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Abstract  

Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the 

biosphere. The ongoing environmental metabarcoding revolution opens the perspective for 

holistic eco-systems biological studies of these organisms, in particular the unicellular 

microalgae that often lack distinctive morphological characters and have complex life cycles. In 

order to interpret environmental sequences, metabarcoding necessarily relies on taxonomically-

curated databases containing reference sequences of the targeted gene (or barcode) from 

identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. 

In this study, we built the PhytoREF database that contains 6,490 plastidial 16S rDNA reference 

sequences that originate from a large diversity of eukaryotes representing all known major 

photosynthetic lineages. We compiled 3,333 amplicon sequences available from public databases 

and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from 

cultured marine microalgal strains belonging to different eukaryotic lineages. 1,867 

environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality 

filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA 

sequence. The database mainly focuses on marine microalgae, but sequences from land plants 

(representing half of the PhytoREF sequences) and freshwater taxa were also included to 

broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, 

accessible via a web interface (http://phytoref.org), is a new resource in molecular ecology to 
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foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes 

using high-throughput sequencing.  

 

Introduction 

Eukaryotes that acquired photosynthesis through endosymbiosis with cyanobacteria or plastid-

bearing eukaryotes are distributed across most eukaryotic super-groups and exhibit a bewildering 

morphological diversity across more than eight orders of magnitude in organism size (Archibald 

2012; Not et al. 2012). Most photosynthetic eukaryotes are unicellular (referred to as protists), 

but a few lineages, essentially macroalgae (e.g. the rhodophyte class Florideophyceae or the 

chlorophyte class Ulvophyceae) and the embryophyte land plants, have evolved into 

multicellular forms. The radiation of photosynthetic marine protists during the Neoproterozoic 

arguably led to a major oxidation event in the history of the Earth system (Knoll 2014). Today, 

eukaryotic microalgae are key players in aquatic food webs and global biogeochemical 

processes. In the marine ecosystem, they are the major contributors to primary production 

through their capacity to perform oxygenic photosynthesis (Falkowski et al. 2004; Worden et al. 

2004; Jardillier et al. 2010), and to export and sequester organic carbon to the deep ocean and 

sediments (Richardson & Jackson 2007). In addition, evidence is growing that many eukaryotic 

microalgal taxa are mixotrophs, being able to both photosynthesize and feed on various 

microbial prey (McKie-Krisberg & Sanders 2014; Unrein et al. 2014). Their contribution to 

bacterivory can even exceed that of strict heterotrophs in oceanic waters (Zubkov & Tarran 

2008; Hartmann et al. 2012). In coastal areas, some microalgal species can be toxic and/or form 

harmful blooms, which can be highly detrimental to marine life and human activities such as 
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fisheries, aquaculture and tourism (Zingone & Wyatt 2005; Chambouvet et al. 2008; Anderson et 

al. 2012).  

Despite their ecological and economic importance, it remains difficult to assess the total diversity 

of photosynthetic eukaryotes in the natural environment using classical microscopy-based 

techniques. For most taxa, taxonomic identification is greatly hindered by their minute size (as 

small as 0.8 µm for the prasinophyte Ostreococcus; Courties et al. 1994; Vaulot et al. 2008), 

lack of distinctive morphological features, and fragility when classical fixatives are used (Vaulot 

et al. 1989). The complex life cycles of many microalgal species are additional obstacles that 

render detection in the environment very difficult with traditional microscopy. Many taxa 

undergo a succession of morphologically distinct forms (e.g. sexual morphotypes, resting cysts; 

Montresor & Lewis 2006; Gaebler-Schwarz et al. 2010) or can be "hidden" within a host cell as 

a parasitic or mutualistic symbiont (Skovgaard et al. 2012; Decelle et al. 2012). In this context, 

environmental DNA metabarcoding (high-throughput sequencing of DNA markers), which has 

unveiled a vast and unsuspected diversity of microorganisms in recent years, provides a powerful 

new tool to assess the composition and ecological function of microalgal communities (Bik et al. 

