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ABSTRACT

We propose a new class of physics-informed neural networks, called physics-informed Variational
Autoencoder (PI-VAE), to solve stochastic differential equations (SDEs) or inverse problems in-
volving SDEs. In these problems the governing equations are known but only a limited number of
measurements of system parameters are available. PI-VAE consists of a variational autoencoder
(VAE), which generates samples of system variables and parameters. This generative model is
integrated with the governing equations. In this integration, the derivatives of VAE outputs are readily
calculated using automatic differentiation, and used in the physics-based loss term. In this work, the
loss function is chosen to be the Maximum Mean Discrepancy (MMD) for improved performance,
and neural network parameters are updated iteratively using the stochastic gradient descent algorithm.
We first test the proposed method on approximating stochastic processes. Then we study three types of
problems related to SDEs: forward and inverse problems together with mixed problems where system
parameters and solutions are simultaneously calculated. The satisfactory accuracy and efficiency of
the proposed method are numerically demonstrated in comparison with physics-informed generative
adversarial network (PI-WGAN).

Keywords Physics-informed deep learning, stochastic differential equations, variational autoencoders

1 Introduction

Stochastic differential equations (SDEs) are differential equations that are parameterized by random variables and/or
constrained by uncertain initial and boundary conditions. SDEs are used in various fields, such as mechanics, economics,
biology, and physics [1]. Solving SDEs can be regarded as quantifying the effects that random inputs have on the system
response or quantities of interest (QoI). Because of the stochastic nature of these problems, time-efficient numerical
methods are needed. The more traditional solution approaches are Monte Carlo Simulation (MCS) and Generalized
Polynomial Chaos (gPC) methods. Monte Carlo simulation (MCS) is straightforward and robust, but comes with high
computational cost. In MCS, we sample realizations from random inputs, and for each input realization a deterministic
differential equations is solved using numerical methods such as finite element, finite difference, and finite volume
[2]. The statistics of QoIs can then be calculated using the obtained deterministic solutions. As another solution
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approach, gPC methods consider a finite-term polynomial representation for the response, which can be calculated
using collocation or Galerkin method [3, 4, 5, 6, 7]. However, gPC methods, especially in collocation-based form,
suffer from the "curse of dimensionality".

Recently, models based on neural networks have received increasing attention as an effective approach to solve SDEs.
In particular, physics-constrained, or physics-informed neural networks, have been widely studied. The idea of using
physics-informed training for neural network solutions of differential equations was first introduced in 1990s, where
neural networks solutions for initial/boundary value problems were developed in [8, 9, 10]. But it was only recently
that it gained much attention, mainly due to advances in computing hardware and libraries, as an efficient solution for
deterministic differential equations [11, 12, 13, 14]. More recently, ideas based on physics-informed neural networks
have also been proposed for solving SDEs. In particular, a physics-informed deep residual network was used to solve
random PDEs using physics-informed deep residual networks by constraining the neural network to satisfy governing
equations in a strong or variational form [15]. A probabilistic formulation in the framework of Generative adversarial
networks (GANs) to perform UQ of SDEs was presented in [16]. Also, physics laws have been incorporated into Deep
operator networks (DeepONets) to learn the solution operator of parametric differential equations, which can predict the
solution of a differential equation for any realization of the uncertain parameters [17]. These methods can effectively
solve SDEs when the governing differential equations and its parameters are precisely known.

However, in many practical problems, we do not have access to exact analytical representations for random parameters
of SDEs. A more common case is that we know precisely about the governing differential equations, but can only obtain
information about the parameters using a limited number of sensors that capture scattered measurements (e.g., limited
samples of soil permeability obtained from a subsurface region). To address this, Zhang et al. [18] proposed to solve
SDEs by training physics-informed neural networks (PINNs) to learn the modal functions of the arbitrary polynomial
chaos (aPC) expansion of the solution of the differential equation. In this paper, all the training data are collected by
sparsely distributed fixed sensors. Inspired by [18], a Physics-informed Wasserstein Generative Adversarial Networks
(PI-WGANs) was proposed for solving SDEs [19] and SPDEs [20], where sampled data from the parameters were used
to train generators in Generative Adversarial Networks (GANs) which in turn produce samples of QoIs, with similar
statistics.

