 Chl a.
∑

WiPi is the weighted

sum of the seven diagnostic pigments (Uitz et al., 2006), ac-

cording to the formula
∑

WiPi =1.41Cf + 1.41Cp + 0.60Ca + 0.35Cb

+ 1.27Ch + 0.86Cz + 1.01CCb. (4)

2.2.2 Measurement of aph

To obtain aph data, we used the quantitative filter technique

(QFT) via a series of processes (Mitchell, 1990). Water

samples were filtered through 25 mm Whatman GF/F glass

fiber filters under gentle pressure, and immediately frozen on

board in liquid nitrogen. In this study, the “transmittance”

approach was used for the samples collected from southern

Jeju and the Tsushima Strait (hereafter referred to as dataset-

1). The optical density (OD) values of total particles were

measured using a dual-beam multi-purpose spectrophotome-

ter between 350 and 750 nm at 1 nm resolution. Similarly,

we measured the OD values of the detritus after extract-

ing phytoplankton pigments in methanol for at least 24 h.

Meanwhile, a blank filter saturated with pure seawater was

used as the reference filter. Then, the absorption coefficients

of total particles ap(λ) and detritus ad(λ) were calculated

from the corresponding OD values based on a correction

of Cleveland and Weidemann (1993). The “transmittance–

reflectance” approach was performed on the samples col-

lected from the coastal and offshore regions of Zhejiang, Fu-
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jian, and Jiangsu (hereafter referred to as dataset-2). The op-

tical densities of the total particles, detritus, and reference

filter were obtained in both transmission mode and reflection

mode between 250 and 850 nm at 1 nm resolution using a

PerkinElmer lamda650s. Then, we converted these OD val-

ues into ap(λ) and ad(λ) values using the method of Tassan

and Ferrari (1995, 2002). Finally, the aph data were obtained

as the difference of ap(λ) − ad(λ) at all sampling stations.

2.2.3 Measurement of Rrs

To obtain Rrs data in dataset-1, the PRR-800/811 was used

to measure the vertical profiles of the downwelling irradiance

Ed(λ, z) and upwelling radiance Lu(λ, z) at 13 spectral chan-

nels (380, 412, 443, 465, 490, 510, 532, 555, 565, 589, 625,

665, and 683 nm). The water-leaving radiance Lw(λ) was

then determined from the profile of Lu(λ, z) (Hirawake et

al., 2011). The above-water surface downwelling irradiance

Ed(λ, 0+) was simultaneously measured by a cosine collec-

tor. Then, Rrs(λ) data were calculated as the ratio of Lw(λ)

to Ed(λ, 0+). For the purpose of consistency with satellite

observations that characterize the oceanic surface layer, our

analysis exclusively considered the near-surface Rrs data.

For dataset-2, Rrs data were collected under suitable so-

lar illumination (generally between 09:00 and 15:00 local

time) using an ASD FieldSpec spectroradiometer in the spec-

tral range of 350–1050 nm with 1.5 nm increments. The ra-

diance spectra of water, sky and a gray reference panel were

measured following the above-water measurement approach

(Mueller et al., 2003). For each of the three targets, 10 spectra

were collected and then averaged after removing abnormal

spectra. According to the Ocean Optics Protocol (Mueller et

al., 2003), the Rrs(λ) data were obtained as

Rrs(λ) =
(

Lt − γ · Lsky

)

/
(

Lp · π/ρp

)

, (5)

where Lt , Lsky, and Lp correspond to the radiance values

measured from the water, sky, and reference panel, respec-

tively. ρp is the diffuse reflectance of the reference panel

provided by the manufacturer. γ is the surface Fresnel re-

flectance related to wind speed (2.6–2.8 % for 10 m s−1 wind,

2.5 % for < 5 m s−1 wind, 2.2 % for calm weather) (Tang et

al., 2004).

All Rrs and aph data were resampled at the centers of

MODIS wavebands (i.e., 412, 443, 469, 488, 531, 547, 555,

645, 667, and 678 nm) using the spectral response function

of the MODIS sensor.

2.3 Satellite data

The global standard monthly MODIS remote sensing re-

flectance, chlorophyll a concentration, and sea surface tem-

perature (SST) products (Level 3, about 4 km resolution)

from 2003 to 2016 were provided by the NASA Ocean

Color website (http://oceancolor.gsfc.nasa.gov/, last access:

1 May 2017). The dataset corresponding to our study area

(25–35◦ N and 118–132◦ E) was extracted from these global

coverage datasets. These regional Rrs products were pro-

cessed using the MathWorks MATLAB software to obtain

the satellite-derived PSC. Additionally, daily Level 2 Rrs data

from the MODIS sensor (1 km resolution) were downloaded

from the NASA Ocean Color website.

Samples were matched to daily Rrs data to assess the ac-

curacy of satellite-derived aph and PSC results. To ensure

the validity of satellite data before the matchup analysis, the

following constraints were applied to the matchup dataset:

(1) the matchup dataset only included satellite data with an

overpass time window within 5 h before and after the field

measurements; (2) to reduce the effect of outliers, the median

Rrs value for a window of size 3 centered on the sampling sta-

tion coordinates was defined as satellite Rrs data; (3) negative

MODIS Rrs data were eliminated from the matchup analysis.

Based on these criteria, 21 satellite matchups with coinci-

dent measured Rrs, and 22 satellite matchups with coincident

measured PSC and aph, were available, as shown in Fig. 1a.

2.4 Model accuracy assessment

To evaluate the consistency between the derived and mea-

sured values, the Pearson correlation coefficient (R), root

mean square error (RMSE), and mean absolute percentage

error (MAPE) were used. Statistical assessments were per-

formed in log10 space for the phytoplankton absorption co-

efficient and in linear space for the phytoplankton size class.

These statistical indicators can be written as

RMSE =
1

n

√

√

√

√

n
∑

i=1

[(

xi, derived − xi, field

)

/xi, field

]2
, (6)

MAPE(%) =
1

n

n
∑

i=1

∣

∣

(

xi, derived − xi, field

)

/xi, field

∣

∣

× 100%, (7)

where n is the number of samples. xi, derived and xi, field are

the derived and measured data for the i-th sampling station,

respectively.

