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Abstract In this work we provide a dispersive analysis

of ππ → K K̄ scattering. For this purpose we present a

set of partial-wave hyperbolic dispersion relations using a

family of hyperbolas that maximizes the applicability range

of the hyperbolic dispersive representation, which we have

extended up to 1.47 GeV. We then use these equations first to

test simple fits to different and often conflicting data sets, also

showing that some of these data and some popular parameter-

izations of these waves fail to satisfy the dispersive analysis.

Our main result is obtained after imposing these new rela-

tions as constraints on the data fits. We thus provide simple

and precise parameterizations for the S, P and D waves that

describe the experimental data from K K̄ threshold up to 2

GeV, while being consistent with crossing symmetric partial-

wave dispersion relations up to their maximum applicability

range of 1.47 GeV. For the S-wave we have found that two

solutions describing two conflicting data sets are possible.

The dispersion relations also provide a representation for S,

P and D waves in the pseudo-physical region.

1 Introduction

The scattering of pions and kaons is interesting for several

reasons: First, by itself, in order to test and understand the

dynamics of these particles, which are the pseudo-Goldstone

Bosons of the QCD spontaneous chiral symmetry breaking.

Second, because these scattering processes are one of the

main sources of information on the existence and parameters

of several meson resonances. In particular, this is the case of

light scalar mesons, whose very existence, nature and clas-

sification are still a matter of debate (see the note on light

scalars in the review of particle properties (RPP) [1]). These

resonances are very relevant for the identification of glue-

balls, tetraquaks or molecular states that lie beyond the ordi-

nary meson states of the naive quark model. Finally, being
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the lightest mesons, final state interactions (FSI) of pions

and kaons play an essential role in the description of many

hadronic processes. The unprecedented statistical samples

obtained in the last years on different hadronic experiments

and the even more ambitious plans for future facilities have

provoked a renovated interest for precise and rigorous anal-

yses of existing meson-meson scattering data, superseding

simple model descriptions.

Unfortunately, most of the data on meson-meson scatter-

ing [2–10] are extracted indirectly from meson-nucleon to

meson-meson-nucleon reactions. This extraction is compli-

cated, relying on some model assumptions, and for this rea-

son it is affected with large systematic uncertainties, which

can be estimated from the differences between data sets from

different experiments (and for ππ scattering even within data

sets from the same experiment [2,3]). Moreover, the descrip-

tion of these data is frequently done in terms of meson-meson

models which can lead to artifacts and unreliable determi-

nations of resonances and their parameters. It is for these

reasons that dispersive techniques are required.

Dispersion relations are the mathematical expression of

causality and crossing. They relate the amplitude at a given

energy to integrals of the amplitude and can be used as con-

sistency tests of the experimental data or as constraints on the

fits. We will make both uses here. For dispersive integrals to

be evaluated just over the physical region, crossing must be

used and two main kinds of dispersion relations appear then:

Forward Dispersion Relations (FDRs) and those for partial

waves generically know as Roy or Roy–Steiner equations

[11–13], depending on whether the scattering occurs among

particles with equal or different masses. FDRs are rather sim-

ple and easily extended to arbitrary energies. They have been

recently applied to constrain ππ [14–17] and Kπ [18] scat-

tering amplitudes that will be used as input in some stages of

the present work. Roy-like equations are a complicated sys-

tem of coupled equations, limited in practice to energies of

O(1 GeV) for meson-meson scattering. However, they pro-
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vide a rigorous continuation to the complex plane that allows

for a precise and model independent determination of reso-

nances. Actually, it was only in 2012 that the RPP [1] consid-

ered settled the issue of the existence and parameters of the

much debated scalar f0(500) resonance [19], traditionally

known as σ -meson, and to a very large extent this was due to

the results of dispersive analyses of ππ scattering amplitudes

with versions of Roy equations [20–22]. Similarly, the scalar

K ∗
0 (800) or κ-meson has also been obtained from π K scat-

tering using unitarization and dispersive methods [23–25],

the most reliable value [26] being the Roy–Steiner method

based on hyperbolic dispersion relations [27], but according

to the RPP this resonance still “needs confirmation” [1]. Roy–

Steiner equations have also been applied recently to π N scat-

tering [28] and for γ γ → ππ [29]. For meson-resonances

beyond ∼1 GeV, Roy-like equations are not used in practice,

but other analytic tools have been recently applied [30–32]

to extract resonance poles from the description of amplitudes

in the physical region constrained with dispersion relations,

thus minimizing the model-dependence.

The purpose of this paper is to obtain a set of simple

ππ → K K̄ scattering parameterizations satisfying Roy–

Steiner dispersion relations that can be easily used later on

both by theoreticians and experimentalists, as has already

been the case of previous works for ππ and π K scattering.

The motivations to study ππ → K K̄ are the ones explained

above for meson-meson scattering in general: (i) a rigorous

ππ → K K̄ description is a necessary input for further stud-

ies of resonances (like scalars in the 1–1.6 GeV, range), in

particular in order to compare their ππ and K K̄ couplings,

(ii) it is also an essential ingredient in the Roy–Steiner study

of Kπ scattering and the determination of the controversial

K ∗
0 (800)-meson (whose determination is one of the goals of

a recent proposal at JLab [33]) (iii) the ππ → K K̄ amplitude

also influences, via unitarity, the ππ → ππ and ππ → N N

amplitudes, and consequently those of K N and K̄ N scatter-

ing. Finally ππ → K K̄ is a very relevant ingredient in the

FSI of numerous hadron decays. For instance, the role of

ππ → K K̄ re-scattering has gained a renewed interest due

to the recent observation of a large CP violation in recent

studies at LHCb [34–36], although the amplitude used for

such studies has been approximated with simple models and

the amplitudes obtained here could be used to avoid such

assumptions in further studies which are under way. Finally,

lattice calculations of the coupled channel ππ , K K̄ , ηη scat-

tering have appeared very recently [37]. Although these cal-

culations are performed still at relatively high pion masses,

the physical point where one can compare with our actual

ππ → K K̄ parameterizations could be accessible soon.

Dispersive studies of ππ → K K̄ scattering and its rela-

tion to π K → π K scattering were first performed in the

seventies [38–41]. It was soon clear that the formalism of

fixed-t dispersion relations combined with hyperbolic dis-

persion relations (HDR) for partial waves [12,13] was best

suited to study the physical regions of both channels simulta-

neously [39,41]. However, ππ → K K̄ data was scarce and

these analyses only allowed for crude checks of low-energy

scalar partial waves, frequently focusing on threshold param-

eters and the non-physical region between the two-pion and

the two-kaon thresholds (or at most up to 1100 MeV). For

a review of the theoretical and experimental situation until

1978 we refer to [42].

The main experimental results on ππ → K K̄ partial

waves, that will be thoroughly analyzed in this work, were

obtained in the early eighties [7,8], indirectly from π N →
K K̄ N ′ reactions. They extend from energies very close to

the K K̄ threshold up to 1.6 GeV. Several models exist in the

literature describing these ππ → K K̄ data [43–48], in par-

ticular with unitarized chiral Lagrangians [23,24,49,51,53].

These works are of relevance for studies of f0 resonances

and glueballs in that range.

A renewed interest on dispersive analysis of ππ → K K̄

at the turn of the century was triggered by the need for pre-

cise determinations of threshold parameters and chiral per-

turbation theory low energy constants. Actually, sum rules

for π K were obtained from a Roy–Steiner type of equations

from HDR [52,53] in which the ππ → K K̄ amplitude in

the unphysical region was obtained as a solution of a dis-

persive Mushkelishvili–Omnés problem. The ππ → K K̄

partial-wave data of [7,8] was used as input. However, no

dispersive analysis of these data has been carried out beyond

the K K̄ threshold, mostly due to the relatively low applica-

bility limit of the HDR along the su = b hyperbolas used in

those works. It was nevertheless shown that an extrapolation

of the HDR solutions beyond their applicability region was

fairly close to the data. Finally, in [27] a Roy–Steiner type

of analysis was performed to obtain solutions for the π K

elastic amplitudes, using once again as input the ππ → K K̄

amplitudes in the physical region. This study was the basis

for confirming the existence of the K ∗
0 (800) meson through

a dispersive analysis [26].

The aim of this work is then to provide a simple set of

ππ → K K̄ parameterizations that describe the data up to 2

GeV while also satisfying dispersive constraints in the whole

region from ππ threshold up to 1.47 GeV. To this end, we

will derive a new set of hyperbolic dispersion relations, along

(s − a)(u − a) = b hyperbolas, choosing the a parameter to

maximize the applicability range which allows us to use them

up to 1.47 GeV. This will also allow us to test different and

often conflicting data sets and popular parameterizations.

The plan of the work is as follows: in Sect. 2 we will intro-

duce the notation, in Sect. 3 we will present simple uncon-

strained fits to the different ππ → K K̄ data as well as a

Regge formalism for the high energy part, taking particu-

lar care on the determination of uncertainties. In Sect. 4 we

will derive our new set of HDR, i.e. Roy–Steiner like equa-
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tions for partial waves, and formulate the Mushkelishvili–

Omnés problem used for both the unphysical region below

K K̄ threshold and the physical region up to 1.47 GeV. In

Sect. 5 we will first use these equations as checks for the

unconstrained parameterizations. Finally, in Sect. 6 we will

impose the new relations on the data fits. This will lead to

the desired constrained fits to data satisfying the analytic-

ity requirements, which are the main results of this work. In

Sect. 7 we will summarize our findings and conclude.

2 Kinematics and notation

Throughout this work we will be working in the isospin limit

of equal mass for all pions, mπ = 139.57 MeV, and equal

mass for all kaons, mK = 496 MeV.

Crossing symmetry relates the ππ → K K̄ amplitudes to

those of π K scattering. It is then customary to use the stan-

dard Mandelstam variables s, t, u for π K scattering, satisfy-

ing s + t + u = 2(m2
π + m2

K ) and write

G0(t, s, u) =
√

6F+(s, t, u),

G1(t, s, u) = 2F−(s, t, u), (1)

where G I are the fixed isospin I = 0, 1 amplitudes of

ππ → K K̄ whereas the F± are the s ↔ u symmetric

and antisymmetric π K amplitudes, respectively. The latter

are defined as

F+(s, t, u) = 1

3
F1/2(s, t, u) + 2

3
F3/2(s, t, u),

F−(s, t, u) = 1

3
F1/2(s, t, u) − 1

3
F3/2(s, t, u), (2)

where now F I are the fixed isospin I = 1/2, 3/2 amplitudes

of π K scattering. These satisfy:

F1/2(s, t, u) = 3

2
F3/2(u, t, s) − 1

2
F3/2(s, t, u), (3)

from where the s ↔ u symmetry properties of F± follow.

In this work we will also use the partial-wave decompo-

sitions of the π K and ππ → K K̄ scattering amplitudes,

defined as follows:

F I (s, t, u) = 16π
∑

ℓ

(2ℓ + 1)Pℓ(zs) f I
ℓ (s),

G I (t, s, u) = 16π
√

2
∑

ℓ

(2ℓ + 1)(qπqK )ℓ Pℓ(zt )g
I
ℓ (t), (4)

where qπ = qππ (t), qK = qK K (t) are the CM momenta of

the respective ππ and K K̄ states, namely

q12(s) = 1

2
√

s

√

(s − (m1 + m2)2)(s − (m1 − m2)2). (5)

Note the (qπqK )ℓ factors in the partial waves of the t-

channels, which are customarily introduced to ensure good

analytic properties for gℓ(t) (see [54] in the ππ → N N̄ con-

text). The scattering angles in the s and t channels are given

by:

zs = cos θs = 1 + 2st

λs

, zt = cos θt = s − u

4qπqK

, (6)

where λs = (s − (mπ + mK )2)(s − (mK − mπ )2) =
4s q2

Kπ (s).

It is also convenient to define m± = mK ± mπ , 
12 =
m2

1 + m2
2 and �12 = m2

1 − m2
2, as well as tπ = 4m2

π , tK =
4m2

K . In the rest of this work, and unless stated otherwise,

m1 = mK , m2 = mπ , � = �Kπ , 
 = 
Kπ and q =
qKπ (s). For later use we define the Kπ scattering lengths as

follows:

a I
0 = 2

m+
f I
0 (m2

+) (7)

and similarly for a±
0 .

Let us recall that in the case when we have two identical

particles in the initial state, as it happens with two pions in

the isospin limit formalism, we define

g I
ℓ (t) =

√
2

32π(qπqK )ℓ

∫ 1

0

dzt Pℓ(zt )G
I (t, s). (8)

For later use we also write here the explicit expressions for

the ℓ = 0, 1, 2 partial waves:

g0
0(t) =

√
3

16π

∫ 1

0

dzt F+(s, t),

g1
1(t) =

√
2

16πqπqK

∫ 1

0

dzt zt F−(s, t),

g0
2(t) =

√
3

16π(qπqK )2

∫ 1

0

dzt

3z2
t − 1

2
F+(s, t). (9)

Finally, the relation with the S-matrix partial waves, which

allows for straightforward comparison with some experimen-

tal works, is:

S I
ℓ (s)ππ→ππ = 1 + i

4q√
s

f I
ℓ (s)θ(s − m2

+),

S I
ℓ (t)ππ→K K̄ = i

4(qπqK )ℓ+1/2

√
t

g
It

ℓ (t)θ(t − tK ). (10)

3 Unconstrained fits to data

3.1 The data

As we have already emphasized in the introduction we will

explicitly choose very simple parameterizations to fit the

data, so that they can be used easily later on. In this sec-

tion we will just describe the data without imposing disper-

sion relations. These will be called unconstrained fits to data

(UFD). In this way the fits to each wave are independent from
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each other. Later on we will impose the dispersion relations

as constraints and obtain the constrained fits to data (CFD).