Encoding physics laws, in the form of differential equations, into the framework of GANs successfully mitigates the
"curse of dimensionality" and provides an accurate estimation. Nevertheless, GANs suffer from training instability
because of simultaneous training of generator and discriminator, which sometimes leads to the problem of mode
collapse [21]. Besides, as mentioned in [19], the computational cost of training GANs is much higher than training
a feed-forward neural network. Our goal is then to seek a more stable and more efficient physics-informed learning
method to solve SDEs. Similar to GANs, Variational Autoencoder (VAE) is another data generative model initially
proposed in [22], and has proved effective for various tasks of reproducing synthetic data [23, 24, 25]. In this work, we
seek to encode physics laws into VAE and propose Physics-Informed VAE (PI-VAE), which is a framework for solving
SDEs. PI-VAE is easier for training because VAE has a simple end-to-end structure, similar to feed-forward neural
networks.

The architecture of PI-VAE consists of an encoder structure and a physics-informed decoder structure, constructing
a bi-directional mapping between latent space and high-dimensional input space. As the loss function, we use the
Maximum Mean Discrepancy of the reconstructed data and training data in latent and high-dimensional input spaces
over the fixed positions of the entire computational domain. The parameters of the encoder and the decoder are
updated by gradient descent steps toward minimizing the loss function, using variants of the mini-batch gradient descent
algorithm. Then the solution to the SDE is represented by the well-trained decoder.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce our data-driven problems that are
solved in this paper. Section 3 briefly reviews distance measures between probability distributions and their applications
in machine learning, and then introduces the main PI-VAE algorithms for approximating random processes and solving
SDEs. Finally, a detailed analysis of performance evaluation of the proposed methods and conclusions are included in
Sections 4 and 5.
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2 Technical background

Let us consider the following SDE

Nx[u(x, ω), k(x, ω)] = f(x, ω) x ∈D, ω ∈ Ω,

Bx[u(x, ω)] = b(x, ω), x ∈ Γ,
(1)

where Nx is a general differential operator,D is a d-dimensional physical domain in Rd, x is a d-dimensional spatial
coordinate, Ω is a probability space, and ω is a random event, and Bx is a boundary condition operator acting on the
domain boundary Γ. The coefficient k(x, ω), the forcing term f(x, ω) and the boundary conditions b(x, ω) can be
considered to be random processes, and thus the solution u(x, ω) will also be a random process.

Depending of the availability of measurement data from k(x, ω), u(x, ω), f(x, ω) and b(x, ω) we can two different
problems, namely a forward problem which concerns the calculation of the solution to the SDE u(x, ω) as the QoI given
measurements of k(x, ω), f(x, ω) and b(x, ω), or an inverse problem which involves estimating the coefficient k(x, ω)
as the QoI given available measurements of u(x, ω), f(x, ω) and b(x, ω). Also, one can be dealing with “mixed"
problems where only partial knowledge of k(x, ω) and u(x, ω) is available. This class includes a spectrum of problems
depending on the number of sensors on k(x, ω) versus u(x, ω), where by decreasing the number of sensors on k(x, ω)
and increasing the number of sensors on u(x, ω), the estimation problem gradually transforms from forward to a mixed
and finally to an inverse problem [18, 19]. In this work, we also apply our proposed method to high-dimensional
stochastic problems, where the uncertainty in the complex system properties or forcing terms can only be characterized
by a high-dimensional stochastic space.

Our approach is based on the VAE framework which involves comparison between probability distributions. There are
various distance measures that can be adopted for calculating the distance between two distributions. Our approach
uses one of these measures, namely Maximum Mean Discrepancy (MMD). For comparison, we have also used other
measures for probability distributions in the examples of Section 4. In this section, we briefly explain the used measures,
which include a kernel-based and two Optimal Transport measures. We also introduce a brief background on VAEs and
its improved variants that are proposed in the literature for better performance.

2.1 Measurement of distance between probability distributions

Optimal Transport (OT) theory was initially proposed to determine the optimal way to redistribute a mass to a new
location, and was later used widely as a distance measure between distributions [26]. Specifically, the distance between
two distributions is considered to be the effort of transporting a mass distributed according to a function PX to another
location with a different distribution PY . Kantorovich’s formulation of this problem is given by:

Wc(PX , PY ) := inf
τ∈P (x∼PX ,x∼PY )

E(X,Y )∼τ [c(x, x)],

where c(X,Y ) is any self-defined cost function to measure the cost of moving density from position of distribution PX
to the position of another distribution PG and τ is one of the joint distributions of (X,Y ) whose marginals are PX and
PG, respectively. Wasserstein distance is a special case of Wc where c(X,Y ) = dp(X,Y ) for p ≥ 1, where d(·, ·) is a
distance measure defined for realizations of variables X and Y . We call Wp as the p-Wasserstein distance, which is the
p-th root of Wc. Particularly when p = 1, the 1-Wasserstein distance can be simplified as:

W1(PX , PY ) := sup
f∈FL

EX∼PX
[f(X)]− EY∼PY

[f(Y )]

where FL is a class of bounded 1-Lipschitz functions on the metric space (X, d).

