PI SEMIGROUP ALGEBRAS OF LINEAR SEMIGROUPS

JAN OKNIŃSKI AND MOHAN S. PUTCHA

(Communicated by Maurice Auslander)

ABSTRACT. It is well-known that if a semigroup algebra K[S] over a field K satisfies a polynomial identity then the semigroup S has the permutation property. The converse is not true in general even when S is a group. In this paper we consider linear semigroups $S \subseteq \mathscr{M}_n(F)$ having the permutation property. We show then that K[S] has a polynomial identity of degree bounded by a fixed function of n and the number of irreducible components of the Zariski closure of S.

A semigroup S is said to have the property \mathscr{P}_m , $m \ge 2$, if for every $a_1, \ldots, a_m \in S$, there exists a non-trivial permutation σ such that $a_1 \ldots a_m = a_{\sigma(1)} \ldots a_{\sigma(m)}$. S has the permutation property \mathscr{P} if S satisfies \mathscr{P}_m for some $m \ge 2$. The class of groups of this type was shown in [3] to consist exactly of the finite-by-abelian-by-finite groups. For the recent results and references on this extensively studied class of groups, we refer to [1]. The above description of groups satisfying \mathscr{P} was extended to cancellative semigroups in [11], while a study of regular semigroups with this property was begun in [6].

In connection with the corresponding semigroup algebras K[S] over a field K, the problem of the relation between the property \mathscr{P} for S and the PIproperty for K[S] attracted the attention of several authors. It is straightforward that S has \mathscr{P} whenever K[S] satisfies a polynomial identity. However the converse fails even for groups in view of [3] and the characterization of PI group algebras, cf. [15]. On the other hand, K[S] was shown to be a PI-algebra whenever S is a finitely generated semigroup (satisfying \mathscr{P}) of one of the following types: periodic [20], cancellative [11], 0-simple [3, 5], inverse, or a Rees factor semigroup of free semigroup, cf. [12]. However, a finitely generated regular semigroup S with two non-zero \mathscr{J} -classes having \mathscr{P} but with K[S] not being PI was constructed in [12].

The main result of this paper is that if S is a linear semigroup satisfying \mathscr{P} , then K[S] is PI for any field K. In the course of the proof, we obtain a structural description of a strongly π -regular semigroup of this type. The basic technique is to consider the Zariski closure \overline{S} of S. Then \overline{S} is a linear

©1990 American Mathematical Society 0002-9939/90 \$1.00 + \$.25 per page

Received by the editors July 7, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 20M25, 16A38; Secondary 20M20, 16A45.

algebraic semigroup in the sense of [18].

We refer to [2] for basics of semigroup theory. In particular $\mathfrak{M}^{\circ}(H, I, M, P)$ denotes the completely 0-simple semigroup over a group H with sandwich matrix $P: M \times I \to H \cup \{0\}$. Let S be a semigroup. If $X \subseteq S$, then we let $E(X) = \{e \in X | e^2 = e\}$. S is strongly π -regular if some power of each element lies in a subgroup of S. Let F be an algebraically closed field. We consider $\mathscr{M}_n(F)$ with its Zariski topology, [22]. A subset X of $\mathscr{M}_n(F)$ is closed if it is the zero set of a collection of polynomials in n^2 variables. A closed set X is *irreducible* if it is not a union of two proper closed subsets. A closed subsemigroup S of $\mathscr{M}_n(F)$ is called a (*linear*) algebraic semigroup. If the underlying closed set S is irreducible, then S is said to be a connected semigroup. We refer to [18] for the theory of linear algebraic semigroups. In particular, an algebraic semigroup S is strongly π -regular [18, Theorem 3.18]. Our starting point is the following observation.

Lemma 1. If $S \subseteq \mathcal{M}_n(F)$ is a semigroup having \mathcal{P}_m then so does its Zariski closure \overline{S} .

Proof. For a permutation $\sigma \neq 1$ of $1, \ldots, m$, and $i = 1, \ldots, m$, let

$$X_i(\sigma) = \{a_i \in \overline{S} \mid a_1 \dots a_m = a_{\sigma(1)} \dots a_{\sigma(m)} \text{ for all} \\ a_i \in \overline{S} \ (j < i) \text{ and } a_k \in S \ (k > i)\}.$$

Then $Y_i = \bigcup_{\sigma} X_i(\sigma)$ is a closed subset of \overline{S} . Since $S \subseteq Y_1 \subseteq \overline{S}$, we see that $Y_1 = \overline{S}$. If $Y_i = \overline{S}$, then $S \subseteq Y_{i+1} \subseteq \overline{S}$. Hence $Y_{i+1} = \overline{S}$. It follows that $Y_m = \overline{S}$. So \overline{S} has \mathscr{P}_m .