2012; Bittner et al. 2013). Environmental metabarcoding approaches have also been proposed for 

bio-assessment and bio-monitoring of sentinel or indicator species, including microalgae 

(Taberlet et al. 2012; Kermarrec et al. 2013; Pawlowski et al. 2014), and the study of diet 

regimes in predators (Pompanon et al. 2012; Piñol et al. 2014). For marine protists, variable 

regions of the nuclear ribosomal RNA genes (particularly the small subunit, 18S rRNA) are 

traditionally used as "universal" markers in environmental surveys (Stoeck et al. 2010; Logares 

et al. 2012,2014). However, several drawbacks limit the use of these nuclear markers to assess 

the biodiversity of photosynthetic eukaryotes: (i) some 18S rDNA clone library-based surveys 
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have been shown to be biased towards heterotrophic eukaryotes, and consequently tend to 

overlook phototrophs in complex community assemblages (Vaulot et al. 2002; Kirkham et al. 

2011); (ii) ribosomal DNA of large protist cells (mainly heterotrophs and potentially 

multinucleated) or metazoans tends to be preferentially PCR-amplified because of the relatively 

higher copy number of ribosomal genes in these organisms (Zhu et al. 2005; Godhe et al. 2008); 

(iii) distinction between phototrophic and heterotrophic taxa is very often not possible in 

complex multi-functional protistan groups, such as dinoflagellates. In addition, given the extreme 

genetic diversity of eukaryotes, "universal" DNA markers cannot detect all lineages with a high 

taxonomic resolution (CBOL Protist: Pawlowski et al. 2012). Therefore, barcoding systems with 

narrower taxonomic and/or functional focus need to be developed to provide a better picture of 

the taxonomic and functional composition of eukaryotes in complex ecosystems.  

In order to focus on the phototrophic compartment of eukaryotic communities, the 

photosynthetic protein-coding psbA (protein D1 of photosysytem-II reaction center) and rbcL 

genes (large subunit of the Ribulose-l,5-diphosphate carboxylase/oxygenase, RuBisCO) have 

been used as markers for phytoplankton communities (Paul et al. 2000; Zeidner et al. 2003; 

Man-Aharonovich et al. 2010). However, the primers targeted essentially cyanobacteria and 

cyanophages (viruses), and to a lesser extent photosynthetic eukaryotes, and the same species 

can have different sequence types (e.g. forms IA, IB for rbcL). By contrast, the plastidial 16S 

rRNA gene has been successfully employed in several marine surveys since it contains 

sufficiently conserved regions to use generalist primers to target all plastid-bearing eukaryotes 

and can distinguish major eukaryotic lineages with a relatively good taxonomic resolution (Fuller 

et al. 2006; MacDonald et al. 2007; Lepère et al. 2009; Shi et al. 2011; Kirkham et al. 2011, 

2013). However, annotation and interpretation of the plastidial 16S rDNA clone libraries 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

obtained in these studies have been hindered by the lack of reference sequences of taxonomically 

well-identified organisms. Although a number of curated reference databases are publicly 

available for ribosomal RNA genes of eukaryotes and prokaryotes, such as the Protist Ribosomal 

Reference Database (PR2; Guillou et al. 2013), SILVA (Pruesse et al. 2007), Ribosomal 

Database Project (Cole et al. 2005), and Greengenes (DeSantis et al. 2006), no reference 

database exists for the plastidial 16S rRNA gene of photosynthetic eukaryotes. Here, we describe 

an extensive reference database of the plastidial 16S rRNA gene including sequences from all 

major lineages of photosynthetic eukaryotes, comprising terrestrial, freshwater and marine 

organisms. This database, named PhytoREF, has been built through the compilation of all of the 

publicly available plastidial 16S rDNA sequences (amplicons and sequences extracted from 

plastidial genomes), as well as novel Sanger amplicons that we obtained from a wide taxonomic 

spectrum of cultured microalgal strains. PhytoREF is not only a new resource to explore, 

evaluate and monitor the diversity of photosynthetic eukaryotes in aquatic and terrestrial 

ecosystems, but is also useful to taxonomically identify new plastidial 16S rDNA sequences and 

design primers and probes to target specific lineages of photosynthetic eukaryotes. PhytoREF 

will pave the way for a range of applications in bio-monitoring photosynthetic eukaryotes in 

various habitats (e.g. water, sediments and ice), paleoecological studies of primary producers in 

past environments, and dietary studies in unicellular and multicellular herbivores.  

