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Abstract

This study assesses the biological effects of nanoparticles (NPs) based on seed germination and root elongation 

tests. Lettuce, radish and cucumber seeds were incubated with various metal oxide NPs (CuO, NiO, TiO
2
, Fe

2
O

3
, 

Co
3
O

4
), of which only CuO and NiO showed deleterious impacts on the activities of all three seeds. The measured 

EC
50

 for seed germinations were: lettuce seed (NiO: 28 mg/L; CuO: 13 mg/L), radish seed (NiO: 401 mg/L; CuO: 398 

mg/L), and cucumber seed (NiO: 175 mg/L; CuO: 228 mg/L). Phytotoxicity of TiO
2
, Fe

2
O

3
 and Co

3
O

4
 to the tested 

seeds was not significant, while Co
3
O

4
 NP solution (5 g/L) was shown to improve root elongation of radish seedling. 

Metal oxide NPs tended to adsorb on seed surfaces in the aqueous medium and released metal ions near the seeds. 

Therefore, metal oxide NPs had higher phytotoxicity than free metal ions of the equivalent concentrations. Further, 

the surface area-to-volume ratio of seeds may also affect NPs phytotoxicity, whereby small seeds (i.e., lettuce) were 

the most sensitive to CuO and NiO NPs in our experiments.
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Introduction

As applications for metal oxide nanoparticles (NPs) are employed 

by industry, the release of nanomaterials into the environment may 

pose severe threats for ecological systems and human health [1-4]. Risk 

assessments of nano-toxicities have already attracted public attention 

[1]. Toxic e�ects of NPs on microorganisms and animals have also 

been reported [4-10], where metal oxide nanoparticles are the most 

extensively studied. �eir toxicities are attributed to three mechanisms: 

1. Generation of reactive oxygen species (ROS), which can damage the

cell membrane; 2. Penetration of nanoparticles into the cell where they

interfere with intracellular metabolism (a nano-Trojan-horse type

mechanism) [11]; 3. Release of metal ions that hinder enzyme functions.

Moreover, the phytotoxicity pro�le of NPs has also been investigated

by researchers via seed germination and root elongation tests which

evaluate the acute e�ects of NPs on plant physiologies [12]. For instance,

alumina and zinc oxide NPs have been applied to di�erent plant species

[13,14]. Inhibition of seed germination and root elongation has been

found to be highly dependent on both plant type and NP properties.

�is paper explores the impacts of additional metal oxide NPs on seed

activities. In particular, we investigate three common vegetable seeds

a�er they were incubated in aqueous NP-containing solutions: lettuce

(Lactuca sativa) seed (length/width: 3 mm/1 mm); radish (Raphanus

sativus) seed (length/width: 3 mm/3 mm) and cucumber (Cucumis

sativus) seed (length/width: 8 mm/6 mm). �is work aims to increase

understanding of both NPs phytotoxicity on various edible plants and

the potential impact of NPs on agricultural processes [15,16].

Materials and Methods

Chemicals

All chemicals used were reagent grade and purchased from Sigma 

(St. Louis, MO, US) or Fisher (Pittsburg, PA, US). TiO
2
 NPs (30-50 

nm), Fe
2
O

3
 NPs (20-40 nm), CuO NPs (30-50 nm), NiO NPs (30 nm) 

and Co
3
O

4
 NPs (10-30 nm) were obtained from Nanostructured & 

Amorphous Materials, Inc. (Houston, TX, US). �e pH of germination 

solutions (containing deionized water and NP suspensions) was 

adjusted to 7 for all toxicity studies done in aqueous phases. 

Seed germination and root elongation assay

All seeds in this study were purchased from Ferry-Morse Seed 

Co. (Fulton, KY, US): Lettuce (Black Seeded Simpson, 2846); Radish 

(Icicle Short Top, 3236); Cucumber (Marketmore 76, 2646). All three 

species are commonly used for phytotoxicity tests [17-19]. Seeds 

were �rst sterilized by soaking them in 3% H
2
O

2
 solution for 1 min 

and then rinsing twice with deionized water (dH
2
O). �en seeds were 

placed in dH
2
O (control) or certain NP solutions and shaken gently for 

two-hours [13]. All seeds were subsequently transferred into 15 mm 

× 100 mm Petri dishes containing one piece of �lter paper (90 mm 

in diameter, Whatman No.1). 10 seeds of radish and cucumber or 15 

seeds of lettuce were evenly spaced on top of the �lter paper in each 

Petri dish. �e dishes were �lled with 5 ml of dH
2
O or NP solutions 

and sealed by para�lm tape before being incubated at 25°C in dark 

conditions [20,21]. A�er 3 days of incubation, the root length of each 

seeding was measured. Experimental procedures are summarized in 

Figure 1. Root length greater than 1 cm for lettuce seeding and 2 cm for 
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radish and cucumber seeding was considered positive for germination. 

For each condition, experiments were conducted in triplicate, from 

which standard deviations were calculated.   