This will correlate different waves.

The data we will fit are of four types. First, we will

use data on the phases and modulus of the g0
0, g1

1 par-

tial waves extracted from π− p → K −K +n and π+n →
K −K + p at the Argonne National Laboratory [7] and from

π− p → K 0
s K 0

s n at the Brookhaven National Laboratory in

a series of three works [8–10], that we will call Brookhaven-

I, Brookhaven-II and Brookhaven-III, respectively. Second,

for the tensor g0
2 wave, data for its modulus was given in

Brookhaven-II and Brookhaven-III, although as we will see

the old experimental parameterizations are not quite compat-

ible with the present resonance parameters listed in the RPP.

Third, for higher partial waves, which play a very minor role

in the numerics, we use simple resonance parameterizations

with their parameters as quoted in the RPP. Finally, for the

high-energy range above 2 GeV we rely on recent updates

[17,18,26], of Regge parameterizations [55] based on factor-

ization and the phenomenological observations about Regge

trajectories or the Veneziano model [56–59].

3.2 Partial wave fits from K K̄ threshold to 2 GeV

We now describe our partial-wave parameterizations in the

region from K K̄ threshold to 2 GeV. For all of them we define

a modulus and a phase t I
ℓ = |t I

ℓ |eiφ I
ℓ . We will start with the

waves that have less controversy on the data sets and that, as

we will see later, satisfy best our Roy–Steiner-like equations,

leaving for the end the most difficult one, which is that with

ℓ = 0, I = 0. Note that since in the isospin limit all pions

are identical particles, Bose statistics applies and ℓ + I must

be even.

3.2.1 ℓ = 1, I = 1 partial wave

For the g1
1 partial wave there is only data from the Argonne

Collaboration (Cohen et al. [7]), extending up to around 1.6

GeV for both the modulus |g1
1 | and its phase φ1

1 . Although

there is no data on the 1.6–2 GeV region, which is the start-

ing energy of our Regge parameterizations, we will see that

a rather simple functional form covering the whole range

from ππ threshold up to 2 GeV satisfies fairly well the Roy–

Steiner equations even before imposing them as constraints.

In particular we will use a phenomenological parameteriza-

tion similar to that in [27]:

g1
1(t) = C

√

1 + r1q̂2
π (t)

√

1 + r1q̂2
K (t)

×
{

BW (t)ρ + (β + β1q̂2
K (t))BW (t)ρ′

+(γ + γ1q̂2
K (t))BW (t, m)ρ′′

}

, (11)

Table 1 Parameters of the g1
1 wave. Masses and widths are given in

GeV whereas, C , β1, γ1 and r1 are given in GeV−2

Parameter UFD CFD

mρ 0.7757 ± 0.0010 0.7749 ± 0.0010

Ŵρ 0.152 ± 0.001 0.153 ± 0.001

mρ′ 1.440 ± 0.015 1.438 ± 0.015

Ŵρ′ 0.310 ± 0.029 0.309 ± 0.029

mρ′′ 1.72 1.72

Ŵρ′′ 0.25 0.25

C 1.21 ± 0.11 1.23 ± 0.11

r1 3.95 ± 0.76 3.43 ± 0.76

β −0.168 ± 0.007 −0.172 ± 0.007

β1 0.37 ± 0.02 0.38 ± 0.02

γ 0.10 ± 0.02 0.14 ± 0.02

γ1 −0.06 ± 0.06 −0.17 ± 0.06

where the three vector resonances ρ(770), ρ′ = ρ(1450),

ρ′′ = ρ(1700) have been parameterized by a combination of

three Breit–Wigner-like shapes:

BW (t)V =
m2

V

m2
V − t − iŴV

√
t

2Gπ (t)+G K (t)

2Gπ (m2
V )

,

G P (t) =
√

t

(

2qP (t)√
t

)3

, (12)

and mV , ŴV correspond to the masses and widths of the reso-

nances given in Table 1. Note that q̂2
P (t) ≡ q2

P (t)�(t −4m2
P )

vanishes below the 2m P threshold. In particular, Eq. (11)

below K K̄ threshold is similar to the widely used Kuhn and

Santamaría form in [60]. In this region, since the coupling

to the 4-pion state is negligible and ππ scattering is elastic,

Watson’s Theorem implies that φ1
1(t) should be equal to the

phase shift of the I = 1, ℓ = 1 partial wave of ππ scattering.

Since C and r1 are real, they do not contribute to the phase,

nor β1 nor γ1, being multiplied by q̂2
K , so that the parameters

mρ, Ŵρ, β, γ are obtained from a fit to the dispersive analysis

[17] of the ππ phase shift in the elastic region. Indeed, in

the lower panel of Fig. 1 it can be seen that our parameteri-

zation describes remarkably well the ππ scattering data on

the phase below K K̄ threshold.

The parameters of the ρ′′ resonance are fixed for simplicity

to those of the RPP [1], whereas those for the ρ′ are allowed to

vary within 1.5 standard deviations within the values listed

in the PDG. Note that the ones determined by the CLEO

Collaboration [61] are not compatible with our best fit, if

one tries to fix those parameters to reproduce the ππ → K K̄

data the χ2 is increased by almost a factor of 2. Then we fit

the rest of the parameters to describe the data in the physical

and pseudophysical regions, the best result is shown in Fig. 1

and the parameters are given in Table 1. The fit has a total
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φ
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Protopopescu et al.
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Fig. 1 Modulus and phase of the g1
1(t) ππ → K K̄ partial wave.

The continuous line and the uncertainty band correspond to the UFD

parameterization described in the text. Note that the phase below K K̄

follows that of I = 1, ℓ = 1 elastic ππ scattering [17]. The white

circles and squares come from the ππ scattering experimental analyses

of Protopopescu et al. [2] and Estabrooks et al. [4], respectively

χ2/dof = 1.7, but a slightly larger χ2/dof = 2.2 is found

in the physical region. Conservatively we use the square root

of the latter to rescale the fit parameter uncertainties in the

table.

The data and the results of our unconstrained fit to data

(UFD) are shown in Fig. 1. Note that we plot the modulus

from K K̄ threshold and that, as already commented, data

only reaches up to 1.57 GeV. The shape above that energy is

almost entirely given by the ρ′′ resonance. Concerning the

phase, from the two-pion threshold to the K K̄ threshold it is

indistinguishable from that obtained from the ππ dispersive

analysis in [17]. In Fig. 1 our result below threshold can be

compared to the data from elastic ππ scattering [2,4]. Note

also the large uncertainty of both the data and the error bands

in the region around 1.5 GeV, which is due to the fact that

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

t
1/2

(GeV)

0

0.05

0.1

0.15

0.2

0.25

5|g
0

2
|
2

Brookhaven II
UFD^

Fig. 2 Data on the modulus of ĝ0
2(t) from the Brookhaven-II analysis

[9] together with our UFD fit, described in the text

the modulus almost vanishes there. Fortunately, this will also

make the contribution of that region to the dispersive integrals

almost negligible.

3.2.2 ℓ = 2, I = 0 partial wave

The data in Fig. 2 that we use for this wave in the physi-

cal region were obtained in the Brookhaven-II analysis [9],

published 6 years after Brookhaven-I. The Brookhaven-II

work was a study of the I = 0, J PC = 2++ channel of

ππ → K̄ K scattering within a coupled channel formal-

ism, which included data from other reactions. The latest

Brookhaven-III re-analysis by some members of that collabo-

ration, including even further information on other processes

can be found in [10]. Note that our normalization differs from

that in the experimental works and this is why we are plotting

|ĝ0
2 |, defined as:

ĝ0
2(t) ≡ 2(qπqK )5/2

√
t

g0
2(t) ≡ |ĝ0

2(t)| exp(iφ0
2(t)). (13)

Contrary to the previous ℓ = 1, I = 1 case, where the

ρ(770) resonance dominates the unphysical region, now the

lowest resonance is well above the K K̄ threshold and there-

fore it does not dominate the unphysical region. Thus our

ℓ = 2, I = 0 parameterization will have two pieces: one

above K K̄ threshold and another one below.

Concerning the physical region, t ≥ tK , note that there are

only data for the modulus |ĝ0
2 |, Fig. 2. Therefore, since we

also need to have a phase we use a phenomenological descrip-

tion in terms of resonances similar to that in [10], which is a

sum of usual Breit–Wigner shapes, although since they over-

lap significantly we include some interference phases. We

thus use:
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ĝ0
2(t) = C

√

(qπ (t)qK (t))5

√
t

√

1 + r2
2 q̂4

π (t)

√

1 + r2
2 q̂4

K (t)

×
{

eiφ1 BW (t)1 + βeiφ2 BW (t)2 + γ eiφ3 BW (t)3

}

,

(14)

with

BW (t)T =
m2

T

m2
T − t − imT ŴT (t)

,

ŴT (t) = ŴT

(

qT (t)

qT (m2
T )

)5
mT√

t

D2(r qT (m2
T ))

D2(r qT (t))
, (15)

where D2(x) = 9 + 3x2 + x4 provides the usual Blatt–

Weisskopf barrier factor for ℓ = 2, with a typical r =
5 GeV−1 ≃ 1 fm.

In Eq. (15) above, T = 1, 2, 3 stands for the tensor

f2(1270), f ′
2(1525) and f2(1810) resonances, respectively.

Since they decay predominantly to ππ , K̄ K and ππ , respec-

tively, we have set q1(t) = q3(t) = qπ (t), whereas q2(t) =
qK (t). The mass MT and width ŴT of each resonance after

the fit are given in Table 2. As can be seen in the Brookhaven-

II and III fits in [9,10], the f ′
2(1525) was at odds with the

present knowledge about this resonance parameters. More-

over, the parameters of the f2(1810) vary within a huge range

even when using almost the same data. As we have no data

for the phase of the partial wave it is not possible to fix the

position of the masses with accuracy, however, performing a

coupled-channel analysis for the tensor partial wave is out of

the scope of this work, mostly because we have no dispersive

control over other channels apart from ππ → K K̄ . For that

reason we have included the masses of both the f2(1270) and

the f ′
2(1525) as additional data for our fit. In particular, we

take as input for the fit m f2 = 1.2755±0.0035 GeV which is

the average and standard deviation of the values used in the

RPP’s own average [1]. This we do to have a more conser-

vative estimate of the systematic uncertainty. For the f ′
2 we

take directly the RPP average m f ′
2

= 1.525±0.005 GeV. The

inclusion of the f2(1810) is purely phenomenological, fol-

lowing [9,10], just to describe the final rise seen in the mod-

ulus, but this resonance still “needs confirmation” according

to the RPP. We could have described this raise equally well

with another functional form, although it is also clear that

there exist some enhancements of the amplitudes and phases

for ππ → ππ and ππ → ηη. Its numerical effect on our

dispersive integrals is rather small. In Table 2 we also provide

the phases φT resulting from the fit to data.

Concerning the unphysical region, t < tK , since the con-

tribution of the four pion state is negligible, we have assumed

that ππ scattering is elastic. Hence we can use Watson’s The-

orem to identify φ0
2 = δ

(0)
2 , where δ

(0)
2 is the ππ -scattering

phase shift. Then we have fitted δ
(0)
2 to the result obtained in

Table 2 Parameters of the g0
2 wave

Parameter UFD CFD

m f2(1270) 1.271 ± 0.0035 GeV 1.271 ± 0.0035 GeV

m f ′
2(1525) 1.522 ± 0.005 GeV 1.522 ± 0.005 GeV

m f2(1810) 1.806 ± 0.017 GeV 1.802 ± 0.017 GeV

Ŵ f2(1270) 0.187 ± 0.009 GeV 0.191 ± 0.009 GeV

Ŵ f ′
2(1525) 0.108 ± 0.016 GeV 0.107 ± 0.016 GeV

Ŵ f2(1810) 0.201 ± 0.028 GeV 0.198 ± 0.028 GeV

φ f2(1270) −0.049 ± 0.014 −0.078 ± 0.014

φ f ′
2(1525) 2.62 ± 0.16 2.59 ± 0.16

φ f2(1810) −0.72 ± 0.16 −0.82 ± 0.16

B0 12.5 ± 0.4 12.4 ± 0.4

B1 10.3 ± 1.0 12.3 ± 1.0

C 1.82 ± 0.09 GeV−2 1.86 ± 0.09 GeV−2

r2
2 6.68 ± 0.72 GeV−4 6.78 ± 0.72 GeV−4

β 0.070 ± 0.016 0.066 ± 0.016

γ 0.093 ± 0.02 0.094 ± 0.02

[17] from a dispersive analysis of ππ scattering data. For this

we have used a conformal expansion similar to that in [17]

but with one more parameter B2 fixed to ensure a continuous

matching of g0
2 at threshold. Namely:

cot φ0
2(t) = t1/2

2q5
π

(m2
f2(1270) − t)m2

π

×
{

B0 + B1w(t) + B2w(t)2
}

,

w(t) =
√

t − √
t0 − t√

t + √
t0 − t

, t
1/2
0 = 1.05 GeV, (16)

where

B2 ω(tK )2 = q5
π (tK ) cot(φ0

2(tK ))

mK (m2
f2(1270)

− tK )m2
π

− B0 − B1 ω(tK ),

(17)

has been fixed by continuity with the piece above tK in Eq.

(14). In Table 2 we provide values of B0, B1 after fitting

the CFD phase-shift in [17]. With this parameterization we

obtain a final χ2/dof = 1.4. Thus we rescale our uncertain-

ties by a factor of ∼ 1.2. We have checked that this phase

is also compatible within uncertainties with the dispersive

analysis of the ππ D-wave using Roy and GKPY equations

in [62].

