
Pi, Euler Numbers, and Asymptotic Expansions 

J. M. BORWEIN, P. B. BORWEIN, and K. DILCHER1, Dalhousie University, Halifax, Canada 

JONATHAN M. BORWEIN was an Ontario Rhodes Scholar (1971) at Jesus 
College, Oxford, where he completed a D. Phil. (1974) with Michael Demp- 
ster. Since 1974 he has worked at Dalhousie University where he is professor 
of mathematics. He has also been on faculty at Carnegie-Mellon University 
(1980-82). He was the 1987 Coxeter-James lecturer of the Canadian Mathe- 
matical Society and was awarded the Atlantic Provinces Council on the 
Sciences 1988 Gold Medal for Research. His research interests include 
functional analysis, classical analysis, and optimization theory. 

PETER B. BORWEIN obtained a Ph.D. (1979) from the University of 
British Columbia, under the supervision of David Boyd. He spent 1979-80 as 9 
a NATO research fellow in Oxford. Since then he has been on faculty at 
Dalhousie (except for a sabbatical year at the University of Toronto) and is 
now Associate Professor of Mathematics. His research interests include 
approximation theory, classical analysis, and complexity theory. 

KARuL DILCHER received his undergraduate education and a Dipl. Math. 
degree at Technische Universitat Clausthal in West Germany. He completed 
his Ph.D (1983) at Queen's University in Kingston, Ontario with Paulo 
Ribenboim. Since 1984 he has been teaching at Dalhousie, where he is now 
Assistant Professor. His research interests include Bernoulli numbers and 
polynomials, and classical complex analysis. 

1. Introduction. Gregory's series for 'T, truncated at 500,000 terms, gives to forty 
places 

500,000 (1)k-1 
4 E 2k 1 = 3.141590653589793240462643383269502884197. 

k=1 

The number on the right is not ir to forty places. As one would expect, the 6th 
digit after the decimal point is wrong. The surprise is that the next 10 digits are 
correct. In fact, only the 4 underlined digits aren't correct. This intriguing observa- 
tion was sent to us by R. D. North [10] of Colorado Springs with a request for an 
explanation. The point of this article is to provide that explanation. Two related 
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examples, to fifty digits, are 

IT 50,000 (W)k-1 

2 k-i 2k - 1 
- 1.5707863267948976192313211916397520520985833147388 

1 -1 5 - 61 
and 

50,000 (1) k+1 

log 2- = k 
k=1 

= .69313718065994530939723212147417656804830013446572, 

1 -1 2 - 16 272 

where all but the underlined digits are correct. The numbers under the underlined 
digits are the numbers that must be added to correct these. The numbers 1, - 1, 5, 
- 61 are the first four Euler numbers while 1, - 1, 2, - 16, 272 are the first five 
tangent numbers. Our process of discovery consisted of generating these sequences 
and then identifying them with the aid of Sloane's Handbook of Integer Sequences 
[11]. What one is observing, in each case, is an asymptotic expansion of the error in 
Euler summation. The amusing detail is that the coefficients of the expansion are 
integers. All of this is explained by Theorem 1. 

The standard facts we need about the Euler numbers { E1}, the tangent numbers 
{ T }, and the Bernoulli numbers { B1 }, may all be found in [1] or in [6]. The numbers 
are defined as the coefficients of the power series 

?? n E2n 2n 
secz = E (-1) (2)(1.1) 

