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Heavy metal accumulation in soil has been rapidly increased due to various

natural processes and anthropogenic (industrial) activities. As heavy metals are non-

biodegradable, they persist in the environment, have potential to enter the food chain

through crop plants, and eventually may accumulate in the human body through

biomagnification. Owing to their toxic nature, heavy metal contamination has posed

a serious threat to human health and the ecosystem. Therefore, remediation of

land contamination is of paramount importance. Phytoremediation is an eco-friendly

approach that could be a successful mitigation measure to revegetate heavy metal-

polluted soil in a cost-effective way. To improve the efficiency of phytoremediation,

a better understanding of the mechanisms underlying heavy metal accumulation

and tolerance in plant is indispensable. In this review, we describe the mechanisms

of how heavy metals are taken up, translocated, and detoxified in plants. We

focus on the strategies applied to improve the efficiency of phytostabilization and

phytoextraction, including the application of genetic engineering, microbe-assisted and

chelate-assisted approaches.
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INTRODUCTION

With the development of industrialization and urbanization, the abundance of heavy metals in the
environment has increased enormously during the past decades, which raised significant concerns
throughout the world (Suman et al., 2018; Ashraf et al., 2019). Heavy metals are a group of metallic
chemical elements that have relatively high densities, atomic weights, and atomic numbers. The
common heavy metals/metalloids include cadmium (Cd), mercury (Hg), lead (Pb), arsenic (As),
zinc (Zn), copper (Cu), nickel (Ni), and chromium (Cr). These heavy metals/metalloids originate
from either natural or anthropogenic sources such as produced water generated in oil and gas
industries (Neff et al., 2011; Pichtel, 2016), use of phosphate fertilizers in agriculture (Hamzah et al.,
2016; Rafique and Tariq, 2016), sewage sludge (Farahat and Linderholm, 2015), metal mining and
smelting (Chen et al., 2016), pesticide application (Iqbal et al., 2016), electroplating, and fossil fuel
burning (Muradoglu et al., 2015).
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Heavy metals are non-degradable by any biological or physical
process and are persistent in the soil for a long period, which
pose a long-term threat for the environment (Suman et al., 2018).
According to their role in biological systems, heavy metals can
be grouped as essential and non-essential. Essential heavy metals
such as Cu, Fe, Mn, Ni, and Zn are required for physiological and
biochemical processes during plant life cycle (Cempel and Nikel,
2006); however, they may become toxic when present in excess.
Non-essential heavy metals like Pb, Cd, As, and Hg are highly
toxic with no known function in plants (Fasani et al., 2018) and
may cause environmental pollution and severely affect a variety
of physiological and biochemical processes in crop plants and
reduce agricultural productivity (Clemens, 2006). They can enter
into the food chain through crops and accumulate in the human
body through biomagnification, thus posing a great threat to
human health (Sarwar et al., 2010; Rehman et al., 2017).

Hence, it is necessary to take remediation measures to
prevent heavy metals from entering into terrestrial, atmospheric,
and aquatic environments, and mitigate the contaminated land
(Gerhardt et al., 2017; Hasan et al., 2019). So far, there are
a variety of remediation approaches that have been developed
to reclaim heavy metal-contaminated soil. These measures are
mainly based on mechanical or physio-chemical techniques,
such as soil incineration, excavation and landfill, soil washing,
solidification, and electric field application (Sheoran et al.,
2011; Wuana and Okieimen, 2011; DalCorso et al., 2019).
However, there are limitations reported on these physicochemical
approaches such as high cost, inefficiency when contaminants
are present at low concentrations, irreversible changes to the
physicochemical and biological properties of soils, which lead
to the deterioration of the soil ecosystem, introduction of
secondary pollutions (Ali et al., 2013; DalCorso et al., 2019).
Therefore, there is a need to develop cost-effective, efficient, and
environment-friendly remediation technologies to reclaim heavy
metal-contaminated soil.

Phytoremediation is a plant-based approach, which involves
the use of plants to extract and remove elemental pollutants
or lower their bioavailability in soil (Berti and Cunningham,
2000). Plants have the abilities to absorb ionic compounds
in the soil even at low concentrations through their root
system. Plants extend their root system into the soil matrix and
establish rhizosphere ecosystem to accumulate heavy metals and
modulate their bioavailability, thereby reclaiming the polluted
soil and stabilizing soil fertility (Ali et al., 2013; Jacob et al.,
2018; DalCorso et al., 2019). There are advantages of using
phytoremediation, which include: (i) economically feasible—
phytoremediation is an autotrophic system powered by solar
energy, therefore, simple to manage, and the cost of installation
and maintenance is low, (ii) environment and eco-friendly—it
can reduce exposure of the pollutants to the environment and
ecosystem, (iii) applicability—it can be applied over a large-scale
field and can easily be disposed, (iv) it prevents erosion and metal
leaching through stabilizing heavy metals, reducing the risk of
spreading of contaminants, (v) it can also improve soil fertility
by releasing various organic matters to the soil (Aken et al., 2009;
Wuana and Okieimen, 2011; Jacob et al., 2018). During the past
decades, numerous studies have been conducted to understand

the molecular mechanisms underlying heavy metal tolerance and
to develop techniques to improve phytoremediation efficiency.
In the current review, the mechanisms of how heavy metals
are taken up and translocated in plants are described, and the
detoxification strategies (avoidance and tolerance) adopted by
plants in response to heavy metal have been discussed. The
main objective is to overview the recent advances in developing
phytoremediation techniques, including the strategies to improve
heavy metal bioavailability, tolerance, and accumulation. This
review also highlights the application of genetic engineering to
improve plant performance during phytoremediation.

UPTAKE AND TRANSLOCATION
OF HEAVY METALS IN PLANTS

There are series of processes involved in accumulation of
heavy metal in plants, including heavy metal mobilization,
root uptake, xylem loading, root-to-shoot transport, cellular
compartmentation, and sequestration. Heavy metal mostly exists
as insoluble form in soil, which is not bioavailable to plants.
Plants can increase their bioavailability by releasing a variety
of root exudates, which can change rhizosphere pH and
increase heavy metal solubility (Dalvi and Bhalerao, 2013). The
bioavailable metal is sorbed at the root surface and moves
across the cellular membrane into the root cells. The uptake of
heavy metals into roots occurs mainly through two pathways,
apoplastic pathway (passive diffusion) and symplastic pathway
(active transport against electrochemical potential gradients and
concentration across the plasma membrane). The common
uptake of heavy metals via symplastic pathway is an energy-
dependent process mediated by metal ion carriers or complexing
agents (Peer et al., 2005).