Neither Brookhaven-I nor Argonne provide data for this

wave, nor the models they used to parameterize it. Neverthe-

less Brookhaven-I shows a plot with the central value of their

phase for this channel, which is later used to extract the g0
0

phase. As seen in Fig. 3 our phase is fairly compatible with

the Brookhaven-I model between 1.25 and 1.54 GeV. How-

ever, also in that figure it can be seen that the Brookhaven-I
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Fig. 3 Comparison between the UFD g0
2 phase and the one obtained

with the Brookhaven-I model. Note that the latter violates Watson’s

Theorem at K K̄ threshold. Also, the former includes an f0(1810) res-

onance whereas the latter uses a flat background. As explained in the

text, the latter is strongly disfavored when fitting Brookhaven II data on

the modulus

model violates Watson’s Theorem at low energies, which our

phase fully satisfies. In addition, above 1.6 GeV our phase,

obtained by fitting the Brookhaven-II data [9] on the mod-

ulus with modern values for the f2 family of resonances, is

rather different from the flat behavior of the Brookhaven-I

model [8] up to 1.9 GeV. The reason is that the Brookhaven-

I model used a simple smooth background to describe the

1.6–1.9 GeV region, instead of the f2(1810) used in this

work. Actually, we have checked that if we impose the phase

of the Brookhaven-I model on our fit to the Brookhaven-II

modulus, the resulting χ2/dof is ∼ 5, and thus strongly dis-

favored with respect to our phase. Even by deforming our fits

by including more parameters, the best we have been able to

achieve when imposing the phase of the Brookhaven-I model

above 1.6 GeV, is χ2/dof ∼ 3, but at the price of introduc-

ing contributions difficult to interpret in terms of resonance

parameters. Both the violation of Watson’s Theorem and the

use of such non-resonant background make the Brookhaven-I

solution suspicious.

Unfortunately the Brookhaven-I model was used to extract

the phase of the g0
0 , which therefore also becomes suspicious

below 1.2 GeV and above 1.6 GeV. Nevertheless, and with

this caveats in mind we will still study the g0
0 phase coming

from the Brookhaven-I collaboration above 1.6 GeV. The rea-

son is that this region lies outside the applicability range of

Roy–Steiner equations, so that for our purposes is just input.

Fortunately, the modulus there is very small, so that the con-

tribution from this region to the Roy–Steiner equations below

1.6 GeV is very suppressed. In Appendix A, we have checked

that either with our g0
0 phase or the Brookhaven-I phase, the

difference lies within our uncertainties in the region up to 1.47

GeV, which is the one of interest for this work since it is the

one where partial-wave dispersion relations can be applied.

3.2.3 ℓ = 0, I = 0 partial wave

This wave is the most complicated but also the most inter-

esting one for hadron spectroscopy, since here we can find

the much debated scalar-isoscalar resonances. For the g0
0(t)

partial wave there are data in the whole region of interest on

both the modulus |g0
0 | and the phase φ0

0 , which we show in

Fig. 4. The data sets extend up to 2.4 GeV, but we do not fit

that region because from 2 GeV we will use Regge parame-

terizations. It is then convenient to split into two regions the

data description below 2 GeV:

I. Region I: From
√

tmin,I = 2mK up to
√

tmax,I =
1.47 GeV, where data from Argonne [7] and Brookhaven-

I [8] coexist. Note that this region will lie within the

applicability of Roy–Steiner equations and will be later

constrained to satisfy dispersion relations.

Concerning the phase φ0
0 , it is clearly seen in Fig. 4

that from 2mK up to 1.2 GeV, the Argonne [7] and

Brookhaven-I [8] sets are incompatible. Let us now

recall that, by Watson’s Theorem, φ0
0 at K K̄ threshold

should match the scalar-isoscalar ππ → ππ phase shift

δ
(0)
0 . However, the ππ scattering analyses with Roy and

GKPY equations that extend up to or beyond K K̄ thresh-

old [17,63] find δ
(0)
0 > 200◦, which is consistent with

the Argonne [7] phase, but much higher than the phase

of Brookhaven-I [8]. In addition we have just seen that

this phase was extracted using a g0
2 wave that also vio-

lates Watson’s Theorem. Therefore, for our fits we have

discarded the phase of Brookhaven-I [8] below ∼ 1.15

GeV, i.e. until it agrees with that of Argonne [7].

Concerning the data on |g0
0 |, shown in Fig. 4, the Argonne

and Brookhaven-I sets are consistent among themselves

but not with the Brookhaven-II. However, the latter is

consistent up to 1.2 GeV with the dip solution for the

inelasticity favored from dispersive analyses of ππ →
ππ scattering [17,63] (assuming that only ππ and K K̄

states are relevant). Finally, the “dip” solution from ππ

scattering in the 1.2 GeV to 1.47 region has such large

uncertainties that is roughly consistent with the three data

sets.

II. In the region from
√

tmin,I I = 1.47 GeV to
√

tmax,I I = 2

GeV Roy–Steiner equations will not be applicable and

thus this region will only be used as input for our dis-

persive calculations for lower energies. Note that here

all experiments are roughly consistent, although the

Argonne set only reaches up to ∼ 1.5 GeV, Brookhaven-I

up to ∼ 1.7 GeV and only Brookhaven-II reaches up to

2 GeV.
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Fig. 4 Upper panel: modulus of the scalar-isoscalar ππ → K K̄ scat-

tering. The continuous line represents the UFDC parameterization while

the dashed line represents the UFDB fit to the Brookhaven-II data only.

Lower panel: scalar-isoscalar UFD phase for ππ → K K̄ scattering,

which is common for both UFDB and UFDC. Note that the Brookhaven-

I phase close to threshold lies around 150◦ or below, at odds with all

dispersive analysis of ππ scattering, which find a phase around or above

200◦

Therefore in order to test different data sets independently

and to be able to impose later Roy–Steiner equations as con-

straints below 1.5 GeV using as input the region above,

we have decided to parameterize our amplitudes by piece-

wise functions. Actually, each piece will be parameterized

by Chebyshev polynomials, because they are rather simple

and, in practice, tend to reduce the correlation between the

small number of parameters needed to obtain a good fit. They

are given by:

p0(x) = 1, p1(x) = x,

pn+1(x) = 2xpn(x) − pn−1(x). (18)

Thus we first map each energy region i = I, I I into the

x ∈ [−1, 1] interval through the lineal transformation

xi (t) = 2

√
t − √

tmin,i√
tmax,i − √

tmin,i

− 1. (19)

Note that for any n, pn(1) = 1 and pn(−1) = (−1)n , which

is useful for matching the different pieces smoothly up to the

first derivative.

Since for the φ0
0 phase we have already selected a single

set on each region, our unconstrained fit to data (UFD) will

be given in just two pieces:

φ0
0(t) =

⎧

⎨

⎩

∑3
n=0 Bn pn(x I (t)), Region I,

∑5
n=0 Cn pn(x I I (t)), Region II.

(20)

Note that we set:

B0 = δ
(0)
0 (tK ) + B1 − B2 + B3, (21)

C0 = φ0
0(tmax,I ) + C1 − C2 + C3 − C4 + C5, (22)

in order to impose continuity at K K̄ threshold and between

the two energy regions, respectively. In addition, we fix C1

to have a continuous derivative for the central value of the

curve and we take δ
(0)
0 (tK ) = (226.5 ± 1.3)◦ from [16]. The

rest of the parameters of the fit are given in Table 3. The total

χ2/dof = 1.47, which comes slightly larger than one due to

some incompatibilities between data sets. Consequently, the
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Table 3 Parameters of φ0
0

Parameter UFD CFDB CFDC

B1 23.6 ± 1.3 22.1 ± 1.3 22.9 ± 1.3

B2 29.4 ± 1.3 27.7 ± 1.3 28.4 ± 1.3

B3 0.6 ± 1.6 1.8 ± 1.6 1.1 ± 1.6

C1 34.3932 fixed 35.3450 fixed 34.51593 fixed

C2 4.4 ± 2.6 4.3 ± 2.6 4.3 ± 2.6

C3 − 32.9 ± 5.2 − 33.3 ± 5.2 − 32.6 ± 5.2

C4 − 16.0 ± 2.2 − 16.5 ± 2.2 − 16.0 ± 2.2

C5 7.4 ± 2.4 7.2 ± 2.4 7.2 ± 2.4

Table 4 Parameters of the UFDB and CFDB fits to |g0
0 |

Parameter UFDB CFDB

D0 0.59 ± 0.01 0.60 ± 0.01

D1 − 0.38 ± 0.01 − 0.35 ± 0.01

D2 0.12 ± 0.01 0.13 ± 0.01

D3 − 0.09 ± 0.01 − 0.12 ± 0.01

F1 − 0.04329 fixed − 0.04078 fixed

F2 − 0.008 ± 0.009 − 0.007 ± 0.009

F3 − 0.028 ± 0.007 − 0.035 ± 0.007

F4 0.026 ± 0.007 0.037 ± 0.007

uncertainties of the parameters in Table 3 have been rescaled

by a factor
√

1.5.

In contrast, for the modulus we want to test different sets

of data. Thus, we have performed two Unconstrained Fits

to Data (UFD) in Region I: (i) A UFDB fitting the data of

Brookhaven-II [9]. (ii) A UFDC fitting the “Combined” data

of Argonne [7] and Brookhaven-I [8]. Both use the same data

in Region II. Thus we will use the following functional form:

|g0
0(t)| =

⎧

⎨

⎩

∑3
n=0 Dn pn(x I (t)), Region I,

∑4
n=0 Fn pn(x I I (t)), Region II,

(23)

where we now set:

F0 = |g0
0(tmax,I )| + F1 − F2 + F3 − F4, (24)

in order to ensure continuity between the two regions and we

fix F1 to ensure a continuous derivative for the central value.

Both the UFDB and UFDC fits, whose parameters are

given in Tables 4 and 5, respectively, have χ2/dof ∼ 1

and are shown in the upper panel of Fig. 4.

3.2.4 Partial waves with ℓ > 2

For higher partial waves we just use Breit–Wigner descrip-

tions associated to the poles listed in the PDG. In particu-

lar, for the g1
3(t) we include a single ρ3(1690) resonance.

The ℓ = 4 partial wave, parametrized as an f4(2050) Breit–

Table 5 Parameters of the UFDC and CFDC fits to |g0
0 |

Parameter UFDC CFDC

D0 0.46 ± 0.01 0.46 ± 0.01

D1 − 0.27 ± 0.01 − 0.25 ± 0.01

D2 0.11 ± 0.01 0.11 ± 0.01

D3 − 0.078 ± 0.009 − 0.087 ± 0.009

F1 − 0.04153 fixed − 0.03738 fixed

F2 − 0.010 ± 0.008 − 0.013 ± 0.008

F3 − 0.023 ± 0.007 − 0.025 ± 0.007

F4 0.021 ± 0.006 0.025 ± 0.006

Wigner resonance, is only included in the g0
2(t) dispersive

calculation due to its negligible contribution below 2 GeV

for the g0
0(t).

3.3 Higher energies

There is no high-energy experimental information on ππ →
K̄ K nor π K → π K . However, the high energy behavior of

both processes can be confidently modeled by applying fac-

torization to Regge amplitudes obtained for other processes.

In this work we will use, for the s-channel above 1.74 GeV

the Regge model description presented in [55] and updated

in [17,18], whereas for the t-channel we will use the asymp-

totic forms of the Veneziano model [56–59], with the updated

parameters in [27], to describe the process above 2 GeV. The

reasons to choose 2 GeV in this work are twofold: on the one

hand data for the g0
0 and g0

2 waves reach above that energy,

on the other hand, even if the g1
1 data end at 1.6 GeV, the

ρ′′(1720) is well established in the RPP and with its 250

MeV width, reaches well above 2 GeV. Thus we rely on our

partial-wave parameterizations up to 2 GeV, but not much

more.

In what follows we provide the detail of these descriptions

using the notation of this work.

For the symmetric amplitude we have the Pomeron P(s, t)

contribution and the f2 or P ′(s, t) exchange:

Im F+
π K (s, t) =

Im F
(It =0)
π K (s, t)
√

6

= 4π2

√
6

fK/π

[

P(s, t) + r P ′(s, t)
]

, (25)

where, as explained in [55], fK/π is the factorization that

allows to convert one ππ -Reggeon into a K K -Reggeon ver-

tex, whereas r is related to the branching ratio of the f2(1270)

resonance to K̄ K . In addition

P(s, t) = βPψP (t)αP(t)
1 + αP (t)

2
eb̂t

( s

s′

)αP (t)

,

P ′(s, t) = βP ′ψP ′(t)
αP ′(t)(1 + αP (t))

αP ′(0)(1 + αP (0))
eb̂t

( s

s′

)αP ′ (t)
,
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αP (t) = 1 + tα′
P , ψP = 1 + cP t,

αP ′(t) = αP ′(0) + tα′
P ′ , ψP = 1 + cP ′ t. (26)

In contrast, the antisymmetric amplitude is dominated

by just one contribution coming from the exchange of a

Reggeized ρ:

Im F−
π K (s, t) =

Im F
(It =1)
π K (s, t)

2

= 2π2gK/π Im T (It =1)
ππ (s, t), (27)

where now gK/π is the factorization constant to change a

ππ → ρ Regge vertex into K K̄ → ρ, and

Im T (It =1)
ππ (s, t) = βρ

1 + αρ(t)

1 + αρ(0)
ϕ(t)eb̂t

( s

s′

)αρ (t)

,

αρ(t) = αρ(0) + tα′
ρ + 1

2
t2α′′

ρ,

ϕ(t) = 1 + dρ t + eρ t2. (28)

All the parameters in Eqs. (26) and (28) correspond to

Regge exchanges without strangeness (the Pomeron, f2 and

ρ) and can be determined [55] from processes that do not

involve kaons. Therefore in this work we fix them, both for

the unconstrained (UFD) and constrained fits (CFD) here, to

their updated values of the CFD fits given in [17], which are

listed in Table 6. Let us remark that with these parameters

our asymptotic value of the Pomeron π K cross section is

≃ 10.3 mb. This is about twice the ≃ 5 ± 2.5 mb value used

in [27]. This value was inspired by the work in [20], which

asymptotically yielded 6 ± 5 mb for ππ scattering. How-

ever, this ππ value has been revisited recently by members

of the same group [64] yielding 12.2 ± 0.1 mb for ππ scat-

tering, thus supporting our larger value for π K rather than

5 ± 2.5 mb.