(0n+ 2n)! 2+ 

tan z = E ( 1) 2 and To 1, (1.2) 
n=O ~ (2 n +1)! ad01 12 

z 0B Zn 

z 
E n 

~~~~~~~~~~~~~(1.3) e 1 n= n! 

They satisfy the relations 

E (2kE2k = 0, E2n+1 = 0, (1.4) 

Bn= 2n(2n"-1) n>1 15 

and 

af (k Bk = ?) (1.6) 

These three identities allow for the easy generation of { En }, {Tn }, and {Bn }. The 
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first few values are recorded below. 

n 0 1 2 3 4 5 6 7 8 

n~ 1 0 - 00 -61013 165 

T7 - 1 0 2 -16 0 272 0 

Bn, 1 0 0 

It is clear from (1.4) that the Euler numbers are integral. From (1.5) and (1.6) it 
follows that the tangent numbers are integers. Also, 

_E_n_12n__ ad_ 2(2n)! 

I2n I 
- 

.72n?1 ad I2nl ( v2 
as follows from (5.1) and (5.2) below. The main content of this note is the following 
theorem. The simple proof we offer relies on the Boole Summation Formula, which 
is a pretty but less well-known analogue of Euler summation. The details are 
contained in Sections 2 and 3 (except for c] which is a straightforward application of 
Euler summation). More complicated developments can be based directly on Euler 
summation or on results in [9]. 

THEOREM 1. The following asymptotic expansions hold: 

a] - 
2~ E_ 2m?1 

2 k-i 2k -i =0 N 

1 1 5 61 
-N NT3 V N5 N7 

N/2 (_1) k1 1 co Trn-i 
b] log 2- Y, k - + m=1 2 

k=1 k N =N 
1 1 2 16 272 
-N N2 N4 N N 

and 

c] 6kF' k 22N2 + m=O N2m+1 k=1 
1 1 

N 2N 6N3 30N' 42N7 
From the asymptotics of { E~, } and { Bn } and (1.5) we see that each of the above 

infinite series is everywhere divergent; the correct interpretation of their asymptotics 
is 00E K E ((2K + 1)! 

a'] ~~m=1 N2 - rn- N2 (E7rN)2K 
00 T_ K T_ ((2K + 1)! 

b'] L~M= N 2m m= + 0 (ElTN) 2K-1 

c'] f~0 NB2- K B2 (2K + 1)!\ 
m=1 N m1 

m_1 N2m1 + (2u,gN)2K?1l 
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where in each case the constant concealed by the order symbol is independent of N 
and K. In fact, the constant 10 works in all cases. 

2. The Boole Summation Formula. The Euler polynomials En(x) can be defined 
by the generating function 

2etx = t n 

et - = En(X))- n (Iti < T); (2.1) 

(see [1, p. 804]). Each En(x) is a polynomial of degree n with leading coefficient 1. 
We also define the periodic Euler function En(x) by 

En(X + 1) = -En(X) 

for all x, and 

En(x) = En(x) for 0 < x < 1. 

It can be shown that En(x) has continuous derivatives up to the (n - I)st order. 
The following is known as Boole's summation formula (see, for example, 

[9, p. 34]). 

LEMMA 1. Let f(t) be a function with m continuous derivatives, defined on the 
interval x < t < x + w. Then for 0 < h < 1 

m-1 W;k 1 

f (x + hw) = -Ek(h) - - (f (k)(X + W) + f (k)(X)) + Rm, 
klOk 2 k=O 

where 

RmI= M j (E (h t) (m)(x + wt)dt 

This summation formula is easy to establish by repeated integration by parts of 
the above integral. It is remarked in [9, p. 26] that this formula was known to Euler, 
for polynomial f and without the remainder term. Also note that Lemma 1 turns 
into Taylor's formula with Lagrange's remainder term if we replace h by h/l and 
let co approach zero. 

To derive a convenient version of Lemma 1 for the applications we have in mind, 
we set w = 1 and impose further restrictions on f. 

LEMMA 2. Let f be a function with m continuous derivatives, defined on t > x. 
Suppose that f (k)(t) 0 as t oo for all k = 0,1, ..., m. Then for 0 < h < 1 

(1)f(x + h + v) rn- Ek(h)f(k)(X) +2R 
v=O k=O 

where 

R = _| (h f )(M)(x + t)dt. m 2 (M - ~1)! 
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3. The Remainder for Gregory's Series. The Euler numbers En may also be 
defined by the generating function 

2 _ 0 tn 

et + et n= n!(31 

Comparing (3.1) with (2.1), we see that 

En= 2nEn ( . (3.2) 

The phenomenon mentioned in the introduction is entirely explained by the next 
proposition-if we set n = 500,000. It is also clear that we will get similar patterns 
for n = 10/2 with any positive integer m. 

PROPOSITION 1. For positive integers n and M we have 

oo (_) k M 2E2 