After entering into root cells, heavy metal ions can form
complexes with various chelators, such as organic acids. These
formed complexes including carbonate, sulfate, and phosphate
precipitate, are then immobilized in the extracellular space
(apoplastic cellular walls) or intracellular spaces (symplastic
compartments, such as vacuoles) (Ali et al., 2013). The metal
ions sequestered inside the vacuoles may transport into the
stele and enter into the xylem stream via the root symplasm
(Thakur et al., 2016) and subsequently are translocated to the
shoots through xylem vessels. Through apoplast or symplast, they
are transported and distributed in leaves, where the ions are
sequestered in extracellular compartments (cell walls) or plant
vacuole, thereby preventing accumulation of free metal ions in
cytosol (Tong et al., 2004).

Heavy Metal Ion Transporter
Uptake and translocation of heavy metal in plant is mediated
by a variety of molecules, including metal ion transporters
and complexing agents. These specialized transporters (channel
proteins) or H+-coupled carrier proteins are located in the
plasma membrane of the root cell and are essential for the
uptake of heavy metal ions from soil. They can transport specific
metals across cellular membranes and mediate influx–efflux of
metal translocation from roots to shoots (DalCorso et al., 2019).
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According to sequence homology, metal transporters identified,
so far, have been classified into several families, such as ZIP,
HMAs, MTPs, and NRAMPs.

Transporters of the ZIP family (ZRT–IRT-like proteins) are
involved in heavymetal accumulation processes including uptake
and transport of many cations (e.g., Fe, Mn, and Zn) from root
to shoot (Guerinot, 2000). For example, Zn hyperaccumulator
Thlaspi caerulescens and Arabidopsis halleri roots have enhanced
Zn uptake in comparison to non-hyperaccumulator species,
which is correlated with enhanced expression of some ZIP
family members in hyperaccumulator (Assunção et al., 2001).
The P1B-type ATPases of heavy metal transporting ATPases
(HMAs) transporter family are involved in the transport of
heavy metals (such as Zn, Cd, Co, and Pb) and play a vital
role in metal homeostasis and tolerance (Axelsen and Palmgren,
2001; Williams and Mills, 2005). HMA3, a vacuolar P1B-
ATPase, is involved in compartmentation of Zn, Cd, Co, and
Pb by regulating their sequestration into the vacuole (Williams
and Mills, 2005; Hanikenne and Baurain, 2014). Another
transporter of the family, HMA4, is involved in long-distance
root-to-shoot translocation of Zn and Cd (Verret et al., 2004).
Overexpression of HMA4 enhanced Cd and Zn efflux from
the root symplasm into the xylem vessels and promoted metal
tolerance. Another group of transporters that tightly regulate
metal homeostasis is metal transporter proteins (MTPs) family,
which is involved in the translocation of metals (such as Zn
and Ni) toward internal compartments and extracellular space
(Gustin et al., 2011). MTP1, a vacuolar Zn2+/H+ antiporter,
which localized at both vacuolar and plasma membrane, is
involved in Zn accumulation as well as Zn tolerance (Desbrosses-
Fonrouge et al., 2005). MTP members are also involved in
Ni vacuolar storage in Thlaspi goesingense (Persans et al.,
2001). The naturally resistant associated macrophage proteins
(NRAMPs) are also involved in the transport of many heavy
metal ions including Cu2+, Mn2+, Co2+, Fe2+, and Cd2+

(Supek et al., 1997; Cailliatte et al., 2010; Bastow et al.,
2018). AtNRAMP1 is localized in the plasma membrane and
mediates Fe and Mn transport (Cailliatte et al., 2010). NRAMP3
and NRAMP4 are localized in the tonoplast and mediate the
export of stored Fe from the vacuole in germinating seed
(Bastow et al., 2018).

Besides metal ion transporter, complexing agents including
organic acids and amino acids act as metal ligands to mediate
chelation of heavy metal ions. For example, citrate is a major
chelator for Fe and Ni in the xylem (Tiffin, 1970; Lee et al., 1977),
while Ni may also be chelated by histidine (Krämer et al., 1996).

DETOXIFICATION MECHANISM

Heavy metal detoxification is a key prerequisite for the
implementation of phytoremediation (Thakur et al., 2016).
Generally, there are two defense strategies adopted by plants to
cope with the toxicity of heavy metals: avoidance and tolerance.
By these two mechanisms, plants manage to maintain the cellular
concentrations of heavy metals below the toxicity threshold levels
(Hall, 2002).

Avoidance
Avoidance strategy refers to the ability of plants to limit the
uptake of heavy metals and restrict their movement into plant
tissues through root cells (Dalvi and Bhalerao, 2013). It works
as the first line of defense at extracellular level through a range
of mechanisms such as root sorption, metal ion precipitation,
and metal exclusion (Dalvi and Bhalerao, 2013). Upon exposure
to heavy metals, plants first try to immobilize them either
through root sorption or by modifying metal ions. A variety of
root exudates, such as organic acids and amino acids, act as a
heavy metal ligand to form stable heavy metal complexes in the
rhizosphere (Dalvi and Bhalerao, 2013). Some root exudates can
change the pH of rhizosphere, which lead to precipitation of
heavy metals, thereby limiting their bioavailability and lessening
the toxicity (Dalvi and Bhalerao, 2013). Through metal exclusion
mechanism, exclusion barriers exist between the root system
and the shoot system to limit the access of heavy metals from
soil only to roots; the uptake and root-to-shoot transport is
restricted to protect aerial parts against harmful heavy metals.
Moreover, arbuscular mycorrhizas can restrict the entry of heavy
metals into the root by absorption, adsorption, or chelation of
heavy metals in the rhizosphere, thus, working as an exclusion
barrier for heavy metal uptake (Hall, 2002). Embedding the heavy
metals in the plant cell walls is another mechanism of heavy
metal avoidance (Memon and Schröder, 2009). Cell wall pectins
consist of carboxylic groups of polygalacturonic acids, which are
negatively charged and able to bind heavy metals. Therefore, cell
wall acts as a cation exchanger to restrict entry of free heavy metal
ions into the cells (Ernst et al., 1992).