In contrast, the determination of the parameters fK/π , r

and gK/π needs input from kaon interactions. In principle all

them were determined in [55] from K N factorization and we

take the fK/π and r values from that reference. Concerning

gK/π we take the updated value from the forward dispersion

relation study of π K scattering in [18] (we use the value

from the CFD there). Their values can be found in Table 7.

Since their determination involves kaon interactions, we will

allow them to vary when constraining our fits with dispersion

relations, i.e. from the UFD to the CFD sets. However, in the

table it is seen that the change is minute.

For the t-channel, ππ → K K̄ , we also need the exchange

of strange Reggeons, for which we will assume that the

dominant trajectories K ∗
1 (892) and K ∗

2 (1430) are degener-

ate, Thus we use for them a common trajectory αK ∗(s) =
αK ∗ +α′

K ∗s whose parameters, listed in Table 7, are obtained

from the linear Regge trajectories for strange resonances and

therefore are kept fixed for both our UFD and CFD sets.

Table 6 Values of Regge parameters obtained in [14,17]. Since these

could be fixed using reactions other than π K scattering, they will be

fixed both in our UFD and CFD parameterizations

Regge parameters Used both for UFD and CFD

s′ 1 GeV2

b̂ 2.4 ± 0.5 GeV−2

α′
P 0.2 ± 0.1 GeV−2

α′
P ′ 0.9 GeV−2

cP 0.6 ± 1 GeV−2

cP ′ − 0.38 ± 0.4 GeV−2

βP 2.50 ± 0.04

cP (0) 0 ± 0.04

βP ′ 0.80 ± 0.05

cP ′ (0) − 0.4 ± 0.4

αP ′ (0) 0.53 ± 0.02

αρ(0) 0.53 ± 0.02

α′
ρ 0.9 GeV−2

α′′
ρ − 0.3 GeV−4

dρ 2.4 ± 0.5 GeV−2

eρ 2.7 ± 2.5

βρ 1.47 ± 0.14

All these features are nicely incorporated in the dual-

resonance Veneziano–Lovelace model [56–59,65], which

was already used in the Roy–Steiner context for π K scat-

tering [52,53]. Here we are only interested in the asymptotic

behavior [27]:

Im G0(t, sb)√
6

∣

∣

∣

Regge
= Im G1(t, sb)

2

∣

∣

∣

Regge

=
πλ(α′

K ∗ t)
αK∗+aα′

K∗

Ŵ(αK ∗ + aα′
K ∗ )

×
[

1 +
α′

K ∗b

t
(ψ(αK ∗ + aα′

K ∗ ) − log(α′
K ∗ t)

)]

,

(29)

whereψ is the polygamma function. Note that the a, b param-

eters in the above equation will be those defining the hyper-

bola (s−a)(u−a) = b along which we will define our hyper-

bolic dispersion relations in the next section. For a given t , sb

is the value of s that lies in the previous hyperbola. In order

to compare with the expressions in [27], where a = 0, we

have kept just the first order in the b/t expansion, although

its numerical effect is rather small.

We estimate the remaining λ parameter from exact degen-

eracy between the ρ and K ∗ families. We thus match Eq. (27)

at 2 GeV with the expression from the degenerate Veneziano

model with its original parameter αV
ρ = 0.475. In this way

we find
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Table 7 Values of Regge parameters involving strangeness. They are

all allowed to vary from our UFD to our CFD sets with the exception

of αK ∗ and α′
K ∗ , since they are both determined from linear Regge

trajectory fits to strange resonances

Regge UFD CFD

fK/π 0.66 fixed 0.66 fixed

gK/π 0.53 fixed 0.53 fixed

r 0.05 ± 0.010 0.052 ± 0.010

αK ∗ 0.352 0.352

α′
K ∗ 0.882 GeV−2 0.882 GeV−2

λ 11.0 ± 5.0 10.7 ± 5.0

λ ≃
2πŴ(αV

ρ )

α
′αV

ρ

K ∗

4αρ−αV
ρ ≃ 10.6 ± 2.5, (30)

which is compatible with the value used in [27], λ = 14 ± 5.

Conservatively we also add a 25% uncertainty due to the

breaking of degeneracy and thus we arrive to our final esti-

mate

λ ≃ 11 ± 5, (31)

which for completeness is also listed in Table 7. Given that

it is a crude estimate we will allow this value to vary when

constraining our fits to obtain the CFD sets. We will see that

after imposing the dispersive constraints we obtain λ = 10.7,

which due to the degeneracy between the ρ and K ∗ families,

suggests gK/π ∼ 0.55, in perfect agreement with the value

used here that comes from a dispersive π K study.

A final remark on the size of Regge contributions is in

order. As commented in the introduction, in the next sections

we will obtain partial-wave dispersion relations by integrat-

ing hyperbolic dispersion relations. This is an integral over

b for a family of (s − a)(u − a) = b hyperbolas, while

a = −10.8M2
π is fixed to the value that maximizes the appli-

cability region (see Appendix D). This means that the expo-

nent αK ∗ + aα′
K ∗ < αK ∗ and thus the Regge contribution

to ππ → K̄ K in this work, for the same number of sub-

tractions, is suppressed with respect to its size in [27], where

a = 0. This will allow us to consider less subtractions with-

out Regge contributions growing large.

4 Hyperbolic dispersion relations and sum rules

Our goal is to calculate a set of parameterizations that

describe the data up to 1.47 GeV consistently with hyper-

bolic dispersion relations (HDR). As already advanced in

the introduction, in this work we will consider a set of hyper-

bolas (s − a)(u − a) = b and use a to maximize the energy

domain where the hyperbolic dispersion relations hold. Note

that the phenomenology of the ππ → K K̄ a = 0 case has

been studied in detail in [27,52,53]. Moreover, HDR with

a = 0 were also used for the study of the K ∗
0 (800) resonance

[26].

In addition, we will use the smallest number of subtrac-

tions needed for each channel. This has the advantage that our

equations for g0
0 and g1

1 are independent from one another.

In contrast, in [27] they use more subtractions and the sub-

traction constants are constrained by means of sum rules that

mix the dispersive representations of both waves.

4.1 Hyperbolic dispersion relations

For their derivation we basically follow the same steps

described in [39] but using a = 0, or more recently the

steps in [28] but applied here to for ππ → K K̄ instead of

π N scattering. Recall that in this work we use hyperbolas

(s −a)(u −a) = b, which with s + t +u = 2
, implies that

s and u on these hyperbolas are the following functions of t :

sb ≡ sb(t) = 1

2

(

2
 − t +
√

(t + 2a − 2
)2 − 4b
)

,

ub ≡ ub(t) = 1

2

(

2
 − t −
√

(t + 2a − 2
)2 − 4b
)

(32)

Let us remark that we do not need any subtraction for the

antisymmetric amplitude

F−(sb, t)

sb − ub

= 1

2π

∫ ∞

4m2
π

dt ′
Im G1(t ′, s′

b)

(t ′ − t)(s′
b − u′

b)

+ 1

π

∫ ∞

m2
+

ds′ Im F−(s′, t ′b)

(s′ − sb)(s′ − ub)
, (33)

where

s′
b ≡ sb(t

′), u′
b ≡ ub(t

′),

t ′b = 2
 − s′ − b

s′ − a
+ a. (34)

Whereas for the symmetric one:

F+(t, b, a) = h(b, a) + t

π

∫ ∞

4m2
π

Im G0(t ′, s′
b)√

6 t ′(t ′ − t)
dt ′

+ 1

π

∫ ∞

m2
+

ds′ Im F+(s′, t ′b)

s′

(

s

s′ − s
+ u

s′ − u

)

.

(35)

With these numbers of subtractions the convergence is fast

enough so that the asymptotic amplitude contribution is rela-

tively small (recall it starts at t = 4 GeV2 and s ≃ 3 GeV2 in

this work). In the above equations sb and ub are the values of

s and u that lie in the hyperbola (s−a)(u−a) = b for a given

value of t . Now, we want to rewrite the subtraction constant
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h(b, a) and for this we follow the procedure in [39,52,53].

We thus introduce the following fixed-t dispersion relation

F+(s, t) = c(t) + 1

π

∫ ∞

m2
+

ds′ Im F+(s′, t)

s′2

(

s2

s′ − s
+ u2

s′ − u

)

.

(36)

Note that two subtractions are needed to ensure the conver-

gence of this fixed-t dispersion relation, due to the Pomeron

contribution. Next, recall that G0(t, s, u) =
√

6F+(s, t, u),

so that by equating Eqs. (35) and (36) at t = 0, b =
a2 − 2
a + �2, the values of c(t) and h(b, a) are deter-

mined. Actually, Eq. (35) can be rewritten as:

F+(sb, t) = 8πm+a+
0 + t

π

∫ ∞

4m2
π

Im G0(t ′, s′
b)√

6 t ′(t ′ − t)
dt ′

+ 1

π

∫ ∞

m2
+

ds′ Im F+(s′, tb)

s′

×
[

h(s′, t, b, a) − h(s′, 0, b, a)
]

+ 1

π

∫ ∞

m2
+

ds′ Im F+(s′, 0)

s′2

×
[

g(s′, b, a) − g(s′,�2, 0)

]

, (37)

where

h(s′, t, b, a) = s′(2
 − t) − 2[b − a2 + (2
 − t)a]
s′2 − s′(2
 − t) + [b − a2 + (2
 − t)a] ,

g(s′, b, a) = s′(2
)2 − 2[b − a2 + 2
a](s′ + 
)

s′2 − s′2
 + [b − a2 + 2
a] .

(38)

We have explicitly checked that in the a = 0 case we recover

the HDR in [39,41,52,53]. However, with our HDR above we

can now choose the a parameter to maximize the applicability

region of the HDR once projected into partial waves, which

we will do in the next subsection.

Before finishing this subsection, a comment on the high

energy region is in order. We have three different kinds of

contributions above 2 GeV, the first one is G I (t ′, s′
b), which

can be calculated from Eq. (29). The second kind is the eval-

uation of F±(s′, 0): for the symmetric amplitude we just use

Eq. (25), while for the anti-symmetric one we use Eq. (27).

The last kind is for F±(s′, t ′b), which corresponds to an exotic

exchange, so that its contribution is negligible.

4.2 Partial-wave hyperbolic dispersion relations

In this work we want to obtain parameterizations of the ℓ =
0, 1, 2 partial waves which are consistent with data and the

hyperbolic dispersive representation. Thus, we project Eqs.

(33) and (37) into partial waves using Eq. (9) to obtain a set

of Roy–Steiner-like equations:

g0
0(t) =

√
3

2
m+a+

0 + t

π

∫ ∞

4m2
π

Im g0
0(t ′)

t ′(t ′ − t)
dt ′

+ t

π

∑

ℓ≥2

∫ ∞

4m2
π

dt ′

t ′
G0

0,2ℓ−2(t, t ′)Im g0
2ℓ−2(t

′)

+ 1

π

∑

ℓ

∫ ∞

m2
+

ds′G+
0,ℓ(t, s′)Im f +

ℓ (s′),

g1
1(t) = 1

π

∫ ∞

4m2
π

Im g1
1(t ′)

t ′ − t
dt ′

+ 1

π

∑

ℓ≥2

∫ ∞

4m2
π

dt ′G1
1,2ℓ−1(t, t ′)Im g1

2ℓ−1(t
′)

+ 1

π

∑

ℓ

∫ ∞

m2
+

ds′G−
1,ℓ(t, s′)Im f −

ℓ (s′),

g0
2(t) = t

π

∫ ∞

4m2
π

Im g0
2(t ′)

t ′(t ′ − t)
dt ′

+ t

π

∑

ℓ≥2

∫ ∞

4m2
π

dt ′

t ′
G0

2,4ℓ−2(t, t ′)Im g0
4ℓ−2(t

′)

+ 1

π

∑

ℓ

∫ ∞

m2
+

ds′G+
2,ℓ(t, s′)Im f +

ℓ (s′). (39)

The explicit expressions of the G I
ℓℓ′(t, t ′), G±

ℓℓ′(t, s′) inte-

gration kernels are given in Appendix B. Since so far in this

work we have left free the a parameter, we can now use it

to maximize the applicability of the equations right above.

Note there are constraints coming from the applicability of

the HDR in Eqs. (33) and (37) as well as from the convergence

of the partial-wave expansion. As shown in Appendix D, by

setting a = −10.8m2
π the applicability range of these equa-

tions is −0.286 GeV2 ≤ t ≤ 2.19 GeV2. In other words,

we can study the physical region from the K K̄ threshold

≃ 0.992 GeV up to ≃ 1.47 GeV. In contrast, the usual HDR

projected into partial waves are only valid up to ≃ 1.3, GeV.