2.5 Modifying the Wang et al. (2015) model for

retrieving PSC

Wang et al. (2015) developed a spectral-based PSC model

to quantify the size fractions of three phytoplankton classes

using the spectral shape of aph(λ) through the PCA ap-

proach. Details of the development and parameterization of

the model were described in Wang et al. (2015). In brief, to

reduce the biomass effects, the normalized aph(λ) (hereafter

called astd
ph (λ)) was computed by the ratio of aph(λ) to their

wavelength mean values in the spectral range between 412

and 547 nm. Then, the PCA approach was applied to the astd
ph

(λ) to capture the spectral variation in phytoplankton absorp-

tion related to cell size. The input of PCA is a m × N ma-

trix constituted of astd
ph (λ), where m and N are the number

www.biogeosciences.net/15/4271/2018/ Biogeosciences, 15, 4271–4289, 2018
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of input wavelengths and samples, respectively. The output

of PCA comprises two terms, i.e., principal component (PC)

scores and PC weights (also called loading factors). The PC

scores were assumed to correlate with the size class. There-

fore, the relationships between the size fractions of micro-

and pico-phytoplankton and PC scores were established us-

ing a logistic-type regression model (Hosmer Jr et al., 2013),

as follows:

ft =1/

[

1 + exp

(

−β0 −

k
∑

i=1

βiSi

)]

,

Si =

m
∑

j=1

wija
std
ph (λj ), (8)

where ft denotes the phytoplankton size fraction (t = micro

or pico). β0 and βi are the regression coefficients between

ft and PC scores. k is the number of PC scores (k = 4 in

this study). wij refers to the loading factor for the i-th PC.

m is the number of wavelengths. Similar to previous studies

(Brewin et al., 2010; Hirata et al., 2011), fnano was calcu-

lated as 1-fmicro-fpico, by considering that the sum of three

phytoplankton size fractions was 1.

The aph(λ) at MODIS wavelengths were derived from

Rrs(λ) data using the quasi-analytical algorithm (QAA) pro-

posed by Lee et al. (2002). QAA was used in this study be-

cause it does not suppose a fixed shape for aph(λ) (Lee et al.,

2002, 2009). Because QAA could give satisfactory retrievals

of aph(λ) at the first six MODIS wavebands (i.e., 412, 443,

469, 488, 531, and 547 nm), as shown later for details, only

aph(λ) data at these wavebands were used for the PSC model

development in this study (i.e., m = 6 in Eq. 8).

To improve the accuracy of MODIS Rrs(λ) at short wave-

lengths (see details in Sect. 3.3), the reconstruction approach

(Lee et al., 2014; Sun et al., 2015) was used to reconstruct

satellite Rrs(λ) at 412 and 443 nm before applying the refined

PSC model to satellite data. In our study, satellite Rrs(412)

and Rrs(443) were quantified as a multivariable linear rela-

tionship using Rrs data from 469 to 555 nm, as follows:

Rrc
rs (λ) =

n
∑

i=1

KiRrs (λi) + K0, (9)

where Rrc
rs (λ) is the reconstructed Rrs data at wavelength λ

(412 or 443 nm); Rrs(λi) are the input Rrs data at five MODIS

wavebands (λi = 469, 488, 531, 547, and 555 nm);K0 and Ki

are the coefficients determined from multivariant regression.

3 Results

3.1 Regional tuning of the PSC model for the ECS

Following Wang et al. (2015), Eq. (8) was fitted to 170 pairs

of the HPLC-derived PSC and in situ measured aph data us-

ing a nonlinear least-squares fitting procedure for developing

the PSC model. The established parameters and associated R

and RMSE values for each of the fits are shown in Table 1.

Figure 3 shows the strong linear relationships between the in

situ astd
ph -derived PSC and HPLC-derived results, with R val-

ues of 0.89, 0.70, and 0.84 and RMSE values of 0.11, 0.11,

and 0.11 for micro-, nano-, and pico-phytoplankton, respec-

tively. The samples were close to the 1 : 1 line, with most of

the samples within the ±20 % fraction range.

Using 69 measurements of Rrs and associated HPLC-

derived PSC and in situ measured aph, we also examined

the feasibility of the PSC model for satellite observations by

coupling QAA. First, we used QAA version 5 (QAA_v5) to

retrieve aph from measured Rrs. To assess the performance of

QAA_v5, negative retrievedaph values were eliminated, and

the remainder were compared with the measured values at

all MODIS wavebands (Fig. 4). The retrieved aph values by

QAA_v5 show reasonably good agreement with the in situ

measuredaph at short wavelengths from 412 to 547 nm, with

high R values and low RMSE and MAPE values. In con-

trast, the performance of QAA_v5 was poor and produced

large overestimation of aph at long wavelengths, especially at

645, 667, and 678 nm, consistent with previous findings (Lee

et al., 2014; Tiwari and Shanmugam, 2014). These results

clearly demonstrated that QAA_v5 can produce accurate es-

timates ofaph at 412, 443, 469, 488, 531, and 547 nm. There-

fore, only aph values at these bands were used to calibrate

the PSC model, as previously stated. Then, the PSC values

were inferred from the retrieved aph using Eq. (8) with the

established parameterizations. As shown in Fig. 5, the QAA

astd
ph (λ)-derived PSC values were consistent with the HPLC-

derived results, and almost all of the points fell within the

±20 % fraction range. The R and RMSE values were 0.79

and 0.13 for micro-phytoplankton, 0.43 and 0.12 for nano-

phytoplankton, and 0.80 and 0.13 for pico-phytoplankton,

respectively. These results suggested that the refined PSC

model for the ECS coupling QAA_v5 is able to accurately

estimate the PSC from remote sensing reflectance Rrs.