Calculating Wasserstein distance is computationally demanding. As an algorithm to approximate the Wasserstein
distance, the Sinkhorn Iteration was proposed, where the entropy regularized OT cost was calculated using discrete
samples from the distribution. The resulting Sinkhorn divergence is a biased estimate of the Wasserstein distance [27].
It has been shown that Sinkhorn divergence can approximate the Wasserstein distance with satisfactory accuracy at a
much smaller computational cost when appropriate hyper-parameters are selected [28].

Maximum Mean Discrepancy (MMD) has also been introduced to measure the distance between probability distributions
[29]. In a data space χ, given independent random variables x, x′ ∈ χ with distribution P and independent random
variables y, y′ ∈ χ with distribution Q, the MMD between P and Q over χ is defined as:

MMD2
k(P,Q) := Ex,x′ [k(x, x′)] + Ey,y′ [k(y, y′)]− 2Ex,y[k(x, y)],

3
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where k is the kernel of a reproducing kernel Hilbert space (RKHS)Hk of functions onχ. We note that MMDk(P,Q) =
0 if and only if P = Q. When MMD is used as the loss function in stochastic gradient descent-based trainings, an
unbiased U-statistic empirical estimator of MMD is calculated using discrete samples. This estimator for m realizations
of distribution P denoted by {xi}mi=1 and n realizations of distribution Q, denoted by {yi}ni=1, using kernel k is given
by:

MMD2
k,U ({xi}mi=1, {yi}ni=1) :=

1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(x(i), x(j))+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(y(i), y(j))− 2

mn

m∑
i=1

n∑
j=1

k(x(i), y(j)).

Since MMD is a kernel-based measurement, different choices of characteristic kernels will lead to different test powers
for finite sample sizes [30]. But MMD is a reliable metric, its evaluations with various characteristic kernels have been
shown to be consistent [29].

2.2 Variational autoencoders

Variational Autoencoders are neural network models that are used for efficient representation of complex data structures,
e.g. for low-dimensional representation of high-dimensional data. The AE architecture consists of an encoder that
maps the data into a latent space and a decoder that maps points from the latent space back into the original space.
Specifically, let E : X → Z denote a parametric mapping from the input data space X to a latent space Z (e.g., a neural
network encoder). Utilizing a technique often used in the theoretical physics community, known as Random Variable
Transformation (RVT), the probability density function of the encoded samples z can be expressed in terms of E and
pX by:

PZ(z) =

∫
X

pX(x)δ(z − E(x)) dx

where δ denotes the Dirac distribution function. The main objective of the encoder is to encode the input data x ∈ X
into latent variable z ∈ Z such that x can be recovered from the probability density function of the encoded samples,
pZ , following a prior distribution qZ . Similar to traditional autoencoders, a decoder D : Z → X is required to map the
latent codes back to the input data space such that:

PY (y) =

∫
X

pX(x)δ(y −D(E(x))) dx

where y denotes the decoded samples. It is straightforward to see that when E = D−1, the distribution of the decoder
pY and the input distribution pX are identical. Hence, the training of an autoencoder involves learning parameters of E
and D by minimizing a loss functions which consists of dissimilarity measures between pY and pX in input data space
and between pZ and qZ in latent space. Defining and implementing the dissimilarity measure is an important design
decision.

For comparison in the latent space, traditional VAE uses KL divergence as the dissimilarity measure. However, KL
divergence only measures the information loss of approximating one distribution with the other one but can not
measure the distance from a distribution to another distribution. Various alternatives exist to address this limitation. In
Wasserstein autoencoder [31], the authors proposed a GAN-based method and maximum mean discrepancy (MMD)-
based approach to measure the disparity of latent variables. In the Sinkhorn autoencoder [32], the Sinkhorn iteration
was used to approximate the Wasserstein distance as the criterion to constrain the distribution of latent variables.