 

Data sources 

Retrieval of plastidial 16S rDNA sequences from public databases 

Plastidial 16S rDNA sequences were first retrieved from the International Nucleotide Sequence 

Database Collaboration (INSDC: http://www.insdc.org) using various keywords (e.g. plastidial, 
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plastid, chloroplast, 16S, small subunit), and BLAST searches with different query sequences of 

distinct photosynthetic eukaryotic lineages. Additional sequences were retrieved from the PR2 

database (May  2014) (Guillou et al. 2013; http://ssu-rrna.org/). When available in GenBank 

(release 201), the source literature for each sequence was searched to compile and/or verify their 

specific features (e.g. taxon names, culture strains), resulting in a bibliographic database of 565 

source publications. 16S rDNA sequences were also extracted from all plastidial genomes 

available at http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=2759&opt=plastid. 

All plastidial 16S rDNA sequences that originated from an identified organism (e.g. culture 

strain or isolated organism) were defined as reference sequences in the PhytoREF database. 

Environmental Sanger 16S rDNA sequences obtained in clone libraries were also retrieved from 

INSDC and included in PhytoREF. Those sequences that lacked taxonomic identification were 

assigned at the class level based on sequence similarity scores with the references sequences of 

PhytoREF. Finally, all of the 16S rDNA sequences of Cyanobacteria were extracted from 

SILVA (release 115, Quast et al. 2013) in order to root the phylogenetic trees and 

unambiguously annotate and classify eukaryotic sequences. The cyanobacterial sequences are 

available as separate files at http://phytoref.org. 

 

Newly generated 16S rDNA sequences from microalgal cultures 

We generated 411 novel plastidial 16S rDNA sequences from eukaryotic microalgal strains from 

the Roscoff Culture Collection (RCC, http://roscoff-culture-collection.org/), the NCMA 

(formerly CCMP; https://ncma.bigelow.org/), and the culture collection of the Stazione 

Zoologica Anton Dohrn of Naples (Table S1). Cultured cells were harvested in exponential 

growth phase and concentrated by centrifugation. Total nucleic acids were extracted using the 
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Nucleospin RNA II kit (Macherey-Nagel) and quantified using a Nanodrop ND-1000 

Spectrophotometer (Labtech International). An 850 bp fragment was PCR-amplified with a 

generalist photosynthetic eukaryote primer set biased against cyanobacteria: PLA491F: 5'- GAG 

GAA TAA GCA TCG GCT AA -3′ (Fuller et al. 2006), and OXY1313R: 5′- CTT CAY GYA 

GGC GAG TTG CAG C -3′ (West et al. 2001). PCR amplifications were performed with the 

Phusion high-fidelity DNA polymerase (Finnzymes) in a 25-μL reaction volume, using the 

following PCR parameters: 30 s at 98°C; followed by 35 cycles of 10 s denaturation at 98°C, 30 

s annealing at 60°C, and 30 s extension at 72 °C; with a final elongation step of 10 min at 72 °C. 

PCR products were purified by either EXOSAP-IT (GE Healthcare Bio-Sciences Corp.) or the 

NucleoSpin® Extract II kit (Macherey-Nagel, Hoerdt, France), and sequenced in both forward 

and reverse directions using the ABI-PRISM Big Dye Terminator Cycle Sequencing Kit 

(Applied Biosystems). Raw Sanger sequences were edited and assembled with ChromasPro 

v1.7.5 (Gene Codes), and primer sequences were trimmed off. The new plastidial 16S rDNA 

sequences were deposited in GenBank under the accession numbers LN735194 to LN735532 

(Table S1), and can also be retrieved on the PhytoREF web interface at http://phytoref.org.  