Tolerance
Once the heavy metal ions get entry into the cytosol, tolerance
strategy is adopted by the plants to cope with the toxicity
of accumulated metal ions. It is the second line of defense
at intracellular level through various mechanisms such as
inactivation, chelation, and compartmentalization of heavy metal
ions (Dalvi and Bhalerao, 2013).

When excess heavy metal ions are accumulated inside the
cytosol, plants have to detoxify them in order to minimize
their toxic effects (Manara, 2012). This is mainly achieved
through chelation by complexation of heavy metal ions with
ligands. Through chelation, the concentrations of free metal
ions are reduced to relatively low levels. There are many
organic and inorganic ligands in the cytoplasm that mediate
heavy metal chelation. The organic compounds involved in
heavy metal ion chelation include organic acids, amino acids,
phytochelatins (PCs), metallothioneins (MTs), and cell wall
proteins/pectins/polyphenols (Hall, 2002; Sharma and Dietz,
2006; Gupta et al., 2013b). Organic acids within cells prevent
the persistence of heavy metals as free ions in the cytoplasm
by complexing and reducing their bioavailability to plants. For
example, citrate mediates the chelation of Ni in T. goesingense
leaves (Krämer et al., 2000), while acetic and citric acids bind Cd
in leaves of Solanum nigrum (Sun et al., 2006). In addition, malate
is involved in chelation of Zn in A. halleri (Sarret et al., 2002).
Heavy metal stress induces the accumulation of certain kinds
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FIGURE 1 | Schematic diagram shows the uptake, translocation, and sequestration of heavy metals in plants.

of amino acid. For example, Cd can induce the production of
cysteine in Arabidopsis thaliana (Domínguez−Solís et al., 2004),
while Ni hyperaccumulation induces histidine accumulation
(Harper et al., 1999). High accumulation of proline is also
induced by Cd, Pb, Zn, and Cu stress (Roy and Bera, 2002).
These amino acids can detoxify heavy metals by chelating heavy
metal ions within cells and xylem sap (Rai, 2002). PCs and MTs
are also induced in response to high levels of heavy metals. For
example, Cd is chelated by PCs in tobacco leaves (Vögeli-Lange
and Wagner, 1990), while MTs mediate the response to Cu stress
in Silene vulgaris, as increased expression ofMT gene is associated
with enhanced Cu tolerance (van Hoof et al., 2001).

After chelation, the complexes of ligands with heavy
metals are actively transported from the cytosol into inactive
compartments, such as vacuole where the complexes are stored
without toxicity (Tong et al., 2004). Sequestration and vacuolar
compartmentalization provide an effective protection against the
detrimental effects of heavy metals by removing toxic heavy
metal ions from sensitive sites of the cell where cell division
and respiration occur, thereby reducing the interactions between
heavy metal ions and cellular metabolic processes and avoiding
damages to cell functions (Sheoran et al., 2011). The uptake,
translocation, and detoxification of heavy metals in plants are
illustrated in Figure 1.

Besides vacuoles, heavy metal ions can be sequestrated and
compartmentalized into other locations, such as leaf petioles,
leaf sheathes, and trichomes (Robinson et al., 2003; Eapen
and D’souza, 2005), where heavy metals cause less damage
to the plant. Heavy metals can also be translocated to old
leaves and removed from the plant body by natural leaf

shedding (Thakur et al., 2016). For example, Zn is moved to
Plantago lanceolata leaves just during the last week prior to leaf
shedding and eventually removed from the plant after leaf fall
(Ernst et al., 1992).

When the environment accumulates high levels of heavy
metals, once the above-mentioned strategies are inadequate to
detoxify the detrimental effects of heavy metals, the increased
accumulation of metal ions in the cytoplasm trigger the
production of reactive oxygen species (ROS). The excess
production of ROS results in oxidative stress, which may cause
disruption of cell homeostasis, inhibition of cellular processes,
DNA damage, and protein oxidation (Huang et al., 2012;
DalCorso et al., 2019). To cope with heavy metal-induced
oxidative damage, plant cells activate the ROS-scavenging
machinery by inducing antioxidant enzymes, such as superoxide
dismutase (SOD), catalase (CAT), peroxidase (POD), and
glutathione reductase (GR), as well as non-enzymatic antioxidant
compounds including glutathione, flavonoids, carotenoids,
ascorbate, and tocopherols (Gupta et al., 2009; Jozefczak et al.,
2012; DalCorso et al., 2019). Hence, this anti-oxidative defense
system of plants plays an important role in response to
heavy metal stress.

PHYTOREMEDIATION

There are a number of phytoremediation strategies that are
applicable for the remediation of heavy metal-contaminated
soils, including (i) phytostabilization—using plants to reduce
heavy metal bioavailability in soil, (ii) phytoextraction—using
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plants to extract and remove heavy metals from soil, (iii)
phytovolatilization—using plants to absorb heavy metal from
soil and release into the atmosphere as volatile compounds,
and (iv) phytofiltration—using hydroponically cultured plants
to absorb or adsorb heavy metal ions from groundwater and
aqueous waste (Salt et al., 1995; Ernst, 2005; Marques et al., 2009).
Other phytoremediation strategies include phytodegradation
and rhizodegradation, which are used for breakdown of
organic pollutants. Here, we focus on the most widely used
phytoremediation strategies, phytostabilization, phytoextraction,
phytovolatilization, and phytofiltration in the remediation of
heavy metal-polluted soil.

Phytostabilization
Phytostabilization is the use of metal-tolerant plant species
to immobilize heavy metals belowground and decrease their
bioavailability, thereby preventing their migration into the
ecosystem and reducing the likelihood of metals entering into the
food chain (Wong, 2003; Marques et al., 2009). Phytostabilization
can occur through precipitation of heavy metals or reduction in
metal valence in the rhizosphere, absorption, and sequestration
within root tissues, or adsorption onto root cell walls (Ginn
et al., 2008; Kumpiene et al., 2012; Gerhardt et al., 2017). Plant
growth facilitates the preservation of soil health at heavy metal-
polluted areas. The established vegetation cover cannot only
stabilize heavy metals underground and minimize their leaching
to groundwater but also prevents the dispersion of heavy metal-
containing soil particles by wind (Vangronsveld et al., 2009;
Mench et al., 2010). One of the advantages of phytostabilization
is that disposal of hazardous biomass is not required when
compared with phytoextraction (Wuana and Okieimen, 2011).