For comparison in the input data space, various measures can be used. In traditional variational autoencoders, the
cross-entropy loss or mean square error (MSE) is used in the loss function [33]. The Wasserstein GAN [34] used the
OT-based 1-Wasserstein distance to measure data similarity in the input data space and reformulated the loss function
as a min-max optimization problem solved by adversarial training scheme. MMD is also used in [35], which replaces
the discriminator of GAN with a two-sample test based on MMD. Even though there exists limited literature about
autoencoders exploring other algorithms for constraining the distribution in input data space, inspired by the above two
papers, replacing the current popular loss function with MMD in input data space may improve the performance of
autoencoders.
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3 Methodology

In this section, we propose two PI-VAE algorithms; one for approximating a stochastic process and one for solving an
SDE. Although approximation of stochastic processes is not the primary objective of PI-VAE, numerical experiments on
reconstructing the sample paths of a stochastic process can serve as preliminary tests of PI-VAE on stochastic processes.
Following that, we discuss how a PI-VAE can be constructed and trained to solve forward problems, inverse problems,
and mixed problems involving SDEs.

3.1 Approximating stochastic processes with VAE

We first consider modeling a stochastic process f(x, ω) on the domainD ∈ Rd using a limited number of measurements
from scattered sensors on this process. Specifically, we place nf sensors at locations {xi}

nf

i=1 to collect "snapshots" of
f(x, ω). Here, a "snapshot" represents simultaneous record of all sensors, so data in one snapshot correspond to same
random event ω. We collect a total of N snapshots of f(x, ω), each taken at one realization of ω and at nf different
sensor locations:

{F (ω(j))}Nj=1 = {(f(xi, ω
(j)))

nf

i=1}
N
j=1

The VAE framework consists of an encoder Eφ(·), which is a feed-forward DNN parameterized by φ and a decoder
f̃θ(·), which is a feed-forward DNN parameterized by θ. The encoder takes sensor measurements F (ω(j)) as input and
returns the corresponding latent variable zj = Eφ(F (ω(j))) as outputs. Then latent variables {zj} and coordinates {xi}
will be then plugged into the decoder as inputs to calculate the reconstructions f̃θ(xi, z(j)) as the final outputs. The
encoder and decoder will be trained simultaneously in this end-to-end structure with variants of mini-batch gradient
descent algorithms based on the following loss function:

L(φ, θ) =

M∑
i=1

{MMDki,U (z, ζ) + MMDki,U (f(x, ω), f̃θ(x, z))}.

The first term in this loss function represents the empirical MMD estimator between the sample distribution of latent
variables z and that of random realizations ζ drawn from the prior distribution, taken to be a normal distribution. The
second term is the empirical MMD estimator between sensor measurements and reconstructed data. After the training,
the output of a well-trained decoder, f̃θ(x, ζ), can be used to approximate the stochastic process f(x, ω). Both of
the MMD estimators in this loss functions are evaluated at M different Gaussian kernels. The detailed algorithm is
presented in Algorithm 1.

Algorithm 1: VAE for approximating stochastic process
Initialization: Set the number of training steps nt, batch size N , Adam hyper-parameters α, β1, β2, initial
parameters for encoder and decoder φ and θ, kernels of MMD estimator {ki}Mi=1.

for i = 1, 2, ..., nt do
Sample N snapshots {F (ω(j))}Nj=1.
Sample N random vector from Prior {ζj}Nj=1 .
for j = 1, 2, ..., n do

zj = Eφ(F (ω(j)))

F̃ (ω(j)) = f̃θ(zj)
end
L =

∑M
i MMDki,U ({zj}Nj=1, {ζj}Nj=1) + MMDki,U ({F (ω(j))}Nj=1, {F̃ (ω(j))}Nj=1)

θ, φ← Adam(∇L, θ, φ, α, β1, β2)
end

3.2 Solving SDEs with PI-VAE

Let us consider the following SDE
Nx[u(x, ω), k(x, ω)] = f(x, ω) x ∈D, ω ∈ Ω, (2)

Bx[u(x, ω)] = b(x, ω), x ∈ Γ, (3)

5
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defined in Section 2. The objective is to calculate the solution u(x, ω) using measurements from scattered sensors which
form snapshots of the three stochastic processes, k(x, ω), f(x, ω) and b(x, ω), at locations {xki }

nk
i=1, {xfi }

nf

i=1 and
{xbi}

nb
i=1, where nk, nu, nf , and nb are the respective numbers of sensors. Here, one snapshot represents a simultaneous

observation of all the sensors, and we assume that the data in one snapshot correspond to the same random event ω in
the random space Ω, while ω varies across different snapshots.