The next two lemmas will be used in obtaining a bound on the degree of the polynomial identity satisfied by the relevant semigroup algebras.

Lemma 2. Let $S \subseteq \mathcal{M}_n(F)$ be a strongly π -regular semigroup. Then for $i = 0, \dots, n$,

$$S_i = \{a \in S \mid rank \text{ of } a \le i\}$$

$$T_i = \{a \in S_i \mid rank \text{ of } a < i \text{ or } a \text{ is not regular}\}$$

are (possibly empty) ideals of S such that

$$S_0 \subseteq T_1 \subseteq S_1 \subseteq T_2 \subseteq \cdots \subseteq S_n = S.$$

Moreover S_i/T_i is a zero disjoint union of at most $\binom{n}{i}$ completely 0-simple ideals and T_i/S_{i-1} is nilpotent of index at most $\binom{n}{i}$.

Proof. That S_i is an ideal of S is obvious. Let $a \in T_i$, $x \in S$. Suppose $ax \notin T_i$. Then ax has rank i and is regular. So for some $y \in S$, e = axy is an idempotent of rank i. Hence, [17, Lemma 4], a = ea = axya is regular, a contradiction. Thus each T_i is an ideal of S. The rest follows from [9].

We refer to [8] for the basics on linear algebraic groups.

Lemma 3. Let S be a linear algebraic semigroup with m irreducible components. Then

(1) If G is a maximal subgroup of S with identity component G^c , then $|G/G^c| \leq m$.

(2) If J is a regular \mathcal{J} -class of S, then E(J) is a closed subset of S with at most m^2 irreducible components.

Proof. (1) Let *e* denote the identity element of *G*. Now *eSe* is the image of *S* under the morphism $x \to exe$. Hence *eSe* has at most *m* irreducible components. Since *G* is an open subset of *eSe*, the same is true of *G*.

(2) That E(J) is a closed subset of S follows from the proof of [16, Theorem 8]. Let $e \in E(J)$ with \mathcal{H} -class H. Let

$$U = \{(a, b) | a, b \in S, ebae \in H\}.$$

Then U is a non-empty open subset of $S \times S$ and by the proof of [16, Theorem 8], the map:

$$(a, b) \rightarrow a(ebae)^{-1}b$$

(where the inverse is taken in H) is a morphism from U onto E(J). Since $S \times S$ has m^2 irreducible components, U (being an open subset) has at most m^2 irreducible components. Hence E(J), being an image of U, has at most m^2 irreducible components.

Lemma 4. Let S be a linear algebraic semigroup having \mathcal{P}_m . Then

(1) If G is a maximal subgroup of S, then the identity component G^c of G is abelian.

(2) If J is a regular \mathcal{J} -class of S, then every irreducible component A of E(J) is a rectangular band, i.e. efe = e for all $e, f \in A$.

Proof. (1) G^c has \mathscr{P}_m and hence, [3], has a normal subgroup H of finite index such that the commutator subgroup (H, H) is finite. By [8, Proposition 7.3], G^c has no closed subgroups of finite index. Hence H is dense in G^c . We have a morphism $\phi: G^c \times G^c \to G^c$ given by $\phi(x, y) = xyx^{-1}y^{-1}$. Now $G^c \times G^c$ is irreducible, $H \times H$ is dense in $G^c \times G^c$ and $\phi(H \times H)$ is finite, so $\phi(G^c \times G^c) = \{1\}$. Hence G^c is abelian.

(2) For every positive integer i, A^i is a closed irreducible set (being the closure of an image of $A \times \cdots \times A$). Hence we have an ascending chain of closed irreducible sets:

$$A\subseteq \overline{A^2}\subseteq \overline{A^3}\subseteq\cdots$$
.

