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The contamination of soils with heavy metals and its associated hazardous effects

are a thrust area of today’s research. Rapid industrialization, emissions from

automobiles, agricultural inputs, improper disposal of waste, etc., are the major

causes of soil contamination with heavy metals. These contaminants not only

contaminate soil but also groundwater, reducing agricultural land and hence food

quality. These contaminants enter the food chain and have a severe effect on human

health. It is important to remove these contaminants from the soil. Various economic

and ecological strategies are required to restore the soils contaminated with heavy

metals. Phytoremediation is an emerging technology that is non-invasive, cost-

effective, and aesthetically pleasing. Many metal-binding proteins (MBPs) of the

plants are significantly involved in the phytoremediation of heavy metals; the MBPs

include metallothioneins; phytochelatins; metalloenzymes; metal-activated

enzymes; and many metal storage proteins, carrier proteins, and channel proteins.

Plants are genetically modified to enhance their phytoremediation capacity. In

Arabidopsis, the expression of the mercuric ion-binding protein in Bacillus

megaterium improves the metal accumulation capacity. The phytoremediation

efficiency of plants is also enhanced when assisted with microorganisms, biochar,

and/or chemicals. Removing heavy metals from agricultural land without

challenging food security is almost impossible. As a result, crop selections with the

ability to sequester heavy metals and provide food security are in high demand. This

paper summarizes the role of plant proteins and plant–microbe interaction in

remediating soils contaminated with heavy metals. Biotechnological approaches

or genetic engineering can also be used to tackle the problem of heavy

metal contamination.
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Introduction

Metal ions at their higher concentration are toxic to plants, but

they are necessary as trace elements. Many heavy metals (As, Cd, Cr,

Cu, Hg, Ni, Pb, and Zn) are now hazardous to the environment

globally and lead to a negative impact on human health. Due to their

persistence in the environment for very long periods, such as for

many hundreds to thousands of years, they negatively impact human

and animal health (Alengebawy et al., 2021). Long-term exposure to

heavy metals through the air, water, soil, and food causes various

diseases like cancer, neurological effects, myocardial infarction, high

blood pressure, skin lesions, organ system damage, urinary,

reproductive, and respiratory systems (Rahimzadeh et al., 2017; Li

et al., 2019). Lead (Pb) can persist in soil for more than 150–5,000

years and remains at high concentrations for up to 150 years after

sludge application to the soil (Jabeen et al., 2009), whereas the

biological half-life of cadmium (Cd) is approximately 10–30 years

(Berglund et al., 2015). Removing heavy metals from the environment

is very difficult because their degradation, like other pollutants, is not

possible either biologically or chemically. Various technologies are

adopted for ex situ and in situ heavy metal remediation of the

contaminated soil. Some common technologies are chemical

reduction, electrophoresis, excavation, pneumatic fracturing, soil

washing, soil flushing, solidification, and nitrification (Dada et al.,

2015). All of these traditional approaches are colloquially known as

“pump and treat” and “dig and dump” techniques; however, these

techniques are restricted to small areas and have limitations

(Leung, 2004).

The conventional methods of removing pollutants from the

environment are associated with numerous issues, such as partial

removal, needing high energy, producing a significant amount of

toxic sludge, being limited to a small area, and being costly (Li et al.,

2019; Zamora-Ledezma et al., 2021). The economic burden of soil

remediation by physical methods can be understood by the report of

Salt et al. (1995). The phytoremediation of soil in 1 ac costs only

approximately 60,000–1,000,000 US$, while physical remediation

costs four-to-six times more to clean.

Over the last 10 years, a rapidly emerging, economically sound,

and environmentally supportive alternative to traditional remediation

practices has gained attention. This technique, known as

“phytoremediation,” uses plants to clean up the environment as

they can extract, accumulate, and depollute the substrate (soil, air,

and water) from the contaminants through physical, chemical, or

biological processes.

Several soil and plant factors influence phytoremediation

efficiency, including chemical and physical soil properties, exudates

from plants and microbes, metal bioavailability, and the plant ability

to “uptake, accumulate, translocate, sequester, and detoxify metals”

(Wang et al., 2020b). Bioremediation is economical as well as highly

efficient; thus, these strategies have been proposed as an appealing

alternative (Mejáre and Bülow, 2001). The application of plants and

microorganisms either alone or in association to decontaminate heavy

metal pollution has gained increasing attention. Many

microorganisms, including fungi, mycorrhizal and non-mycorrhizal

plants, and cultivated and wild plants, are tested in labs and the field

for their ability to decontaminate metalliferous substrates in the
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environment (Tabrizi et al., 2015; Bahraminia et al., 2016; Yang

et al., 2016; Yang et al., 2021; Antoniadis et al., 2021).