Thus, with our choice of a, the applicability of the dispersive

approach in the physical region, where we can test or use

data as input, has been extended by 55% in terms of the
√

t

variable, or 67% in terms of t .

As can be directly seen in Eq. (39) the g1
1(t) partial wave

does not have any scattering length as input parameter and

its dominant contribution to the integral comes from its own

imaginary part. Since it is not subtracted, the Regge con-

tribution is not negligible, but we have already attached a

conservatively large uncertainty to its residue and we will

see that it barely changes when using the dispersive repre-

sentation as a constraint on data. In the case of even partial

waves, one subtraction is necessary to ensure the conver-

gence, and hence the output is always influenced by the scat-

tering lengths coming from π K scattering. In this work we

fix them to the values obtained in [18], which are also com-

patible with the Roy–Steiner prediction in [27]. As already
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commented, an important advantage of using HDR with the

smaller possible number of subtractions is to decouple odd

and even partial waves. For example in [27] the Roy–Steiner

equation for g0
0 uses g1

1 as input.

Finally, we want to remark that, as usual, the high energy

part of the integrals in Eq. (39) is obtained by projecting into

the corresponding partial-wave the high-energy part of the

integrals in Eqs. (33) and (37), where Regge theory was used

as input as explained in previous sections.

4.3 The unphysical region and the Muskhelishvili–Omnès

problem

As can be observed in Eq. (39), the integration region actu-

ally starts at ππ threshold. This means that the integrals

extend over an “unphysical” regime where ππ → K K̄ scat-

tering does not occur and thus cannot be described with data

parameterizations. Nevertheless, below K K̄ threshold the

inelasticity to more than two-pion states is completely neg-

ligible. Since ππ is the only available state in that region

Watson’s Theorem implies that the g
It

ℓ phase below K K̄

threshold is just that of ππ scattering and thus we write

φ
It

ℓ (t) = δ
It

ℓ,ππ→ππ (t). Note that Watson’s Theorem does not

provide any direct information on |g It

ℓ |. But once the phase

is known, determining the modulus in the unphysical region

is nothing but the standard Muskhelishvili–Omnès problem

[66,67], that we describe next following similar steps as in

[27–29,39,52]. Recalling that partial waves have a right- and

left-hand cut we can re-write Eq. (39) as follows:

g0
ℓ (t) = �0

ℓ(t) + t

π

∫ ∞

4m2
π

dt ′

t ′
Im g0

ℓ (t)

t ′ − t
, ℓ = 0, 2,

g1
1(t) = �1

1(t) + 1

π

∫ ∞

4m2
π

dt ′
Im g1

1(t)

t ′ − t
, (40)

where the �I
ℓ(t) contain the left-hand cut contributions and

subtraction terms. Note that �I
ℓ(t) does not depend on g I

ℓ

itself, but on other g I
ℓ′ with ℓ′ ≥ ℓ + 2, which in the unphys-

ical region are much more suppressed than g I
ℓ , due to the

centrifugal barrier.

Now we define the Omnès function

�I
ℓ(t) = exp

(

t

π

∫ tm

4m2
π

φ I
ℓ (t ′)dt ′

t ′(t ′ − t)

)

, (41)

which satisfies

�I
ℓ(t) ≡ �I

l,R(t)eiφ I
ℓ (t)θ(t−4m2

π )θ(tm−t), (42)

where, in the real axis, �I
l,R(t) can be written as:

�I
l,R(t) =

∣

∣

∣

∣

tm

tπ
(t − tπ )−φ I

ℓ (t)/π (tm − t)φ
I
ℓ (t)/π

∣

∣

∣

∣

× exp

(

t

π

∫ tm

4m2
π

dt ′
φ I

ℓ (t ′) − φ I
ℓ (t)

t ′(t ′ − t)

)

. (43)

In the real axis, �I
l,R is nothing but the modulus of �I

l and

therefore a real function.

Note that from 4m2
π to tm the Omnés function has the same

cut as g I
ℓ (t). Thus, we can define a function

F I
ℓ (t) =

g I
ℓ (t) − �I

ℓ(t)

�I
ℓ(t)

, (44)

which is analytic except for a right hand cut starting at tm .

Hence we can write dispersion relations for F I
ℓ (t), which in

terms of g I
ℓ (t) read:

g0
0(t) = �0

0(t) + t�0
0(t)

tm − t
[

α + t

π

∫ tm

4m2
π

dt ′
(tm − t ′)�0

0(t
′) sin φ0

0(t ′)

�0
0,R(t ′)t ′2(t ′ − t)

+ t

π

∫ ∞

tm

dt ′
(tm − t ′)|g0

0(t ′)| sin φ0
0(t ′)

�0
0,R(t ′)t ′2(t ′ − t)

]

, (45)

g1
1(t) = �1

1(t) + �1
1(t)

[

1

π

∫ tm

4m2
π

dt ′
�1

1(t
′) sin φ1

1(t ′)

�1
1,R(t ′)(t ′ − t)

+ 1

π

∫ ∞

tm

dt ′
|g1

1(t ′)| sin φ1
1(t ′)

�1
1,R(t ′)(t ′ − t)

]

, (46)

g0
2(t) = �0

2(t) + t�0
2(t)

[

1

π

∫ tm

4m2
π

dt ′
�0

2(t
′) sin φ0

2(t ′)

�0
2,R(t ′)t ′(t ′ − t)

+ 1

π

∫ ∞

tm

dt ′
|g0

2(t ′)| sin φ0
2(t ′)

�0
2,R(t ′)t ′(t ′ − t)

]

. (47)

When t lies in the real axis above the ππ threshold, a prin-

cipal value must be understood on each integral. In addi-

tion, between ππ threshold and tm on the left hand sides the

amplitude is reduced to its modulus (since by construction

the Omnés function removes the phase), whereas above tm it

is reduced to its real part.

Since in the next sections we will choose tm with φ0
0(tm) ≥

π we have introduced one subtraction for the g0
0(t) Omnès

solution in order to ensure the convergence when t → tm . The

subtraction constant α will be obtained by imposing numer-

ically a no-cusp condition on tm for g0
0(t).

The interest of these equations is that for a given g I
ℓ (t), the

integrals in the unphysical region only make use of the phases

and the �I
ℓ . But thanks to Watson’s Theorem the former are

known fromππ scattering, which we take from the dispersive

analysis of [17], and the latter do not involve g I
ℓ (t) itself, but
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only partial waves with ℓ′−ℓ ≥ 2. These higher partial waves

are suppressed in the unphysical region with respect to that

with ℓ. We also need input from Kπ scattering that is known

and we take it from our recent dispersive data analysis in [18].

Thus we can directly solve g1
1(t) and g0

2(t), for which we have

explicitly checked that the ℓ = 3 and ℓ = 4 contributions

are small and negligible, respectively. Once we have g0
2(t)

we can use it as input to solve Eq. (45) for g0
0(t).

It is worth noticing here that, in purity, for the Regge con-

tributions to �I
ℓ(t), one has to subtract the projection of the

Regge amplitude itself into the desired I, ℓ partial wave. For-

tunately this projection is negligible, and our solutions do not

depend on this procedure.

We still have to discuss the choice of tm , which is always

above the K K̄ threshold. It is important to recall that the

derivation of the above equations implies that goutput (tm) =
ginput (tm). This condition will always be forced into the out-

put no matter if the data at that energy is in good or bad

agreement with dispersion relations. If the data at that energy

region were not close to the dispersive solution, the output

would be forced to describe it and the result could be strongly

distorted in other regions. In particular the g0
0 wave is the

most sensitive to this instability, the effect is more moderate

on the g0
2 and negligible for the g1

1 because it is already very

consistent for any tm choice. Thus, we have studied what

energy region is the most consistent for g0
0 when changing

tm and we have found that there are two regions that yield

systematically rather consistent results between input and

output: one around
√

tm = 1.2 GeV, which is also valid for

g0
2 , and another one around

√
tm = 1.47 GeV. However,

if we chose the latter, we find that the uncertainty in the

dispersive result between K K̄ and 1.2 GeV is so large that

there is no dispersive constraint in practice, having larger

uncertainties could even produce both g0
0(t) solutions to be

compatible between them. Moreover by looking at Eqs. (45),

(46) and (47) one can notice that tm marks the energy above

which |g I
ℓ | is used as input for its own equation. Since we are

actually trying to test the data parameterizations, within our

approach we would like to maximize that region and choose

the smaller possible tm . All in all, we have made the final

choice
√

tm = 1.2 GeV for all partial waves. This is a point

above K K̄ threshold where there are no cusps coming from

the two most important inelasticities (K K̄ , ηη). In particu-

lar, the g0
2 is well controlled at this energy since its largest

contribution comes from the f2(1270), a very well-known

resonance very close to tm .

5 Consistency check of unconstrained fits

In order to study in a systematic way the consistency of the

unconstrained data parameterizations of Sect. 3 with respect

to dispersion relations, we first define a “distance-square”

d2 = 1

N

N
∑

i=1

(

di

�di

)2

, (48)

for each dispersion relation. Note its similarity to a χ2/dof

function, although we are still not fitting or imposing the

dispersion relations. Here di is the difference between the

“input” and “output” of each dispersion relation at the energy√
ti . We use thirty energy points

√
ti equally spaced from

threshold up to 1.47 GeV. In addition, �di is the uncertainty

in the di difference, which is obtained by varying the param-

eters of our unconstrained fits to data (UFD) within their

errors.

As we explained before, Eqs. (45), (46), (47) yield the

modulus of the partial wave below tm and the real part above.

However, in order to simplify our plots and calculations, we

will just display the modulus. In particular by “input” we

will understand the modulus of the partial wave on the left

hand side of Eqs. (45), (46), (47), i.e. as obtained directly

from our fits. Similarly, by “output” we will always mean

the modulus of the dispersive representation. Note that for

t < tm this modulus is obtained from the right hand side

of those equations with principal values on each integral.

However, for t > tm only the real part is obtained from

the integrals and the modulus is reconstructed by adding the

imaginary part from the direct parameterizations.

With the above definition we can study the consistency of

each partial-wave dispersion relation. It will be well satisfied

on the average if its corresponding d2 ≤ 1. In case of dis-

agreement it is also relevant to check whether it comes from

a particular energy region and for this we will show figures

comparing the input and output as a function of
√

t .

5.1 g1
1 UFD check

Let us study first the consistency of g1
1 . We see in Eq. (46) that

its partial wave dispersion relation is decoupled from even

partial waves. The highest partial wave we have considered

in �1
1 is the ℓ = 3 contribution. Actually, by using the sim-

ple model dominated by the ρ(1690) resonance described in

Sect. 3.2.4, we have explicitly checked that its contribution

is very small and barely affects our results for g1
1 below 1.47

GeV.

As can bee seen in Fig. 5 the dispersion relation in Eq.

(46) is remarkably well satisfied, with a total d2 = 1. Such

a nice agreement was expected since it has a large contri-

bution from the ρ(770) that dominates ππ scattering in this

channel below K K̄ threshold, and our input from [18] is

already consistent with ππ data and dispersion relations. Let

us now recall that the ππ → K K̄ data we use as input show

large uncertainties and fluctuations (see Fig. 1). Our UFD

description does not follow visually all these fluctuations

but, roughly speaking, it averages them and rises softly and
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1.2 |g
1

1
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Input UFD
Dispersive UFD

d
2
=1

Fig. 5 Comparison between the input (dashed line) and the dispersive

output (continuous line) for the modulus of the g1
1 dispersion relation

in Eq. (46). The gray band covers the uncertainty of the difference

monotonously. Still, our UFD is remarkably consistent with

the dispersive representation. Actually we have checked that

parameterizations with more oscillations may describe the

central values of the data points better, but satisfy worse the

dispersive representation than our UFD fit. In the ππ → K K̄

physical region we had also included resonant shapes for the

ρ′ and ρ′′ resonances in our UFD. As seen from our results,

the parameters and shape of the ρ′, which for a good part lies

within the applicability region of our equations, are fairly

consistent with dispersion relations. As commented in Sect.

3.2.1 the ρ′′ was used just as a simple form to parameterize

the amplitude at energies beyond the reach of our dispersive

representation where scattering data do not exist.

One could also be worried that, since the g1
1 dispersion

relation has no subtractions, it may require some tuning on

the Regge asymptotics and the λ parameter we estimated with

the Veneziano model and degeneracy in Sect. 3.3. However

the nice fulfillment of the dispersion relation yields strong

support for our λ estimations.

5.2 g0
2 UFD check

In the case of the g0
2(t) dispersion relation, Eq. (47), it

involves even partial waves with ℓ ≥ 4, but they are almost

negligible below 2 GeV. As seen in Fig. 6, when using

the UFD parameterizations, the g0
2(t) dispersion relation is

clearly not well satisfied right above K K̄ threshold and this

incompatibility fades away near 1.1 GeV. At threshold, the

deviation is ≃ 3σ . Very naively one could have expected

this region to be dominated by the f2(1270) resonance tail,

since the threshold is merely 1.5 widths away from the res-

onance peak. However, if one tries to use a simple Breit–

Wigner description instead of our UFD parameterization,

1 1.1 1.2 1.3 1.4

t
1/2

(GeV)

1

1.5

2

2.5

3

3.5

4

4.5

|g
0

2
|

Input UFD
Dispersive UFD

d
2
=1.6

Fig. 6 Comparison between the input (dashed line) and the dispersive

output (continuous line) for the modulus of the g0
2 dispersion relation in

Eq. (47) using as input the UFD set. The gray band covers the uncertainty

of the difference

then d2 ≥ 6. Thus, such naive expectation does not hold,

which justifies the elaborated form of our parameterization

in Eq. 14. Nevertheless, there is still room for improvement

that will be achieved when imposing the dispersion relations

as constraints in Sect. 6.