Comparison of dimensions shows that this series stabilizes. So for some i, $T = \overline{A^i} = \overline{A^j}$ for all j > i. Now $\bigcup_{k \ge 1} A^k$ is a semigroup with closure T. Hence T is a connected semigroup satisfying \mathscr{P}_m . Now the irreducible set $T \times \cdots \times T$ (m times) is a finite union of the closed sets

$$B_{\sigma} = \{(a_1, \ldots, a_m) | a_1, \ldots, a_m \in T, a_1 \cdots a_m = a_{\sigma(1)} \cdots a_{\sigma(m)}\}, \sigma \neq 1.$$

Hence $T \times \cdots \times T = B_{\sigma}$ for some $\sigma \neq 1$. Thus T satisfies a fixed permutation identity. Therefore by [19, Theorem 1], T^k satisfies the identity xyzw = xzyw for some k. It follows that E(T) is a subsemigroup of T. Hence, if J_1, \ldots, J_t are the regular \mathscr{J} -classes of T, then by [18, Theorem 5.9], each $E(J_r)$ is a rectangular band. Also by [16, Theorem 8], each $E(J_r)$ is closed and irreducible. Since $A \subseteq E(T) = \bigcup E(J_r)$, we see that $A \subseteq E(J_p) \subseteq E(J)$ for some p. So $A = E(J_p)$ is a rectangular band.

We now proceed to obtain some information about rectangular bands in complete 0-simple semigroups. First recall that by [2, Chapter 1], a rectangular band is a direct product of a right zero semigroup and a left zero semigroup. In particular it satisfies the identity xyzw = xzyw.

Lemma 5. Let $S = \mathfrak{M}^0(G, I, M, P)$ be a completely 0-simple semigroup and $E \subseteq S$ be a rectangular band. Then

(1) For some $I_1 \subseteq I$, $M_1 \subseteq M$ and Q the $M_1 \times I_1$ matrix induced by P, E is the idempotent set of $\mathfrak{M}(G, I_1, M_1, Q)$.

(2) Any two columns of Q are G-proportional, i.e. for every $i, j \in I_1$, there exists $g \in G$ such that $p_{mi} = p_{mj}g$ for all $m \in M_1$.

Proof. (1) We can let $I_1 = \{i \in I \mid (g, i, m) \in E \text{ for some } g \in G, m \in M\}$ and let $M_1 = \{m \in M \mid (g, i, m) \in E \text{ for some } g \in G, i \in I\}$.

(2) Let $i, j \in I_1, n \in M_1, g = p_{nj}^{-1} p_{ni} \in G$. Let $m \in M_1$. Then $e = (p_{mi}^{-1}, i, m), f = (p_{nj}^{-1}, j, n) \in E$. Since efe = e we obtain

$$p_{mi}^{-1}p_{mj}p_{nj}^{-1}p_{ni}p_{mi}^{-1} = p_{mi}^{-1}.$$

Hence $p_{mi} = p_{mi}g$.

Lemma 6. Let $S = \mathfrak{M}(G, I, M, P)$ be a completely simple semigroup over an abelian-by-finite group G such that E(S) is a rectangular band. Then for every field K, the semigroup algebra K[S] satisfies a polynomial identity.

Proof. It is well known [2, §3.2, Exercise 2] that S is a direct product $G \times E(S)$. Therefore $K[S] \simeq K[G] \otimes_K K[E(S)]$. Now K[G] is a PI-algebra, cf. [15, Theorem 5.3.7]. Also K[E(S)] is a PI-algebra since E(S) satisfies the multilinear identity xyzw = xzyw. Hence by [21, Theorem 6.1.1], K[S] is a PI-algebra.

In view of Lemma 5, Lemma 6 can also be derived from a criterion for the PI-property of semigroup algebras of completely 0-simple semigroups, cf. [10].

Finally we need the following lemma concerning the rank of (possibly infinite) matrices. Here the rank rk(P) of an infinite matrix P is defined to be the supremum of the ranks of all the finite submatrices of P.