4 - . (_I)n E - + R ~~~~~~~(3.3) 
k= 2k + 1 k=O (2n )2k?l + (M), 

where 
I %(M) ~ 21 E2M I 
PI I ___z (2n)2M?l 

Proof. Apply Lemma 2 with f(x) = l/x; then set x = n and h = 1/2. We get 

00 (1)v rn-i E1(1/2) (_l) kk!+R 

v=0 n + v + 1/2 k-O 2k! nk?l m (3.4) 
with 

I oo Emi_(h - t) (-1) m!dt 
Rm = dt. m 2 JO (mr-1)! (x + t)m+l 

We multiply both sides of (3.4) by 2(-1)n. Then the left-hand side is seen to be 
identical with the left-hand side of (3.3). After replacing m by 2M + 1 and taking 
into account (3.2) and the fact that odd-index Euler numbers vanish, we see that the 
first terms on the right-hand sides of (3.3) and (3.4) agree. To estimate the error 
term, we use the following inequality, 

I E2M(x) I < 2 2MIE2MI forO < x < 1 

(see, e.g., [1, p. 805]). Carrying out the integration now leads to the error estimate 
given in Proposition 1. 0 

4. An Analogue For log 2. Lemma 2 can also be used to derive a result similar to 
Proposition 1, concerning truncations of the series 

( 1 )~ ~ ~ ~~~~(41 
log2= E . (4.1) 

k=1 k 

In this case the tangent numbers Tn will play the role of the En in Proposition 1. It 
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follows from the identity 

1 2e21z 
tanz=T ez2iz+1 1) 

together with (1.2) and (2.1) that 

Tn-(-1) 2nEn(1) (4.2) 

as in [9, p. 28]. The Tn can be computed using the recurrence relation To = 1 and 

k)2 T-k + Tn= 0 for n > 1. 
k= 

Other properties can be found, e.g., in [81 or [9, Ch. 21. 

PROPOSITION 2. For positive integers n and M we have 

E ( = (-1) n(1 2 + E (2 2k ) + R2(M), (4.3) 
k=n+l1 2 k==1 (2n) k) 

where 

JR J~E2MI 
AR2(M) I < (2n)2M+l 

Proof. We proceed as in the proof of Proposition 1. Here we take x = n and 
h = 1. Using (4.2) and the fact that To = 1 and T2k = 0 for k > 1, we get the 
summation on the right-hand side of (4.3). The remainder term is estimated as in the 
proof of Proposition 1. 0 

Using Proposition 2 with n = 10m/2 one again gets many more correct digits of 
log 2 than is suggested by the error term of the Taylor series. 

5. Generalizations. Proposition 1 and 2 can be extended easily in two different 
directions. 

i). The well-known infinite series (see, e.g., [1, p. 8071) 

kO (_)k+ = ) (2n I s.2n+1 (n = 0,1, **.), (5.1) 

k=O (2k + 1 2) 

and 

oo 
__2_ = (1 -21-2n)(2n) 

k=1 

= (22n1 - 1) IB2n 7I 2n (n = 1,2, ) (5.2) 

can be considered as extensions of Gregory's series and of (4.1). These series admit 
exact analogues to Propositions 1 and 2; one only has to replace f(x) = l/x by 
f(x) = x- (2n+ ) respectively x-(2n), in the proofs. 
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We note that the Euler-MacLaurin summation formula leads to similar results for 
00 I B2n 122n- 1 

k=1 (2n)! ' (5) 
where multiples of the Bernoulli numbers B2n take the place of the En and Tn in 
Propositions 1 and 2. 

ii). A generalization of the Euler-MacLaurin and Boole summation formulas was 
derived by Berndt [3]. This can be applied to character analogues of the series 
(5.1)-(5.3). The roles of the En and Tn in Proposition 1 and 2 are then played by 
generalized Bernoulli numbers or by related numbers. 

6. Additional Comments. The phenomenon observed in the introduction results 
from taking N to be a power of ten; taking N = 2 * io0 also leads to "clean" 
expressions. References [1], [5], [6], and [9] include the basic material on Bernoulli 
and Euler numbers, while [8] deals extensively with their calculation, and [2] 
describes an entertaining analogue of Pascal's triangle. Much on the calculation of 
pi and related matters may be found in [4]. Euler summation is treated in [5], [6], 
and [9], while Boole summation is treated in [9]. Related material on the computa- 
tion and acceleration of alternating series is given in [7]. 

Added in Proof. A version of the phenomeon was observed by M. R. Powell 
and various explanations were offered (see The Mathematical Gazette, 66 (1982) 
220-221, and 67(1983) 171-188). 
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