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A topological index of a graph G is a numeric quantity related 

to G which describes the molecular graph G. A dendrimer is an 

artificially manufactured or synthesized molecule built up from 

branched units called monomers. The PI and Szeged indices of a 

class of nanostar dendrimer are computed. 

 

The nanostar dendrimer is part of a new group of 

macromolecules that appear to be photon funnels just 

like artificial antennas. It also shows good resistant to 

photo bleaching. The nanostar dendrimer promises 

great applications but first the structure and the 

energy transfer mechanism must be understood. 

Experimental and theoretical insight is needed in 

order to understand the energy transfer mechanism. 

 
Methodology 

Some algebraic definitions used for the study are 

given. Let G be a simple molecular graph without 

directed and multiple edges and without loops, the 

vertex and edge-sets of which are represented by 

V(G) and E(G), respectively. In a chemical graph, 

vertices represent atoms and edges represent bonds. 

These graphs have been used for affinity diagrams 

showing a relationship between chemical substances. 

Numbers reflecting certain structural features of a 

molecule that are obtained from its chemical graph 

are usually called topological indices. The Wiener 

index, W, one of widely used descriptors of molecular 

topology, was introduced in 1947 by Wiener
1
 as the 

half-sum of all topological distances in the hydrogen-

depleted graph representing the skeleton of the 

molecule. Here, we denote by d(u,v), the topological 

distance between vertices u and v of the graph G, 

which is the length of a minimum path between these 

vertices. We encourage the readers to consult two 

survey articles by Dobrynin and his co-authors
2,3

 and 

references therein for background material and 

historical aspect of Wiener index. 

Diudea
4-10

 was the first scientist who investigated 

the mathematical properties of nanostructures. He and 

his team studied several nanostructures by computing 

their topological indices and designed a package 

named TopoCluj
11

 for computing topological indices 

of the molecular graphs of nanostructures. 

Khadikar and co-authors
12-15

 defined a new 

topological index and named it Padmakar-Ivan index. 

They abbreviated this new topological index as PI. 

This newly proposed topological index does not 

coincide with the Wiener index for acyclic molecules. 

It is defined as PI(G) = ∑e=uv∈G[mu(e) + mv(e)], where 

mu(e) is the number of edges of G lying closer to u 

than to v and mv(e) is the number of edges of G lying 

closer to v than to u. Edges equidistant from both ends 

of the edge uv are not counted. 

The Szeged index is another topological index 

introduced by Ivan Gutman.
16-18

 To define the Szeged 

index of a graph G, we assume that e = uv is an edge 

connecting the vertices u and v. Suppose nu(e) is the 

number of vertices of G lying closer to u and nv(e) is 

the number of vertices of G lying closer to v. Then the 

Szeged index of the graph G is defined as Sz(G) = 

∑e=uv∈E(G)[nu(e)nv(e)]. It may be noted that vertices 

equidistance from u and v are not taken into account. 

The edge Szeged index of G is defined similarly by 

Sze(G) = ∑e=uv∈E(G)[mu(e)mv(e)].
19

 

Recently, the first author of this paper continued 

the pioneering work of Diudea and his team to 

compute PI and Szeged indices of some classes of 

nanostructures.
20-25

 We also encourage the reader to 

consult papers by Iranmanesh
26-28

 and Taeri
29,30

 for 

more information on this subject. Our notation is 

standard and taken from literature.
31-34

 

 

Results and discussion 
 

In recent research in mathematical chemistry, 

particular attention is paid to distance-based graph 

invariants. In this section we compute PI and Szeged 

indices of a nanostar dendrimer NS[n], (Fig. 1). Using 

a simple calculation, one can show that |V(NS[n])| = 

120.2
n
 – 108 and |E(NS[n])| = 140.2

n
 − 127. We begin 

by  computing  nu(e)  and  nv(e)  for  the  edges  e = Ej
i
, 
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Fig. 2―A part of the core of NS[n]. 
 