The selection of appropriate plant species is crucial for
phytostabilization. To fulfill the requirement of highly effective
phytostabilization, plants should be tolerant to the heavy metal
conditions. As plant roots play a pivotal role to immobilize
heavy metals, stabilize soil structure, and prevent soil erosion,
plants should have dense rooting systems. Plants should be able
to produce a large amount of biomass and grow fast to timely
establish a vegetation cover in a specific site. In addition, the
plant cover should be easy to maintain under field conditions
(Berti and Cunningham, 2000; Marques et al., 2009). Many plant
species, which meet the above requirements, have been identified
and used for phytostabilization of heavy metal-polluted soils (for
a comprehensive review, see Burges et al., 2018).

To improve phytostabilization efficiency, organic or inorganic
amendments can be added to the contaminated soil. These soil
amendments can alter metal speciation, reduce heavy metal
solubility and bioavailability by changing pH value and redox
status of the soil (Alvarenga et al., 2009; Epelde et al., 2009;
Burges et al., 2018). Moreover, the application of amendments
can increase the organic matter content and essential nutrients of
the soil and improve physicochemical and biological properties,
which can benefit plant colonization and improve water-
holding capacity.

Interestingly, microorganisms living in the rhizosphere,
such as bacteria and mycorrhiza, can assist phytostabilization.
These microorganisms can improve efficiency of heavy metal

immobilization through adsorbing metals onto their cell walls,
producing chelators and promoting precipitation processes
(Göhre and Paszkowski, 2006; Mastretta et al., 2009; Ma et al.,
2011). They can also increase plant root surface and depth to
facilitate phytostabilization and even serve as a filtration barrier
against heavy metal ion translocation from roots to shoots
(Göhre and Paszkowski, 2006).

Phytoextraction
Phytoextraction is the use of plants to take up contaminants from
soil or water, and translocate and accumulate those contaminants
in their aboveground biomass (Salt et al., 1995; Jacob et al.,
2018). In recent times, phytoextraction is the most important
phytoremediation technique for reclamation of heavy metals
and metalloids from the polluted soil (Ali et al., 2013; Sarwar
et al., 2017). Unlike phytostabilization, by which plants only
temporarily contain heavy metals, and these heavy metals still
remain belowground, phytoextraction is a permanent solution
for the removal of heavy metals from polluted soil. Therefore, it
is more suitable for commercial application.

The process of phytoextraction of heavy metals includes a
few steps: (i) mobilization of heavy metals in rhizosphere, (ii)
uptake of heavy metals by plant roots, (iii) translocation of heavy
metal ions from roots to aerial parts of plant, (iv) sequestration
and compartmentation of heavy metal ions in plant tissues (Ali
et al., 2013). The efficiency of phytoextraction relies on a few
factors such as plant selection, plant performance, heavy metal
bioavailability, soil, and rhizosphere properties. Therefore, the
strategies to improve phytoextraction efficiency are developed in
light of those aspects and are discussed below.

Appropriate selection of the plant species is vital for effective
phytoextraction. The plant species for phytoextraction should
possess the following characteristics: (i) high tolerance to the
toxic effects of heavy metals, (ii) high extraction ability with
accumulation of high levels of heavy metals in aboveground
parts, (iii) fast growing with high biomass production, (iv)
abundant shoots and extensive root system, (v) good adaptation
to prevailing environment, strong ability to grow in poor soils,
easy cultivation and harvest, (vi) highly resistant to pathogens
and pests, be repulsive to herbivores to avoid heavy metals
entering into the food chain (Seth, 2012; Ali et al., 2013).

Among these characteristics, metal-accumulating capacities
and aboveground biomass are the key factors that determine
the phytoextraction potential of a plant species. Therefore, two
different strategies for plant selection are being employed: (i)
the use of hyperaccumulator plants, which can accumulate
heavy metals in aboveground parts to a greater extent and (ii)
the use of plants with high aboveground biomass production,
which may have lower metal-accumulating capacities, but
overall accumulation of heavy metals is comparable to that
of hyperaccumulators (Robinson et al., 1998; Salt et al., 1998;
Ali et al., 2013).

Generally, hyperaccumulators are plant species capable
of accumulating very high levels of heavy metals in their
aboveground parts without phytotoxicity symptoms (Rascio and
Navari-Izzo, 2011; van der Ent et al., 2013). The naturally
occurring heavy metal hyperaccumulator can accumulate metals
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at levels 100-fold greater than common non-hyperaccumulating
species under the same conditions (Rascio and Navari-Izzo,
2011). Strictly, the definition of hyperaccumulator should meet
the following criteria: (1) the shoot-to-root ratio of heavy metal
concentration is greater than 1, which is a sign of efficient
ability to transport metals from roots to shoots (McGrath and
Zhao, 2003; Marques et al., 2009); (2) the shoot-to-soil ratio
of heavy metal concentration is greater than 1, indicating a
higher capability to take up heavy metals from soil (McGrath
and Zhao, 2003); and (3) the concentration of the metal in the
shoot is higher than 10 mg/kg for Hg, 100 mg/kg for Cd and Se,
1,000 mg/kg for Co, Cu, Cr, Ni, and Pb, and 10,000 mg/kg for Zn
and Mn (Baker and Brooks, 1989).