Understanding the mechanisms of how plants tolerate a specific

metal is critical for increasing the number of plants that can be used

for the phytoremediation of heavy metal–polluted sites. Various

metal-binding proteins (MBPs) in the plants are involved in the

absorption, accumulation, translocation, and detoxification of heavy

metals and hence provide tolerance to the plants (Feki et al., 2021;

Sharma et al., 2021). The MBPs include phytochelatins (PCs),

metallothioneins (MTs), and transporter proteins [heavy-metal

ATPase (HMA)] (Chaudhary et al., 2018; Mathur and Chauhan,

2020). This review focused on the different techniques used and the

role of plant proteins to remediate soils contaminated with heavy

metals. Biotechnological approaches or genetic engineering can also

be used to tackle the problem of heavy metal contamination.
Plants associated with the process of
phytoremediation

The selection criteria for the plants used in phytoremediation are

that they should be highly metal tolerant and have a short life cycle,

broad distribution, large biomass, and a translocation factor (TF)

greater than 1 (Mazumdar and Das, 2015). Some plant species are

more suitable for phytoremediation than others. Two main factors are

commonly applied for the assessment of the phytoremediation

potential of a plant: bioconcentration factor (BCF) and TF. The

shoot-to-root ratio of heavy metal and the root-to-soil ratio of

heavy metal are defined as the TF and BCF. Plants with more than

one TF and BCF (TF > 1 and BCF > 1) are expected to be used in

phytoextraction (Table 1) (Li et al., 2022a).
Mechanisms involved in
phytoremediation of heavy metals

The phytoremediation of heavy metal–contaminated soil includes

any one mechanism or a combination of two or more phytoremediation

mechanisms. The phytoremediation mechanisms mainly involved

phytoextraction, phytostabilization, phytovolatilization, and

rhizofiltration (Figure 1).
Phytoextraction

Plants uptake pollutants from soil, water, or sediments by their

roots and transfer them to the aboveground biomass where they

accumulate, such as in shoots or other harvestable parts of the plant.

This is known as phytoextraction (Singh and Santal, 2015; Sarwar

et al., 2017; Yanitch et al., 2020). Plants that can accumulate heavy

metals are cultivated on polluted sites for this reason, and the metal-

enriched biomass above the ground is collected, resulting in the

elimination of some portions of the soil pollutant. Since it is

considerably easier to collect shoots than roots, metal transfer to

shoots is an important physiological process. The most effective

phytoremediation approach for heavy metal and metalloid removal
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from disturbed soils is phytoextraction. It is also the most

commercially viable option. The efficacy of phytoextraction as a

possible environmental cleaning solution is dependent on a variety

of parameters, including heavy metal bioavailability, soil

characteristics, heavy metal speciation, and the plant’s capacity to

absorb metals and accumulate aboveground components (Yan et al.,
Frontiers in Plant Science 03
2020). Approximately 450–500 different plants have been recognized

as hyperaccumulators (Chaudhary et al., 2018). Plant species must

have the following characteristics to be suitable for phytoextraction:

(i) metal tolerance to harmful metals, (ii) the production of high

biomass, and (iii) active accumulators of heavy metals in easily

harvestable parts (Vangronsveld et al., 2009; Suman et al., 2018).
FIGURE 1

Various mechanisms involved in the phytoremediation of heavy metals.
TABLE 1 List of some plants used in the phytoremediation of different soil contaminants.

Heavy metals Plants BCF TF References

Zn (26.4 mg/kg)
Cu (1.5 mg/kg)
Ni (0.9 mg/kg)

Sinapis arvensis;
Brassica campestris;
Brassica juncea

7.5
6.47
6.71

1.49
-
-

Drozdova et al., 2019

Cd, Zn (10–160 mg/kg) Tagetes erecta L. 9.35 (Cd), 10.5 (Zn) 1.77 (Cd), 0.24 (Zn) Madanan et al., 2021

Cu2+ (60–180 ppm) Helianthus annuus 0.99 0.71 Mahardika et al., 2018

Pb, Zn (initial amount not provided) Pinus sylvestris;
Quercus robur

1.60 (Pb), 2.22 (Zn)
1.19 (Pb)

0.18 (Pb), 2.95 (Zn)
0.50 (Pb)

András ̌ et al., 2016

Cd (5–100 mg/kg) Malva rotundifolia;
Abelmoschus manihot

3.31
3.67

7.37
1.21

Wu et al., 2018a; Wu et al., 2018b

Cd (5, 10, and 25 mg/kg) Pterocypsela laciniata 4.55 3.73 Zhong et al., 2019

Cd (100 mg/kg) Lantana camara L. 4.78 4.90 Liu et al., 2019

Ni (44.4 µg/L), Pb (114.6 µg/L) Typha angustifolia;
Echhornia crassipus

1.42 (Ni), 1.03 (Pb)
1.83 (Ni), 0.88 (Pb)

1.29 (Ni), 4.90 (Pb)
7.63 (Ni), 1.73 (Pb)

Pandey et al., 2019

Hg (230–6,320 ng/g) Plectramthus sp.;
Clidemia sp.;
Capsicum annuum;
Phyllanthus niruri;
Inga edulis

0.33
0.36
0.83
0.59
0.28

1.73
1.43
1.19
1.12
1.21

Marrugo-Negrete et al., 2016

As (468.0, 442.0, and 304 mg/kg) Pteridium aquilinum;
Corrigiola telephiifolia;
Ludwigia erecta;
Sacciolepis cymbiandra

3.31
2.96
1.01
1.47

0.16
0.52
0.56
0.81

Onyia et al., 2021

Cr (100 mg/kg) Brachiaria mutica; Leptochloa fusca 1.28
2.0

0.02
0.03

Ullah et al., 2021

Cr (50 mg/L) Typha angustifolia L.;
Canna indica L.;
Hydrocotyle umbellata L.