3.2 Comparison of satellite Rrs with in situ

measurements

Before applying the PSC model to MODIS data, we as-

sessed the accuracy of MODIS Rrs using the synchronous

in situ measurements. Table 2 shows the statistical results of

the comparison between satellite Rrs and in situ values for

MODIS wavebands. For MODIS Rrs data, a reasonably good

consistency was found at green and red bands (from 469 to

555 nm), with R values within 0.85–0.97 and MAPE val-

ues within 14.9–27.25 %. Although the R values were above

0.85, the MAPE values were high (> 54 %) at 645, 667, and

678 nm. This is probably caused by the lower Rrs values at

these bands due to strong absorption of water itself. In addi-

tion, a low accuracy was observed at 412 and 443 nm. The

R values were 0.46 and 0.73, and the MAPE values were

47.33 and 36.90 % at 412 and 443 nm, respectively. The high

Biogeosciences, 15, 4271–4289, 2018 www.biogeosciences.net/15/4271/2018/



H. Zhang et al.: Phytoplankton size class in the East China Sea derived from MODIS satellite data 4277

Figure 3. Comparison between in situ astd
ph

(λ)-derived and HPLC-derived PSC for micro- (a), nano- (b), and pico-phytoplankton (c). Dashed

lines represent the ±20 % fraction range relative to the 1 : 1 line.

Table 1. Parameter βi values for the PSC model development.

Class N R RMSE β0 β1 β2 β3 β4

Micro 170 0.89 0.11 1.05 3.48 −4.34 −13.09 16.04

Nano 170 0.70 0.11 – – – – –

Pico 170 0.84 0.11 −2.56 −1.52 1.24 −25.87 −1.86

noise and low accuracy at these two wavebands were sug-

gested to be caused by the uncertainty of the atmospheric cor-

rection procedures and significant band degradation (Meis-

ter, 2011; Hu et al., 2013). Considering the importance of

Rrs(412) and Rrs(443) to the QAA algorithm, the poor ac-

curacy of satellite Rrs at these bands may introduce uncer-

tainty into the retrieved aph data, and further increase the un-

certainty of satellite-derived PSC. Thus, an accurate assess-

ment of satellite-derived PSC requires the improved quality

of satellite Rrs data. In this study, the reconstruction approach

was used to fulfill this objective.

3.3 Reconstruction of MODIS Rrs data

The reconstruction function (Eq. 9) was applied to the re-

gional field dataset and SeaBass dataset to obtain the regres-

sion coefficients. The resulting relationships between the in

situ measured and modeled Rrs show strong agreement, with

high R2 and low RMSE and MAPE values (Table 3). For 412

and 443 nm, the R2 values were close to 1.0, with a signifi-

cance level of p < 0.001. The MAPE values were both lower

than 9.0 %. The reconstruction functions with the established

coefficients were applied to the original MODIS Rrs data to

obtain the reconstructed satellite Rrc
rs (412) and Rrc

rs (443) data.

Table 4 shows the comparison of the original satellite Rrs

and satellite Rrc
rs data with in situ measured Rrs at 412 and

443 nm. The satellite Rrc
rs data were in better agreement with

the in situ measured Rrs data than the original satellite Rrs,

especially at 412 nm. At 412 nm, the values of R, RMSE, and

MAPE reached 0.70, 0.0019, and 35.15 % for the satellite Rrc
rs

data, respectively, while these values were 0.46, 0.0026, and

47.33 % for the original satellite data, respectively. These re-

sults indicated that the accuracy of the satellite Rrs data at

412 and 443 nm could be improved through reconstruction

using the selected MODIS wavebands.

3.4 Validation of satellite-derived aph and PSC with in

situ measured data

Based on the above analysis, we used the satellite Rrc
rs (412)

and Rrc
rs (443) data rather than original satellite Rrs data to

compute aph using QAA_v5. Figure 6 shows the comparison

of the derived aph data from satellite Rrc
rs (hereafter called

arc
ph) and the derived aph from original satellite Rrs with in

situ measurements at the first six MODIS wavebands. Table 5

summarized their corresponding statistical comparisons, i.e.,

R, RMSE, MAPE, and percentage of valid points (PVP).

Here PVP is defined as the ratio of the number of positive

satellite-derived values (n) to the total number of matchups

(N ) (as PVP = n/N × 100 %). For the satellite-derived arc
ph,

the R values were above 0.80, except at 547 nm (R = 0.69),

and were significantly higher than those for the satellite-

derived aph (with most of the values below 0.7). The statis-

tics (RMSE, MAPE, and PVP) for the satellite-derived arc
ph

were also generally better than those for the satellite-derived

aph. Compared with the satellite-derived aph, the PVP for the

satellite-derived arc
ph significantly increased with an average

of 23.48 %. Meanwhile, Fig. 6 also shows that the satellite-

derived arc
ph had more valid samples and were more clustered

around the 1 : 1 line than the satellite-derived aph. Overall,

both Table 5 and Fig. 6 indicated that the satellite-derived

aph had poor accuracy and low PVP values, whereas the ac-

curacy of satellite-derived arc
ph can be significantly improved
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Figure 4. Comparison of aph derived from Rrs using QAA_v5 with in situ measured aph data.

Figure 5. Comparisons of the PSC modeled using aph derived from Rrs with the HPLC-derived values for micro- (a), nano- (b), and pico-

phytoplankton (c).

with more valid samples through the reconstruction of satel-

lite Rrs data.

The refined PSC model was applied to the satellite-derived

aph data from original satellite Rrs to estimate PSC (Fig. 7a).

It can be seen that the satellite-derived PSC from origi-

nal satellite Rrs was inconsistent with the HPLC-derived

results, showing obvious underestimations and overestima-

tions of the retrieved PSC for most of the samples. Their

R values were all below 0.27 (Fig. 7a). For comparison,

we also estimated the PSC from the satellite-derived arc
ph

from reconstructed Rrc
rs data and compared it with the HPLC-

derived values (Fig. 7b). The satellite-derived PSC from re-

constructed Rrc
rs data agreed well with the HPLC-derived re-

sults. Their R values of 0.68, 0.46, and 0.64 and RMSE

values of 0.13, 0.13, and 0.19 were observed for micro-,

nano-, and pico-phytoplankton, respectively. Almost all of

the samples fell within the ±20 % fraction range, although

a slight underestimation of pico-phytoplankton size fraction

occurred in a few samples.
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Table 2. Results of the matchup comparison of satellite Rrs(λ) with in situ measurements.