 

Construction of the PhytoREF database 

The core content of the database is composed of the reference plastidial 16S rDNA sequences 

from public databases with unambiguous taxonomic assignation, and the novel sequences 

obtained from duly identified cultures. Each reference sequence, including taxonomic affiliation, 

was validated and filtered following different steps: (i) sequences shorter than 400 bp from 

cultures, and shorter than 800 bp from public sequences (including environmental sequences) 

were removed; (ii) sequences with more than 10 consecutive non-ACGT characters were also 
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discarded; (iii) sequence alignments were performed for different well-defined taxonomic groups 

(e.g. at the class level) using MAFFT v6. 953b with default options (Katoh et al. 2002), and 

visualized to verify the presence of introns or putative chimeric sequences; (iv) poorly aligned or 

difficult-to-align nucleotide positions were removed for subsequent phylogenetic analyses using 

the program trimAl v1.4 program (with a -gt value of 0.8, and -st value of 0.001; Capella-

Gutierrez 2009); (v) phylogenetic trees were constructed separately for each taxonomic group 

(i.e. generally at the class level) using FastTree v.2.1.1, a fast and accurate approximate 

maximum-likelihood method using the GTR model (Price et al. 2010), in order to identify 

mislabeled sequences and other possible conflicts, and to build up the taxonomic framework (see 

below).  

Additional publicly available plastidial 16S rDNA sequences with uncertain taxonomic status 

were subsequently added to this validated core dataset. These sequences were assigned to a given 

phylum using a similarity threshold based on global pair-wise alignments (using a Needleman-

Wunsch algorithm) against the reference sequences. Sequences of each phylum were then 

aligned based on conserved 2D structures and sequences of the archaeal 16S, bacterial 16S and 

eukaryotic 18S small subunit ribosomal RNA using the SSU-align program and Infernal software 

package, which generate large-scale alignments of up to millions of sequences (Nawrocki et al. 

2009). 2D-based alignments allowed us to verify whether the new sequences corresponded to the 

16S rRNA gene or other ribosomal genes. Phylogenetic trees were then built using BioNJ as 

implemented in Seaview v.4 (Gouy et al. 2010), and visualized using TreeDyn (Chevenet et al. 

2006). Functions implemented in TreeDyn as well as specific Python scripts allowed us to 

determine the taxonomic level of each sequence (e.g at the "Family" level). All sequences 
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included in PhytoREF have two unique identifiers, the GenBank accession number and a 

PhytoREF ID number.  

 

The taxonomic framework of PhytoREF 

For every new validated sequence, we established a standardized and ranked taxonomy with 10 

levels: 1- Domain; 2- Super-group; 3- Phylum; 4- Class; 5- Subclass; 6- Order; 7- Sub-order; 8- 

Family; 9- Genus; and 10- Species. For the "Super-group", "Phylum" and "Class" levels, the 

taxonomic framework of PhytoREF was derived from the PR2 database (http://ssu-rrna.org/; 

Guillou et al. 2013), which mainly follows a comprehensive recent classification framework of 

eukaryotes (Adl et al. 2012). The "Family" and "Order" levels of terrestrial, marine and 

freshwater micro- and macroalgae were based on the taxonomic classification system of the 

AlgaeBase database (Guiry and Guiry 2014; Guiry et al. 2014; http://www.algaebase.org/). For 

the taxa that were not present in AlgaeBase and PR2 (mostly embryophytes), the taxonomic 

classification of NCBI (May 2014) was followed (taxdump.nodes and taxdump.names files at 

http://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NCBI/metarepresentation.html

). Overall, the standardized taxonomic framework established in PhytoREF was designed to 

assist in the analysis of large datasets of environmental plastidial 16S rDNA amplicons generated 

by high-throughput environmental metabarcoding.  

For some 16S rDNA sequences, it was not possible to define an accurate and/or complete 

taxonomic identity because the taxonomic description of the corresponding organism is not fully 

resolved, e.g. only at the "Family" or "Genus" level. In these cases, the sequence was labeled as 

described for the PR2 database. For instance, the taxonomic path of a sequence identified up to 

the "Family" level would be: Family, Family_X (for the "Genus" level), and Family_XX (for the 
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"Species" level). Moreover, some key groups of microalgae have only been classified into 

informal clades and sub-clades based on published phylogenetic analyses without morphology-

based taxonomy (e.g. prasinophyte clades VII, IX; Apicomplexa-related lineages I -V). For the 