2.6
10.9
37.8

1.03
1.17
0.191

Taufikurahman et al., 2019
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The basic idea behind phytoextraction for polluted areas is to cultivate

suitable plant species in situ, collect the heavy metal–containing

biomass, and treat it to minimize its mass and size, which can be

achieved through composting, compressing, dehydrating, and

thermal decomposition. The resultant heavy metal–enriched

biomass contains high levels of metal contaminants and, if

economically feasible, is utilized for trace element reextraction or

disposed of as carefully hazardous waste (McGrath et al., 2002;

Sheoran et al., 2009; Suman et al., 2018). Lemna valdiviana, an

American minute flowering plant, exhibits promising arsenic-

bioaccumulating characteristics and can extract up to 82% of

arsenic from contaminated water (Souza et al., 2019). Bixa orellana,

used as an accumulator of the As(III) of Cr(VI), can accumulate

82.8% of Cr(VI) and 40.4% of As(III) of the initial amount of 3 and 6

ppm, respectively (Kumar et al., 2022b). Suthar et al. (2014) reported

a significant phytoextraction potential of the maize (Zea mays L.).

This potential was also increased with the addition of the metal

chelating agent EDTA, which enhances more than 13-fold extraction

of Pb and more than 3-fold extraction of Cd. Phytoaccumulation

capacity for Cu contamination by three different lettuces (Romaine

lettuce, Redina lettuce, and iceberg lettuce) was investigated by Shiyab

(2018) who reported that Redina lettuce is a high accumulator of Cu.

Accumulation in root tissue was 1.89 mg kg−1, while, in shoot tissue, it

was 0.71 mg kg−1, which is relatively high among these three lettuces.
Phytostabilization

Phytostabilization means establishing a plant covering the surface

of polluted sites to limit the movement of contaminants within the

vadose zone by root accumulation or immobilization inside the

rhizosphere, therefore lessening off-site pollution. Transpiration and

root development immobilize pollutants by a decrease in leaching,

establishing aerobic conditions in the root zone, and the addition of

organic substances to the substrate, which binds the pollutants (Bolan

et al., 2011). The use of organic acid-producing metal-tolerant plant

beneficial rhizobacteria, either alone or in combination with biogas

residues, reduces Cd pollution in soil by stabilizing maize roots and

limiting translocation to shoots. It also helps in improving maize

biomass output, quality, and physiology. Furthermore, using poultry

manure alone or in combination with biogas residues enhances Cd

translocation to the shoot. Organic acid synthesis in maize root

exudates is important for Cd stabilization in roots and shoots.

Organic acid synthesis was raised in reaction to metal-tolerant

plant-beneficial rhizobacteria and biogas residues, but poor

production in response to poultry manure lowered Cd content in

the root (Tahir et al., 2022). Mahdavian et al. (2022) reported that

Scariola orientalis can be used as an efficient plant species in the

phytoremediation (phytostabilization) of soils polluted with Zn and

Fe. The level of heavy metal Cd in the rice grain can be reduced to

improve the food quality. Cd levels in harvested rice (Oryza sativa L.)

grains dramatically decreased in the Cd-contaminated fields when

rice was intercropped with the alligator flag (Thalia dealbata). This

reduction was accomplished because the fine roots of the alligator flag

absorb a high quantity of Cd from the rice’s rhizosphere soil, lowering

the rice’s Cd intake (Wang et al., 2020a). The alligator flag is most

likely the best phytostabilization plant for Cd cleanup. Although soil
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nutrients varied significantly in the alligator flag cropping systems, Cd

concentration was the dominant factor limiting microbial biomass

and community structure. Intercropping T. dealbata with rice can be

successfully used in the remediation of mild Cd contamination while

simultaneously securely producing rice (Wang et al., 2020a).

Naturally growing Tetraena qataranse plants in Qatar can

accumulate heavy metal contaminants such as Cd, Cr, Cu, and Ni

from the soil. This plant is suitable for animal fodder in arid areas

(Usman et al., 2019). Two ecotypes of Athyrium wardii, one from a

mining site and the other from a non-mining site, demonstrated

different phytostabilization potentials for Cd from contaminated soils.

