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Abstract. It is well-known that if a semigroup algebra K[S] over a field K

satisfies a polynomial identity then the semigroup 5 has the permutation prop-

erty. The converse is not true in general even when S is a group. In this paper

we consider linear semigroups 5 Ç Jfn(F) having the permutation property.

We show then that K[S] has a polynomial identity of degree bounded by a

fixed function of n and the number of irreducible components of the Zariski

closure of 5 .

A semigroup S is said to have the property âBm, m > 2, if for every

ax, ... , ame S, there exists a non-trivial permutation a such that ax... am =

aa(X) ■•■ao(m) • S has the permutation property 3° if S satisfies &>m for some

m > 2. The class of groups of this type was shown in [3] to consist exactly of

the finite-by-abelian-by-finite groups. For the recent results and references on

this extensively studied class of groups, we refer to [1]. The above description

of groups satisfying 3° was extended to cancellative semigroups in [11], while

a study of regular semigroups with this property was begun in [6].

In connection with the corresponding semigroup algebras K [S] over a field

K, the problem of the relation between the property ¿P for 5 and the PI-

property for K[S] attracted the attention of several authors. It is straightfor-

ward that S has 3P whenever K[S] satisfies a polynomial identity. However

the converse fails even for groups in view of [3] and the characterization of PI

group algebras, cf. [15]. On the other hand, K[S] was shown to be a Pi-algebra

whenever 5 is a finitely generated semigroup (satisfying 9a ) of one of the fol-

lowing types: periodic [20], cancellative [11], 0-simple [3, 5], inverse, or a Rees

factor semigroup of free semigroup, cf. [12]. However, a finitely generated reg-

ular semigroup S with two non-zero ^-classes having 9° but with K[S] not

being PI was constructed in [12].

The main result of this paper is that if S is a linear semigroup satisfying

3P, then K[S] is PI for any field K. In the course of the proof, we obtain

a structural description of a strongly 7r-regular semigroup of this type. The

basic technique is to consider the Zariski closure S of S. Then S is a linear
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40 JAN OK.NIÑSK.I AND MOHAN S. PUTCHA

algebraic semigroup in the sense of [18].

We refer to [2] for basics of semigroup theory. In particular Wf (H, /, M, P)

denotes the completely 0-simple semigroup over a group H with sandwich ma-

trix P : M x I -> H u {0}. Let S be a semigroup. If X Ç S, then we

let EiX) = {e e X \ e~ — e}. S is strongly n-regular if some power of each

element lies in a subgroup of 5. Let F be an algebraically closed field. We

consider J^n(F) with its Zariski topology, [22]. A subset X of Jtn(F) is closed

if it is the zero set of a collection of polynomials in n" variables. A closed set

X is irreducible if it is not a union of two proper closed subsets. A closed

subsemigroup S of J(n(F) is called a (linear) algebraic semigroup. If the un-

derlying closed set S is irreducible, then S is said to be a connected semigroup.

We refer to [18] for the theory of linear algebraic semigroups. In particular, an

algebraic semigroup S is strongly 7r-regular [18, Theorem 3.18]. Our starting

point is the following observation.

Lemma 1. If S Ç ^n(F) is a semigroup having 3?m  then so does its Zariski

closure S.

Proof. For a permutation a ^ 1 of 1, ... , m , and i = I, ... , m , let

XAo) = {ateS\ax.. .am = aa{X)... aa(m) for all

a ■ e S (j < i) and ak e S (k > /')}.

Then y = [jX^o) is a closed subset of 5. Since 5 ç Yx ç S, we see that
a

y, =5.  If Yi = S, then S ç Y¡+x CS.  Hence Yi+X = S.  It follows that

Ym=S. So 5 has ^m.
The next two lemmas will be used in obtaining a bound on the degree of the

polynomial identity satisfied by the relevant semigroup algebras.