Lemma 7. Let M, I be non-empty sets, and let P be an $M \times I$ matrix over a field L. Assume that P can be covered by $k < \infty$ submatrices P_1, \ldots, P_k such that $\operatorname{rk}(P_i) \leq t < \infty$ for some t. (That is, for every $m \in M$, $i \in I$, the (m, i) entry of P lies in some P_j if it is non-zero.) Then $\operatorname{rk}(P) \leq (2^k - 1)t$. *Proof.* Induction on k. The case where k = 1 is clear. Let k > 1. We can assume that P_1 does not pass through all rows of P or P_1 does not pass through all columns of P. By symmetry we consider the former case only. Define A as the submatrix of P consisting of all the entries lying in the rows of P through which P_1 does not pass. It is clear that A can be covered by at most k-1 submatrices of ranks not exceeding t. By the induction hypothesis $\operatorname{rk}(A) \leq (2^{k-1} - 1)t$. Since $\operatorname{rk}(P_1) \leq t$, then clearly $\operatorname{rk}(B) \leq t + (2^{k-1} - 1)t = 2^{k-1}t$ where B is the submatrix of P consisting of all columns passing through P_1 . If $B \neq P$, then the submatrix C of P consisting of all columns not passing through B also satisfies the induction hypothesis. Therefore $\operatorname{rk}(C) \leq (2^{k-1} - 1)t$, and so

$$\operatorname{rk}(P) \le \operatorname{rk}(B) + \operatorname{rk}(C) \le 2^{k-1}t + (2^{k-1} - 1)t = (2^{k} - 1)t$$

proving the assertion.

We are now ready to prove our first theorem concerning strongly π -regular linear semigroups. This class includes all linear algebraic semigroups and also all regular linear semigroups. In view of Lemma 1, this result characterizes a linear semigroup S with the permutation property in terms of its closure \overline{S} .

Theorem 1. Let $S \subseteq \mathcal{M}_n(F)$ be a strongly π -regular semigroup. Then the following conditions are equivalent:

(1) S has the permutation property.

(2) E(S) is a finite union of rectangular bands and every subgroup of S is abelian-by-finite.

(3) K[S] is a PI-algebra for some field K.

(4) K[S] is a PI-algebra for every field K.

Proof. That $(4) \Rightarrow (3) \Rightarrow (1)$ is obvious. That $(1) \Rightarrow (2)$ follows from Lemmas 1, 3 and 4. So we need to prove that $(2) \Rightarrow (4)$. As is well known it suffices to consider the case when K is of characteristic 0. If J is an ideal of S, then the contracted semigroup algebra $K_0[S/J] \simeq K[S]/K[J]$. Moreover the class of PI-algebras is closed under ideal extensions. Hence by Lemma 2, it suffices to show that K[T] is a PI-algebra for every completely 0-simple principal factor T of S.

By hypothesis $T \simeq \mathfrak{M}^{\circ}(G, I, M, P)$ for some abelian-by-finite group G, and $E(T)\setminus\{0\} = E_1 \cup \cdots \cup E_r$, where each E_i is a rectangular band. By Lemma 5, we can construct subsemigroups $T_j = \mathfrak{M}(G, I_j, M_j, P_j)$ with $E(T_j) = E_j$, $j = 1, \ldots, r$. By Lemma 6, each $K[T_j]$ is a PI-algebra. We now use the following characterization of PI semigroup algebras of completely 0-simple semigroups in characteristic zero, cf. [4].

K[T] is PI if and only if G is abelian-by-finite and there exists

(*) $q \ge 1$ such that rk $\phi(P) \le q$ for all irreducible representations ϕ of G over fields of characteristic zero.

Moreover, in this case, $K_0[T]$ satisfies the identity

$$x_{2q+1}S_{2q}(x_1,\ldots,x_{2q})x_{2q+2}=0$$

where S_{2q} is the standard identity of degree 2q. Now (*) applied to T_j , $j = 1, \ldots, r$ implies that there is a positive integer t such that $\operatorname{rk} \phi(P_j) \leq t$ for all j and all irreducible representations of G. Let $a = (g, i, m) \in T$ such that $a \notin T_j$, $j = 1, \ldots, r$. Then $a^2 = 0$, so that $p_{mi} = 0$. It is thus clear that P is covered by P_1, \ldots, P_r in the sense of Lemma 7. Hence by Lemma 7, $\operatorname{rk} \phi(P) \leq (2^r - 1)t$. Therefore by (*), K[T] is a PI-algebra. This proves the theorem.