The mining ecotype accumulated more Cd in roots, while the

translocation of Cd to aerial parts was lower than in the non-

mining ecotype. Furthermore, the use of humic compounds

promotes the phytoremediation capacity of A. wardii root,

particularly in the mining ecotype (Zhan et al., 2016).
Phytovolatilization

Phytovolatilization refers to the use of plants to absorb heavy

metal pollutants and transform them into volatile, less hazardous

chemical species via transpiration. Some of the heavy metals, such as,

Hg, and Se, may exist in the environment as gaseous species (Chandra

et al., 2015). A small number of naturally occurring or genetically

engineered plants, such as muskgrass (Chara canescens), Indian

mustard (Brassica juncea), and Arabidopsis thaliana, have been

shown to absorb heavy metals and transform them to gaseous

forms within the plant before releasing them into the environment

(Ghosh and Singh, 2005). Arundo donax, in association with the plant

growth-promoting bacteria Stenotrophomonas maltophilia and

Agrobacterium, can volatize approximately 75% of the initial

amount of As (20 mgL−1). Approximately 25% remained in the

sand, and only approximately 0.15% accumulated in the plant

(Guarino et al., 2020). Arsenic exists in four different oxidative

forms (−3, 0, + 3, and +5), but two commonly found species are

arsenite (As+3) and arsenate (As+5). Formerly, it was believed that the

microorganisms and enzymes reduced and methylated the arsenite

and arsenate within the plants. Two As species, trimethylated and

dimethylated As, were easily evaporated from the plants’ aerial parts

(Zhao et al., 2010). However, recent reports proved that there is no

involvement of the plant in the methylation of As from mono- and

dimethylated or inorganic form to volatile trimethylated As species,

although these volatile species are taken up by the plants’ roots from

the soil itself (Jia et al., 2012). Selenium contamination in soil is also a

great threat to the environment because of its long half-life period of

approximately 327,000 years. It can be removed by the process of

phytovolatilization (Sharma et al., 2015). Like As, Se also exists in

nature in five different oxidative states (−2, 0, + 2, +4, and +6). The

common species of selenium that is found in nature is in the selenate

form (+6), and soil plants take it by sulfate transporters. In the plant,

various biochemical processes and enzymes are involved in the

conversion of inorganic Se to volatile (CH3)2Se (Sharma et al.,

2015). Dimethyl diselenide [(CH3)2Se], dimethyl selenone [(CH3)

2SeO2], dimethyl selenylsulfide [(CH3)2SeS], and methaneselenol

(CH3Se) are also released by plants from the soil (Terry et al., 2000;

Sharma et al., 2015; Chen et al., 2019). The phytovolatilization process
frontiersin.org

https://doi.org/10.3389/fpls.2023.1076876
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sharma et al. 10.3389/fpls.2023.1076876
also removes the neurodegenerative heavy metal Hg. The methylated

form of Hg is a severe threat to humankind because of its biological

magnification in the food chain (Kumar et al., 2017). Plants involved

in the phytoremediation of Hg take it from the soil via their roots and

translocate it to the aerial part of the plant via their vascular system,

where it is then transpired. The enzymes of the plant transform Hg

into a volatile form (Sharma et al., 2015).
Rhizofiltration/hydraulic control

Rhizofiltration, or hydraulic control, is the method based on plant

roots’ capacity to absorb and sequester metal pollutants from the

water. Using this mechanism of phytoremediation, cleaning out

metals such as Cd, Cr, Cu, Ni, Pb, and V and radionuclides (U, Cs,

Sr) is possible (Jabeen et al., 2009; Singh and Santal, 2015). Long-

rooted trees can absorb a large quantity of water, which was employed

as a primary component in this procedure (Ahlfeld and Heidari,

1994). Long-rooted trees operate as pumps, drawing vast amounts of

water from the subsurface water table (Muthusaravanan et al., 2018).

As a consequence, contaminants in the water table are absorbed along

with the water throughout this process. Root exudates such as citric

acid and malic acid can scavenge or enhance the absorption,

adsorption, or sedimentation of pollutants (Banerjee and

Roychoudhury, 2022). Z. mays L. was evaluated (Benavides et al.,

2018) and reported a 12% decrease in Hg, a 32% decrease in Pb, and a

30% decrease in Cr. The high potential of rhizofiltration is exhibited

by the aquatic plant Typha angustifolia. It can uptake Cd and Zn

4,941.1–14,109.4 mg per plant and 14,039.3–59,360.8 mg per plant,

respectively. T. angustifolia having a BCF value greater than 100 and a

TF value less make it an excellent candidate for phytoremediation

(Woraharn et al., 2021). Three very common aquatic plants Azolla

(water fern), Pistia (water lettuce), and Eichhornia (water hyacinth)

have different phytoremediation properties. Pistia has a good capacity

for the phytoextraction and phytostabilization of As, Pb, and F, while,

Eichhornia and Azolla effectively absorb Ni and Cu from the

contaminated water. The TF of Pistia for fluoride is 5.0, making it

an excellent hyperaccumulator of fluoride (Banerjee and

Roychoudhury, 2022).
Metal-binding proteins in plants

Several MBPs have been reported in plants, which include MTs;

PCs; metalloenzymes (MEs); metal-activated enzymes; and many

metal storage proteins, carrier proteins, and channel proteins

(Memon and Schröder, 2009). Additionally, PCs are low-molecular-

weight peptides having a high affinity for transition metals,

synthesized by glutathione-derived metal-binding peptides

(Clemens, 2006). MBPs are compounds that bind to metals such as

Fe, Cr, Zn, As, Cd, Ni, and Pb (Mejáre and Bülow, 2001). Cysteine

residues are abundant in naturally occurring heavy MBPs such as PCs

and MTs. The presence of an increased chelating molecule in plant

cells, such as MTs, which are cysteine-rich proteins, and PCs, is

thought to be responsible for hyperaccumulating plants’ greater

tolerance or resistance (cysteine- and glutathione-rich compounds)
Frontiers in Plant Science 05
(Sharma et al., 2021). Plants possess different types of cadmium-

binding proteins that have fewer cysteine residues (Yu et al., 2018).

MBPs have often been introduced and/or overexpressed to improve

bacteria and plants’ metal-binding capacity, tolerance, or

accumulation. Plant PC biosynthesis has recently been changed to

improve metal accumulation, while various peptides containing

metal-binding amino acids (mainly histidine and cysteine residues)

have been investigated in bacteria for greater heavy metal

accumulation (Mejáre and Bülow, 2001). Some plant proteins

involved in the phytoremediation of heavy metals are listed in Table 2.
Phytochelatins