PhytoREF database, information about the molecular clade was verified through specific 

phylogenetic analyses with the 16S rRNA gene and indicated at different taxonomic ranks. For 

instance, prasinophytes belonging to clade VII and sub-clade A1 are annotated: clade 7 ("Order" 

level), clade_7A ("Family" level), clade_7A1 ("Genus" level) and clade_7A1+sp ("Species" 

level). A confidence level for taxonomic assignation (named Refseq) was given to each 

PhytoREF sequence, indicating the level at which a given sequence is unambiguously assigned 

(RefSeq=1: Eukaryota; RefSeq=2: super-group; RefSeq=3: Phylum; RefSeq=4: Class; 

RefSeq=5:Order; RefSeq=6:Family; RefSeq=7:Genus). Finally, we also included 16S rDNA 

sequences originating from symbiotic microalgae or kleptoplastids found in hosts. The origin of 

these sequences that are generally incorrectly assigned to the host in public databases was 

modified and marked as "symbiont" or "kleptoplastid" in the PhytoREF database. 

 

Results and Discussion 

Overview of PhytoREF database 

The PhytoREF database (release 1) currently contains 6,490 partial and complete plastidial 16S 

rDNA sequences (of which 6,051 sequences are > 800 bp long). In total, 411 novel sequences 

from marine microalgal strains were produced in this study and 6,079 sequences retrieved from 

public databases (5,200 amplicons from organisms and environmental samples, and 879 

sequences extracted from plastidial genomes, Fig. 1). 2D alignments combined with BLAST 

analyses allowed us to determine that 52 sequences (mostly from streptophytes) considered as 
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16S rDNA in GenBank were actually nuclear 18S rDNA, and were therefore excluded from 

PhytoREF. In addition to sequences from identified plastid-bearing organisms, PhytoREF 

contains 1,867 environmental Sanger sequences from clone libraries, which have been assigned 

to known eukaryotic lineages based on sequence similarity (combining a Needleman-Wunsch 

algorithm and phylogenetic analyses). Every PhytoREF sequence was quality-checked, 

phylogenetically-analyzed and classified following our standardized taxonomy. In addition to the 

taxonomic path, all sequences were associated to a suite of descriptors, such as the organism, 

molecular origin (amplicon or extracted from genomes), GenBank accession number, cultured 

strain, and original publication. Additional categories indicated whether sequences are 

environmental or belong to morphologically identified organisms, and if they correspond to 

kleptoplastids, parasitic or mutualistic microalgae (in such cases, the taxonomic name of the host 

is also provided). 

 

Taxonomic composition of PhytoREF 

All of the known major lineages of photosynthetic eukaryotes from terrestrial, freshwater and 

marine environments are represented in PhytoREF. At the super-group level, the composition of 

the database is as follows: Archaeplastida (3,834 sequences), Stramenopila (1,704 sequences), 

Alveolata (144 sequences), Hacrobia (501 sequences), Excavata (288 sequences), and Rhizaria 

(20 sequences) (Figs. 2 and 3). Although our effort while building PhytoREF (in particular in 

producing novel plastidial reference sequences) mainly focused on marine microalgal taxa, 

reference sequences from streptophytes (i.e. from mosses and ferns to gymnosperms and 

angiosperms), and marine and freshwater macroalgae (e.g., Rhodophyceae, Phaeophyceae, 

Ulvophyceae) were also included in the final reference database of all known photosynthetic 
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eukaryotes. Thus, PhytoREF can be used in metabarcoding surveys to study communities of 

microalgae in different marine and freshwater habitats (e.g. seawater, estuaries, brackish waters, 

lakes), as well as to detect the presence of macroalgae and streptophytes in aquatic systems as 

reproductive stages (gametes, pollen) or in the digestive tracts of herbivores. 