Wavelength (nm)

412 443 469 488 531 547 555 645 667 678

N 21 21 21 21 21 21 21 21 21 21

R 0.46 0.73 0.85 0.88 0.95 0.96 0.97 0.90 0.86 0.85

RMSE 0.0026 0.0019 0.0016 0.0016 0.0011 0.0011 0.0012 0.00081 0.00077 0.00079

MAPE (%) 47.33 36.90 27.25 19.92 16.39 14.90 18.41 54.86 91.39 111.3

Table 3. Statistical parameters and coefficients for the algorithm to reconstruct Rrs data.

Wavelengths N R2 RMSE MAPE Constant coefficients

Kj , j =0,1,. . . n

412 nm 341 0.99 6.3 × 10−4 8.50 % 4.43 × 10−4, 3.91,

−3.19, 0.20, 0.72, −0.69

443 nm 341 0.99 2.2 × 10−4 3.13 % 7.39 × 10−5, 2.50, −1.59,

−0.36, 1.22, −0.77

Additionally, to further examine the performance of the

refined PSC model in our study, our refined PSC model

was compared with another two published PSC models (the

Brewin et al., 2015, model and the Sun et al., 2017, model)

(Fig. 7c and d). Here, we regionally tuned these published

models using a standard nonlinear least-squares method

based on our field dataset collected in the ECS. It should be

noted here that the two retuned models were used to better

assess the performance of our refined PSC model only, al-

though these “abundance-based” models may not perform

well in the ECS (data not shown), as suggested by Wang

et al. (2014). In this study, the retuned Brewin et al. (2015)

model for the ECS was expressed as

fpico = 0.19
[

1 − exp(−3.6Chl a)
]

/Chl a,

fp,n = 1.0
[

1 − exp(−1.0Chl a)
]

/Chl a,

fnano = fp, n − fpico and fmicro = 1 − fp, n,

(10)

where fp, n is the sum of the nano- and pico-phytoplankton

size fraction. And, the retuned Sun et al. (2017) model for

the ECS was expressed as

fpico = 0.66Chl a−1
[

1 − exp
(

−Chl a2 × Rrs (680)
)]0.16

,

fnano = 4.17Chl a−1
[

1 − exp
(

−Chl a2 × Rrs (680)
)]0.32

,

fmicro = 1 − fnano − fpico,

(11)

where Rrs (680) is the remote sensing reflectance at 680 nm.

The scatter distributions of the satellite-derived PSC using

our refined PSC model were closer to the 1 : 1 line than those

of the other two models. According to the statistical indica-

tors, our refined PSC model had the best performance, with

higher R values and lower RMSE values (Fig. 7b). For the

retuned Brewin et al. (2015) model, the R values of 0.58,

0.066, and 0.53 and RMSE values of 0.2, 0.14, and 0.18 were

observed for micro-, nano-, and pico-phytoplankton, respec-

tively (Fig. 7c). For the retuned Sun et al. (2017) model, the

R values were 0.36, −0.042, and 0.5 for micro-, nano-, and

pico-phytoplankton, when the corresponding RMSE values

were 0.25, 0.17, and 0.18, respectively (Fig. 7d). The retuned

Brewin et al. (2015) model and the retuned Sun et al. (2017)

model had relatively poor performance in the ECS. These

comparison results indicated that the performance of our re-

fined PSC model using the reconstructed satellite data was

better than those of the retuned Brewin et al. (2015) model

and the retuned Sun et al. (2017) model in our study region.

Overall, these results suggested that the use of satellite Rrc
rs

could significantly improve the performance of the refined

PSC model on satellite observations and yielded reasonable

satellite-derived PSC results, which were better than those

derived from original satellite observations. Therefore, we

further investigated the spatiotemporal variability of the PSC

in the ECS based on satellite-derived products from the re-

constructed satellite remote sensing reflectance.

3.5 Seasonal distribution patterns of the PSC in the

ECS

To describe the seasonal variability of the PSC in the ECS,

the refined PSC model was applied to 14 years (2003–2016)

of MODIS monthly Rrs data to obtain monthly PSC products.

Then, seasonal composite PSC images were generated by av-

eraging the monthly PSC products over a 3-month period for

each season (Fig. 8a–l). In this study, spring, summer, au-

tumn, and winter were defined as March to May, June to Au-

gust, September to November, and December to February of

the next year, respectively. Meanwhile, to better understand

the spatiotemporal variations of PSC, we analyzed the sea-
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Table 4. Comparison of the original satellite Rrs and reconstructed Rrc
rs with in situ measured data at 412 and 443 nm.

wavelength N
original satellite Rrs reconstructed satellite Rrc

rs

R RMSE MAPE (%) R RMSE MAPE (%)

412 nm 21 0.46 0.0026 47.33 0.70 0.0019 35.15

443 nm 21 0.73 0.0019 36.90 0.80 0.0017 34.53

Table 5. Results of the matchup comparison for Fig. 6.

wavelength N
satellite-derived arc

ph
satellite-derived aph

R RMSE MAPE (%) PVP (%) R RMSE MAPE (%) PVP (%)

412 nm 22 0.80 0.27 15.35 100 0.58 0.56 58.15 72.73

443 nm 22 0.83 0.23 14.87 100 0.48 0.67 63.95 72.73

469 nm 22 0.85 0.21 11.62 100 0.62 0.55 48.35 81.82

488 nm 22 0.84 0.22 11.52 100 0.78 0.37 31.93 90.91

531 nm 22 0.80 0.31 20.82 86.36 0.86 0.73 45.57 54.55

547 nm 22 0.69 0.43 20.38 90.91 0.69 0.52 35.71 63.64

Figure 6. Comparison of the satellite-derived aph (crosses) and

satellite-derived arc
ph

(open circles) with in situ measured data at

412, 443, 469, 488, 531, and 547 nm.

sonal distributions of Chl a in the ECS for four seasons, as

shown in Fig. 8a–d.

Seasonal distributions of Chl a (Fig. 8a–d) illustrated that

Chl a was higher (0.4–3.0 mg m−3) on the ECS shelf than

in the Kuroshio water (< 0.4 mg m−3), and the Chl a values

in the Changjiang River mouth were particularly high (3.0–

25 mg m−3). During spring, the high Chl a (> 1.0 mg m−3)

was found on the ECS shelf, and the tongue-shaped structure

was unclear because of the increase in Chl a in the surround-

ing areas. During summer, Chl a values above 1.0 mg m−3

were observed in the coastal region. The higher Chl a

(> 3.0 mg m−3) was limited to the regions at depths shal-

lower than 30 m isobath, including the Changjiang mouth.