Remark. Let S be a strongly π -regular linear semigroup with the permutation property and let T be a completely 0-simple principal factor of S. Then by Theorem 1, $E(T)\setminus\{0\}$ is a union of finitely many rectangular bands E_1, \ldots, E_r . We can then refine this union to write E as a disjoint union of finitely many rectangular bands. This is a consequence of the fact that $E_i \cap E_j$ is a rectangular band and $E_i \setminus (E_i \cap E_j)$ is a disjoint union of at most 3 rectangular bands. If $T = \mathfrak{M}^0(G, I, M, P)$, then it follows that I, M can be partitioned as $I = I_1 \cup \cdots \cup I_p$, $M = M_1 \cup \cdots \cup M_s$ so that any two columns of the submatrix P_{ij} of P corresponding to the semigroup $T_{ij} = \mathfrak{M}^0(G, I_j, M_i, P_{ij}) \subseteq T$ are G-proportional. Thus T is the 0-disjoint union of the semigroups T_{ij} and each T_{ij} is either null or $T_{ij} \setminus \{0\}$ is a direct product of the abelian-by-finite group G and a rectangular band.

Theorem 2. Let $S \subseteq \mathcal{M}_n(F)$ be a semigroup with the permutation property. Let *m* denote the number of irreducible components of \overline{S} . Then for any field K, K[S] satisfies a polynomial identity of degree $3^n \cdot \prod_{j=1}^n {n \choose j} \cdot [2m(2^{m^2}-1)+2]$.

Proof. We can assume that ch(K) = 0. By Lemma 1, we can assume without loss of generality that $S = \overline{S}$ is an algebraic semigroup. In particular S is a strongly π -regular semigroup and by Theorem 1, K[S] is a PI-algebra. Let S_i , T_i , $i = 0, \dots, n$, be as in Lemma 2. Now S_i/T_i is a zero disjoint union of completely 0-simple ideals. Hence $K_0[S_i/T_i]$ is a direct product of the corresponding contracted semigroup algebras. Therefore by [14, Proposition 1.1], $J(K_0[S_i/T_i])^3 = 0$, where J denotes the Jacobson radical. Hence by Lemma 2, $J(K[S])^r = 0$ where $r = 3^n \cdot \prod_{j=1}^n {n \choose j}$.

Let R be a simple homomorphic image of K[S]. Then R is an image of the semigroup algebra $K_0[T]$ of some completely 0-simple principal factor T of S. By (*) in the proof of Theorem 1, $K_0[T]$ satisfies the identity

$$x_{2p+1}S_{2p}(x_1,\ldots,x_{2p})x_{2p+2}=0$$

for all $p \ge q$, where

$$q = \max_{\phi} \operatorname{rk} \phi(P)$$

as ϕ runs through all irreducible representations (in characteristic zero) of the maximal subgroup G of T. By Lemmas 3, 4, 7, we see as in the proof of Theorem 1 that

$$q \leq (2^{m^2} - 1) \max_{\phi, Q} \{\operatorname{rk} \phi(Q)\}$$

where Q runs through the submatrices of P corresponding to the at most m^2 rectangular bands covering E(T). By Lemma 5, the columns of each Q are G-proportional. Hence $\operatorname{rk} \phi(Q)$ does not exceed the dimension of ϕ . Now by Lemmas 3, 4, G^c is a normal abelian subgroup of G of index $\leq m$. Hence by a standard argument, cf. [15, §5.1], $\dim \phi \leq m$. Therefore $q \leq m(2^{m^2} - 1)$. It follows that every simple homomorphic image of K[S] satisfies a fixed identity of degree $2m(2^{m^2} - 1) + 2$. Since K[S] is a PI-algebra, we see that K[S]/J(K[S]) satisfies the same identity. Since J(K[S]) is nilpotent of index $r = 3^n \cdot \prod_{j=1}^n {n \choose j}$, K[S] satisfies the identity

$$[x_{2p+1}S_{2p}(x_1,\ldots,x_{2p})x_{2p+2}]^r = 0$$

where $p = m(2^{m^2} - 1)$.

An essentially weaker result than our Theorem 1 was asserted in [7]. Namely, for every finitely generated and regular $S \subseteq \mathcal{M}_n(F)$ satisfying the permutation property, the semigroup algebra K[S] satisfies a polynomial identity. However, in the proof, the authors claimed that every principal factor of such a semigroup S must be finitely generated. We show that this may not be true in general.