Lemma 2. Let S ç ^n(F) be a strongly n-regular semigroup.   Then for i =

O,-- ,n,

St■ = {a e S | rank of a < i}

T¡ = {a e St | rank of a < i or a is not regular}

are (possibly empty) ideals of S such that

S0 ç Tx ç Sx ç T2 ç • ■ • ç S„ = S.

Moreover S JT¡ is a zero disjoint union of at most (") completely 0-simple ideals

and Tj/Sj_x  is nilpotent of index at most (").

Proof. That S; is an ideal of S is obvious.   Let a e T¡,  x e S.  Suppose

ax £ Tj. Then ax has rank /' and is regular. So for some y e S, e = axy is

an idempotent of rank i. Hence, [17, Lemma 4], a = ea = axy a is regular, a

contradiction. Thus each T¡ is an ideal of S. The rest follows from [9].

We refer to [8] for the basics on linear algebraic groups.
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Lemma 3. Let S be a linear algebraic semigroup with m irreducible compo-

nents. Then

(1) If G is a maximal subgroup of S with identity component Gc, then

\G/GC\ <m.

(2) If J is a regular f -class of S, then E(J) is a closed subset of S with

at most m~ irreducible components.

Proof. ( 1 ) Let e denote the identity element of G. Now eSe is the image

of S under the morphism x —► exe. Hence eSe has at most m irreducible

components. Since G is an open subset of eSe , the same is true of G.

(2) That E(J) is a closed subset of 5 follows from the proof of [16, Theo-

rem 8]. Let e e E(J) with J^-class H. Let

U = {(a, b)\a, beS, ebaeeH}.

Then U is a non-empty open subset of S x S and by the proof of [ 16, Theo-

rem 8], the map:

(a, b) —> a(ebae)    b

(where the inverse is taken in H) is a morphism from U onto E(J). Since

S x S has m irreducible components, U (being an open subset) has at most

m irreducible components. Hence E(J), being an image of U , has at most

m   irreducible components.

Lemma 4. Let S be a linear algebraic semigroup having &m . Then

(1) If G is a maximal subgroup of S, then the identity component Gc of G

is abelian.

(2) // J is a regular ß -class of S, then every irreducible component A of

E(J) is a rectangular band, i.e. efe = e for all e, f e A.

Proof. (1) GL has ¿?m and hence, [3], has a normal subgroup H of finite index

such that the commutator subgroup (//, H) is finite. By [8, Proposition 7.3],

Gc has no closed subgroups of finite index. Hence H is dense in Gc. We

have a morphism 4> '■ Gc x Gc —> GL given by (pix, y) — xyx~ y~ . Now

Gc x Gc is irreducible, H x H is dense in Gc x Gc and </>(// x H) is finite, so

4>(GC x Gc) = {1}. Hence Gc is abelian.

(2) For every positive integer i, A' is a closed irreducible set (being the

closure of an image of A x ■ ■ ■ x A ). Hence we have an ascending chain of

closed irreducible sets:

A ç A2 c A3 ç • • ■ .

Comparison of dimensions shows that this series stabilizes. So for some i,

T = A1 = AJ for all j > i. Now   |J A   is a semigroup with closure T. Hence
k>X

T is a connected semigroup satisfying 3°m . Now the irreducible set Tx- ■ xT

i m times) is a finite union of the closed sets

Ba = {iax,... ,aj\ax,... , am e T, ax ■■■am = a0{l) ■■■aa{m)}, o±\.
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Hence Tx  ■  xT = Ba for some o jí 1 . Thus T satisfies a fixed permutation

identity. Therefore by [19, Theorem 1], T satisfies the identity xyzw =

xzyw for some k. It follows that EiT) is a subsemigroup of T. Hence, if

Jx, ... , Jt are the regular ^-classes of T, then by [18, Theorem 5.9], each

EiJr) is a rectangular band. Also by [16, Theorem 8], each EiJr) is closed and

irreducible. Since A ç EiT) = \JE(Jr), we see that A c E(Jp) ç E(J) for

some p . So A = EiJ ) is a rectangular band.