In the autumn, the Chl a remained high in the coastal re-

gion (> 2.0 mg m−3). The tongue-shaped structure extended

outward the southeast along the 50 m isobath during autumn

and along the 70 m isobath during winter.

Seasonal variation patterns of the PSC (Fig. 8a–l) indi-

cated that the phytoplankton size classes in the ECS were

heterogeneous in both temporal and spatial scales. Their

general distribution patterns were consistent with results re-

ported from field measurements by other researchers (Chen,

2000; Furuya et al., 2003; Wang et al., 2015). In the spring

(Fig. 8a–c), the higher fmicro values (0.45–0.85) were found

on the ECS shelf sea with lower values in offshore wa-

ters. Relatively high fnano (0.4–0.6) were clearly observed

on offshore shelf and in southern Japan. However, pico-

phytoplankton were the dominant size class over the south-

eastern ECS (fpico = 0.50–0.75). During summer (Fig. 8d–

f), the micro-phytoplankton size fractions were still high

in coastal waters. The high fmicro tongue-shape structure

near the Changjiang Bank extended toward southeast along

the 30 m isobath. High nano-phytoplankton proportions oc-

curred in the ECS shelf sea with water depths of 30–200 m.

The pico-phytoplankton contributions to Chl a were rela-

tively high around the ECS shelf break. Pico-phytoplankton

represented the most abundant size class in the areas deeper

than 200 m (fpico > 0.6), which was similar to the results

from the field measurements by Chen (2000). In the autumn

(Fig. 8g–i), the fmicro remained high in coastal waters and

extended over the area shallower than 50 m isobath. The pro-

portion patterns of nano- and pico-phytoplankton in the au-

tumn were broadly similar to those in the summer. However,

high nano-phytoplankton proportions were also in the north-

ern Japan. In the winter (Fig. 8j–l), high fmicro were mainly

distributed on the ECS shelf. The regions with higher fmicro

(> 0.5) extended outward, and connected to the area around
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Figure 7. Comparison of the HPLC-derived PSC with the satellite-

derived PSC values from the original satellite Rrs (a) and the recon-

structed satellite Rrc
rs (b) using the refined PSC model in this study;

using the retuned Brewin et al. (2015) model (c); using the retuned

Sun et al. (2017) model (d). Solid lines denote the 1 : 1 lines.

the Korean coast. The distributions of the size fractions of

nano- and pico-phytoplankton were broadly similar to those

in the spring.

3.6 Regional difference in the monthly climatological

PSC in the ECS

Since the East China Sea is extensive, with a number of dif-

ferent environmental conditions and ecosystems, three sub-

areas were selected for further investigation as shown in

Fig. 1a. Within each of the subareas, this study investi-

gated averages of the monthly climatological PSC, as well

as chlorophyll a concentration (Fig. 9).

In the MCJR, higher Chl a was observed throughout the

year (> 3.0 mg m−3), and two Chl a peaks occurred in the

spring (May) and summer (June), respectively (Fig. 9a).

Throughout the year, micro-phytoplankton comprised 60–

80 % of the Chl a, with the maximum value in April and

relatively low fractions from summer to early autumn (June–

September). Nano-phytoplankton comprised 18–30 % of the

Chl a, while the contributions of pico-phytoplankton to Chl a

were below 10 % throughout the year (Fig. 9a). In the MSR,

mean Chl a in this region domain was lower than that in

the MCJR, with a peak in the spring (April) (Fig. 9b).

The micro-phytoplankton proportions were slightly larger

than pico-phytoplankton in the winter and spring, while

the opposite was found in the summer and autumn. The

pico-phytoplankton in the MSR were highest in August

and September, with a peak in the summer and early au-

tumn (June–September). Nano-phytoplankton were domi-

nant (40–50 %) for most of the year in this region (Fig. 9b).

In contrast to the MCJR and MSR, the mean Chl a was

much lower in the Kuroshio region throughout the year

(< 0.3 mg m−3) (Fig. 9c). The KR domain showed a predom-

inance of pico-phytoplankton (40–90 %) throughout the year,

with higher proportions observed in the summer. The nano-

phytoplankton proportions (about 40 %) were slightly lower

than pico-phytoplankton in the winter and early spring, while

their proportions became low (< 20 %) in the rest of the year.

The micro-phytoplankton size fractions in the KR remained

low (< 23 %) throughout the year (Fig. 9c).

4 Discussion

4.1 Satellite application of the refined PSC model

The most important advantage of satellite ocean color data is

the ability to provide information on the spatiotemporal vari-

ability of the PSC. However, remote sensing of the PSC in the

ECS is still a challenging task, although many “abundance-

based” and “spectral-based” algorithms have been designed

using field measurements and satellite data in the global

scale. Taking into account the optical property in the ECS,

Wang et al. (2014) reported that the “abundance-based” ap-

proaches are not necessarily applicable in the ECS, and the

absorption spectra of phytoplankton could instead be used to

obtain the PSC in the ECS. More than 80 % of the variability

in the spectral shape of phytoplankton absorption was highly

related to the changes in the size classes (Ciotti et al., 2002;

Bricaud et al., 2004). Therefore, in this study we refined the

Wang et al. (2015) model for deriving PSC in the ECS from

the spectral variation of aph. However, the application of this

refined PSC model to original MODIS data has hampered, as

showed in Fig. 7a. This may be related to the low accuracy of

the MODIS Rrs at 412 and 443 nm (Table 2), which can in-

troduce additional uncertainties into the satellite-derived aph

from original Rrs (Fig. 6; Table 5), and thereby affect the es-

timation accuracy of the satellite-derived PSC (Fig. 7a). To

solve this problem, the multivariable linear relationship was

employed to reconstruct MODIS Rrs(412) and Rrs(443) val-
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Figure 8. Seasonal distributions of the PSC (a–l) and Chl a (a–d, right panel) in the ECS during 2003–2016.

ues using satellite Rrs from 469 to 555 nm. Previous studies

have reported that the use of multiple spectral bands could

successfully reconstruct hyperspectral Rrs data (Lee et al.,

2014; Sun et al., 2015). In our study, the use of satellite Rrc
rs

improved the accuracy and PVP of the satellite-derived arc
ph

data using QAA_v5 (Fig. 6; Table 5), and dramatically im-

proved the accuracy of the satellite-derived PSC (Fig. 7b).