Searching for effective hyperaccumulators is a key and the
most straightforward strategy for successful phytoremediation
of heavy metals. Currently, more than 450 plant species
from at least 45 angiosperm families have been identified as
metal hyperaccumulators so far (Suman et al., 2018), ranging
from annual herbs to perennial shrubs and trees, such as
Brassicaceae, Fabaceae, Euphorbiaceae, Asterraceae, Lamiaceae,
and Scrophulariaceae families (Salt et al., 1998; Dushenkov,
2003). Some species can even accumulate more than two
elements, such as Sedum alfredii, which can hyperaccumulate
Zn, Pb, and Cd (He et al., 2002; Yang et al., 2002, 2004).
A list of some plants, which show high capacity of heavy
metal accumulation is given in Table 1. However, using
edible crops for phytoremediation should be avoided as heavy
metals can accumulate in edible parts of the plant and thus
enter into the food chain by human or animal consumption,
raising concerns on human health. Hence, selection of the
non-edible hyperaccumulators is a key for efficient and safe
phytoremediation of heavy metals.

Although many hyperaccumulators have been identified and
used in phytoremediation of heavy metals, most of them are
short-lived with low biomass production and slow growth rate,
which limit the efficiency of phytoextraction. Alternatively,
high biomass producing non-hyperaccumulators can be used
for phytoextraction of heavy metals. Although they usually
accumulate lower concentrations of heavy metals in their
aboveground tissues on a per mass basis, the high biomass
production can compensate for the lower phytoextraction
efficiency, and the overall accumulation levels may even be higher
than that of hyperaccumulators (Ebbs et al., 1997; Vangronsveld
et al., 2009; Vamerali et al., 2010).

High biomass producing crops, such as Helianthus annuus,
Cannabis sativa, Nicotiana tabacum, and Zea mays, have been
reported to effectively remove heavy metals from contaminated
soil through phytoextraction (Kayser et al., 2000; Tlustoš et al.,
2006; Vangronsveld et al., 2009; Herzig et al., 2014). Grasses
can also be used for phytoextraction because of their short life
cycle, high growth rate, more biomass production, and high
tolerance to abiotic stresses (Malik et al., 2010). For example,
Trifolium alexandrinum is selected as a suitable candidate for
phytoextraction of Cd, Pb, Cu, and Zn, owning to its fast growth,
resistance to pollution loads, high biomass, and multiple harvests
in a single growth period (Ali et al., 2012). Woody species, like
trees, are used for phytoextraction due to several advantages.

TABLE 1 | List of some plants tested for heavy metals accumulation.

Heavy

metal

Plant species Maximum

concentration

in plant

(mg/kg)

References

As Pteris vittata 8331 Kalve et al., 2011

Pteris ryukyuensis 3647 Srivastava et al., 2006

Pteris quadriaurita 2900 Srivastava et al., 2006

Corrigiola telephiifolia 2110 García-Salgado et al., 2012

Pteris biaurita 2000 Srivastava et al., 2006

Pteris cretica 1800 Srivastava et al., 2006

Eleocharis acicularis 1470 Sakakibara et al., 2011

Cd Phytolacca Americana 10,700 Peng et al., 2008

Sedum alfredii 9000 Xiong et al., 2004

Prosopis laevigata 8176 Buendía-González et al.,

2010

Arabis gemmifera 5600 Kubota and Takenaka,

2003

Salsola kali 2075 de la Rosa et al., 2004

Thlaspi caerulescens 1140 Brown et al., 1994

Azolla pinnata 740 Rai, 2008

Deschampsia cespitosa 236.2 Kucharski et al., 2005

turnip landraces 52.94–146.95 Li et al., 2016

Co Haumaniastrum robertii 10,232 Marques et al., 2009

Cr Pteris vittata 20,675 Kalve et al., 2011

Cu Eleocharis acicularis 20,200 Sakakibara et al., 2011

Aeolanthus biformifolius 13,700 Chaney et al., 2010

Ipomoea alpine 12,300 Mitch, 2002

Haumaniastrum

katangense

8356 Sheoran et al., 2009

Pteris vittata 91.975 Wang et al., 2012

Hg Achillea millefolium 18.275 Wang et al., 2012

Marrubium vulgare 13.8 Rodriguez et al., 2003

Rumex induratus 6.45 Rodriguez et al., 2003

Silene vulgaris 4.25 Pérez-Sanz et al., 2012

Festuca rubra 3.17 Rodriguez et al., 2003

Poa pratensis 2.74 Sas-Nowosielska et al.,

2008

Hordeum spp 2.35 Rodriguez et al., 2003

Helianthus tuberosus 1.89 Sas-Nowosielska et al.,

2008

Armoracia lapathifolia 0.97 Sas-Nowosielska et al.,

2008

Juncus maritimus 0.315 Zheng et al., 2011

Cicer arietinum 0.2 Wang et al., 2012

Mn Schima superba 62412.3 Yang et al., 2008

Macadamia neurophylla 51,800 Sheoran et al., 2009

Maytenus bureaviana 33750 Marques et al., 2009

Alyxia rubricaulis 14000 Marques et al., 2009;

Chaney et al., 2010

Ni Psychotria douarrei 47,500 Cunningham and Ow, 1996

Phyllanthus serpentinus 38,100 Chaney et al., 2010

Alyssum murale 4730–20,100 Bani et al., 2010

(Continued)
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TABLE 1 | Continued

Heavy

metal

Plant species Maximum

concentration

in plant

(mg/kg)

References

Alyssum markgrafii 19,100 Bani et al., 2010

Alyssum corsicum 18,100 Li et al., 2003

Berkheya coddii 18,000 Mesjasz-Przybyłowicz

et al., 2004

Alyssum pterocarpum 13,500 Li et al., 2003

Alyssum caricum 12,500 Li et al., 2003

Alyssum heldreichii 11,800 Bani et al., 2010

Alyssum bertolonii 10,900 Li et al., 2003

Alyssum serpyllifolium 10,000 Prasad, 2005

Isatis pinnatiloba 1441 Altinözlü et al., 2012

Pb Medicago sativa 43,300 Koptsik, 2014

Brassica juncea 10,300 Koptsik, 2014

Brassica nigra 9400 Koptsik, 2014

Thlaspi rotundifolium 8200 Cunningham and Ow, 1996

Helianthus annuus 5600 Koptsik, 2014

Euphorbia cheiradenia 1138 Chehregani and Malayeri,

2007

Betula occidentalis 1000 Koptsik, 2014

Deschampsia cespitosa 966.5 Kucharski et al., 2005

Se Lecythis ollaria 18,200 Marques et al., 2009

Astragalus racemosus 14,920 Marques et al., 2009

Zn Thlaspi caerulescens 51,600 Cunningham and Ow, 1996

Eleocharis acicularis 11,200 Sakakibara et al., 2011

Thlaspi calaminare 10,000 Sheoran et al., 2009

Deschampsia cespitosa 3614 Kucharski et al., 2005

Woody species can produce a very high amount of biomass when
compared to herbs and shrubs, which facilitate the accumulation
of high levels of heavy metals in their aboveground biomass.
They have a deep root system, which can effectively reduce
soil erosion and prevent the dispersal of contaminated soil to
the surrounding environment (Suman et al., 2018). In addition,
trees are preferred than crop plants for phytoremediation due
to their non-edible characteristics, which means there is a lower
probability of the heavy metals entering into the food chain via
trees (Burges et al., 2018).