Land plants (streptophytes) are numerically the dominant group in PhytoREF with 2,973 

sequences, representing 373 families and 796 genera. The macroalgae from the classes 

Rhodophyceae (61 genera), Phaeophyceae (7 genera), and Ulvophyceae (18 genera) are 

represented by 161, 46, and 82 sequences, respectively (Fig. 3). Diatoms (Bacillariophyta), green 

algae (Chlorophyta) and Haptophyta (coccolithophores and their relatives) are numerically the 

most important microalgae in the database with 1094, 653 and 369 sequences, respectively, 

covering a wide taxonomic diversity with 109, 79, and 34 described genera and 268, 113, and 67 

described species, respectively (Fig. 3). Within the Haptophyta, one environmental sequence 

found in the Pacific Ocean, named "S25_1200" (EF574856), was included as it has been 

identified to form a novel photosynthetic lineage (Janouškovec et al. 2011). For the green algae, 

freshwater taxa are less represented than their marine relatives and represent an obvious target 

for future reference sequencing. Amongst the Hacrobia, there are 126 sequences of cryptophytes 

covering 36 described species from marine (e.g. Rhodomonas sp.), brackish (e.g. Chroomonas 

sp. and Geminigera sp.) and fresh (e.g. Cryptomonas sp.) waters. Because genetic diversity does 

not correspond well with taxonomic features and life-stages are likely to be complex, the 

systematics of cryptophytes are still under revision, except for the genera Cryptomonas and 

Hemiselmis that have been relatively well delineated (Hoef-Emden & Melkonian 2003; Hoef-

Emden 2005). The euglenozoans from the super-group Excavata are also well represented in 

PhytoREF with 115 described species from freshwater and marine habitats, such as species of 
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Euglena, Monomorphina and Trachelomonas. Of note, PhytoREF also contains 6 sequences of 

the recently discovered rappemonads (Hacrobia), an uncultured microalgal group widely 

distributed in marine and fresh waters, but taxonomically undescribed (Kim et al. 2011). Since 

no nuclear ribosomal (18S rRNA gene) and genomic sequences are available for the 

rappemonads, the plastidial 16S rRNA gene is currently the only genetic marker available for 

evolutionary and environmental studies of this lineage.  

During the course of evolution, photosynthesis has been lost in several lineages of plants and 

single-celled eukaryotes, but a vestigial plastid containing a 16S rRNA gene has been retained in 

some taxa (Williams & Keeling 2003). Some of these non-photosynthetic organisms present in 

PhytoREF are very often parasites, such as the holoparasitic angiosperm Epifagus virginiana, the 

heterotrophic euglenid Euglena longa, and the green alga Helicosporidum. In particular, 33 

sequences correspond to the non-photosynthetic alveolate apicomplexans (e.g. Plasmodium, 

Toxoplasma, Babesia), which are obligate intracellular parasites of metazoans and protists, but 

which have kept a relict plastid, known as the apicoplast (Lim & MacFadden 2010; MacFadden 

2014). Apicomplexan-related lineages, called ARLs (class Colpodellid), which include the 

microalgae Chromera (Moore et al. 2008) and Vitrella (Oborník et al. 2012), are also 

represented in PhytoREF by 77 sequences (mostly environmental), and classified according to 

the framework proposed by Janouškovec et al. (2011) i.e. ARL I, II etc. 

As in apicomplexans and ARLs, the plastidial 16S rRNA gene of photosynthetic dinoflagellates 

is rapidly-evolving and their sequences are very difficult to align. This may be related to the 

unique genomic organization of plastid genes in dinoflagellates that can be found separately in 

small minicircles (Zhang et al. 2002; Green 2011). This extreme genetic divergence may explain 

the very low PCR amplification success rates we obtained during the present study on different 
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cultures of photosynthetic dinoflagellates. Consequently, one shortcoming of PhytoREF is the 

limited number of dinoflagellate sequences (34 sequences representing 15 genera), a caveat to 

consider when interpreting metabarcoding datasets using PhytoREF. It is important to note that 

several plastidial 16S rDNA sequences from GenBank were re-assigned in the database because 

they were mislabeled as "dinoflagellate" when in fact they correspond to plastids of 

photosynthetic eukaryotes "stolen" by dinoflagellate hosts (kleptoplastids). For instance, the 

dinoflagellate Dinophysis can sequester plastids of different microalgal prey, such as 

cryptophytes, raphidophytes and chlorophytes (Kim et al. 2012). This issue was also found in all 

other organisms present in PhytoREF that can either establish kleptoplastidy (e.g. the Ciliata 

Mesodinium rubrum and benthic Foraminifera), or photosymbiosis with microalgal cells (e.g. the 

katablepharid Hatena arenicola). Re-assignment of these sequences was necessary to avoid 

biases in annotation of the metabarcoding reads. Finally, 2700 16S rDNA cyanobacterial 

sequences have also been included in PhytoREF as separate files to avoid any ambiguities in the 

taxonomic assignation of query sequences. These sequences were clustered at different similarity 

levels (from 98 to 80%) and the longest sequences of each cluster are available for download at 

http://phytoref.org/.  