Example. Let F be a field with an element $\alpha \in F$ generating an infinite cyclic subgroup in the multiplicative group F^* . Define S as the subsemigroup generated in $\mathcal{M}_2(F)$ by the matrices

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \alpha^{-1} & 0 \\ 0 & 1 \end{pmatrix}.$$

Then $I = \left\{ \begin{pmatrix} \alpha^k & \alpha^n \\ 0 & 0 \end{pmatrix} \middle| k, n \in Z \right\}$ is an ideal of S and S/I is an infinite cyclic group G with zero. It is easy to see that $I \simeq \mathfrak{M}(G, 1, Z, P)$ where $p_{m1} = 1$ for all $m \in Z$. Clearly, S is regular with infinitely many \mathscr{H} -classes, but K[S] is a PI-algebra by Theorem 1.

Our last aim is to extend Theorem 2 to an important class of non-linear semigroups.

Proposition. Let S be a semigroup satisfying the permutation property. If K[S] is right noetherian for a field K, then K[S] is a PI-algebra.

Proof. Let Q be a prime ideal of K[S], and let S_Q denote the image of S in K[S]/Q. S_Q has an ideal $J \neq 0$ contained in a semigroup of matrix type $\mathfrak{M}^0(G, I, M, P)$ for a finite set I, cf. [3, the proof of Theorem III.1.6]. If R

is a maximal cancellative subsemigroup of J, then from [13, Lemma II.1.21] it follows that the group ring $K[RR^{-1}]$ is noetherian. $K[RR^{-1}]$ is then a PIalgebra, cf. [13, Section IV.2]. As in [10, Proposition 3] one can show that K[J] is a PI-algebra. Since the image of K[J] in K[S]/Q is a nonzero ideal, the latter also is a PI-algebra. Therefore K[S]/B(K[S]) is a PI-algebra where B(K[S]) denotes the prime radical of K[S]. Since B(K[S]) is nilpotent, the result follows.

References

- 1. R. D. Blyth, Rewriting products of group elements, II, J. Algebra 119(1988), 246-259.
- 2. A. H. Clifford and G. B. Preston, *Algebraic theory of semigroups*, vol. 1, Amer. Math. Soc., Providence, 1961.
- 3. M. Curzio, P. Longobardi, M. May, and D. J. S. Robinson, A permutational property of groups, Arch. Math. 44(1985), 385-389.
- 4. O. I. Domanov, On identities of semigroup algebras of completely 0-simple semigroups, Mat. Zametki 18(1975), 203–212.
- 5. ____, Identities of semigroup rings of 0-simple semigroups, Sib. Math. J. 17(1976), 1406-1407.
- 6. M. Garzon and Y. Zalcstein, On permutation properties in groups and semigroups, S. Forum 35(1987), 337-351.
- 7. ____, Linear semigroups with permutation properties, S. Forum 35(1987), 369-371.
- 8. J. E. Humphreys, Linear algebraic groups, Springer-Verlag, New York, 1981.
- 9. J. Okniński, Strongly π -regular matrix semigroups, Proc. Amer. Math. Soc. 93(1984), 37-44.
- 10. ____, On semigroup algebras satisfying polynomial identities, S. Forum 33(1986), 87–102.
- 11. ____, On cancellative semigroup rings, Comm. Algebra 15(1987), 1667–1677.
- 12. ____, A note on the PI-property of semigroup rings, Perspectives in Ring Theory, Kluwer, Dordrecht, 1988, pp. 275-278.
- 13. ____, Semigroup algebras, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, (to appear).
- 14. J. Okniński and M. S. Putcha, Complex representations of matrix semigroups, (to appear).
- 15. D. S. Passman, The algebraic structure of group rings, Wiley, New York, 1977.
- 16. M. S. Putcha, *Green's relations on a connected algebraic monoid*, Linear and Multilinear Algebra 12(1982), 205-214.
- 17. ____, Matrix semigroups, Proc. Amer. Math. Soc. 88(1983), 386-390.
- 18. ____, Linear algebraic Monoids, London Math. Soc. Lect. Note Ser. 133, Cambridge, 1988.
- 19. M. S. Putcha and A. Yaqub, Semigroups satisfying permutation identities, S. Forum 3(1971), 68-73.
- 20. A. Restivo and C. Reutenauer, On the Burnside problem for semigroups, J. Algebra 89(1984), 102-104.
- 21. L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980.
- 22. I. R. Shafarevich, Basic algebraic geometry, Springer, Berlin, 1974.

Department of Mathematics, North Carolina State University, Box 8205, Raleigh, North Carolina 27695-8205