Phytovolatilization
Phytovolatilization is a phytoremediation strategy using plants to
take up pollutants from soil, convert these toxic elements into
less toxic volatile form, and subsequently release them into the
atmosphere by plant transpiration process via the leaves or foliage
system. This approach can be applied for detoxification of organic
pollutants and some heavy metals like Se, Hg, and As (Mahar
et al., 2016). For example, members of the Brassicaceae family
are good volatilizers of Se, such as Brassica juncea (Banuelos
and Meek, 1990; Terry et al., 1992; Banuelos et al., 1993).
Inorganic Se is first assimilated into the organic selenoamino
acids selenocysteine (SeCys) and selenomethionine (SeMet).

SeMet is biomethylated to form dimethylselenide (DMSe), which
is volatile and can be dispersed into the air with less toxicity
compared with inorganic Se (de Souza et al., 2000; Terry et al.,
2000). Elemental form of Hg is liquid at room temperature
and can be easily volatilized. Owing to its high reactivity, Hg
exists mainly as a divalent cation Hg2+ after release into the
environment (Marques et al., 2009). After taken up either by root
or leaf absorption, methyl-Hg is converted to ionic Hg, which
is later transformed into relatively less toxic elemental form and
volatilized into the atmosphere (Bizily et al., 2000).

The advantage of phytovolatilization compared with other
phytoremediation strategies is that heavy metal (metalloid)
contaminants are removed from the site and dispersed as gaseous
compounds, without any need for plant harvesting and disposal.
However, as a remedial strategy, phytovolatilization does not
remove the pollutants completely—the pollutants are still in the
environment. It only transfers pollutants from soil to atmosphere,
where the toxic volatile compounds will contaminate the ambient
air. Moreover, theymay be redeposited to the soil by precipitation
(Vangronsveld et al., 2009). Thus, a risk assessment is required
before its application in the field.

Phytofiltration
Phytofiltration is the use of plant roots (rhizofiltration),
shoots (caulofiltration), or seedlings (blastofiltration) to remove
pollutants from contaminated surface waters or waste waters
(Mesjasz-Przybyłowicz et al., 2004). During rhizofiltration, heavy
metals are either adsorbed onto the root surface or absorbed
by the roots. Root exudates can change rhizosphere pH, which
leads to the precipitation of heavy metals on plant roots (Javed
et al., 2019), further minimizing movement of heavy metals to
underground water.

The plants used for rhizofiltration are hydroponically grown
in clean water to develop a large root system first; then, the
clean water is substituted with polluted water to acclimate
the plants. After acclimation, the plants are transferred to the
contaminated site for removal of heavy metals. Once the roots
become saturated, they are harvested and disposed (Wuana and
Okieimen, 2011). Ideally, plants used for rhizofiltration should
have a dense root system, high biomass production, and be
tolerant to heavy metal. Both terrestrial and aquatic plants can
be used for rhizofiltration. For remediation of wetland water,
aquatic species such as hyacinth, azolla, duckweed, cattail, and
poplar are commonly used due to their high accumulation of
heavy metals, high tolerance, or fast growth and high biomass
production (Hooda, 2007). Terrestrial plants such as Indian
mustard (B. juncea) and sunflower (H. annuus) have longer and
hairy root system compared with aquatic plants. They also show
good capacities to accumulate heavy metals during rhizofiltration
(Tomé et al., 2008; Rezania et al., 2016; Dhanwal et al., 2017).

IMPROVING PLANT PERFORMANCE

The selected plant species with phytoremediation potential have
few limitations, such as slow growing, which limit rapid and
large-scale applications of these plants (Sarwar et al., 2017)
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and adaptation to a variety of environmental conditions like
nutrient-poor soils (Gerhardt et al., 2017). Hence, to minimize
these limitations, a strategy is developed through modifying and
improving certain traits of these plants to ensure their ability for
effective phytoremediation.

Traditional breeding (plant hybridization) or genetic
engineering (creation of transgenic plants) are employed to
either improve growth rate and biomass of hyperaccumulator
or introduce hyperaccumulation traits to fast growth, high
biomass plants (DalCorso et al., 2019). Brewer et al. (1999)
used electrofusion to fuse protoplasts isolated from the Zn
hyperaccumulator T. caerulescens and Brassica napus. The
selected hybrids (somatic hybrid), which have enhanced
hyperaccumulation capability and tolerance derived from
T. caerulescens and higher biomass production derived from
B. napus (Brewer et al., 1999), showed the ability to accumulate
high levels of Zn and Cd. This study indicated that transfer of
the metal hyperaccumulation trait to high biomass plants is
feasible through somatic hybridization. Similarly, Nehnevajova
et al. (2007) used chemical mutagen ethyl methanesulfonate
(EMS) to treat sunflowers and obtained sunflower “giant
mutant,” which exhibited a significantly enhanced heavy metal
extraction ability with 7.5 times accumulation for Cd, 9.2
times for Zn, and 8.2 times for Pb compared to control plants
(Nehnevajova et al., 2007).