 

PhytoREF: a new tool to explore the ecology of photosynthetic eukaryotes  

To date, PhytoREF is the only tool in molecular ecology specifically designed to explore the 

total diversity of photosynthetic eukaryotes from complex marine and terrestrial ecosystems 

using metabarcoding or metagenomics approaches. Although the taxonomic resolution of the 

plastidial 16S rDNA barcode is not as high as that of established barcodes like the mitochondrial 

cytochrome c oxydase I gene for animals (Herbert et al. 2003) and the large subunit of ribulose 
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1,5-bisphosphate carboxylase gene (rbcL) for plants (CBoL Plant Working Group 2009), it can 

recover and distinguish all photosynthetic eukaryotes at the class level, family level (e.g. 

Cryptophyta; Stern et al. 2014), and down to the genus and sometimes species level for most 

major lineages, such as the haptophytes (Edvardsen et al. 2011), euglenozoans (Linton et al. 

2010; Na et al. 2012), and diatoms (Pillet et al. 2011). As proposed by the CBoL Protist 

Working Group for the 18S rRNA (Pawlowski et al. 2012), the 16S rRNA gene can be used as a 

"pre-barcode" to explore the diversity of photosynthetic eukaryotes in the environment. 

In this study, we found that the copy number of the 16S rRNA gene in plastid genomes can range 

from 1 to 10 (e.g. 4 and 6 copies in the euglenophyte Euglena gracilis and the prasinophyte 

Pedinomonas minor, respectively). However, in about 80% of the plastid genomes of eukaryotes 

(mainly streptophytes) sequenced so far, only 2 copies of the 16S rRNA were found (Table S2), 

which is in accordance with the plastid genome structure with two inverted repeats that duplicate 

ribosomal RNA genes (Green 2011). The copy number variation of the plastidial 16S rRNA gene 

seems therefore to be much less important than that of the nuclear 18S rRNA gene, which 

correlates with genome size, cell size and biovolume and can vary by up to four orders of 

magnitude (e.g., the green algae Prasinococcus sp. and Ostreococcus sp. have 2 and 4 copies of 

the 18S RNA gene, respectively, while the diatoms Ditylum sp. and Coscinodiscus sp. have 

>30,000 copies; Zhu et al. 2005; Godhe et al. 2008). Thus, the plastidial 16S rRNA gene has the 

potential to be a suitable proxy in metabarcoding studies for assessing the relative abundance of 

eukaryotic phototrophs in the environment. Nevertheless, one has to consider that biological 

biases may also occur with the plastidial 16S rRNA gene. The number of plastids can vary 

(hence the number of 16S copies per individual) not only within one cell among eukaryotes, but 

also throughout the life cycle of a species (e.g. before and after cytokinesis). Although most 
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species in many microalgal groups (e.g. haptophytes, cryptophytes, chlorophytes, pennate 

diatoms) have only one or a few plastids, some taxa can harbour more than 100 plastids (e.g. 

centric diatoms). Less is known about the number of plastid genome copies in microalgal 

species, which can also alter the 16S rDNA copy number per individual. Photosynthetic 

eukaryotes typically maintain 50-100 copies of the plastid genomes per plastid. This number 

varies greatly in land plants from tens to hundreds during the plant development (Oldenburg & 

Bendich 2004). In microalgae, the plastid of the chlorophyte Chlamydomonas reinhardtii 

contains about 75 genome copies (Armbrust 1998), but continuous replication and accumulation 

of plastid DNA throughout the cell cycle has been shown for this taxon and for the dinoflagellate 

Amphidinium operculatum and the chrysophyte Ochromonas (Coleman & Nerozzi 1999; 

Hiramatsu et al. 2006; Koumandou & Howe 2007). 

