PI SEMIGROUP ALGEBRAS OF LINEAR SEMIGROUPS

JAN OKNIŃSKI AND MOHAN S. PUTCHA

(Communicated by Maurice Auslander)

Abstract

It is well-known that if a semigroup algebra $K[S]$ over a field K satisfies a polynomial identity then the semigroup S has the permutation property. The converse is not true in general even when S is a group. In this paper we consider linear semigroups $S \subseteq \mathscr{M}_{n}(F)$ having the permutation property. We show then that $K[S]$ has a polynomial identity of degree bounded by a fixed function of n and the number of irreducible components of the Zariski closure of S.

A semigroup S is said to have the property $\mathscr{P}_{m}, m \geq 2$, if for every $a_{1}, \ldots, a_{m} \in S$, there exists a non-trivial permutation σ such that $a_{1} \ldots a_{m}=$ $a_{\sigma(1)} \ldots a_{\sigma(m)} . S$ has the permutation property \mathscr{P} if S satisfies \mathscr{P}_{m} for some $m \geq 2$. The class of groups of this type was shown in [3] to consist exactly of the finite-by-abelian-by-finite groups. For the recent results and references on this extensively studied class of groups, we refer to [1]. The above description of groups satisfying \mathscr{P} was extended to cancellative semigroups in [11], while a study of regular semigroups with this property was begun in [6].

In connection with the corresponding semigroup algebras $K[S]$ over a field K, the problem of the relation between the property \mathscr{P} for S and the PIproperty for $K[S]$ attracted the attention of several authors. It is straightforward that S has \mathscr{P} whenever $K[S]$ satisfies a polynomial identity. However the converse fails even for groups in view of [3] and the characterization of PI group algebras, cf. [15]. On the other hand, $K[S]$ was shown to be a PI-algebra whenever S is a finitely generated semigroup (satisfying \mathscr{P}) of one of the following types: periodic [20], cancellative [11], 0 -simple [3, 5], inverse, or a Rees factor semigroup of free semigroup, cf. [12]. However, a finitely generated regular semigroup S with two non-zero \mathscr{J}-classes having \mathscr{P} but with $K[S]$ not being PI was constructed in [12].

The main result of this paper is that if S is a linear semigroup satisfying \mathscr{P}, then $K[S]$ is PI for any field K. In the course of the proof, we obtain a structural description of a strongly π-regular semigroup of this type. The basic technique is to consider the Zariski closure \bar{S} of S. Then \bar{S} is a linear

[^0]algebraic semigroup in the sense of [18].
We refer to [2] for basics of semigroup theory. In particular $\mathfrak{M}^{\circ}(H, I, M, P)$ denotes the completely 0 -simple semigroup over a group H with sandwich matrix $P: M \times I \rightarrow H \cup\{0\}$. Let S be a semigroup. If $X \subseteq S$, then we let $E(X)=\left\{e \in X \mid e^{2}=e\right\} . S$ is strongly π-regular if some power of each element lies in a subgroup of S. Let F be an algebraically closed field. We consider $\mathscr{M}_{n}(F)$ with its Zariski topology, [22]. A subset X of $\mathscr{M}_{n}(F)$ is closed if it is the zero set of a collection of polynomials in n^{2} variables. A closed set X is irreducible if it is not a union of two proper closed subsets. A closed subsemigroup S of $\mathscr{M}_{n}(F)$ is called a (linear) algebraic semigroup. If the underlying closed set S is irreducible, then S is said to be a connected semigroup. We refer to [18] for the theory of linear algebraic semigroups. In particular, an algebraic semigroup S is strongly π-regular [18, Theorem 3.18]. Our starting point is the following observation.