5.3 g0
0 UFD check

Finally, for the scalar-isoscalar dispersion relation in Eq. (45),

we need both the g0
0(t) and g0

2(t). In this case, partial waves

with ℓ ≥ 4 are totally negligible below 2 GeV. In Fig. 7 we

show the results of the g0
0(t) dispersion relation when using

either the UFDB or UFDC parameterizations as input. In both

cases the agreement is poor, particularly due to the results in

the region 10–20 MeV above K K̄ threshold, where the dis-

persive solution increases rapidly. This feature is common to

both the UFDB and UFDC and is due to the influence of the

f0(980). The respective d2 = 5.6 and d2 = 2.7 are domi-

nated by this near threshold region. There is a clear need for

improvement, that we will achieve by imposing dispersion

relations as constraints in the next section, although in both

cases the disagreement in the region very near threshold will

linger on. However, we will see that for both solutions a very

good consistency with dispersion relations can be achieved

except for the very near threshold region.

Finally, let us remark that the g0
0 partial-wave dispersion

relation in Eq. (45) depends on the π K scattering length

a+
0 . We have checked that the dispersion relation would be

better satisfied if we used a somewhat lower value of a+
0

than that obtained in our previous work [18] (which was also

compatible with Roy–Steiner determinations [27]). Since in

this work we are considering π K scattering amplitudes as
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Fig. 7 Comparison between the input (dashed line) and the dispersive

output (continuous line) for the modulus of the g0
0 dispersion relation

in Eq. (45). In the upper panel we show the results using as input the

UFDB parameterization and in the lower panel those from the UFDC.

The gray bands cover the uncertainty of the difference between the input

and the respective dispersive result

fixed input, we keep the value from the π K constrained fit,

but this result could be relevant for future re-analysis of π K

scattering data.

6 Constrained fits to data

Therefore, we have just seen that the data on the g0
2 and even

more so on the g0
0 do not satisfy very well the dispersive repre-

sentation. There is clear room for improvement. Thus, in this

section we will impose the dispersion relations in Eqs. (45),

(46), (47) as constraints of the fits. In this way we will obtain

a set of constrained fits to data (CFD) which fulfillment of the

dispersive representation will be much improved. In this sec-

tion we use the same functional forms for the amplitudes that

we used in Sect. 3, but the parameters change from the UFD

to the CFD sets. In general the difference between the UFD

and CFD parameters is small, with a few exceptions. Nev-

ertheless, due to large correlations in the parameters, even if

some CFD parameters deviate from the UFD set, the result-

ing UFD and CFD curves are typically consistent with one

another at the 1 or 1.5 σ level. Only for the constrained analy-

sis of the UFDC, the CFDC g0
0 partial wave deviates by about

2 σ in the region from 1.25 to 1.45 GeV, but it still compat-

ible with the upper error bars of the data. Hence the CFD

description of data is still rather good.

To minimize the discrepancy between the fit used as input

in the dispersion relation and the output obtained from the

dispersion relation, without deviating much from the data,

one first defines a χ2-like function

W 2
1 d2

g I
ℓ

+ W 2
2

N

N
∑

k

(

|g I
ℓ |exp,k − |g I

ℓ (sk)|
δ|g I

ℓ |exp,k

)2

+ W 2
3

N ′

N ′
∑

k

(

(φ I
ℓ )exp,k − φ I

ℓ (sk)

δ(φ I
ℓ )exp,k

)2

, (49)

where |g I
ℓ |exp,k, (φ

I
ℓ )exp,k are the experimental values of the

kth data point for the modulus and the phase, respectively,

and δ|g I
ℓ |exp,k, δ(φ

I
ℓ )exp,k are their corresponding errors. The

weights W 2
1 , W 2

2 = W ′2 N/(N + N ′), W 2
3 = W ′2 N ′/(N +

N ′) are used to roughly take into account the degrees of

freedom needed to parameterize the curves that describe the

modulus and the phase. For simplicity we have chosen the

same W 2
1 = 5 and W ′2 = 12 value for all partial waves

as an average value of their degrees of freedom. Note that

we actually minimize the sum of this function over the three

partial waves of interest (I, ℓ) = (0, 0), (1, 1) and (0, 2).

In addition, recall that, as explained in Sect. 3.2.2, we have

added two points to the χ2-function to take into account the

experimental mass of the f2 and f ′
2 resonances.

Let us remark that in previous works our procedure was

slightly different: we defined a similar χ2-like function but

in terms of the unconstrained fit parameters, which were not

allowed to vary much from their unconstrained best values. In

contrast, in Eq. (49) we define our χ2-like function directly

in terms of data, not the unconstrained fit parameters. The

reason is that in this work the onset of Regge parameteriza-

tions is 2 GeV and thus we use our partial-wave parameter-

izations to describe data from K K̄ threshold up to 2 GeV.

However, the dispersion relations are only applicable up to

1.47 GeV. If we constrained only the fit parameters with the

dispersion relations, which affect only the lower-energy data,

we would obtain large artificial deviations in the descrip-

tion of the higher-energy data. With the procedure we use

here, and contrary to what happened in previous works, if
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Fig. 8 Comparison of the modulus and the dispersion relation after the

minimization procedure. The gray band covers the uncertainty of the

difference between the input and dispersive results

there are some strongly correlated parameters, we can see

that their constrained values can deviate appreciably from

their unconstrained best values but still the constrained and

unconstrained curves look very similar. As the uncertainty

variation is of second order, and parameters that are not com-

patible with old values deviate by a small number of sigmas

at most, we still maintain their uncertainties as they are a

reliable and almost unchanged estimate of the error, as one

can see in the final uncertainty band plotted in the figures for

the CFD parameterizations.

6.1 Constrained g1
1(t) partial wave

Let us recall that the UFD I = 1, ℓ = 1 wave from K K̄

threshold up to 1.47 was already consistent with the disper-

sive representation. By imposing our dispersion relations d2

decreases just from 1 to 0.6. The difference between the con-

strained input and dispersive output for the g1
1 wave can be

seen in Fig. 8.

Actually, as seen in Fig. 9 imposing the dispersive con-

straints barely changes this wave, i.e. the UFD and CFD

curves are almost indistinguishable both for the modulus and

the phase of g1
1 . Note also that, as shown in Fig. 10, the disper-

sive CFD output perfectly describes the data. In that Figure

we also show the CFD modulus in the unphysical region and

the continuous matching at threshold.

The new CFD parameters can be found in Table 1 where it

can be checked that the CFD values are remarkably consistent

with the UFD ones: only two are beyond one standard devia-

tion but not more than 2 σ . As we are using a non-subtracted

HDR to study the odd angular momentum partial waves, the

small improvement in the description of this partial wave

comes mostly from the slight variation of the Regge param-
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Fig. 9 Modulus and phase of the g1
1(t) ππ → K K̄ partial wave.

The continuous line and the uncertainty band corresponds to the CFD

whereas the dashed line corresponds to the UFD. The white circles

and squares come from the ππ scattering experimental analyses of

Protopopescu et al. [2] and Estabrooks et al. [4], respectively.

eters. Nevertheless, as it can be seen in Table 7, our CFD

result for the λ Regge parameter is compatible with its UFD

value, thus supporting the degeneracy between the ρ and K ∗

families.

It is worth noticing that, as we are using no subtractions,

the value of the ππ → K K̄ amplitude at t = 0, b = �2

can be related to the a−
0 π K → π K scattering length a−

0 =
(a1/2 − a3/2)/3, using Eq. (33), to obtain the following sum

rule [27,68]:

8πm+a−
0

m2
+ − m2

−
= 1

2π

∫ ∞

4m2
π

dt ′

t ′
Im G1(t ′, s′

�2)
√

(t ′ − 4m2
π )(t ′ − 4m2

K )

+ 1

π

∫ ∞

m2
+

ds′ Im F−(s′, t ′
�2)

λs′
(50)
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Fig. 10 Dispersive output for the modulus of the g1
1(t) ππ → K K̄

partial wave obtained from the CFD set. The continuous line and the

uncertainty band corresponds to the CFD dispersive result

Note that the scattering length results from the integration

over both π K → π K and ππ → K K̄ channels. Using as

input for G1 our constrained parameterizations just calcu-

lated and our the CFD parameterizations for Kπ scattering

in [18], we find

mπ (a1/2 − a3/2) = 0.249 ± 0.032, (sum rule+CFD).

(51)

To be compared with

mπ (a1/2 − a3/2) = 0.251 ± 0.014, (sum rule in [20])

obtained in [27] using this same sum rule with their uncon-

strained input from ππ → K K̄ and the Kπ solutions from

their Roy–Steiner analysis of Kπ . We obtain a larger uncer-

tainty since we use the Regge asymptotics from 2 GeV

instead of 2.5 GeV as in [27] and because, in contrast to

[27], we also include uncertainties in all partial-waves.

Those two values obtained using the sum rule can also be

compared with direct calculations from the Kπ amplitudes:

mπ

(

a1/2 − a3/2
)

= 0.273+0.018
−0.015, (CFD [14])

mπ

(

a1/2 − a3/2
)

= 0.269+0.015
−0.015. (Roy–Steiner [20]).

The first is obtained from our recent dispersive analysis using

Forward Dispersion Relations as constraints on fits to Kπ

data [18] and the second from the solutions of Roy–Steiner

equations in [27].

6.2 Constrained g0
2(t) partial wave

For this wave the agreement was not as good as for the I = 1

and ℓ = 1 partial wave, particularly in the threshold region.
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Fig. 11 Comparison between the input (dashed line) and the dispersive

output (continuous line) for the modulus of the g0
2 dispersion relation in

Eq. (47) using as input the CFD set. The gray band covers the uncertainty

of the difference
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Fig. 12 The continuous line is our final CFD parameterization of the

data on the modulus of ĝ0
2(t) from the Brookhaven-II analysis [9]. The

gray band stands for the uncertainty from the CFD parameters.The

dashed line is the UFD parameterization. The difference between the

UFD and CFD parameterization near threshold is imperceptible due to

the q5 factor

After minimization the overall agreement has improved con-

siderably, from d2 = 1.6 down to 1.1. However, as seen in

Fig. 11, our CFD parameterization still shows some small dis-

crepancy with its dispersive output near threshold, although

the deviation has improved substantially in that region com-

pared to the unconstrained case.

This improvement is achieved without changing much the

CFD parameterization with respect to the UFD. The CFD

parameters change little from their previous UFD values,

as seen in Table 2. In addition, in Fig. 12 we can see that

the deviations from the UFD to the CFD modulus are almost
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Fig. 13 Comparison between the UFD and CFD g0
2 phases obtained

with a model including an f2(1810) resonance and the one obtained

with the Brookhaven model without it, using a flat background

imperceptible. There are some differences near threshold but,

unfortunately, when plotting the modulus together with data,

the resulting curves look almost identical due to a q(s)5 fac-

tor. In contrast, we can see in Fig. 13 some small difference

between the UFD and CFD phase φ0
2 . This change is actually

the one mostly responsible for the improvement in the d2.

We have also checked that the values obtained at the K K̄

threshold still fulfill Watson’s Theorem when using the ππ

scattering values obtained from dispersion relations [17,62].

One should be careful not to force too much the fit in the

threshold region because, as commented in the UFD case,

this could spoil the f2(1270) mass, which is very well estab-

lished from different experiments, not just scattering. That is

why we considered the f2 and f ′
2 masses as additional data

points when fitting the ππ → K K̄ data. We have also added

this extra contribution when minimizing the χ2 to obtain the

CFD set.

We have tried different parameterizations, including addi-

tional flexibility upon Breit–Wigner-like parameterizations,

but we have not been able to find a solution that satisfies

better the dispersion relation near threshold without spoiling

severely the data description.

Finally, let us note that this dispersion relation has some

sensitivity to π K scattering, in particular to the scalar partial

wave. A more thorough study would require allowing the π K

scattering amplitude to vary when imposing the hyperbolic

dispersion relations as constraints, but that is well beyond the

scope of this work dedicated to ππ → K K̄ , where we have

taken π K scattering as fixed input.

6.3 Constrained g0
0(t) partial wave

The scalar partial wave g0
0 is the most interesting in this work,

given that we are dealing with two incompatible sets of exper-
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Fig. 14 Comparison between the input (dashed line) and the dispersive

output (continuous line) for the modulus of the g0
0 dispersion relation in

Eq. (45). In the upper panel we show the results using as input the CFDB

parameterization and in the lower panel those from the CFDC. The gray

bands cover the uncertainty in the difference between the input and

dispersive results. By comparing with Fig. 7 we see that the fulfillment

of the dispersion relation by the CFD set has improved considerably

with respect to the UFD parameterization. Also, there is no significant

difference in the consistency of the CFDB and CFDC sets

imental data for the modulus and also because neither of them

are consistent with the dispersive representation.

As seen in Sect. 3, on the one hand we have the

Brookhaven-II [9] data and, on the other hand, the data of

Brookhaven-I [8] and Argonne [7]. From these two sets we

obtained the UFDB and UFDC parameterizations, respec-

tively. For the phase we had a single UFD parameterization.