The R and RMSE values for all size fractions derived from

the reconstructed satellite Rrs data were 0.7 and 0.15 respec-

tively, compared to the values of 0.064 and 0.38 respectively

for those derived from original satellite Rrs data. Overall,

this study successfully estimated the PSC in the ECS from

the reconstructed MODIS remote sensing reflectance. The

findings presented here complement recent studies that have

demonstrated that satellite ocean color data can be used to

retrieve the PSC in the ECS (Wang et al., 2015; Sun et al.,

2017). However, it should be noted that there was no as-

sessment of the credibility of satellite-derived PSC results

in the Kuroshio waters due to lack of field dataset in this re-

gion, and further investigations focusing on the applicability

of the reconstruction algorithm and the refined PSC model in

Kuroshio waters and other regions are still required.

4.2 Spatial and temporal variations of the PSC in the

ECS

As described in the results Sects. 3.5 and 3.6, the seasonal

distributions of the PSC and Chl a in the East China Sea

(Figs. 8 and 9) had great variability spatially and temporally.

In general, micro-phytoplankton are favored under environ-

mental conditions with stronger mixing and high nutrients,

while pico-phytoplankton are dominant in low-nutrient wa-

ters (IOCCG, 2014; Lamont et al., 2018). Here, we discussed

the regional-scale characterization of the full seasonal cycle

in stellate-derived PSC and Chl a and the related physical

and biochemical effects for helping to understand the spa-

tiotemporal variability of the PSC in the ECS.

4.2.1 The coastal region

In the coastal region, such as the coast of Zhejiang and

Jiangsu (including the mouth area of the Changjiang River),

the combined effects of variable wind forcing, riverine dis-

charge, and vertical mixing of the water column promote

phytoplankton growth, resulting in high biomass levels and

the presence of larger-sized phytoplankton (Zhou et al.,

2008; Wang et al., 2014). Seasonal distributions and vari-
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Figure 9. Monthly climatological PSC and Chl a from 2003 to 2016 in the mouth area of the Changjiang River (MCJR) (a), middle shelf

region (MSR) (b), and Kuroshio region (KR) (c). Error bars indicate standard deviations of the means.

ability of Chl a (Figs. 8a–d and 9a) in the coastal region pre-

sented in this study generally agreed well with the patterns

reported by previous studies of satellite Chl a (Yamaguchi et

al., 2012; He et al., 2013).

In the spring, increased solar radiation and air temperature

gradually warm up SST, which can reduce the vertical mix-

ing of the water column. At the same time, weak wind stress

can retain mixing of the water column, which transports nu-

trients to the upper layer from the nutrient-rich deep layer

(Behrenfeld et al., 2006; Boyce et al., 2010). Meanwhile,

coastal nutrient transporting to the inner shelf of the ECS

can be enhanced under the northwesterly wind action (Liu

and Wang, 2013). These physical processes can allow phy-

toplankton to live longer in the upper euphotic layer in the

sufficient nutrient and light conditions (Zhang et al., 2017),

resulting in the spring bloom in the coastal region and in-

ner shelf of the ECS (Fig. 8a), consistent with a previous

study by Liu et al. (2016) based on the field measurement

of Chl a. This phenomenon was also clearly seen in Fig. 9a

showing the monthly climatological Chl a in the MCJR with

a local maximum in April and May. These enhanced nutri-

ent conditions favor the presence of micro-phytoplankton in

the Changjing bank and coastal waters (Figs. 8a and 9a) and

nano-phytoplankton in the offshore region (Fig. 8b). This

was consistent with previous studies which showed that the

large cell sizes, such as diatoms and Prorocentrum dong-

haiense, were dominant on the ECS shelf sea in the spring

(Furuya et al., 2003; Lou and Hu, 2014; Liu et al., 2016).

In the summer, the coastal region with shallower than 40 m

isobath displayed higher Chl a (Fig. 8b) and higher micro-

phytoplankton proportion (Fig. 8d). In the mouth area of

the Changjiang River, a long-lasting summer Chl a maxi-

mum form May to August was found. This may be related

to the enhanced nutrient concentrations from river and estu-

arine discharges, e.g., the Changjiang River, Qiantangjiang

River, and Minjiang River (Guo et al., 2014). Due to an-

thropogenic activities such as various agricultural and in-

dustry activities, nutrient-rich waters discharge into the East

China Sea, especially in the summer monsoon rainy season

(Siswanto et al., 2008). This is especially evident in higher

Chl a concentrations and higher micro-phytoplankton pro-

portions observed in the MCJR (Fig. 9a). Meanwhile, the lit-

toral currents, e.g., the Zhe–Min Coastal Current (ZMCC)

and Yellow Sea Coastal Current (YSCC), may play a key

role in the transport of nutrient from riverine discharge. Pre-

vious studies reported that much of sediments is transported

southward along the Zhejiang–Fujian coast by the ZMCC

(Liu et al., 2007). In addition, the coastal region is relatively

shallow, and the water body therefore has a weak stratifica-

tion of water column in the summer. The hydrodynamic in

coastal waters is dominated by the variation of wind-tide-

thermohaline circulations (Guan, 1994). These physical con-

ditions may lead to the increase in nutrient and thereby influ-

ence the phytoplankton size structure in the coastal region.

Nano-phytoplankton were found to dominate the inner part

of the ECS shelf (Fig. 8e), likely due to the increased nu-

trient concentrations in offshore waters resulting from the

coastal region by strong convection currents. The study of

Yamaguchi et al. (2012) revealed that the CDW takes ap-

proximately 2 months to move from the Changjiang River
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Figure 10. The scatterplots showing the relationships between the monthly phytoplankton size fractions and SST from 2003 to 2016 for the

MCJR (a), MSR (b), and KR (c).

mouth to the Tsushima Strait. Therefore, the nutrient supply

from riverine discharge may be a major controlling factor in

the large cell sizes (micro- and nano-phytoplankton) in the

coastal region in the summer. These findings were consistent

with the study of Jiang et al. (2015) based on field investi-

gations who reported that the micro-sized diatoms and di-

noflagellates dominated the Changjiang estuary and adjacent

areas in the summer in response to available nutrients.