Genetic Engineering
Genetic engineering has been proved as a promising technique
for improving phytoremediation abilities of plants toward heavy
metal pollution. To genetically modify plants, a foreign source
of gene from an organism, such as a plant species or even
bacteria or animals, is transferred and inserted into the genome
of a target plant. After DNA recombination, the foreign gene is
inherited and confers specific traits to the plants. Compared to
the traditional breeding, genetic engineering has the advantages
to modify plants with desirable traits for phytoremediation
in a much shorter time. Moreover, genetic engineering can
even transfer desirable genes from hyperaccumulator to sexually
incompatible plant species, which is impossible to achieve
through traditional breeding methods such as crossing (Berken
et al., 2002; Marques et al., 2009). Therefore, using genetic
engineering to develop transgenic plants with the desired traits
has shown attractive prospects in the field of phytoremediation.
Technically, modifying fast-growing, high-biomass species to
obtain high tolerance and high heavy metal accumulation
ability is more applicable than engineering hyperaccumulators
to get high-biomass production. Hence, in most applications,
fast-growing, high-biomass plants are engineered either to
enhance tolerance against heavy metals or to increase heavy
metal-accumulation ability, which are the key properties of
hyperaccumulators. Therefore, the selection of genes for genetic
engineering should base on the knowledge of heavy metal
tolerance and accumulation mechanisms in plants.

Heavy metals may cause excessive production of ROS and
result in oxidative stress, so heavy metal tolerance is usually
manifested by the strength of oxidative stress defense system.
Therefore, the most common strategy to increase heavy metal

tolerance is to enhance antioxidant activity (Koźmińska et al.,
2018), which can be achieved by overexpression of genes
involved in antioxidant machinery. To increase heavy metal
accumulation through genetic engineering, the common strategy
is to introduce and overexpress genes that are involved in
the uptake, translocation, and sequestration of heavy metals
(Mani and Kumar, 2014; Das et al., 2016). Hence, genes
encoding heavy metal/metalloid transporters can be transferred
and overexpressed in target plants to improve heavy metal
accumulation. These genes encode metal ion transporters
including ZIP, MTP, MATE, and HMA family members, which
are discussed previously. As metal chelators act as metal-
binding ligands to improve heavy metal bioavailability, promote
heavy metal uptake and root-to-shoot translocation, as well
as mediate intracellular sequestration of heavy metal ions in
organelles, it is a promising strategy to increasing heavy metal
accumulation by promoting the production of metal chelators via
genetic engineering. By overexpression of genes encoding natural
chelators, heavy metal uptake and translocation can be improved
(Wu et al., 2010).

Although genetic engineering approach has shown attractive
prospects on improving plant performance in phytoremediation
of heavy metals, there are also a few setbacks that remain. As the
mechanisms of detoxification and accumulation of heavy metals
are very complicated and involve a number of genes, genetic
manipulation of multiple genes to improve desired traits is time
and effort consuming and usually not successful. Another issue is
that genetically modified plants are difficult to gain approval for
field testing in some areas of the world due to the risk raised on
food and ecosystem safety. Therefore, alternative approaches are
required to improve plant performance in phytoextraction once
genetic engineering is impracticable.

Using Microbes to Improve Plant
Performance
Use of plant-associated microorganisms (rhizosperic
microorganisms) is another approach to improve plant
performance for phytoremediation. The microbial community
of the rhizosphere may directly stimulate root proliferation and,
thus, promote plant growth, increase heavy metal tolerance and
plant fitness (Gupta et al., 2013a; Fasani et al., 2018).

It has been shown that plant growth-promoting rhizobacteria
(PGPR) have large potential to improve phytoremediation
efficiency. PGPR can promote plant growth and fitness, protect
plants against pathogens, increase plant tolerance to heavy
metals, improve plant nutrient uptake as well as heavy metal
uptake, and translocation (Ma et al., 2011). This is achieved
by producing various compounds, such as organic acids,
siderophores, antibiotics, enzymes, and phytohormones (Ma
et al., 2011). PGPR can synthesize the 1-aminocyclopropane-
1-carboxylate (ACC) deaminase, which degrades the ethylene
precursor ACC. Through producing ACC deaminase, PGPR
is able to lower ethylene production, thus, promote plant
growth (Arshad et al., 2007; Glick, 2014). Plants inoculated with
PGPR containing ACC deaminase showed enhanced biomass
production as manifested by extensive root and shoot densities,
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resulting in enhanced uptake of heavy metals and increased
phytoremediation efficiency (Huang et al., 2004; Arshad et al.,
2007). PGPR can also produce bacterial auxin (IAA) to stimulate
lateral root initiation and root hair development, thus promoting
plant growth and facilitating phytoremediation (Glick, 2010;
DalCorso et al., 2019).

Arbuscular mycorrhizal fungi (AMF) is another important
microbial community that can assist plants for phytoremediation.
The presence of AMF in rhizospheres increases the absorptive
surface area of plant roots through the extensive hyphal network,
thus, enhancing water and nutrient uptake as well as heavy
metal bioavailability (Göhre and Paszkowski, 2006). AMF can
also produce phytohormones to promote plant growth and aid
phytoremediation (Vamerali et al., 2010).

INCREASING BIOAVAILABILITY
OF HEAVY METALS

Beyond plant selection and performance, increasing heavy metal
bioavailability is another important strategy to improve the
efficiency of phytoextraction. The heavy metals present in the soil
are not always readily available for bioaccumulation. Only a small
portion of the total heavy metal content in the soil exist as soluble

components in the soil and is ready for absorption by plants
(Blaylock and Huang, 2000). Some heavy metals such as Zn and
Cd are more mobile and bioavailable for plant than others (Lasat,
1999). According to the bioavailability of heavy metals/metalloids
in the soil, heavy metals/metalloids can be classified as readily
bioavailable heavy metals (Cd, Ni, Zn, As, Se, Cu), moderately
bioavailable heavymetals (Co, Mn, Fe), and least bioavailable (Pb,
Cr) (Prasad, 2003). Low bioavailability of certain heavy metals
such as Pb seriously hinders the uptake of the metals from soil,
thus reducing effective phytoextraction. The bioavailability of
heavy metals in the soil is determined by their intrinsic solubility
and soil properties, as well as the binding of heavy metals to
soil particles. Various soil physicochemical factors, such as the
presence of chelating agents, the soil pH, and microbial activity,
have shown impacts on bioavailability and solubility of heavy
metals in the soil (Rieuwerts et al., 1998; Wang et al., 2006).