Lemma 1. If $S \subseteq \mathscr{M}_{n}(F)$ is a semigroup having \mathscr{P}_{m} then so does its Zariski closure \bar{S}.
Proof. For a permutation $\sigma \neq 1$ of $1, \ldots, m$, and $i=1, \ldots, m$, let

$$
\begin{aligned}
& X_{i}(\sigma)=\left\{a_{i} \in \bar{S} \mid a_{1} \ldots a_{m}=a_{\sigma(1)} \ldots a_{\sigma(m)}\right. \text { for all } \\
& \left.\qquad a_{j} \in \bar{S}(j<i) \text { and } a_{k} \in S(k>i)\right\} .
\end{aligned}
$$

Then $Y_{i}=\bigcup_{\sigma} X_{i}(\sigma)$ is a closed subset of \bar{S}. Since $S \subseteq Y_{1} \subseteq \bar{S}$, we see that $Y_{1}=\bar{S}$. If $Y_{i}=\bar{S}$, then $S \subseteq Y_{i+1} \subseteq \bar{S}$. Hence $Y_{i+1}=\bar{S}$. It follows that $Y_{m}=\bar{S}$. So \bar{S} has \mathscr{P}_{m}.

The next two lemmas will be used in obtaining a bound on the degree of the polynomial identity satisfied by the relevant semigroup algebras.

Lemma 2. Let $S \subseteq \mathscr{M}_{n}(F)$ be a strongly π-regular semigroup. Then for $i=$ $0, \cdots, n$,

$$
\begin{aligned}
& S_{i}=\{a \in S \mid \text { rank of } a \leq i\} \\
& T_{i}=\left\{a \in S_{i} \mid \text { rank of } a<i \text { or } a \text { is not regular }\right\}
\end{aligned}
$$

are (possibly empty) ideals of S such that

$$
S_{0} \subseteq T_{1} \subseteq S_{1} \subseteq T_{2} \subseteq \cdots \subseteq S_{n}=S
$$

Moreover S_{i} / T_{i} is a zero disjoint union of at most $\binom{n}{i}$ completely 0 -simple ideals and T_{i} / S_{i-1} is nilpotent of index at most $\binom{n}{i}$.
Proof. That S_{i} is an ideal of S is obvious. Let $a \in T_{i}, x \in S$. Suppose $a x \notin T_{i}$. Then $a x$ has rank i and is regular. So for some $y \in S, e=a x y$ is an idempotent of rank i. Hence, [17, Lemma 4], $a=e a=a x y a$ is regular, a contradiction. Thus each T_{i} is an ideal of S. The rest follows from [9].

We refer to [8] for the basics on linear algebraic groups.

Lemma 3. Let S be a linear algebraic semigroup with m irreducible components. Then
(1) If G is a maximal subgroup of S with identity component G^{c}, then $\left|G / G^{c}\right| \leq m$.
(2) If J is a regular \mathcal{J}-class of S, then $E(J)$ is a closed subset of S with at most m^{2} irreducible components.
Proof. (1) Let e denote the identity element of G. Now $e S e$ is the image of S under the morphism $x \rightarrow$ exe. Hence $e S e$ has at most m irreducible components. Since G is an open subset of $e S e$, the same is true of G.
(2) That $E(J)$ is a closed subset of S follows from the proof of [16, Theorem 8]. Let $e \in E(J)$ with \mathscr{H}-class H. Let

$$
U=\{(a, b) \mid a, b \in S, e b a e \in H\}
$$

Then U is a non-empty open subset of $S \times S$ and by the proof of [16, Theorem 8], the map:

$$
(a, b) \rightarrow a(e b a e)^{-1} b
$$

(where the inverse is taken in H) is a morphism from U onto $E(J)$. Since $S \times S$ has m^{2} irreducible components, U (being an open subset) has at most m^{2} irreducible components. Hence $E(J)$, being an image of U, has at most m^{2} irreducible components.