Let us recall that the overall UFDC agreement with its disper-

sive output up to 1.47 GeV is poor, with d2 = 2.7, whereas

the UFDB is even more inconsistent with d2 = 5.6. In that

respect the UFDB parameterization may seem disfavored.
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Fig. 15 Comparison between the UFD and CFD parameterizations for

g0
0(t). The bands cover the uncertainties of the CFD solutions. Upper

panel: modulus of the scalar-isoscalar ππ → K K̄ scattering. The dot-

ted line represents the CFD combined fit while the continuous line rep-

resents the CFD fit to the Brookhaven-II data only. The only significant

change is in the 1.25–1.45 GeV between UFDB to CFDB. Lower panel:

scalar-isoscalar phase for ππ → K K̄ scattering. Note that the UFD,

CFDB and CFDC phases are almost indistinguishable

However, the UFDC modulus is clearly incompatible with

the value that would be obtained from the inelasticity of ππ

scattering obtained from dispersion relations [17] assuming

two coupled channels, ππ and K K̄ . For that reason we will

study here both UFDB and UFDC and will obtain a fit to each

data set constrained with our dispersion relation in Eq. (45).

We will see that after this process both constrained solutions

will be equally acceptable with respect to their consistency

regarding dispersion relations.

Let us note that we now use as input the g0
2 CFD parameter-

ization obtained in the previous subsection. The consistency

test of the constrained g0
0 results can be found in Fig. 14. It

can be seen that we obtain an equally good consistency for

both the CFDB and CFDC parameterizations except for the

region very close to threshold. The behavior in this region is

controlled by the f0(980) shape in the elastic region of ππ

scattering and thus is out of the scope of this work, since we

consider it input. The rest of the energy region up to 1.47

GeV has values of d2 below one.

In Fig. 15 we also compare both CFD parameterizations

against their respective UFD parameterizations and the data.

There one can see that the UFD and CFD phases are almost

identical, except in the 1.1–1.2 GeV region where the CFD

is higher by more than one standard deviation, and in the 1.9

GeV region where the CFD phase is again higher but well

within uncertainties. Actually there are two CFDB and CFDC

phases but they are totally indistinguishable.

Concerning the modulus, the UFDC and CFDC are com-

patible, whereas the CFDB is slightly lower than the UFDB

in the 1.05–1.15 region, but clearly higher in the 1.3–1.45

region. These differences go above the 2-σ level, so that they

lie still reasonable close to the data, but prefer to cross the

top of the experimental uncertainty bars.

Note that the “dip” structure in the inelasticity from ππ

scattering occurs around 1.1 GeV, whereas the biggest dif-

ference between the in UFDB and the CFDB is found above

1.25 GeV, so that we conclude that such a dip is not the cause

of the deviation for the UFDB set. The dip structure favored

by ππ scattering dispersive analyses can therefore be accom-

modated also with the hyperbolic dispersive representation

of ππ → K K̄ .
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Fig. 16 Dispersive output for the modulus of the g0
0(t) ππ → K K̄

partial wave obtained from the CFD sets. Note how they differ also

below the K K̄ threshold

Therefore we conclude that the data most commonly used

in the literature (Argonne [7]) is not necessarily the only

acceptable solution and that one does not have to ignore the

Brookhaven-II data. Actually, we have shown that with the

CFDB solution the Brookhaven-II data can also be fairly

well described while being consistent with ππ → K K̄ dis-

persion relations and with the dispersive determination of the

inelasticity in ππ scattering that, in contrast, is not consistent

with the Argonne data. In this sense the CFDC is disfavored

against the CFDB set.

Finally, in Fig. 16 we also show the CFDB and CFDC

parameterizations in the unphysical region. There one can

observe that their respective pseudo-threshold behaviors are

quite different. Namely, the modulus of the CFDB around the

f0(980) peak is larger than that of the CFDC . Such different

behaviors may have a sizable impact for future studies of

π K → π K dispersion relations.

7 Conclusions and outlook

In this work we have performed a dispersive study of ππ →
K K̄ scattering by means of partial-wave dispersion relations

of the Roy–Steiner type, i.e. based on hyperbolic dispersion

relations. While other studies with similar equations used

dispersion theory to obtain information on the sub-threshold

region, we have also used them for the first time in the

physical region. Moreover, we have derived a set of equa-

tions based on (s − a)(u − a) = b hyperbolae in which we

have obtained the value of a that maximizes the applicability

range of these hyperbolic dispersion relations. Compared to

the existing a = 0 case we have increased the applicability

range of the hyperbolic partial-wave dispersion relations in

the physical region by 67% in the t variable. This has allowed

us to study dispersively the existing data sets on ππ → K K̄

up to 1.47 GeV.

In particular, on a first step we have obtained a set of

unconstrained fits to data (UFD) for each partial wave g I
ℓ (t),

where ℓ and I are the angular momentum and isospin, respec-

tively. For the case of the scalar-isoscalar wave g0
0 we have

provided two alternative fits, called UFDB and UFDC, to

differentiate between fits to two conflicting sets of data. In

addition, we have provided high energy parameterizations

for ππ → K K̄ scattering, based on factorization and Regge

theory, that we need for the high energy part of our disper-

sive integrals. We have then tested these UFD parameteri-

zations against our dispersion relations. We have found that

the P wave UFD is very consistent with dispersion relations.

Also, the D wave is crudely consistent with these equations,

although there is clear room for improvement. In contrast,

we have found that the unconstrained fits to both solutions

of the scalar-isoscalar wave show a significant inconsistency

with the dispersive representation, particularly, but not only,

near threshold. These deviations are not related to the high

energy input, and thus they become a first warning to the

phenomenological use of simple fits to the existing data.

Next, we have provided a new set of fits to data using the

hyperbolic partial-wave dispersion relations as constraints.

For the P and D waves, these constrained fits to data (CFD)

satisfy their dispersion relations within uncertainties while

describing very well the experimental data. There is only

some relatively small tension in the D-wave threshold region.

In particular we have shown that a simple description of the

D-wave threshold region with a simple Breit–Wigner param-

eterization of the nearby f2(1270) resonance is not accept-

able.

We have also found that, with the exception of the region

very close to threshold, both constrained parameterizations

of the g0
0 wave, labeled CFDB and CFDC, satisfy well the dis-

persion relations, while still describing reasonably well their

respective sets of data. Nevertheless some systematic devia-

tions from the data central values are needed in order to sat-

isfy the dispersive representation, particularly for the UFDB

in the region between 1.25 and 1.45 GeV. This becomes a

second warning towards considering only the most popular

data set described by UFDC: the data on which the UFDC set

is based can be also described consistently with hyperbolic

partial-wave dispersion relations, and is favored by previous

ππ scattering dispersive analysis. This second set should

definitely not be discarded, if not directly favored against the

most popular one.

In conclusion, our constrained data fits provide reliable,

precise and simple parameterizations of data on S, P and

D partial waves up to 2 GeV, which are consistent with

the hyperbolic dispersive representation up to its maximum

applicability limit of 1.47 GeV.
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As an outlook for this work, our constrained parameter-

izations could be used by both the theoretical and exper-

imental hadron communities as input for other processes.

Actually, in the near future we plan to use them for further

studies. For example: to implement re-scattering effects in CP

violating decays involving pions and kaons, or to study the

much debated f0(1370) and f0(1500) resonance by means

of model-independent methods based on analyticity, or com-

bined with ππ scattering determinations, to obtain a precise

determination of the a±
0 scattering lengths from sum rules.

Finally, we will use them as input for a similar dispersive

analysis of Kπ scattering data and the rigorous and precise

determination of light-strange resonance parameters. In par-

ticular, this input will be very useful for a precise determina-

tion of the elusive K ∗
0 (800), by analyzing data using hyper-

bolic partial-wave dispersion relations of the type derived

here.

Note Added in Proof While completing the publication of

this manuscript we have become aware that the K ∗
0 (800)

resonance it is now called K ∗
0 (700) in the new edition of the

Review of Particle Physics [71].
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Appendix A: Modified g0
0
(t) data extraction above 1.6

GeV

In the main text we have included a third pole for the f2(1810)

in the g0
2(t) partial wave, since it is listed in the RPP, although

it claims that “Needs confirmation”. As we already com-

mented, this produces a large oscillation of the phase above

1.6 GeV different from the almost flat parameterization used

in [8], as can be seen in Fig. 3.

However, in [8] the g0
2(t) wave is used as input to extract

the g0
0(t). Hence, if one now assumes the existence of the

f2(1810), the extraction of the g0
0(t) phase above 1.6 GeV

no longer corresponds to the one given in the paper. The

“New UFD” g0
0(t) phase we obtain is shown in Fig. 17, which

parameters can be found in Table 8. Let us recall that above

1.6 GeV the modulus is rather small, so that its contribution

to the dispersion relation below 1.47 GeV is also very small.

However, one may still wonder if this new UFD S-wave phase
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Fig. 17 New φ0
0 phase obtained after extracting the data from [8] by

using our UFD for the g0
2 partial wave

Table 8 Parameters of the new φ0
0

Parameter New UFD New CFDB New CFDC

B1 23.5 ± 1.3 21.8 ± 1.3 22.5 ± 1.3

B2 29.0 ± 1.3 27.3 ± 1.3 27.9 ± 1.3

B3 0.01 ± 1.60 1.49 ± 1.60 0.81 ± 1.60

C1 12.0890 fixed 12.4388 fixed 12.1076 fixed

C2 13.6 ± 2.6 13.6 ± 2.6 13.3 ± 2.6

C3 −12.9 ± 2.3 −13.0 ± 2.3 −13.1 ± 2.3

C4 −13.1 ± 2.2 −13.3 ± 2.2 −13.4 ± 2.2

C5 4.0 ± 2.4 4.2 ± 2.4 4.0 ± 2.4

above 1.6 GeV could change significantly the results for the

modulus after analyzing the dispersion relations.

Hence, we have run again our whole procedure to obtain

a “New CFD” phase for g0
0(t) and we show in Fig. 18 the

final result of the new analysis. As expected, since the input

is small above 1.6 GeV, the values obtained for the modulus

are almost equal to the ones calculated with the old phase

and we do not plot them.

However, as a matter of fact the g0
0(t) phase above 1.6 GeV

is different if one assumes the presence of the f2(1810) in

the g0
2(t). If one wants to be consistent with that assumption,

which at present in the RPP seems to be favored versus the

flat solution used in [8], then one should use our “New UFD”

rather than the main one in the text. Of course, the difference

below 1.47 GeV is negligible.

Appendix B: Kernels

In this section we provide the explicit expressions for the

G I
ℓℓ′(t, t ′) and G±

ℓℓ′(t, s′) kernels needed in the partial-wave

dispersion relations in Eq. (39). Recall that ℓ ≤ 2 corre-
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Fig. 18 New CFD φ0
0 phase obtained after extracting the data from [8]

by using our model for the g0
2 partial wave

sponds to the angular momentum of the partial-wave dis-

persion relation, i.e. the “output” partial wave, whereas ℓ′

corresponds to the angular momentum of the “input” wave

in the integrand of the dispersion relation. Similarly, s′ and

t ′ are the integration variables, whereas t is the variable of

the “output” partial wave coming out of the dispersion rela-

tion. Note that, in the input, partial waves with ℓ′ > 2 can be

safely neglected, except for the ℓ′ = 4 partial wave needed

for the g0
2 equation, which nevertheless gives a rather small

contribution.

Let us first recall some previous definitions:

zs′ = 1 + 2s′t

λs′
,

λs′ =
(

s′ − (mπ + mK )2
) (

s′ − (mπ − mK )2
)

.

We start by listing the kernels of the g1
1(t) partial wave:

G1
1,3(t, t ′) = 7

48
(t + t ′ − 4
 + 10a),

G−
1,0(t, s′) = 4

√
2

[

(2s′ − 2
 + t)A(t, s′) − 4qK (t)qπ (t)

16(qK (t)qπ (t))3

]

,

G−
1,1(t, s′) = 12

√
2

[

P1(zs′ )
(2s′ − 2
 + t)A(t, s′) − 4qK (t)qπ (t)

16(qK (t)qπ (t))3

− 2s′

3(s′ − a)λs′

]

,

G−
1,2(t, s′) = 20

√
2

[

P2(zs′ )
(2s′ − 2
 + t)A(t, s′) − 4qK (t)qπ (t)

16(qK (t)qπ (t))3

− 2s′z′
s

(s′ − a)λs′
+ s′2(2s′ + t − 2
)2

2(s′ − a)2λ2
s′

−24s′2(qK (t)qπ (t))2

5(s′ − a)2λ′2
s

]

, (B1)

where Pl(zs′) are the Legendre polynomials, a is one of the

parameters that defines the hyperbola (s − a)(u − a) = b

and we have defined for convenience

A(t, s′) = Arcth

(

4qK (t)qπ (t)

2s′ + t − 2


)

.

For the g0
2 we first define for convenience

x(t, s′) = 4qK (t)qπ (t)

2s′ + t − 2

.