We now proceed to obtain some information about rectangular bands in com-

plete 0-simple semigroups. First recall that by [2, Chapter 1], a rectangular band

is a direct product of a right zero semigroup and a left zero semigroup. In par-

ticular it satisfies the identity xyzw = xzyw .

Lemma 5. Let S = 9JI (G, I, M, P) be a completely 0-simple semigroup and

E ç S be a rectangular band. Then

i 1 ) For some Ix ç /, Mx ç M and Q the Mx x /, matrix induced by P, E

is the idempotent set of 971(07, /,, Mx, Q).

(2) Any two columns of Q are G-proportional, i.e. for every i, j e Ix , there

exists g e G such that pml - p„,g for all m e M, .
'-J r /HI r trij *-*    ** 1

Proof, i 1 ) We can let /, = {/' e I \ ig, i, m) e E for some g e G, me M}

and let Mx = {m e M \ ig, i, m) e E for some g e G, i e 1}.

(2) Let /, j e /, , n e Mx, g = p~]pm eG. Let m e Mx. Then e =

ip~n), i, m), f = (p~j , j,n)eE. Since efe = e we obtain

-i        -i       -i       -i
p    p   p    p  p     = p    .

Hence pmi = pmjg .

Lemma 6. Let S - 9Jt(C7, /, M, P) be a completely simple semigroup over an

abelian-by-finite group G such that EiS) is a rectangular band. Then for every

field K, the semigroup algebra K[S] satisfies a polynomial identity.

Proof. It is well known [2, §3.2, Exercise 2] that S is a direct product GxEiS).

Therefore K[S] ~ K[G] ®K K[EiS)]. Now K[G] is a Pi-algebra, cf. [15, The-

orem 5.3.7]. Also K[EiS)] is a Pi-algebra since E(S) satisfies the multilinear

identity xyzw = xzyw . Hence by [21, Theorem 6.1.1], K[S] is a Pi-algebra.

In view of Lemma 5, Lemma 6 can also be derived from a criterion for the

Pi-property of semigroup algebras of completely 0-simple semigroups, cf. [10].

Finally we need the following lemma concerning the rank of (possibly infinite)

matrices. Here the rank rk(y°) of an infinite matrix P is defined to be the

supremum of the ranks of all the finite submatrices of P.

Lemma 7. Let M, I be non-empty sets, and let P be an M x I matrix over

a field L. Assume that P can be covered by k < oo submatrices Px , ... , Pk

such that ric^/*) < / < oo for some t. iThat is, for every m e M,   i e I, the

im, i) entry of P lies in some P   if it is non-zero.) Then rk(f) < (2  — 1)/.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PI SEMIGROUP ALGEBRAS OF LINEAR SEMIGROUPS 43

Proof. Induction on k. The case where k = 1 is clear. Let k > 1 . We

can assume that Px does not pass through all rows of P or Px does not pass

through all columns of P. By symmetry we consider the former case only.

Define A as the submatrix of P consisting of all the entries lying in the rows

of P through which Px does not pass. It is clear that A can be covered by at

most k - 1 submatrices of ranks not exceeding t. By the induction hypothesis

rk(A) < i2k~x -l)t. Since rk(P,) < t, then clearly vk(B) < t + (2k'x - l)t =

2 ~ t where B is the submatrix of P consisting of all columns passing through

Px . If B ^ P, then the submatrix C of P consisting of all columns not

passing through B also satisfies the induction hypothesis. Therefore rk(C) <

(2      - l)t, and so

rk(P) < rk(/3)+ rk(C) < 2k'X t + (2k~X - l)i = (2A- l)t

proving the assertion.

We are now ready to prove our first theorem concerning strongly ^-regular

linear semigroups. This class includes all linear algebraic semigroups and also

all regular linear semigroups. In view of Lemma 1, this result characterizes a

linear semigroup 5 with the permutation property in terms of its closure S.