Lemma 4. Let S be a linear algebraic semigroup having \mathscr{P}_{m}. Then
(1) If G is a maximal subgroup of S, then the identity component G^{c} of G is abelian.
(2) If J is a regular \mathcal{J}-class of S, then every irreducible component A of $E(J)$ is a rectangular band, i.e. efe $=e$ for all $e, f \in A$.
Proof. (1) G^{c} has \mathscr{P}_{m} and hence, [3], has a normal subgroup H of finite index such that the commutator subgroup (H, H) is finite. By [8, Proposition 7.3], G^{c} has no closed subgroups of finite index. Hence H is dense in G^{c}. We have a morphism $\phi: G^{c} \times G^{c} \rightarrow G^{c}$ given by $\phi(x, y)=x y x^{-1} y^{-1}$. Now $G^{c} \times G^{c}$ is irreducible, $H \times H$ is dense in $G^{c} \times G^{c}$ and $\phi(H \times H)$ is finite, so $\phi\left(G^{c} \times G^{c}\right)=\{1\}$. Hence G^{c} is abelian.
(2) For every positive integer $i, \overline{A^{i}}$ is a closed irreducible set (being the closure of an image of $A \times \cdots \times A)$. Hence we have an ascending chain of closed irreducible sets:

$$
A \subseteq \overline{A^{2}} \subseteq \overline{A^{3}} \subseteq \cdots
$$

Comparison of dimensions shows that this series stabilizes. So for some i, $T=\overline{A^{i}}=\overline{A^{j}}$ for all $j>i$. Now $\bigcup_{k \geq 1} A^{k}$ is a semigroup with closure T. Hence T is a connected semigroup satisfying \mathscr{P}_{m}. Now the irreducible set $T \times \cdots \times T$ (m times) is a finite union of the closed sets

$$
B_{\sigma}=\left\{\left(a_{1}, \ldots, a_{m}\right) \mid a_{1}, \ldots, a_{m} \in T, a_{1} \cdots a_{m}=a_{\sigma(1)} \cdots a_{\sigma(m)}\right\}, \sigma \neq 1
$$

Hence $T \times \cdots \times T=B_{\sigma}$ for some $\sigma \neq 1$. Thus T satisfies a fixed permutation identity. Therefore by [19, Theorem 1], T^{k} satisfies the identity $x y z w=$ $x z y w$ for some k. It follows that $E(T)$ is a subsemigroup of T. Hence, if J_{1}, \ldots, J_{t} are the regular \mathcal{J}-classes of T, then by [18, Theorem 5.9], each $E\left(J_{r}\right)$ is a rectangular band. Also by [16, Theorem 8], each $E\left(J_{r}\right)$ is closed and irreducible. Since $A \subseteq E(T)=\bigcup E\left(J_{r}\right)$, we see that $A \subseteq E\left(J_{p}\right) \subseteq E(J)$ for some p. So $A=E\left(J_{p}\right)$ is a rectangular band.

We now proceed to obtain some information about rectangular bands in complete 0 -simple semigroups. First recall that by [2, Chapter 1], a rectangular band is a direct product of a right zero semigroup and a left zero semigroup. In particular it satisfies the identity $x y z w=x z y w$.

Lemma 5. Let $S=\mathfrak{M}^{0}(G, I, M, P)$ be a completely 0 -simple semigroup and $E \subseteq S$ be a rectangular band. Then
(1) For some $I_{1} \subseteq I, M_{1} \subseteq M$ and Q the $M_{1} \times I_{1}$ matrix induced by P, E is the idempotent set of $\mathfrak{M}\left(G, I_{1}, M_{1}, Q\right)$.
(2) Any two columns of Q are G-proportional, i.e. for every $i, j \in I_{1}$, there exists $g \in G$ such that $p_{m i}=p_{m j} g$ for all $m \in M_{1}$.
Proof. (1) We can let $I_{1}=\{i \in I \mid(g, i, m) \in E$ for some $g \in G, m \in M\}$ and let $M_{1}=\{m \in M \mid(g, i, m) \in E$ for some $g \in G, i \in I\}$.
(2) Let $i, j \in I_{1}, \quad n \in M_{1}, g=p_{n j}^{-1} p_{n i} \in G$. Let $m \in M_{1}$. Then $e=$ $\left(p_{m i}^{-1}, i, m\right), f=\left(p_{n j}^{-1}, j, n\right) \in E$. Since $e f e=e$ we obtain