Plant PCs are cysteine-rich low-molecular-weight polypeptides

that are synthesized enzymatically, and their formation is stimulated

by the presence of heavy metals (Chia, 2021). The PCs are structurally

associated with glutathione synthetase (GSH), and the common

structural formula of the PCs is “(g-Glu-Cys)n-Aa,” where n ranges

between 2 and 11 and Aa is an amino acid at the C-terminal. Due to

the high range of “n,” the structural species of the PCs are also high

(Grill et al., 2007; Vershinina et al., 2022). The C-terminal ‘Aa’ is

generally represented by Gly. However, in several plant families,

C-terminal ‘Ala,’ ‘Glu,’ and ‘Ser’ isophytochelatins have been

reported (Vershinina et al., 2022). PCs chelate heavy metals by

using their thiol groups. The complexes of metals and PCs that are

produced as a consequence are stored in vacuoles (Ovečka and Takáč,

2014). The phytoremediation capacity of the PCs is largely dependent

on their polymerization. An aquatic plant, L. minor, was evaluated for

its phytoremediation capacity. PC species with a higher degree of

polymerization (PC4, PC6, and PC7) accumulated more Cd than PC

species with a lower degree of polymerization (PC2 and PC3) (Török

et al., 2015).
Metallothionein

Plants have developed some adaptations to tackle metal ion

concentrations’ increase in soil. An excessive amount of essential

metal ions also causes toxicity similar to the non-essential metal ions;

the foresaid mechanism provides metal tolerance as well as plays a

significant role in the detoxification of excessive metal ions. MT was

first discovered in animals than in plants; plant MTs have been

discovered only approximately 30 years ago (Joshi et al., 2016). The

superfamily of MT protein includes 15 families combined from

animals, plants, fungi, and cyanobacteria (Joshi et al., 2016). The

plant MTs are grouped into four distinct subfamilies: p1 (class 1), p2

(class 2), p3 (class 3), and pec (class 4). The MT1 gene from Cicer

arietinum is part of the P1 subfamily, together with MT1a and MT1c

from A. thaliana. On the other hand, the MT2 gene from C. arietinum

is part of the P2 subfamily, along with MT2a and MT2b from A.

thaliana.Musa acuminate and A. thalianaMT3 are both members of

the P3 subfamily. Members of the ‘pec’ subfamily include A. thaliana

MT4a (Ec-2) and MT4b (Ec-1), in addition to Ec-1 from T. aestivum.

There are four different kinds of MT-encoding genes, and these genes

may be found in Arabidopsis, rice, and sugarcane (Joshi et al., 2016).
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Transporter proteins

The transporter proteins of the plants can uptake, translocate and,

sequester the heavy metals to provide tolerance to the plants and

eventually remediate the contaminated soil. The transporter protein

involved in the uptake of the heavy metals such as Cd is divided into

several families based on the sequence similarity between them. The Cd

transporter includes ZIP family transporter protein (Zn-regulated

transporter protein and Fe-regulated transporter protein), metal

tolerance proteins (MTPs), and natural resistance–associated

macrophage proteins (NRAMPs) (Luo and Zhang, 2021). The HMA

can transport heavy to the distant part of the plants e.g., the transportation

of Cd from the root to the shoot (Mills et al., 2003; Wong and Cobbett,

2009).Many ions are stored in the vacuoles, and this storage canminimize

the toxic effect of heavy metals. Various transporters are involved in the

transportation of the free Cd and PC-Cd complex to the vacuoles. The

vacuolar transporters are HMAs, NRAMPs, ATP-binding cassette

transporters (ABCCs), and H+/cation exchangers (CAXs) (Lanquar

et al., 2005; Park et al., 2012; Brunetti et al., 2015).
Metal-binding proteins associated with
different crops

Literature on the phytoremediation ability of cereal crops is

sparingly available, although studies are mainly focused on the
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model plant A. thaliana and rice. In the present review, literature

available on the other crops is also reviewed.
Metal-binding proteins in rice

The elevated level of the heavy metal in the contaminated soil

induced the expression of glutathione S-transferases (GSTs) and GSH

in rice, which quenches the reactive molecules that induce the

biosynthesis of the PCs. The PCs make a complex with the As, and

the complex is sequestered into the vacuoles by ABCC1/ABCC2

transporters. Therefore, GST is involved in arsenic detoxification

(Khan et al., 2018; Kumar and Trivedi, 2018; Tiwari et al., 2022).

Localized near the root tip, OsNramp5 is a key transporter for Cd

absorption in rice and a member of the NRAMP transporter family.

In contrast, Cd is sequestered into root vacuoles by OsHMA3, a

member of the HMA family. The OsHMA2, which is found in the

root’s pericycle cells, has a role in mediating the translocation of Cd

from the roots to the shoots (Wang et al., 2019).
Metal-binding proteins in maize

Maize is established as a heavy metal accumulator; however, the

detailed molecular mechanism is not amply known. The expression of

the ZmMTs gene under heavy metal stresses (Cu, Cd, and Pb)
TABLE 2 Plant proteins and respective genes in the phytoremediation of heavy metals.