Theorem 1. Let 5 ç ^(f) be a strongly n-regular semigroup.  Then the fol-

lowing conditions are equivalent:

il) S has the permutation property.

(2) E(S) is a finite union of rectangular bands and every subgroup of S is

abelian-by-finite.

(3) K[S] is a Pi-algebra for some field K.

(4) K[S] is a Pi-algebra for every field K.

Proof. That (4) => (3) =>• (1) is obvious. That (1) => (2) follows from Lem-

mas 1, 3 and 4. So we need to prove that (2) => (4). As is well known it suffices

to consider the case when K is of characteristic 0. If / is an ideal of 5, then

the contracted semigroup algebra K0[S/J] ~ K[S]/K[J]. Moreover the class

of Pi-algebras is closed under ideal extensions. Hence by Lemma 2, it suffices to

show that K[T] is a Pi-algebra for every completely 0-simple principal factor

T of S.

By hypothesis T ~ 97t°(07, I, M, P) for some abelian-by-finite group 07,

and E(T)\{0} = Exu- ■ ■l)Er where each Ei is a rectangular band. ByLemma5,

we can construct subsemigroups T¡ = 97t(07, /., Mj , P¡) with E(Tj) = Ej, j =

1, ... , r. By Lemma 6, each K[T'.] is a Pi-algebra. We now use the following

characterization of PI semigroup algebras of completely 0-simple semigroups in

characteristic zero, cf. [4].

K[T] is PI if and only if G is abelian-by-finite and there exists

(*) q > 1 such that rk 4>(P) < q for all irreducible representations

<f> of 07 over fields of characteristic zero.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



44 JAN OKNIÑSK.I AND MOHAN S. PUTCHA

Moreover, in this case, K0[T] satisfies the identity

X2q+X^2q(XX » • • •   > X2q'X2q+2 = "

where S2 is the standard identity of degree 2q . Now (*) applied to T , j =

1, ... , r implies that there is a positive integer t such that rk0(P ) < t for

all j and all irreducible representations of 07. Let a = ig, i, m) e T such

that a&Tj, j = I, ... , r. Then a' = 0, so that pm¡ = 0. It is thus clear that

P is covered by Px, ... , Pr in the sense of Lemma 7. Hence by Lemma 7,

rkcpiP) < (2' - l)i. Therefore by (*), K[T] is a Pi-algebra. This proves the

theorem.

Remark. Let S be a strongly 7r-regular linear semigroup with the permutation

property and let T be a completely 0-simple principal factor of 5. Then by

Theorem 1, EiT)\{0} is a union of finitely many rectangular bands Ex, ... ,

Er. We can then refine this union to write E as a disjoint union of finitely

many rectangular bands. This is a consequence of the fact that E¡ n E, is a

rectangular band and E¡\iE¡ n E,) is a disjoint union of at most 3 rectangular

bands. If T - 93î°(07, I, M, P), then it follows that I, M can be partitioned

as / = /, u- • -U7' , M — Mx u- • -uMj so that any two columns of the submatrix

P¡j of 7° corresponding to the semigroup T¡¡ = 97Í (G, F, M¡, P(.) ç r are

07-proportional. Thus T is the 0-disjoint union of the semigroups Tt- and each

Tjj is either null or 7V\{0} is a direct product of the abelian-by-finite group

G and a rectangular band.

Theorem 2. Lei 5" ç JHn{F) be a semigroup with the permutation property.