$$
p_{m i}^{-1} p_{m j} p_{n j}^{-1} p_{n i} p_{m i}^{-1}=p_{m i}^{-1}
$$

Hence $p_{m i}=p_{m j} g$.
Lemma 6. Let $S=\mathfrak{M}(G, I, M, P)$ be a completely simple semigroup over an abelian-by-finite group G such that $E(S)$ is a rectangular band. Then for every field K, the semigroup algebra $K[S]$ satisfies a polynomial identity.
Proof. It is well known [2, $\S 3.2$, Exercise 2] that S is a direct product $G \times E(S)$. Therefore $K[S] \simeq K[G] \otimes_{K} K[E(S)]$. Now $K[G]$ is a PI-algebra, cf. [15, Theorem 5.3.7]. Also $K[E(S)]$ is a PI-algebra since $E(S)$ satisfies the multilinear identity $x y z w=x z y w$. Hence by [21, Theorem 6.1.1], $K[S]$ is a PI-algebra.

In view of Lemma 5, Lemma 6 can also be derived from a criterion for the PI-property of semigroup algebras of completely 0 -simple semigroups, cf. [10].

Finally we need the following lemma concerning the rank of (possibly infinite) matrices. Here the rank $\operatorname{rk}(P)$ of an infinite matrix P is defined to be the supremum of the ranks of all the finite submatrices of P.

Lemma 7. Let M, I be non-empty sets, and let P be an $M \times I$ matrix over a field L. Assume that P can be covered by $k<\infty$ submatrices P_{1}, \ldots, P_{k} such that $\operatorname{rk}\left(P_{i}\right) \leq t<\infty$ for some t. (That is, for every $m \in M, i \in I$, the (m, i) entry of P lies in some P_{j} if it is non-zero.) Then $\operatorname{rk}(P) \leq\left(2^{k}-1\right) t$.

Proof. Induction on k. The case where $k=1$ is clear. Let $k>1$. We can assume that P_{1} does not pass through all rows of P or P_{1} does not pass through all columns of P. By symmetry we consider the former case only. Define A as the submatrix of P consisting of all the entries lying in the rows of P through which P_{1} does not pass. It is clear that A can be covered by at most $k-1$ submatrices of ranks not exceeding t. By the induction hypothesis $\operatorname{rk}(A) \leq\left(2^{k-1}-1\right) t$. Since $\operatorname{rk}\left(P_{1}\right) \leq t$, then clearly $\operatorname{rk}(B) \leq t+\left(2^{k-1}-1\right) t=$ $2^{k-1} t$ where B is the submatrix of P consisting of all columns passing through P_{1}. If $B \neq P$, then the submatrix C of P consisting of all columns not passing through B also satisfies the induction hypothesis. Therefore $\mathrm{rk}(C) \leq$ $\left(2^{k-1}-1\right) t$, and so

$$
\mathrm{rk}(P) \leq \operatorname{rk}(B)+\operatorname{rk}(C) \leq 2^{k-1} t+\left(2^{k-1}-1\right) t=\left(2^{k}-1\right) t
$$

proving the assertion.
We are now ready to prove our first theorem concerning strongly π-regular linear semigroups. This class includes all linear algebraic semigroups and also all regular linear semigroups. In view of Lemma 1, this result characterizes a linear semigroup S with the permutation property in terms of its closure \bar{S}.

Theorem 1. Let $S \subseteq \mathscr{M}_{n}(F)$ be a strongly π-regular semigroup. Then the following conditions are equivalent:
(1) S has the permutation property.
(2) $E(S)$ is a finite union of rectangular bands and every subgroup of S is abelian-by-finite.
(3) $K[S]$ is a PI-algebra for some field K.
(4) $K[S]$ is a PI-algebra for every field K.