Data analysis

�ree parameters were adopted in this analysis to evaluate the 

conditions of seed germination: Relative germination rate, Germination 

Index and EC
50

 value. �ey were calculated based on the following 

equations according to previous reports [22,23]:

Seeds germinated in test sample
Relative germination rate = 100

Seeds germinated in control
×      

Mean root length in test sample  
Relative root elongation = 100

Mean root length in control
×                                            

Relative germination rate  Relative root elongation  
Germination Index =

100

×

EC
50

 is the e�ective concentration of a drug/chemical that reaches 

half of its maximal e�ects. We employed the USEPA so�ware to analyze 

the phytotoxicity data (http://www.epa.gov/eerd/stat2.htm#tsk) [19], 

which calculates EC
50

 values using the Trimmed Spearman-Karber 

Method [24]. Student’s t-test was performed to determine the variations 

in root length and germination rate between di�erent treatment and 

control group. Statistics Toolbox of Matlab (MathWorks, MA, US) was 

employed to conduct all statistical analyses, and statistically signi�cant 

was de�ned at the level of P < 0.05. 

Determination of metal ions released from NP suspensions

To measure the concentration of metal ions released from NP 

solutions, aliquots of all �ve NP suspensions were drawn a�er the 

suspensions were incubated at room temperature for 2 hours. �e 

extracts were centrifuged at 19,000 g for 20 min, and supernatants were 

collected and �ltered with 0.22 μm nylon �lters (GE Water & Process 

Technologies, CT, US). Inductively coupled plasma mass spectroscopy 

(ICP-MS, Agilent, CA, US) was used to conduct concentration assays of 

metal ions, and duplicated samples were measured for each condition.

Protocols for scanning electron microscope (SEM) and 
dynamic lighting scattering (DLS)

Seeds sprayed with NPs or incubated with NP suspensions were 

dried overnight in a fume hood. �ey were then coated with gold by a 

low vacuum sputter coater (SPI supplies, PA, US) prior to image taking. 

Images of seed surfaces were taken with a scanning electron microscope 

(SEM) (Nova 2300 FEI, OR, US). Zeta potential of NP suspensions 

(the electric potential di�erence between the culture medium and 

the interfacial layer of �uid attached to the NPs) was determined by 

dynamic lighting scattering (Malvern Instruments, Worcestershire, 

UK) a�er 30 minutes of incubation in room temperature.  

Results and Discussion

�e toxicities of di�erent metal oxide NPs at various concentrations 

on lettuce, radish, and cucumber seeds were tested. Seeds incubated in 

dH
2
O (pH=7) were considered as the control upon which all statistical 

analysis was performed. From results shown in Table 1 and Figure 2, 

CuO and NiO NPs were far more toxic than the other tested NPs on 

Figure 1: Flow chart of experimental procedures.

NP Lettuce Radish Cucumber

Types EC
50

 (mg/L)
GI affected by 1000 

mg/L NP
EC

50
 (mg/L)

GI affected by 1000 

mg/L NP
EC

50
 (mg/L)

GI affected by 1000 

mg/L NP

CuO 12.9 -100%* 397.6 -100%* 175.4 -100%*

NiO 27.9 -100%* 400.7 -100%* 228.2 -100%*

Fe
2
O

3
>5000 -55.0%* >5000 -38.4% 1682 -68.4%*

TiO
2

>5000 -36.2% >5000  -47.6%* >5000 -10.2%

Co
3
O

4
>5000 -43.6% >5000 +13.7% >5000 -20.7%

GI – Germination Index; ‘+’ - enhancement, ‘-’ – inhibition, ‘*’ – significant difference
Table 1: Effects of NPs on seeds activities.

   Seeds Lettuce Radish Cucumber

EC
50

 for ions

(mg/L) *

Cu2+ 4.9 [3.9, 6.0] 8.0 [5.8, 11.0] 4.8 [3.5, 6.6]

Ni2+ 8.8 [6.5, 11.9] 18.7 [15.9, 22.0] 15.7 [12.6, 19.6]

Released ions in solution from CuO 

and NiO NPs (mg/L) **

Cu2+ 0.20 ± 0.16 (13) 1.75 ± 0.45 (400) 0.47 ± 0.28 (230)

Ni2+ 0.26 ± 0.19 (28) 1.97 ± 0.64 (400) 1.32 ± 0.11 (175)

* Values of 95% confidence interval of free metal ions are in brackets []. 
** Concentrations of released metal ions from NP solutions incubated with different seeds: NPs in the experiments were at the concentrations of their approximate 

respective EC
50

 values (in parentheses). Data were averaged based on duplicated samples

Table 2: EC
50

 values of Cu2+/Ni2+ vs. released ions from NPs at their EC
50

 concentration.

http://www.epa.gov/eerd/stat2.htm#tsk
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all three species of seeds, while lettuce seeds were the most sensitive 

to NPs in terms of germination. Our results showed that the toxicities 

of the NPs were also dependent upon the plant species, which was in 

accordance with a previous report [13]. �e relative toxicities based 

on the germination index (combined seed germination and root 

elongation) for the tested NPs were listed below:

Lettuce:  CuO > NiO >> Fe
2
O

3
, TiO

2
, Co

3
O

4
 

Radish:  NiO ≈ CuO >> Fe
2
O

3
, TiO

2
 > Co

3
O

4

Cucumber:  NiO > CuO >> Fe
2
O

3
, TiO

2
, Co

3
O

4
 

�e measured EC
50

 in this study were: lettuce seed (NiO: 28 mg/L; 

CuO: 13 mg/L), radish seed (NiO: 401 mg/L; CuO: 398 mg/L), and 

cucumber seed (NiO: 175 mg/L; CuO: 228 mg/L). Interestingly, Co
3
O

4
 

NP solution did not inhibit the germination of cucumber seeds and 

even improved root elongation of radish seedling at high concentrations 

(5 g/L). Previous studies have provided similar reports of the positive 

e�ects of NPs on germination and growth of plants. For example, TiO
2
 

and SiO
2
 NPs were found to enhance both the germination and growth 

of Glycine max seeds [25], carbon nanotubes (CNT) were discovered 

to improve germination and root elongation of tomato seeds [26], and 

Nano-Al were shown to augment root elongation of radish and rape 

seedling [13]. Such observations are likely due to an increased water 

uptake by seeds in the presence of high concentrations of NPs [27]. 

�e biological e�ects of NPs in aqueous solutions are closely 

associated to the concentration of released metal ions [6,28]. In this 

study, we measured the concentrations of metal ions released from all 

�ve types of NPs. We did not detect any metal ions released from TiO
2
 

NP solution, while Fe
2
O

3
 and Co

3
O

4
 NPs both released trace metal ions. 

For example, the aqueous solution with Co
3
O

4
 NPs contained ~2 mg/L 

cobalt ion, but its inhibition of seed activity was minimal. Similarly, 

both Cu and Ni ions were released from the metal oxide NPs during 

incubation with the seeds (Table 2). To compare phytotoxicity between 

metal ions and NPs, we assessed seed activity in copper chloride and 

Lettuce Radish Cucumber

Figure 2: Effects of NPs on seed germination and elongation; Red line: relative germination rate; Blue line: germination index.
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nickel chloride solutions and determined their EC
50

 values. When CuCl
2
 

or NiCl
2
 solutions were used to treat seeds, the EC

50
 concentrations of 

Cu2+ and Ni2+ were 5~8 mg/L and 9~19 mg/L, respectively. However, 

at their EC
50

 concentrations, CuO or NiO NPs released much lower 

free metal ions (less than 2 mg/L). For example, a 13 mg/L CuO NP 

solution was able to strongly inhibit lettuce seed germination, while 

the free Cu2+ concentration in the culture medium was only ~0.2 mg/L. 

�erefore, the phytotoxicity of metal oxide NPs is not only due to their 

dissolved metals ions, but also to their interactions with the seed/root 

surface.

It has been widely accepted that smaller NPs would have higher 

surface energy and thus prove more toxic to the cell [29]. However, 

metal oxide NPs o�en agglomerate in the aqueous phase to minimize 

surface energy, and disaggregating is di�cult [13,14]. �e actual 

size of our tested NPs in the aqueous solution was therefore up to 1 

micrometer due to agglomeration (Table 3 and Figure 3). Previous 

studies reported that increasing the size of particle aggregates would 

reduce the toxic e�ect of the metal oxide particles [13,14]. On the 

other hand, suspended metal oxide NPs tend to coagulate (Table 3) 

because of their low zeta potentials in water solution (e.g., 1000 mg/L 

of CuO NPs: ~ -23.5 mV, determined by DLS) [27]. �e phytotoxicity 

in our tests was not likely caused by mono-dispersed NPs. Instead, we 

observed that a large amount of NPs (e.g., TiO
2
 or CuO) adsorbed on 

the surface of the seeds/roots in all experiments (Figure 3). �e main 

factors contributing to such adsorption can be physical attachment 

of particles on a rough seed surface, electrostatic attraction and 

hydrophobic interactions between seeds and NP agglomerates. For 

example, variations in the lipid content/the wax of the seed coat would 

a�ect the strength of hydrophobic interactions between NPs and the 

seed coat [30-32]. �e adsorption of NPs on the seed surface could 

generate locally concentrated ions (released from NPs) and enhance 

NP phytotoxicity. Such adsorption of NPs on the seeds’ surface also 

explains why small-size lettuce seeds are particularly sensitive to NP 

phytotoxicity: due to the relatively high ratio of surface area to volume, 

more toxic NPs per unit volume can be adsorbed on the seed surface 

[29,33]. Figure 4 shows the germination of lettuce seeds was more 

seriously inhibited by CuO NPs than other larger sized seeds (radish 

and cucumber seeds).  

In conclusion, our experiments determined the impact of �ve 

di�erent nanoparticles on common plant seeds. It was discovered 

that smaller sized seeds, such as lettuce seeds, are more sensitive to 

toxic NPs. Additionally, this study shows that engineered metal oxide 

nanoparticles may hold signi�cant potential applications in agriculture 

and gardening, as they may selectively inhibit unwanted plants (such 

as weeds), kill harmful fungi and bacteria in plant �elds, and release 

essential metal elements for plant growth.  
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