1 ≤ i ≤ n, 1 ≤ j ≤ 2
i+1

 (Fig. 1). Here e = Ei
j
 denotes an 

arbitrary edge connecting two branches of dendrimer 

NS[n]. If e = uv = Ej
i
, 1 ≤ i ≤ n, 1 ≤ j ≤ 2

i+1
 then by an 

inductive argument (e)n u = 30.(2
n-i+1

 – 1). 

For e=uv = E0, (e)n u = n 2|V(NS[n])|
3(5.2 18),

2

+
= −  

(Fig. 2). If e = uv is an edge from two central 

hexagons then for eight edges e = X1 = a1b1,…,X8 = 

a8b8 of the hexagons N1
0
 and N2

0
, )( ta xn

t
= 30(2

n
 – 1) 

+3 =3(10.2
n
 – 9), 1≤ t ≤ 8, and for four edges  

Z1 = c1d1,…,Z4 = c4d4 )z (n scs
 = 60.(2

n
 – 1)+3=3. 

(20.2
n
 – 19), 1 ≤ s ≤ 4. We now consider an arbitrary 

hexagon N in the i
th
 branch of NS[n] and assume that 

e = uv ∈ N, (Fig. 3). For four edges, e = l1=g1h1, …, l4 

= g4h4, )(ln tg
t

 = 60.(2
n-i

 – 1) + 21 = 60.2
n-i

 – 39, 1 ≤ 

t ≤ 4, and for two edges, e = w1 = r1s1, w2 = r2s2, 

)w(n)(w 2r1 21
=rn  = 30.(2

n-i
 – 1) + 15 = 30.2

n-i
 – 15. 

We now consider edges of the hexagons K1 and K4, 

(Fig. 3). One can see that for an arbitrary edge e = uv 

of this type, (e)un = 3. On the other hand, for edges 

of the hexagons K2 and K3, (e)un = 30.(2
n-i

 – 1) + 3 = 

30.2
n-i

 – 27. Also, for two edges e1 = u1v1 and e4 = 

u4v4, )e(n)(en 4u1u 41
=  = 6 and for two other edges 

e2 =u2v2 and e3 =u3v3, )e(n)(en 3u2u 32
= = 30.(2

n-i
–1) 

+ 6 = 30.2
n-i

 – 24. Using these calculations, we have: 

 
 

Fig. 1―The nanostar dendrimer NS[2]. 
 

 
 

Fig. 3―A part of a branch of NS[n]. 
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Theorem 1: The Szeged index of the dendrimer 

NS[n] is computed as follows: 
 

=])n[NS(Sz –284400.4
n
 +187200.n.4

n
–75600.n.2

n
  

 + 415944 2
n
 – 131184. 

 

Proof: By our calculations given above, we have: 
 

Sz (NS[n]) 

 ∑ =
=

uve vu
)e(n)e(n  

 ∑ =

++
+−=

n

1i

1i22n .2180)182.5(9  

 )12()132.52.5( 1in1in2n
−−−×

+−+−+  

 +216.(10.2
n
–9)

2
+36(20.2

n
–19)(20.2

n
–17) 

 +4∑ =

+
n

1i

1i2 (60.2
n–i

–39)(120.2
n
–60.2

n–i
–69) 

 +2∑ =

+
n

1i

1i2 (30.2
n–i

–15)(120.2
n
–30.2

n–i
–93) 

 +144.(2
n
–1) (120.2

n
–111) 

 +12∑ =

+
n

1i

1i2 (30.2
n–i

–27)(120.2
n
–30.2

n–i
–81) 

 +48.(2
n
–1) (120.2

n
–114) 

 +2∑ =

+
n

1i

1i2 (30.2
n–i

–24)(120.2
n
–30.2

n–i
–84) 

 =–284400.4
n
+187200.n.4

n
–75600.n.2

n
 

  +415944.2
n
–131184, 

which proves the theorem. �  
 

We now compute the PI index of a nanostar 

dendrimer NS[n]. We begin with computing mu(e) 

and mv(e) for the edges e = Ej
i
, 1 ≤ i ≤ n, 1≤ j ≤2

i+1
 

(Fig. 1). Suppose e = uv = Ej
i
, 1 ≤ i ≤ n, 1 ≤ j ≤ 2

i+1
. 