Proof. That (4) $\Rightarrow(3) \Rightarrow(1)$ is obvious. That (1) \Rightarrow (2) follows from Lemmas 1,3 and 4 . So we need to prove that $(2) \Rightarrow(4)$. As is well known it suffices to consider the case when K is of characteristic 0 . If J is an ideal of S, then the contracted semigroup algebra $K_{0}[S / J] \simeq K[S] / K[J]$. Moreover the class of PI-algebras is closed under ideal extensions. Hence by Lemma 2, it suffices to show that $K[T]$ is a PI-algebra for every completely 0 -simple principal factor T of S.

By hypothesis $T \simeq \mathfrak{M}^{\circ}(G, I, M, P)$ for some abelian-by-finite group G, and $E(T) \backslash\{0\}=E_{1} \cup \cdots \cup E_{r}$ where each E_{i} is a rectangular band. By Lemma 5 , we can construct subsemigroups $T_{j}=\mathfrak{M}\left(G, I_{j}, M_{j}, P_{j}\right)$ with $E\left(T_{j}\right)=E_{j}, j=$ $1, \ldots, r$. By Lemma 6, each $K\left[T_{j}\right]$ is a PI-algebra. We now use the following characterization of PI semigroup algebras of completely 0 -simple semigroups in characteristic zero, cf. [4].
$K[T]$ is PI if and only if G is abelian-by-finite and there exists
$\left(^{*}\right) \quad q \geq 1$ such that $\operatorname{rk} \phi(P) \leq q$ for all irreducible representations ϕ of G over fields of characteristic zero.

Moreover, in this case, $K_{0}[T]$ satisfies the identity

$$
x_{2 q+1} S_{2 q}\left(x_{1}, \ldots, x_{2 q}\right) x_{2 q+2}=0
$$

where $S_{2 q}$ is the standard identity of degree $2 q$. Now (${ }^{*}$) applied to $T_{j}, j=$ $1, \ldots, r$ implies that there is a positive integer t such that $\operatorname{rk} \phi\left(P_{j}\right) \leq t$ for all j and all irreducible representations of G. Let $a=(g, i, m) \in T$ such that $a \notin T_{j}, j=1, \ldots, r$. Then $a^{2}=0$, so that $p_{m i}=0$. It is thus clear that P is covered by P_{1}, \ldots, P_{r} in the sense of Lemma 7. Hence by Lemma 7 , $\operatorname{rk} \phi(P) \leq\left(2^{r}-1\right) t$. Therefore by $\left(^{*}\right), K[T]$ is a PI-algebra. This proves the theorem.

Remark. Let S be a strongly π-regular linear semigroup with the permutation property and let T be a completely 0 -simple principal factor of S. Then by Theorem 1, $E(T) \backslash\{0\}$ is a union of finitely many rectangular bands E_{1}, \ldots, E_{r}. We can then refine this union to write E as a disjoint union of finitely many rectangular bands. This is a consequence of the fact that $E_{i} \cap E_{j}$ is a rectangular band and $E_{i} \backslash\left(E_{i} \cap E_{j}\right)$ is a disjoint union of at most 3 rectangular bands. If $T=\mathfrak{M}^{0}(G, I, M, P)$, then it follows that I, M can be partitioned as $I=I_{1} \cup \cdots \cup I_{p}, M=M_{1} \cup \cdots \cup M_{s}$ so that any two columns of the submatrix $P_{i j}$ of P corresponding to the semigroup $T_{i j}=\mathfrak{M}^{0}\left(G, I_{j}, M_{i}, P_{i j}\right) \subseteq T$ are G-proportional. Thus T is the 0 -disjoint union of the semigroups $T_{i j}$ and each $T_{i j}$ is either null or $T_{i j} \backslash\{0\}$ is a direct product of the abelian-by-finite group G and a rectangular band.