During autumn and winter, as wind stress strengthens and

temperature decreases, convectional mixing of the water col-

umn increases and the stratification weakens, which bring

nutrients upward from the underlying layer. The mixing pro-

cesses through internal waves, tides, and winds, as well as the

terrestrial nitrate from runoff, provide a high nutrient condi-

tion, which promotes the phytoplankton growth and the pres-

ence of larger-sized phytoplankton, as suggested by Taylor

and Joint (1990). Guo et al. (2014) also observed that the ni-

trate concentrations were high in coastal waters of the ECS

during autumn and winter. Thus, the larger-sized phytoplank-

ton (micro and nano) dominance was clearly observed in the

coastal region (Fig. 8g–h and j–k), and high Chl a was found

in this region (Fig. 8c and d), consistent with previous stud-

ies by Guo et al. (2014) and Wang et al. (2014), who sug-

gested that the most dominant phytoplankton groups were

chain-forming diatoms and dinoflagellates in coastal waters

throughout the year.

4.2.2 The middle shelf and shelf break of the ECS

Similar to the coastal region, the middle shelf of the ECS

exhibited the spring bloom with a peak of Chl a occur-

ring in April, and micro-phytoplankton dominance (Fig. 9b),

mainly due to mixing processes of the water column in the

spring. These results agree with a previous study reported

by Liu et al. (2016) that during springtime, the contribu-

tions of dinoflagellates and diatoms (micro) to total Chl a

were relatively higher in the middle shelf region and par-

ticularly in the river plume. During summer and early au-

tumn, due to surface warming and low wind stress, the re-

duced mixing and stronger thermal stratification result in less

nutrient supply to the surface layers. As reported by Guo

et al. (2014), a nitracline formed in the middle shelf water

in summer, and no nitracline formed in autumn and win-

ter due to strong water mixing. This region is also affected

by ocean currents carrying warm waters, e.g., the Kuroshio

Branch Current to the north of Taiwan and the Yellow Sea

Coastal Current (Ichikawa and Beardsley, 2002), which can

enhance the water column stability. These oligotrophic con-

ditions can favor the presence of pico-phytoplankton. Mean-

while, the coastal nutrients are transported to the middle
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shelf region by convection currents, but the nutrient concen-

trations in the middle shelf are not as high as those in the

coastal region. This may be one reason that nano- and pico-

phytoplankton size classes overlapped during summer and

early autumn (Figs. 8e–f and 9b). In the winter, mixing of

the water column increases due to strong winds (Guo et al.,

2014), allowing nutrients to enter the surface layer. This con-

dition favors the increase in micro- and nano-phytoplankton

in the middle shelf of the ECS (Fig. 9b). Previous studies

have shown that micro-phytoplankton dominated the shelf

regions in wind-driven upwelling and mixing systems, where

nutrient concentrations are high and seawater temperatures

are lower (Hirata et al., 2009; Sun et al., 2017; Lamont et al.,

2018). These larger-sized phytoplankton-dominated commu-

nities can support higher rates of photosynthesis because of

their larger photosynthetic rates per unit volume (Hirata et

al., 2009). Additionally, upwelling usually occurs at the shelf

break of the ECS, transposing nutrient-rich waters from the

subsurface layer to the upper layer (Chen et al., 2009). This

condition can promote the nano-phytoplankton growth. Ad-

vective processes in the upwelling system are regarded as

an important force, as well as the biochemical forces such

as nutrients, in controlling the phytoplankton size structure

and species composition (Smith et al., 1983). Malone (1975)

reported that small nano-phytoplankton were selectively re-

moved from upwelling regions by mass transport to the dis-

tance as a result of their low sinking rates.

4.2.3 The Kuroshio region and open ocean

In comparison to the ECS shelf sea, the Kuroshio region

and open ocean generally exhibited relatively low chloro-

phyll a concentrations (Figs. 8a–d and 9c). These phyto-

plankton biomass levels are controlled by a variety of forc-

ing factors, among which the key factors are water column

stability and the availability of light and nutrients (Behren-

feld, 2010; Yamaguchi et al., 2012). The Kuroshio region is

largely influenced by the Kuroshio, in addition to solar ir-

radiance that governs light availability and also influences

the water column stability. The mainstream of the Kuroshio

strongly flows northeastward along around the 200 m isobath

(Ichikawa and Beardsley, 2002), carrying warm and low-

nutrient waters (Jiao et al., 2005). High surface temperature

could strengthen the water column stability, thereby prevent-

ing the nutrient supply to the upper layer from the deeper

layer (Lovelock, 2007). Thus, these oligotrophic conditions

lead to the low phytoplankton biomass and promote the

growth of pico-phytoplankton, which are better adapted to

take advantage of such light and nutrient-depleted conditions

(Finkel et al., 2009). Liu et al. (2016) found that the impor-

tance of larger phytoplankton (diatoms and dinoflagellates)

decreased appreciably in the offshore waters, and their con-

tributions were partially replaced by small-sized phytoplank-

ton (e.g., Synechococcus, Prochlorococcus, chrysophytes,

and prymnesiophytes). On the other hand, this was also con-

firmed by a significant positive correlation between SST

and pico-phytoplankton proportions in the KR (Fig. 10c).

In addition, temperature and salinity are implicated as im-

portant ecological determinants for some small-sized pho-

tosynthetic bacteria, e.g., Prochlorococcus and Synechococ-

cus. Prochlorococcus are largely confined to the warm waters

and almost absent in coastal waters in the winter (Jiao et al.,

2005). Some previous studies also showed that for the abun-

dant Prochlorococcus in surface waters, its lower boundaries

of temperature and salinity were 15.6 and 33.5 ◦C in the win-

ter, respectively, and 26.4 and 29.1 ◦C in the summer, respec-

tively (Jiao et al., 2005; Liu et al., 2016). This is particularly

clear in the Kuroshio region where pico-phytoplankton were

dominant throughout the year, except in winter and early

spring when nano-phytoplankton size fractions were slightly

more elevated (Fig. 8b and k; Fig. 9c). The slight increase

in nano-phytoplankton proportions during winter and early

spring may be related to the increased nutrient concentrations

that result from vertical mixing due to stronger wind stress

during this period, as reported by Liu et al. (2016) that mean

surface concentrations of nutrients (NO−

3 +NO−

2 ) in the off-

shore Kuroshio region were higher in the winter than in the

summer, and the mixed-layer depth was much deeper in the

winter than in the summer due to strong vertical mixing in

the winter.