Protein Plant Gene Contaminant Reference

Natural resistance–Associated Macrophage
Proteins

Arabidopsis thaliana AtNramp1, 3, 4, and 6 Cd Zhang et al., 2020b

Natural resistance–associated macrophage
proteins

Oryza sativa OsNramp1, 2, and 5 Cd Sasaki et al., 2012; Chang et al.,
2020; Chang et al., 2022

Natural resistance–associated macrophage
proteins

Hordeum vulgare HvNramp5 Cd Wu et al., 2016; Kintlová et al.,
2021

Rubber elongation factor (REF) Sweet potato (Ipomoea batatas
L.), Nicotiana tabacum

MuSI Cd, Cu Seo et al., 2010; Kim et al., 2011

Phytochelatin synthase Sesbania rostrata PCS1 Cd and Zn Li et al., 2009

Metallothionein and phytochelatin synthase Azolla pinnata and Azolla
filiculoides

MT2 and PCS1 Ni, Zn, Cu, and
Cd

Talebi et al., 2019

Phytochelatin synthase Nicotiana tabacum PCS1 Cd and As Shukla et al., 2012

Phytochelatin synthase Arabidopsis PCS1 Cd and heavy
metal(loid)s

Shukla et al., 2013

Phytochelatin synthase Ipomoea pescaprae PCS Cd Su et al., 2020

Fusion protein (bacterial mercury transporter
MerC and a plant SNARE SYP121)

Arabidopsis MerC-SYP121 Hg Uraguchi et al., 2019

ABC-type xenobiotic transporter Arabidopsis thaliana and
Populus tomentosa

PtABCC1 Hg Sun et al., 2018

Calmodulin-binding protein NtCBP4 Nicotiana tabacum and
Arabidopsis thaliana

NtCBP4 and AtCNGC1 Pb Kumar et al., 2022a

Na+/H+ antiporter Salvinia minima Baker SmNhaD Pb Leal-Alvarado et al., 2018

Glucocorticoid receptors and cytokinin-beta-
glucosidase

Nicotiana langsdorffii Glucocorticoid receptor
gene and rolC gene

Cr Del Bubba et al., 2013
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regulated by the hormones and MT synthesis improves the growth

and development of the maize plants (Gao et al., 2022). Jin et al.

(2022) investigated the role of the PC synthase gene ZmPCS1 of maize

in Cd stress. The overexpression of this gene in the shoot and root of

the maize plant prevented the toxic effect of the Cd and enhanced

phytoremediation capacity. The expression of the PCs, MTs, and

GSH in the root of the maize and barley plants increased when

Nocardiopsis lucentensis (an actinomycete strain) was inoculated

under As stress and enhanced the As-phytoremediation ability of

both plants (AbdElgawad et al., 2021).
Metal-binding proteins in wheat

The role of wheat in phytoremediation is sparingly studied;

however, few studies reported an increase in the expression of the

PC synthase (TaPCS1) gene under Cd stress and Pb stress (Repkina

et al., 2019; Rahman et al., 2022). The application of Si to the wheat

plants under As stress induces the level of PCs and MTs, which

further reduces the translocation of As to the shoot by sequestrating it

into the roots of wheat (Hossain et al., 2018).
Metal-binding proteins in barley

Barley is the most abiotic stress-tolerant cereal crop against salinity

stress, drought stress, and heat stress. It is also tolerant to some heavy

metals like Cr, Zn, Cu, Cd, and Pb (Brunetti et al., 2012). A barley P1B-

ATPase transports the important element Zn as well as the harmful

pollutant Cd (Mills et al., 2012). The lipid-transfer protein from barley

may play an important role in the phytoextraction of heavy metal ions

from polluted soil. By using differential pulse polarography, Gorjanovi

et al. (2004) evaluated the lipid-transfer protein-binding capacity to

various metal ions and found that the protein has an affinity for Co (II)

and Pb (II) but no affinity for Cd (II), Cu (II), Zn (II), and Cr (III)

(Gorjanović et al., 2004). The expression of the OsMT1e gene for MT

protein significantly enhances the Cd tolerance, detoxification, and

accumulation of Cd ions (Rono et al., 2021).
Advancements in the technologies
used in the phytoremediation of
heavy metals

The mechanism of the phytoremediation technique needs to be

improvised with time to enhance efficiency as well as cost-

effectiveness. Different approaches have been implied for the

enhancement, and researchers are continuing to investigate new

techniques; these include genetic engineering and phytoremediation

assisted with biochar, chemicals, and microorganisms (Sarwar

et al., 2017).

Biochar is an economical carbon-based material having porous

nature, and, because of this, it has outstanding potency and

adaptability in a variety of contexts (Brewer et al., 2014). Since it

has an inherent benefiting soil-conditioning ability, which improves

water-holding capacity, fertility, pH, nutrients, carbon sequestration,
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the activity of microorganisms, and the remediation of pollution, in

recent years, there has been an increase in biochar research as a soil-

ameliorating agent (Ennis et al., 2012). This is because biochar

improves soil fertility. In its natural state, biochar has a pH range

of 8–11 and its cation exchange capacity (CEC) ranges from 25 to 485

cmol(+) kg1. It has a large surface area (140–336 m2 g1), high porosity

(0.0–1.32 cm3 g1), and a specific surface area that ranges from 10 to

400 m2 g1. The COOH, –CO–, –OH, and ester groups are all found on

the surface of biochar, and their presence boosts the CEC and

adsorption while simultaneously lowering the leachability of

nutrients (Ahmad et al., 2014; Ghosh and Maiti, 2021). Biochar’s

high pH organic material has the potential to minimize the

bioavailability of heavy metals, which is a benefit to the environment.

Because biochar remediation is not harmful to the environment and is

cost-effective, its use for the amendment of soil that is polluted with

HM has become more common. After applying biochar to soil, the

average concentrations of accessible Cd, Pb, Cu, and Zn were found to

have decreased by 52%, 46%, 29%, and 36%, respectively (Chen et al.,

2018). According to Lu et al. (2017), adding bamboo, rice straw, and

biochar at a concentration of 5% (w/w) reduced the amount of

extractable Cd, Cu, Pb, and Zn found in polluted soil. Gong et al.