Theorem 2. Let $S \subseteq \mathscr{M}_{n}(F)$ be a semigroup with the permutation property. Let m denote the number of irreducible components of \bar{S}. Then for any field $K, K[S]$ satisfies a polynomial identity of degree $3^{n} \cdot \prod_{j=1}^{n}\binom{n}{j} \cdot\left[2 m\left(2^{m^{2}}-1\right)+2\right]$.
Proof. We can assume that $\operatorname{ch}(K)=0$. By Lemma 1, we can assume without loss of generality that $S=\bar{S}$ is an algebraic semigroup. In particular S is a strongly π-regular semigroup and by Theorem $1, K[S]$ is a PI-algebra. Let $S_{i}, T_{i}, i=0, \cdots, n$, be as in Lemma 2. Now S_{i} / T_{i} is a zero disjoint union of completely 0 -simple ideals. Hence $K_{0}\left[S_{i} / T_{i}\right]$ is a direct product of the corresponding contracted semigroup algebras. Therefore by [14, Proposition 1.1], $J\left(K_{0}\left[S_{i} / T_{i}\right]\right)^{3}=0$, where J denotes the Jacobson radical. Hence by Lemma 2, $J(K[S])^{r}=0$ where $r=3^{n} \cdot \prod_{j=1}^{n}\binom{n}{j}$.

Let R be a simple homomorphic image of $K[S]$. Then R is an image of the semigroup algebra $K_{0}[T]$ of some completely 0 -simple principal factor T of $S . \mathrm{By}\left({ }^{*}\right)$ in the proof of Theorem 1, $K_{0}[T]$ satisfies the identity

$$
x_{2 p+1} S_{2 p}\left(x_{1}, \ldots, x_{2 p}\right) x_{2 p+2}=0
$$

for all $p \geq q$, where

$$
q=\max _{\phi} \mathrm{rk} \phi(P)
$$

as ϕ runs through all irreducible representations (in characteristic zero) of the maximal subgroup G of T. By Lemmas 3, 4, 7, we see as in the proof of Theorem 1 that

$$
q \leq\left(2^{m^{2}}-1\right) \max _{\phi, Q}\{\operatorname{rk} \phi(Q)\}
$$

where Q runs through the submatrices of P corresponding to the at most m^{2} rectangular bands covering $E(T)$. By Lemma 5, the columns of each Q are G-proportional. Hence $\operatorname{rk} \phi(Q)$ does not exceed the dimension of ϕ. Now by Lemmas $3,4, G^{c}$ is a normal abelian subgroup of G of index $\leq m$. Hence by a standard argument, cf. $[15, \S 5.1], \operatorname{dim} \phi \leq m$. Therefore $q \leq m\left(2^{m^{2}}-1\right)$. It follows that every simple homomorphic image of $K[S]$ satisfies a fixed identity of degree $2 m\left(2^{m^{2}}-1\right)+2$. Since $K[S]$ is a PI-algebra, we see that $K[S] / J(K[S])$ satisfies the same identity. Since $J(K[S])$ is nilpotent of in$\operatorname{dex} r=3^{n} \cdot \prod_{j=1}^{n}\binom{n}{j}, K[S]$ satisfies the identity

$$
\left[x_{2 p+1} S_{2 p}\left(x_{1}, \ldots, x_{2 p}\right) x_{2 p+2}\right]^{r}=0
$$

where $p=m\left(2^{m^{2}}-1\right)$.
An essentially weaker result than our Theorem 1 was asserted in [7]. Namely, for every finitely generated and regular $S \subseteq \mathscr{M}_{n}(F)$ satisfying the permutation property, the semigroup algebra $K[S]$ satisfies a polynomial identity. However, in the proof, the authors claimed that every principal factor of such a semigroup S must be finitely generated. We show that this may not be true in general.

Example. Let F be a field with an element $\alpha \in F$ generating an infinite cyclic subgroup in the multiplicative group F^{*}. Define S as the subsemigroup generated in $\mathscr{M}_{2}(F)$ by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
\alpha^{-1} & 0 \\
0 & 1
\end{array}\right)
$$

Then $I=\left\{\left.\left(\begin{array}{cc}\alpha^{k} & \alpha^{n} \\ 0 & 0\end{array}\right) \right\rvert\, k, n \in Z\right\}$ is an ideal of S and S / I is an infinite cyclic group G with zero. It is easy to see that $I \simeq \mathfrak{M}(G, 1, Z, P)$ where $p_{m 1}=1$ for all $m \in Z$. Clearly, S is regular with infinitely many \mathscr{H}-classes, but $K[S]$ is a PI-algebra by Theorem 1.