 

Description of the PhytoREF web interface  

The PhytoREF web interface provides easy and rapid access to all reference plastidial 16S rDNA 

sequences, and allows users to explore the database with interactive graphs (e.g. Krona pie 

charts) and perform different search options. Sequences can be retrieved in Fasta format either 

by taxonomic rank (e.g phylum, genus, species) using a taxonomy browser, or through specific 

identifiers such as the GenBank accession number or the culture strain code (e.g. AY702161 or 

RCC393). Information associated with each sequence can be also downloaded as a tab-separated 

file, and different formats of the database are proposed to be used by the QUIIME, Mothur or 

TreeDyn programs. In addition, for each sequence, publication metadata such as title, authors 

and abstract are available on the web site. Web links to the Roscoff Culture Collection and 

GenBank database provide more information about the taxonomy and the origin of each 
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plastidial 16S rDNA sequence. Finally, a BLAST interface is available on the web site allowing 

users to identify individual or multiple plastidial 16S rDNA sequences against all PhytoREF 

reference sequences, and download selected hit sequences. In order to improve future releases of 

PhytoREF, users are encouraged to indicate errors and suggest better taxonomic placements for 

reference sequences in a dedicated page. 

 

Conclusion and perspectives 

PhytoREF is the first resource allowing exploration of the total diversity of photosynthetic 

eukaryotes in any given ecosystem. It can be used for a range of purposes, such as: (i) annotation 

and classification of new plastidial 16S rDNA sequences; (ii) taxonomic assignation of 

environmental sequences from massive metabarcoding and metagenomic datasets; and (iii) 

design of primers and probes to target any group of photosynthetic eukaryotes. All of the main 

eukaryotic lineages that have a functional or relict plastid are represented in PhytoREF, including 

free-living, mutualistic or parasitic organisms from aquatic and terrestrial habitats. Some 

organisms are under-represented in the current PhytoREF version, such as dinoflagellates and 

freshwater microalgae, which may lead to coarse taxonomic assignations. PhytoREF has 

therefore the potential to be used for many applications from biomonitoring of photosynthetic 

eukaryotes in past and present environments (water, sediment, ice) to feeding selectivity studies. 

Updates of the database will be performed every six months by adding new reference sequences, 

expert validation of new public sequences from GenBank, and inclusion of novel taxonomic 

features from the literature, such as the description of novel algal classes..  
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Figures and Legends 

Figure 1: Treemap and histograms showing the origin and number (A), and length (B) of the 
plastidial 16S rDNA sequences compiled into the PhytoREF database. A: PhytoREF is 
composed of 3,333 amplicons from identified organisms, 1,867 environmental amplicons 
produced from Sanger clone libraries, 879 sequences extracted from plastidial genomes, and 411 
novel amplicons that have been generated in this study from cultures of marine microalgae. B: 
Most 16S rDNA sequences in PhytoREF are distributed in two peaks: the one with 700-900 bp-
long sequences containing the novel amplicons obtained here from cultured microalgal strains, 
and the other one with full-length (ca. 1500 bp) sequences from public databases. 
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Figure 2: Distribution and number of PhytoREF plastidial 16S rDNA sequences in the tree of 
eukaryotic life. The schematic phylogenetic tree is based on up-to-date phylogenomics and 
morphological evidence (Burki & Keeling 2014). Each plastid-containing eukaryotic lineage is 
highlighted in green, and the number of plastidial 16S rDNA sequences available in the 
PhytoREF database is indicated in small grey circles. 
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Figure 3: Taxonomic composition of the PhytoREF database at the class level. Bar charts 
represent the number of PhytoREF plastidial 16S rDNA sequences and taxonomically-described 
families, genera and species that are present in a given class. Several key groups of microalgae 
lack full taxonomic description, such as the prasinophytes (clade VII) and the rappemonads. 
Streptophytes (land plants) that are represented by 2,973 sequences (373 families and 796 
genera) were not considered here for a better clarity.  

 

 

 

 

 