Let m denote the number of irreducible components of S.  Then for any field
n i

K, K[S] satisfies a polynomial identity of degree 3" ■ FT (") • [2m(2m - 1 ) + 2].
7 = 1

Proof. We can assume that ch (K) = 0. By Lemma 1, we can assume without

loss of generality that S = 5 is an algebraic semigroup. In particular 5 is

a strongly ^-regular semigroup and by Theorem 1, K[S] is a Pi-algebra. Let

S¡, T., i — 0, • • ■ , n , be as in Lemma 2. Now SJTi is a zero disjoint union

of completely 0-simple ideals. Hence KA^SJT/] is a direct product of the cor-

responding contracted semigroup algebras. Therefore by [14, Proposition 1.1],

J(K0[SJTj])   = 0, where J denotes the Jacobson radical. Hence by Lemma 2,

J(K[S])r = 0 where r = 3" ■ f[ (") .
7 = 1

Let R be a simple homomorphic image of K[S]. Then R is an image of

the semigroup algebra K0[T] of some completely 0-simple principal factor T

of S. By (*) in the proof of Theorem 1, KQ[T] satisfies the identity

X2p+X^2p(Xl ' • • •   ' X2p'X2p+2 = ®

for all p > q , where

q = max rk(f)(P)
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as <p runs through all irreducible representations (in characteristic zero) of the

maximal subgroup 07 of T. By Lemmas 3, 4, 7, we see as in the proof of

Theorem 1 that
,m

q<(2'" -1) max {rk</>(£)}
(j>.Q

2
where Q runs through the submatrices of P corresponding to the at most m

rectangular bands covering EiT).  By Lemma 5, the columns of each Q are

G-proportional. Hence rk</>(C2) does not exceed the dimension of cp. Now by

Lemmas 3, 4, Gl  is a normal abelian subgroup of G of index < m. Hence

by a standard argument, cf. [15, §5.1], dimtp < m . Therefore q < m(2m - 1).

It follows that every simple homomorphic image of K[S] satisfies a fixed iden-
2

tity of degree 2m(2'" - 1) + 2. Since K[S] is a Pi-algebra, we see that

K[S]/J(K[S]) satisfies the same identity. Since J(K[S]) is nilpotent of in-

dex r = 3" • f[ (/), K[S] satisfies the identity
7 = 1

lX2P+XS2p(XX>---  > X2p)X2P+lí = 0

where p — m(2'" - 1).

An essentially weaker result than our Theorem 1 was asserted in [7]. Namely,

for every finitely generated and regular S ç Jín(F) satisfying the permutation

property, the semigroup algebra K[S] satisfies a polynomial identity. However,

in the proof, the authors claimed that every principal factor of such a semigroup

S must be finitely generated. We show that this may not be true in general.

Example. Let F be a field with an element a e F generating an infinite cyclic

subgroup in the multiplicative group F*. Define 5" as the subsemigroup gen-

erated in yfá2(F) by the matrices

'1    l\       (a   0\       (a'x    0

0  o)*  l o   1 ) '   V 0    1

Then /
\ ( a      a

" Ho    0 k, n e Z >   is an ideal of S and S/I is an infinite

cyclic group G with zero. It is easy to see that / ~ 97Î (G, 1, Z, P) where

pm] = 1 for all m e Z . Clearly, S is regular with infinitely many ¿f-classes,

but K[S] is a Pi-algebra by Theorem 1.

Our last aim is to extend Theorem 2 to an important class of non-linear

semigroups.

Proposition. Let S be a semigroup satisfying the permutation property. If K[S]

is right noetherian for a field K, then K[S] is a Pi-algebra.

Proof. Let Q be a prime ideal of K[S], and let S„ denote the image of S

in K[S]/Q.   SQ has an ideal 7^0 contained in a semigroup of matrix type

97Î°(G, I, M, P) for a finite set / , cf. [3, the proof of Theorem III. 1.6]. If R
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is a maximal cancellative subsemigroup of /, then from [13, Lemma II.1.21]

it follows that the group ring K[RR~ ] is noetherian. K[RR~ ] is then a PI-

algebra, cf. [13, Section IV.2]. As in [10, Proposition 3] one can show that

K[J] is a Pi-algebra. Since the image of K[J] in K[S]/Q is a nonzero ideal,

the latter also is a Pi-algebra. Therefore K[S]/B(K[S]) is a Pi-algebra where

B(K[S]) denotes the prime radical of K[S]. Since B(K[S]) is nilpotent, the

result follows.
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