Our last aim is to extend Theorem 2 to an important class of non-linear semigroups.
Proposition. Let S be a semigroup satisfying the permutation property. If $K[S]$ is right noetherian for a field K, then $K[S]$ is a PI-algebra.
Proof. Let Q be a prime ideal of $K[S]$, and let S_{Q} denote the image of S in $K[S] / Q . S_{Q}$ has an ideal $J \neq 0$ contained in a semigroup of matrix type $\mathfrak{M}^{0}(G, I, M, P)$ for a finite set I, cf. [3, the proof of Theorem III.1.6]. If R
is a maximal cancellative subsemigroup of J, then from [13, Lemma II.1.21] it follows that the group ring $K\left[R R^{-1}\right]$ is noetherian. $K\left[R R^{-1}\right]$ is then a PIalgebra, cf. [13, Section IV.2]. As in [10, Proposition 3] one can show that $K[J]$ is a PI-algebra. Since the image of $K[J]$ in $K[S] / Q$ is a nonzero ideal, the latter also is a PI-algebra. Therefore $K[S] / B(K[S])$ is a PI-algebra where $B(K[S])$ denotes the prime radical of $K[S]$. Since $B(K[S])$ is nilpotent, the result follows.

References

1. R. D. Blyth, Rewriting products of group elements, II, J. Algebra 119(1988), 246-259.
2. A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, vol. 1, Amer. Math. Soc., Providence, 1961.
3. M. Curzio, P. Longobardi, M. May, and D. J. S. Robinson, A permutational property of groups, Arch. Math. 44(1985), 385-389.
4. O. I. Domanov, On identities of semigroup algebras of completely 0 -simple semigroups, Mat. Zametki 18(1975), 203-212.
5._, Identities of semigroup rings of 0-simple semigroups, Sib. Math. J. 17(1976), 14061407.
5. M. Garzon and Y. Zalcstein, On permutation properties in groups and semigroups, S. Forum 35(1987), 337-351.
6. __, Linear semigroups with permutation properties, S. Forum 35(1987), 369-371.
7. J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1981.
8. J. Okniński, Strongly π-regular matrix semigroups, Proc. Amer. Math. Soc. 93(1984), 3744.
9. __, On semigroup algebras satisfying polynomial identities, S. Forum 33(1986), 87-102.
10. __, On cancellative semigroup rings, Comm. Algebra 15(1987), 1667-1677.
11. ___, A note on the PI-property of semigroup rings, Perspectives in Ring Theory, Kluwer, Dordrecht, 1988, pp. 275-278.
12. ___, Semigroup algebras, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, (to appear).
13. J. Okniński and M. S. Putcha, Complex representations of matrix semigroups, (to appear).
14. D. S. Passman, The algebraic structure of group rings, Wiley, New York, 1977.
15. M. S. Putcha, Green's relations on a connected algebraic monoid, Linear and Multilinear Algebra 12(1982), 205-214.
16. ___, Matrix semigroups, Proc. Amer. Math. Soc. 88(1983), 386-390.
17. __, Linear algebraic Monoids, London Math. Soc. Lect. Note Ser. 133, Cambridge, 1988.
18. M. S. Putcha and A. Yaqub, Semigroups satisfying permutation identities, S. Forum 3(1971), 68-73.
19. A. Restivo and C. Reutenauer, On the Burnside problem for semigroups, J. Algebra 89(1984), 102-104.
20. L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980.
21. I. R. Shafarevich, Basic algebraic geometry, Springer, Berlin, 1974.

Department of Mathematics, North Carolina State University, Box 8205, Raleigh, North Carolina 27695-8205

[^0]: Received by the editors July 7, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 20M25, 16A38; Secondary 20M20, 16A45.