A plant, itself, can employ various strategies to enhance heavy
metal bioavailability. Root exudates acidify the rhizosphere by
lowering soil pH, which promotes the desorption of heavy metals
from insoluble complexes to form free ion, thus increasing
the concentration of heavy metals in the soil (Thangavel and
Subbhuraam, 2004). Plants can also secrete metal-mobilizing
compounds in the rhizosphere, such as phytosiderophores,
carboxylates, and organic acids, which affect physicochemical

FIGURE 2 | Schematic diagram illustrates strategies used to improve phytoremediation.
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properties of the soil and facilitate heavy metal chelation, thereby
increasing solubility, mobility, and bioavailability of heavy metals
in the soil (Lone et al., 2008; Gerhardt et al., 2009; Robinson et al.,
2009; Padmavathiamma and Li, 2012).

It has been reported elsewhere that microorganisms in the
rhizosphere significantly increase heavy metal availability and
uptake by plants (Vamerali et al., 2010; Sheoran et al., 2011).
These microorganisms can secrete enzymes and chelate into the
rhizosphere, which lead to the formation of heavy metal–chelate
complexes, thus improving heavy metal uptake and translocation
(Clemens et al., 2002). For example, PGPR and PGPE (plant
growth-promoting endophytes) can increase solubility of water-
insoluble Zn, Ni, and Cu through the secretion of protons or
organic anions (Becerra-Castro et al., 2011). PGPR also secrete
biosurfactants and siderophores to mobilize heavy metals in
the soil. Siderophores are Fe chelators with strong affinity for
ferric iron (Fe3+) and variable affinity for other heavy metals,
such as Cd, Ni, As, and Pb (Schalk et al., 2011). Through
chelation with these heavy metals, siderophores can enhance
their bioavailability to both rhizobacteria and plants. In fact,
using rhizobacteria to make heavy metal ions available has been
proven effective. For example, Braud et al. (2009) inoculated
siderophore-producing bacteria in an agricultural soil containing
Cr and Pb with maize cultivated, and found that bioavailability
of Cr and Pb was increased; their uptake by maize was also
increased (Braud et al., 2009). In addition, mycorrhizal fungi
can also change physicochemical properties of soil and chemical
composition of plant root exudates, thereby affecting heavy metal
bioavailability in the soil (Sarwar et al., 2017). For example,
Chen et al. (2003) found that red clover (Trifolium pratense
L.) inoculated with arbuscular mycorrhiza had a higher yield
than uninoculated controls when grown in soil containing
Zn. Further analysis indicated that mycorrhizal hyphae could
directly absorb Zn from the soil and transfer it to the roots,
thereby increasing its accumulation (Chen et al., 2003). Another
widely considered strategy to increase heavy metal bioavailability
is using chelating agents. When soil amendments containing
chelating agents are added to the soil, the chelating agents form
water-soluble heavy metal–chelate complexes with the heavy
metals, which are more mobile and can be readily taken up by
the plant (Wuana and Okieimen, 2011). Chelating agents can
prevent precipitation and sorption of heavy metals in the soil and
facilitate desorption of heavy metals from soil particles, thereby
increasing heavy metal bioavailability (Salt et al., 1995; Ali et al.,
2013). In practice, different chelating agents are used for the
chelate-assisted phytoextraction, including synthetic and organic
chelating agents. Synthetic chelating agents, such as ethylene
diamine tetraeacetic acid (EDTA), ethylene glycol tetraeacitic
acid (AGTA), and diethylene triamine pentaacetic acid (DTPA),
can effectively increase heavy metal bioavailability and promote
uptake by plants (Gupta et al., 2008; Sarwar et al., 2017). However,
the poor biodegradability of these chelating agents results in their
persistence in the soil, which raises great concern about metal
leaching and detrimental effects on the environment (Smolińska
and Król, 2012; Lee and Sung, 2014). As an alternative, organic
chelating agents, such as citric acid, malic acid, acetic acid, and
oxalic acid, have been proven to effectively form heavy metal

complexes and enhance heavy metal bioavailability (Sarwar et al.,
2017). These organic chelators have natural origins and are
easily biodegradable in soil, which may introduce less risk to the
environment than synthetic chelating agents (Souza et al., 2013);
hence, it will be more promising to employ organic chelating
agents for chelate-assisted phytoextraction.

The strategies used to improve heavy metal phytoremediation,
including genetic engineering, microbe-assisted, and chelate-
assisted phytoremediation, are illustrated in Figure 2.

CONCLUSION

Heavy metal pollution is a vital issue for agricultural production
and food health due to the toxic effects and rapid accumulation
in the environment. To prevent or mitigate heavy metal
contamination and revegetate the contaminated soil, a variety
of techniques have been developed. Phytoremediation has
been proven to be a promising technique for revegetation
of heavy metal-polluted soil with a good public acceptance
and shows a variety of advantages compared with other
physicochemical techniques. The application of heavy metal
hyperaccumulators is the most straightforward approach
for phytoremediation, and hundreds of hyperaccumulator
plants have been identified so far. However, phytoremediation
with these natural hyperaccumulators still suffers from a few
limitations, as it is a time-consuming process, which takes a
very long time to clean-up heavy metal-contaminated soil,
particularly in moderately and highly contaminated sites. This
may partially be due to slow growth rate and low biomass
production of these hyperaccumulators. Therefore, improving
plant performance is a critical step for developing high
effective phytoremediation. Fortunately, genetic engineering
approach has been emerging as a powerful tool to modify
plants with desired traits such as fast grow, high biomass
production, high heavy metal tolerance and accumulation,
and good adaption to various climatic and geological
conditions. Hence, good understanding of the mechanisms
of heavy metal uptake, translocation, and detoxification in
plants, and identification and characterization of different
molecules and signaling pathway, will be of great importance
for the design of ideal plant species for phytoremediation
via genetic engineering. Genes involved in heavy metal
uptake, translocation, sequestration, and tolerance can be
manipulated to improve either heavy metal accumulation
or tolerance in plants. In addition, chelating agents and
microorganisms can be used either to increase heavy metal
bioavailability, which facilitates heavy metal accumulation in
plants, or to improve soil health and further promote plant
growth and fitness.

Practically, single approach is neither possible nor
sufficient for effective clean-up of heavy metal-polluted
soil. The combination of different approaches, including
genetic engineering, microbe-assisted and chelate-assisted
approaches, is essential for highly effective and exhaustive
phytoremediation in the future.
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