Then by an inductive argument (e)m u =34.(2
n-i+1

 – 1) 

+(2
n-i+1

 –2)=35.2
n-i+1

–36. For e=uv=E0, 

)(Em
0u

= 642.70
2

-1|E(NS[n])|
n

−=  and if e = uv is 

an edge from two central hexagons then for eight 

edges X1 = a1b1,…, X8 = a8b8 of hexagons N1
0
 and 

N2
0
, ) x(m ta t

 = 34(2
n
 – 1) + (2

n
 – 1) + 2 = 35.2

n
 –33, 

1 ≤ t ≤ 8, and for four edges Z1 = c1d1,…, Z4 = c4d4, 

)z (m scs
 = 68.(2

n
 – 1) + 2(2

n
 – 1) + 2 = 70.2

n
 – 68, 1 

≤ s ≤ 4. We now consider an arbitrary hexagon N in 

the i
th
 branch of NS[n], and e = uv ∈ N, (Fig. 3). For 

edges e = l1 = g1h1, … ,l4 = g4h4, )(l ttgm  = 68.(2
n-i

 – 

1) + (2
n-i+1

–2)+ 23 = 70.2
n-i

 – 47, 1 ≤ t ≤ 4, and for 

edges w1 = r1s1, w2 = r2s2, we have 

)w(m)(w 2r1 21
=rm  = 34.(2

n-i
 – 1) + (2

n-i+1
 – 2) + 16 

= 36.2
n-i 

– 20. 

Now consider Fig. 3, for edges e = uv of the 

hexagons K1 and K4, (e)um  = 2 and for edges e = uv 

of hexagons K2 and K3, (e)um =34.(2
n-i 

–1)+(2
n-i+1

–2) 

+2 = 36.2
n-i

 – 34. Finally, for two edges e1 = u1v1 and 

e4 = u4v4, )e(m)(em 4u1u 41
=  = 6 and for two edges 

e2=u2v2 and e3=u3v3, )e(m)(em 3u2u 32
= =34.(2

n-i
 –1) 

+ (2
n-i+1

 – 2) + 6 = 36.2
n-i

 – 30. Therefore, 

Theorem 2: The PI index of the nanostar 

dendrimer NS[n] is computed as follows: 

=])n[NS(PI 19600.4
n
 – 35820.2

n 
+ 16364. 

Proof: By our calculations given above, we have: 

[ ]

  16364,  .2 35820 - .419600                  

128)-1)(140.21)-(20(2                 

)1292.140)(12)12(120(                

)e(m)e(m])n[NS(PI

nn

nn

nn

uve vu

+=

++

−+−=

+=∑ =

 

which proves the theorem. �  

We are now ready to compute the edge Szeged 

index of a nanostar dendrimer. 

Theorem 3: The edge Szeged index of the nanostar 

dendrimer NS[n] is computed as follows: 
 

])n[NS(Sz
e

= – 426332.4
n
 + 259280.n.4

n 

 
– 102752.n.2

n 
+ 632456.2

n 
– 205872. 

Proof: By calculations before Theorem 2, one can 

see that 
 

[ ]∑ =
=

uve vue
)e(m)e(m])n[NS(Sz  

 )362.35.(2)642.70(
n

1i

1in1i2n

∑ =

+−+
−+−=  

 × )922.352.140( 1inn
−−

+−  

 96)-33)(105.2-8(35.2 nn
+  

 61)-68)(70.2-4(70.2 nn
+  

 ∑ =

−−+
−−−+

n

1i

innin1i )822.702.140)(472.70(24  

 )1092.362.140)(202.36.(22 innn

1i

in1i
−−−+

−

=

−+

∑  

 131)-1)(140.2-96(2 nn
+  

 )952.362.140)(342.36.(212 innn

1i

in1i
−−−+

−

=

−+

∑  

 )1342.140)(12(48 nn
−−+  

 ∑ =

−−+
−−−+

n

1i

innin1i )982.362.140)(302.36(22  

 n nn .n.2 102752  -.n.4 259280  .4 426332 +=  

 205872,  -.2 632456 n
+  

proving our theorem. �  
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