(2019) reported the use of tea waste–derived biochar that can enhance

the phytoremediation capacity of the plants. Biochar alleviates the

toxicity induced by the Cd and improves plant growth. Biochar also

promotes the enzyme-producing microorganisms in the Cd-

contaminated sediments. Immobilization occurs as a result of the

surface functional groups’ contact with the HMs. This interaction is

responsible for 38%–42% of the total Pb2+ that is adsorbed. However, it

is possible that biochar on its own will not be able to clean up a very

polluted mine soil that has been contaminated with HM. Because of

this, the interaction between biochar and phytoremediation has been

observed to be successful. Various chemical compounds like EDTA,

EGTA, and SDS have been added to soil or water to stimulate plant

growth and increase phytoextraction. The accumulation of metals in

various plant sections may be enhanced by chemical amendments

without negatively impacting plant development. This makes one

wonder how much and how precisely chemical additions need to be

made to the soil to ensure optimal plant growth and metal

phytoremediation. The application of flavonoids (rutin) to

Amaranthus hypochondriacus under different Cd stress conditions

reduces the cell membrane damage and provides tolerance to Cd

toxicity. The application of ‘rutin’ can immobilize the Cd in the cell

wall, and a less amount of Cd is transported to the vacuole; it also

enhances the synthesis of GSH and conversion of GSH to PCs. The

rutin enhances the phytoextraction capacity of Cd in A. hypochondriacus

(219%–260%) (Kang et al., 2022). The application of the metal-

chelating agent tetrasodium glutamate diacetate (GLDA) in

combination with Tagetes patula L. improves the plant biomass and

accumulation of cadmium (Cd). Plants can withstand Cd stress as well

as can remediate contaminated soil; T. patula L. removes 12.9% of Cd

from the contaminated agricultural land when GLDA is applied to the

soil (Li et al., 2022b).

Although phytoremediation seems like a good way to get rid of

metals in polluted areas, most plants have a negligible capacity to

absorb metals. Therefore, plants with enhanced metal accumulation

efficiency have been developed via genetic engineering. Plant species
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can be developed by gene transfer and gene editing focusing on metal

absorption and transport processes involving PC and MT proteins

(Ozyigit et al., 2021).
Plant–microbe interaction

Growing in heavy metal-contaminated soil is never easy for

plants; the first organ of the plant is the root, which gets exposed to

the contaminants and faces severe stress from the surrounding metals

and needs immediate help to withstand stress. Under stress

conditions, the plant roots evolved an adaptive strategy, ‘cry for

help,’ which attracted the beneficial microorganisms to help in

minimizing damage (Rizaludin et al., 2021; Rolli et al., 2021). Plants

are synthesizing many thousands of primary and secondary

metabolites under different conditions and needs (Hartmann,

2004). These metabolites include volatile and soluble compounds

that play important roles in recruiting plant growth–promoting

microorganisms (PGPMs), which alleviate metal toxicity and

promote plant growth (Ma et al., 2016; Rolfe et al., 2019). Under

stress conditions, plants communicate with the different PGPMs by

employing the root exudates of different quantities and compositions

depending upon the type of stress (Rizaludin et al., 2021). The root

exudates are very useful energy-rich nutrients for the soil

microorganisms and are enriched with amino acids and organic

acids; they also contain PCs, which bind the heavy metals (Mishra

et al., 2017).

The recruited microorganisms by the above-mentioned strategies

together with the root exudates free the heavy metals bound to the soil
Frontiers in Plant Science 08
particle and make them available to the plants for phytoremediation

(Khanna et al., 2022). Plant-associated microorganisms transform the

heavy metals from a non-bioavailable form to a bioavailable form by

various mechanisms like methylation, changing soil pH, redox

processes, the production and secretion of siderophores, organic

acids, and biosurfactants (Shah and Daverey, 2020; Sharma et al.,

2021). The plant–microbial interaction between plant growth–

promoting rhizobacterium (PGPR) Variovorax paradoxus 5C-2 and

plant Lotus edulis and L. ornithopodioides. Under heavy metal stress,

bacteria produce enzyme 1-aminocyclopropane-1-carboxylate

deaminase, which enhances the uptake of Cd and promotes plant

growth (Safronova et al., 2012). Siderophore formation, ACC-

deaminase activity, and IAA production by the PGPRs

Pseudomonas reactans EDP28 and Chryseobacterium humi ECP37

in association with maize plants improve the Cd uptake from the

contaminated soil (Moreira et al., 2016).

Different biological processes by the microorganisms such as the

chelation, complexation, immobilization, precipitation, solubilization,

transformation, translocation, and volatilization of heavy metals

change the mobility of the heavy metals, which improves heavy

metal uptake and facilitates phytoremediation (Rajkumar et al.,

2012; Singh et al., 2016; Shah and Daverey, 2020; Azhar et al.,

2022). Microorganisms synthesize MBPs under heavy metal stress

to increase the tolerance and accumulation of metals (Jach et al.,

2022). In the plant–microbe association, MBPs significantly increase

the accumulation of heavy metals and provide tolerance or

resistance. Under stress conditions, plants and microbes adopt

various mechanisms such as compartmentalization, the formation

of complexes, exclusion, and the synthetization and secretion of
TABLE 3 Plant–microbe interaction in various mechanisms of heavy metal phytoremediation.