By using the same definitions as above one obtains

G0
2,4(t, t ′) = 3

8
(t + t ′ − 4
 + 7a),

G+
2,0(t, s′) =

√
3(2s′ + t − 2
)2

32qK (t)5qπ (t)5

×
[

(3 − x(t, s′)2)A(t, s′) − 3x(t, s′)
]

,

G+
2,1(t, s′) = 3

√
3(2s′ + t − 2
)2

32qK (t)5qπ (t)5
P1(zs′)

×
[

(3 − x(t, s′)2)A(t, s′) − 3x(t, s′)
]

,

G+
2,2(t, s′) = 5

√
3

[

(2s′ + t − 2
)2

32qK (t)5qπ (t)5
P2(zs′)

×
(

(3 − x(t, s′)2)A(t, s′) − 3x(t, s′)
)

− 16s′2t

5(s′ − a)2λ2
s′

]

. (B2)

Finally, for the g0
0(t) dispersion relation the kernels we need

are

G0
0,2(t, t ′) = 5

16
(t + t ′ − 4
 + 6a),

G+
0,0(t, s′) =

√
3

[

A(t, s′)

qK (t)qπ (t)
+ 2(
 − s′)

λs′

]

,

G+
0,1(t, s′) = 3

√
3

[

A(t, s′)

qK (t)qπ (t)
P1(zs′) − (2s′ + 2t − 2
)

λs′

− 2at

(s′ − a)λs′

]

,

G+
0,2(t, s′) = 5

√
3

[

A(t, s′)

qK (t)qπ (t)
P2(zs′) − 2s − 2


λs′

−6st (�2 + s′(3s′ + 2t − 4
)

(s′ − a)λ2
s′

+3s′2t (2s′ + t − 2
)2

2(s′ − a)2λ′2
s

−8s′2t (qK (t)qπ (t))2

(s′ − a)2λ2
s′

]

. (B3)

All these kernels produce smooth integrable inputs in the

physical region. They also produce the left and circular cut

structures required by partial wave projection.
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Appendix C: t-channel numerical solution

In order to calculate numerically the Omnès integrals it is

convenient to make a change of variables to facilitate the

integration near tm . For concreteness we explain the g1
1(t)

dispersion relation, following closely the method explained

in [27,29] although in our case it has one less subtraction.

The other waves are similar. We start by separating within

the integrals the regions above and below tm ,

g1
1(t) = �1

1(t) + �1
1(t)

π

×
[

∫ tm−τ

4m2
π

dt ′
�1

1(t
′) sin φ1

1(t ′)

�1
1,R(t ′)(t ′ − t)

+
∫ tm

tm−τ

dt ′
�1

1(t
′) sin φ1

1(t ′)

�1
1,R(t ′)(t ′ − t)

+
∫ ∞

tm+τ

dt ′
|g1

1(t ′)| sin φ1
1(t ′)

�1
1,R(t ′)(t ′ − t)

+
∫ tm+τ

tm

dt ′
|g1

1(t ′)| sin φ1
1(t ′)

�1
1,R(t ′)(t ′ − t)

]

.

(C1)

We now introduce the variable v(t ′) = (t ′ − tm)/(tm − t)

and write:

�(t)

π

∫ tm

tm−τ

dt ′
�1

1(t
′) sin φ1

1(t ′)

�1
1,R(t ′)(t ′ − t)

= �1
1(tm) exp(iφ1

1(tm)) sin φ1
1(tm)

π

∫ τ(t)

0

dv

vφ1
1 (tm )/π (1 − v)

,

�(t)

π

∫ tm+τ

tm

dt ′
|g1

1(t ′)| sin φ1
1(t ′)

�1
1,R(t ′)(t ′ − t)

= g1
1(tm) sin φ1

1(tm)

π

∫ τ(t)

0

dv

vφ1
1 (tm )/π (1 + v)

. (C2)

As shown in [27] this equation also implies the continuity

of the partial waves at the matching point tm . Since τ(tm) =
∞ and using

1

π

∫ ∞

0

dv

vφ1
1 (tm)/π (1 − v)

= −exp(−iφ1
1(tm))

sin(φ1
1(tm))

,

1

π

∫ ∞

0

dv

vφ1
1 (tm)/π (1 + v)

= 1

sin(φ1
1(tm))

, (C3)

inside Eqs. (45), (46), (47) one recovers the matching values

|g0
0(tm)|, |g1

1(tm)|, |g0
2(tm)|. In addition, for g0

0 , and due to

the introduction of the free parameter α, one has to impose

a smooth continuity condition at tm to fix α, which is done

numerically in this work. Otherwise spurious cusps would

be produced for the modulus of the amplitude at t = tm ,

spoiling the analytic structure and its behavior at different

values of t .

Appendix D: Applicability range

Let us recall that in this work our aim is to maximize the

applicability range of the partial-wave hyperbolic dispersion

relations in the real axis, by choosing the a parameter appro-

priately. Our approach will be similar to that in [28,29] and

we will study the applicability range both for the s-channel

π K → π K and for the t-channel ππ → K K̄ .

First of all we have to calculate the double spectral regions,

where the imaginary part of the amplitude becomes also

imaginary and therefore the Mandelstam hypothesis does not

hold (see [69] for a textbook introduction). For this we use

the π K scattering box diagrams that we show in Fig. 19

(see also [26]). Then we obtain the restrictions needed to

avoid these regions when projecting into partial waves for

all the s, t and u channels. In addition, one has to ensure

that the partial-wave projection is used only inside the so-

called Lehmann ellipse [70–72], where its convergence is

guaranteed. Finally by considering the strongest restriction

we maximize the domain of applicability by fixing a.

Double spectral regions

The equations that describe the boundary of the support of

the spectral function ρst are:

bI (s, t) : (t − 16m2
π )λs − 64m4

π s = 0,

bI I (s, t) : (t − 4m2
π )(s − (mK + 3mπ )2) − 32m3

π m+ = 0.

(D1)

Fig. 19 Box diagrams for π K scattering. Continuous lines denote

pions while dashed lines denote kaons
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By means of s ↔ u crossing, similar equations are obtained

for ρut . The equations that describe the boundary of the sup-

port of ρus are

bI I I (s, u) : (D2)

(s − (mK − mπ )2)(t + s − (mK + mπ )2)

× ((m2
K + 2mK mπ + 5m2

π − s)2

+ t (s − (mK + 3mπ )2)) = 0,

bI V (s, u) :
(s − (mK − mπ )2)(t + s − (mK + mπ )2)

× (((3mπ − mK )(mK + mπ ) + s)2

+ t (s − (mK + mπ )2)) = 0, (D3)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

Out of these three possible spectral regions, the most

restrictive boundary is that of the ρst support. Thus, by solv-

ing Eq. (D1) for t as a function of s one obtains

Tst (s) = 16m2
π + 64m4

π s

λs

, ∀s ≤ s0, (D4)

Tst (s) = 4m2
π + 32m3

π (mK + mπ )

(s − (mK + 3mπ )2)
, ∀s ≥ s0, (D5)

where

s0 = m2
K + 4mK mπ + 5m2

π

+2mπ

√

5m2
K + 12mK mπ + 8m2

π . (D6)

As shown in [12,13], the most simple set of curves in the

Mandelstam plane that combine both crossed channels, do

not introduce complicated kernels and are suitable to study

partial waves in a wide range, are hyperbolas defined trough

the relation (s − a)(u − a) = b.

In the next subsection we will combine the double spectral

region constraints with those restrictions arising from the

partial wave projection.

Lehmann ellipse

We now have to consider the projection of T (s, t, u) into

partial waves for the two different channels that appear in

the hyperbolic dispersion relations.

Thus, on the one hand, for a fixed value of a, the family

of hyperbolas (s − a)(u − a) = b must not enter any dou-

ble spectral region for all values of b needed to perform the

partial-wave projection. On the other hand, for a fixed a, we

now calculate the restriction on b implied by requiring to stay

within the Lehmann ellipse. This depends on what channel

we perform the partial-wave projection.

s-channel

The partial-wave expansion for the s-channel converges for

angles zs′(s′, t ′) = 1 + 2s′t ′/λs′ inside the Lehmann ellipse

[3,70,71]

(Re zs′)2

A2
s

+ (Im zs′)2

B2
s

= 1, (D7)

where the foci are located at zs′ = ±1. The maximum value

of zs′ that does not enter inside the double spectral region is

obtained for t ′ = Tst (s
′), namely

zmax
s′ = 1 + 2s′Tst (s

′)

λs′
= As, ∀s′ ≥ m2

+, (D8)

with the constraint given by the ellipse

− zmax
s′ ≤ zs′ ≤ zmax

s′ . (D9)

This relation translates into a restriction on t ′

− λs′

s′ − Tst (s
′) ≤ t ′ ≤ Tst (s

′). (D10)

Now, by using b(s, t, a) = (s −a)(2
−s − t −a) we obtain

the following set of bounds for b:

b−
s (s′, a) ≤ b ≤ b+

s (s′, a),

b−
s (s′, a) = (s′ − a)(2
 − s′ − Tst (s

′) − a),

b+
s (s′, a) = (s′ − a)(2
 − s′ + λs′

s′ + Tst (s
′) − a). (D11)

Thus, the final range of values allowed for b to avoid touch-

ing any boundary are

b−
s (a) ≤ b ≤ b+

s (a), (D12)

where

b−
s (a) = min b−

s (s′, a),

b+
s (a) = max b+

s (s′, a). (D13)

t-channel

The argument is now more complicated due to the non-linear

relation between the scattering angle and t ′ for the t-channel

partial wave projection

z2
t ′ = (t ′ − 2
 + 2a)2 − 4b(s′, t ′, a)

16qπ (t ′)2qK (t ′)2
, (D14)

so we use the ellipse for z2
t ′

(Re z2
t ′ − 1

2
)2

Â2
t

+
(Im z2

t ′)
2

B̂2
t

= 1, (D15)
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where Ât = (A2
t + B2

t )/2 and B̂t = At Bt are the axes

of the ellipse for z2
t ′ and At , Bt the ones for zt ′ . Then, the

geometrical restrictions for z2
t ′ are

1 − A2
t ≤ z2

t ′ ≤ A2
t . (D16)

As shown in Eq. (6) the relation between zt and s − u is

really simple, calling ν = s − u and rewriting Eq. (D5) in

terms of ν we obtain

νst (t) = −16m3
π mK − 12mπ m+t − t2

4m2
π − t

, ∀t ≥ tπ ,

νst (t) = 1

t − 16m2
π

×
[

(t − 8m2
π )2

+ 4mπ

√
t

√

(t − 16m2
π )m2

K + 16m4
π )

]

, ∀t ≥ 4tπ ,

(D17)

Defining now the upper bound as

Nst (t) = min νst (t), (D18)

we obtain that

zmax
t ′ (t ′) = Nst (t

′)

4qπ (t ′)qK (t ′)
= At ∀t ′ ≥ tK , (D19)

now using Eq. (D16) together with (D18) we obtain the

restriction for ν

16[qπ (t ′)qK (t ′)]2 − Nst (t
′)2 ≤ ν2 ≤ Nst (t

′)2, (D20)

finally, the restriction for b is obtained just by translating the

ν2 = (t ′ − 2
 + 2a)2 − 4b constraint into

b−
t (t ′, a) ≤ b ≤ b+

t (t ′, a), (D21)

with

b−
t (t ′, a) = (t ′ − 2
 + 2a)2 − Nst (t

′)2

4
,

b+
t (t ′, a) = (t ′ − 2
+2a)2−16(qπ (t ′)qK (t ′))2 + Nst (t

′)

4
.

(D22)

Defining again the bounds

b−
t (a) = max b−

t (t ′, a),

b+
t (a) = min b+

t (t ′, a), (D23)

we have finally obtained the allowed values of b for a fixed

a that do not touch any boundary while projecting t-channel

partial waves

b−
t (a) ≤ b ≤ b+

t (a), ∀t ≥ tπ ≥ a. (D24)

Partial-wave projection

s-channel

Hence, to perform the partial-wave projection for the s-

channel we must require b ∈ [b−
s,t (a), b+

s,t (a)]. For this to

occur, we need s ≤ smax , where smax is the value of s for

which the region of projection touches the support of the dou-

ble spectral region. Since the integration range −1 ≤ zs ≤ 1

translates into

− λs

s
≤ t ≤ 0, (D25)

then, given a fixed a, the limits on b due to the s-channel

projection are

bmin(s, a) ≤ b ≤ bmax (s, a),

bmin(s, a) = (s − a)(2
 − s − a),

bmax (s, a) = (s − a)(2
 − s + λs

s
− a). (D26)

Now, smax is reached when touching the Lehmann ellipse,

namely

bmin(smax , a) = b−
s,t (a),

bmax (smax , a) = b+
s,t (a). (D27)

We can now choose a to obtain the largest smax and thus

maximize the projection region. For the s-channel projection

the strongest restriction comes from the t-channel Lehmann

ellipse and therefore

a = −13.9 m2
π , smax = 0.98 GeV2,

b−
t (a) = −592 m4

π , b+
t (a) = 1070 m4

π . (D28)

t-channel

To perform the t-channel projection we need to consider the

scattering angle

0 ≤ z2
t = (t − 2
 + 2a)2 − 4b

16q2
πq2

K

≤ 1. (D29)

To maximize the domain using a we search for the value

t = tmax where both the maximum and minimum values of b

coincide with b−
s,t (a) and b+

s,t (a). Using Eq. (D29) and taking

into account that the projection is made between z2
t = 0 and

z2
t = 1 this means

z2
t (tmax , b−

s,t (a)) = 1,

z2
t (tmax , b+

s,t (a)) = 0. (D30)
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Once again, the restriction of the t-channel is stronger than

the one of the s-channel, and therefore

a = −10.9m2
π , −0.286 GeV2 ≤ t ≤ 2.19 GeV2,

b−
t (a) = −672 m4

π , b+
t (a) = 1010 m4

π . (D31)

Note that the upper limit for t ≃
√

2.19 GeV ≃ 1.47 GeV,

which is the value we have been using throughout this work as

the maximum applicability range of our partial-wave hyper-

bolic dispersion relations. Taking these values into account

one can proceed to study the physical region of both pro-

cesses. Note that HDR are a very useful tool to study the

crossed channel and extend as much as possible the applica-

bility range in its real axis. However their convergence in the

real axis of the s-channel is worse than for fixed-t dispersion

relations. Nevertheless, the scope of this work is precisely

the study of the t-channel partial waves, and therefore HDR

are best suited for our purposes.
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