4.3 Response of phytoplankton size class to sea surface

temperature

It has previously been suggested that sea surface tempera-

ture is one of the important factors that influence the PSC

dynamic (Chen, 2000; Barnes et al., 2010; IOCCG, 2014).

Based on the 14-year (2003–2016) time series of the monthly

SST and satellite-derived PSC data, we investigated the cor-

relations between SST and PSC in the three subareas of

the ECS (Fig. 10), aiming to discuss the PSC response

to the SST change under different hydrological conditions.

In the Kuroshio region, significant negative correlation be-

tween nano-phytoplankton size fraction and SST was found

(R = −0.66 < −0.5 and p < 0.001), and weak negative cor-

relation was found for micro-phytoplankton (R = −0.31).

Significant positive correlation between pico-phytoplankton

size fraction and SST was identified (R = 0.64 > 0.5 and

p < 0.001) (Fig. 10c). Similarly, Chen (2000) reported that

there was a significant positive correlation between in situ

measured pico-phytoplankton proportion and water temper-

ature. Several studies have found that surface warming can

weaken vertical mixing due to the increase in water col-

umn stability (Behrenfeld et al., 2006; Boyce et al., 2010),

which causes less nutrient supply to the surface layers

from the underlying nutrient-rich waters. In addition, the

Kuroshio water is characterized by high salinity, high tem-

perature, and low nutrients (Jiao et al., 2005). These olig-

otrophic conditions favor the presence of smaller-sized phy-

toplankton (pico) and restrict the growth of larger-sized phy-
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toplankton (micro and nano). It offers an explanation to

help us understand the correlation between the increasing

trend of SST and decreasing trend of micro- and nano-

phytoplankton size fraction and increasing trend of pico-

phytoplankton size fraction. Similar to the KR, a nega-

tive correlation between micro-phytoplankton proportion and

SST (R = −0.76 and p < 0.001) and a positive correlation

for pico-phytoplankton (R = 0.65 and p < 0.001) were ob-

served in the MSR (Fig. 10b). Different environmental con-

ditions in the two subareas showed similar responses of the

variability of micro- and pico-phytoplankton size fractions

to SST. However, the increasing trend of SST and increasing

trend of nano-phytoplankton showed a weak positive corre-

lation (R = 0.34 and p < 0.001) (Fig. 10b), which was differ-

ent to the Kuroshio region. The weak correlation suggested

that nano-phytoplankton in this region may be affected by

other factors (e.g., grazing-nitrogen rate) other than SST (Fu-

ruya et al., 2003). For instance, Barlow et al. (2016) re-

ported that nano-phytoplankton (e.g., flagellates) were dom-

inant in warmer shelf regions, because they are better at uti-

lizing the increase in nutrient concentrations after upwelled

water has warmed. In the mouth area of the Changjiang

River, the SSTs were negatively (R = −0.59 and p < 0.001),

positively (R = 0.58 and p < 0.001), and positively (R =

0.54 and p < 0.001) correlated with micro-, nano-, and pico-

phytoplankton size fraction, respectively (Fig. 10a). The wa-

ter body in the coastal region mixes well in winter with low

SST and has a weak stratification of water column in sum-

mer with high SST, as the hydrodynamic in coastal water is

dominated by the variation of wind–tide–thermohaline circu-

lations (Guan, 1994). In some degree, increasing SST could

result in a decrease in larger-sized phytoplankton (micro and

nano) and an increase in small-sized phytoplankton (pico).

However, the trend of rising SST and the increasing nano-

phytoplankton size fraction in the MCJR were observed. This

may be related to the optimum temperature for the growth

of different algal groups. Additionally, previous studies have

shown that the nutrient structure in the ECS was altered by

the Changjiang discharge, especially for the Changjiang estu-

ary and adjacent area (Zhang et al., 2007; Wang et al., 2014).

The change in nutrient structure (increase in the N/P ratio)

may play an important role in regulating the phytoplankton

community structure in the MCJR (Guo et al., 2014). These

results suggested the interannual variability of PSC in coastal

waters is more complicated than in offshore waters. The de-

tailed study focusing on the mechanism of the PCS change

in the ECS is still required.

Overall, the correlations between PSC and SST (Fig. 10)

indicated SST is an important factor influencing the PSC dy-

namic in the ECS. The interannual variations of phytoplank-

ton size classes in the ECS were complicated and could not

be fully explained by the individual factor. Further investi-

gations therefore are required to understand the interannual

variability of the PSC in the ECS and its response to envi-

ronmental factors, e.g., wind speed, riverine discharge, and

monsoon forcing.

5 Conclusions

In this study, the PSC model was regionally tuned for ap-

plication to the ECS using extensive in situ measured data

covering various seasons and environmental conditions in

the ECS. When the refined model was applied to MODIS

observations, there was a critical step to reconstruct satel-

lite remote sensing reflectance at blue wavebands. It led to

reliable performance of the refined PSC model on MODIS

observation, which showed good agreement with the HPLC-

derived PSC results, with almost all of the samples falling

within the ±20 % fraction range. Along the way, our present

study preliminarily estimated spatial distributions of the PSC

in the ECS from space. The refined PSC model was applied

to satellite data from MODIS during 2003 and 2016 to in-

vestigate the PSC distribution at the seasonal scale. The ob-

tained results showed that the PSC in the ECS varied across

both spatial and temporal scales. The seasonality of the PSC

in the ECS was likely to be related to the vertical structure

of the water column, upwelling, sea surface temperature, and

the Kuroshio. It was also affected by riverine discharge and

human activity, especially for coastal waters. The interannual

and longer-term variations in phytoplankton size class in the

East China Sea and their mechanisms need to be investigated

in the future.
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