Plant Microorganisms Heavy metal Remediation % References

Zea mays Serratia marcescens BacI56 and Pseudomonas sp. BacI38 Hg 47.16% and 62.42%; endophytic;
volatilization

Mello et al.,
2020

Medicago
sativa

Bacillus subtilis Cd 139%; phytoextraction Li et al., 2021

Medicago
sativa

Paenibacillus mucilaginosus Cu 55% and 76%; phytoextraction Ju et al., 2019

Solanum
nigrum

Glomus versiforme Cd 90.0%; mycorrhizal; phytoextraction Liu et al.,
2015

Brassica juncea Aspergillus sydowii Cd and trichlorfon
(pesticide)

10% and 4%
phytoextraction and phytodegradation

Zhang et al.,
2020a

Phragmites
communis

Simplicillium chinense Pb and Cd 29%–48.0%; mycorrhizal;
biosorption

Jin et al., 2019

Pelargonium
hortorum

Aspergillus flavus and Microbacterium paraoxydans Pb Two-to-fivefolds more uptake than
control; Phytoextraction

Manzoor
et al., 2021

Vetiveria
zizanioides L.

Bacillus cereus Cr(VI), Ni, Zn, Cu,
Cd

130%–211% Cr(VI);
31%–40% (Ni);
30%–61% (Zn);
65%–178% (Cu);
84%–107% (Cd); phytostabilization

Nayak et al.,
2018

Sesbania
sesban

Bacillus xiamenensis PM14 Cr 56%; phytoextraction Din et al.,
2020

Betula
celtiberica

Rhodococcus erythropolis, Ensifer adhaerens, Variovorax paradoxus,
and Phyllobacterium myrsinacearum

As 16%–35%; endophytic; phytoextraction Mesa et al.,
2017
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MBPs like PCs and MTs (Sharma et al., 2021). Various plants and

their associated microorganisms (bacteria/fungi) are given

in Table 3.

Genetically modified Arabidopsis showed enhanced accumulation

capacity for certain heavy metals like mercury, cadmium, and lead.

Hsieh et al. (2009) created a transgenic Arabidopsis that expresses the

mercuric ion-binding protein (MerP) of Bacillus megaterium and

reported the excellent metal-accumulating capability of Arabidopsis.

Genetically modified rice plants were reported to accumulate more

Cd in their root than shoot under the overexpression of the rice V-

PPase (Cao et al., 2020). The coexpression of the wheat gene for the

NHX antiporter and V-PPase proton pump diminishes the toxicity of

copper in transgenic tobacco (Gouiaa and Khoudi, 2019). An

artificially synthesized PC gene ‘PPH6HIS’ was used to make the

transgenic lines of the tobacco. The expression of the PPH6HIS gene

in transgenic tobacco improves the accumulation capacity of Cd in

the plant and provides resistance to the toxic effect of Cd on the plant

(Vershinina et al., 2022).
Conclusion and future prospects

The tolerance of heavy metal stress in plants is a defining

characteristic of both their capacity to protect themselves and their

efficient remediation systems. Utilizing model crops has provided

several benefits in recent years for a better understanding of the

biosynthesis, function, expression, and regulation of MT and PC.

Even though several studies have shown that plant MTs play a

significant role, we still have a long way to go before we can

determine all of the tasks that MTs do. Their capacity to connect

with a wide variety of metals, which results in a wide variety of

functions, is shown by the enormous diversity that exists in the areas

of metal binding in plant MTs compared to those in animal MTs. In

Arabidopsis, MT-deficient mutants are not readily available, and it is

probable that the members of the MT gene family have redundant

functions. As a result, reliable information about the function of the

gene is yet unavailable. Extensive research on “phytoremediation,”

also known as the detoxification of contaminated surroundings,

provides an overview of the potential of MT to combat stress

tolerance. It is very necessary to exercise some level of control on

the expression of MTs to boost the phytoremediation capabilities of

plants. In addition, verifying their usefulness will need an

understanding of how the accumulation and tolerance of metals are

affected by the overexpression of these genes in certain organs.

Microorganisms such as Pseudomonas sp., Bacillus sp., and

Aspergillus and plants including Brassica juncea, Solanum nigrum,

and Z. mays have a great ability to remediate an environment

contaminated with heavy metals. Furthermore, several studies have
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revealed that plants and microorganisms work together to remove

metal pollutants from the soil. The addition of plant growth-

stimulating bacteria/fungi and metal-tolerant microorganisms

improved the phytoremediation process considerably. As a result,

selecting appropriate plant species and microorganisms can have a

considerable impact on the outcome of phytoremediation. A

comprehensive study of the root chemistry of metal-tolerant plants

and microorganisms under stress conditions is much needed. How

microorganisms and plants work together for the wellness of the

metaorganism (resulting from the plant–microbe association) under

particular stress conditions is required for further study for effective

remediation of contaminated soil.

An emerging field of study and one with significant potential for

commercial use is the creation of transgenic plants with an

outstanding capacity to chelate certain metals and prevent the

deleterious effects of these metals. In the future, the bioremediation

of polluted places may benefit from the coordinated use of traditional

breeding techniques in combination with molecular biology.

Additionally, the identification of genes associated with metal

tolerance via the use of genome sequencing might pave the way for

the construction of transgenics with desirable characteristics that can

be employed in phytoextraction technology. These findings, in

association with considerable evolutionary research conducted

across putative genes related to heavy metal tolerance, could

provide some encouraging outcomes.
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