Suppose we have a group of N snapshots, denoted by {S(ω(j))}Nj=1, defined as:

{S(ω(j))}Nj=1 = {K(ω(j)), F (ω(j)), B(ω(j))}Nj=1,

K(ω(j)) = (k(xki ;ω(j)))nk
i=1,

F (ω(j)) = (f(xfi ;ω(j)))
nf

i=1,

B(ω(j)) = (b(xbi ;ω
(j)))nb

i=1.

(4)

We assume that we always have a sufficient number of sensors for the forcing term f(x, ω) because accurate estimation
of the forcing term is critical in physics-based training.

The solution of the SDE is calculated by constructing the PI-VAE framework via the following three steps:

• Firstly, we use fully connected feed-forward neural networks as our encoder and decoders. An encoder Eφ
maps input data to the latent variables z, i.e. z(j) = Eφ(S(ω(j))). Two independent decoders k̃θk(x, z) and
ũθu(x, z) approximate corresponding stochastic process k(x, ω) and u(x, ω) respectively by constructing a
mapping from coordinates x and latent variable z to input data. We expect to generate approximate QoIs using
the well-trained decoders after the training process.

• Second, inspired by physics-informed neural network for deterministic differential equations [11, 36], we
encode the governing differential equation into the framework by applying operatorNx and Bx on the decoder
outputs, k̃θk and ũθu , to obtain approximations of the f(x, ω) and b(x, ω) in the governing SDE, i.e.:

f̃θu,θk(x, z) = Nx[ũθu(x, z), k̃θk(x, z)],

b̃θu(x, z) = Bx[ũθu(x, z)].

Differentiations in Nx and Bx are carried out by automatic differentiation [37]. These physics-informed
estimates f̃θu,θk(x, z) and b̃θu(x, z) together with approximated response ũθu(x, z) and system parameters
k̃θk(x, z) constitutes the reconstructed snapshots {S̃(z(j))}, i.e.

{S̃(z(j))}Nj=1 = {K̃(z(j)), F̃ (z(j)), B̃(z(j))}Nj=1,

K̃(z(j)) = (k̃θk(xki , z
(j)))nk

i=1,

F̃ (z(j)) = (f̃θu,θk(xfi , z
(j)))

nf

i=1,

B̃(z(j)) = (b̃θu(xbi , z
(j)))nb

i=1},

• In the third step, we formulate the loss function which consists of the reconstruction term and a regulariza-
tion term. The reconstruction cost is calculated using the MMD between collected sensor measurements
{S(ω(j))}Nj=1 and reconstructed samples {S̃(z(j))}Nj=1. The regularization term promotes the distribution of
the latent encodings to be close to standard normal distribution. This term measures the MMD between latent
variables z (obtained by encoding the measured snapshots) and random variables ζ distributed according to
the prior distribution, here chosen to be standard normal. Thus, the loss function is given by

L(φ, θu, θk) =

M∑
i=1

MMDki,U (S̃(z), S(ω)) +

M∑
i=1

MMDki,U (z, ζ).

After training using this loss function, the decoders ũθu(x; ζ) and k̃θk(x; ζ) is used to approximate the
stochastic process u(x, ω) and k(x, ω) at various locations x. A detailed description of our training algorithm
is provided in Algorithm 2 and Figure 1.

6
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Algorithm 2: PI-VAE for solving SDEs (forward problems)
Initialization: Set the training steps nt, batch size n, Adam hyper-parameters α, β1, β2, initial values for encoder
and decoder parameters φ, θu, θk, and kernels of MMD estimator {ki}Mi=1.

for i = 1, 2, ..., nt do
Sample N snapshots {S(ω(j))}Nj=1.
Sample N random vectors from the prior {ζj}Nj=1 .
for j = 1, 2, ..., N do

zj = Eφ(S(ω(j)))

{K̃(z(j)), F̃ (z(j)), B̃(z(j))} = {kθk(x, z(j)), f̃θu,θk(x, z(j)), b̃θu(x, z(j))}
S̃(z(j)) = [K̃(z(j)), F̃ (z(j)), B̃(z(j))]

end
L =

∑M
i MMDki,U ({S̃(z(j))}Nj=1, {S(ω(j))}Nj=1) + MMDki,U ({z(j)}Nj=1, {ζ(j)}Nj=1)

φ, θu, θk ← Adam(∇L, φ, θu, θk, α, β1, β2)
end

Real
Snapshots
K(w(j))

F (w(j))

B(w(j))

Encoder
Latent

variables

z(j)

Sampled
variables

ζ(j)

Coordinates

xi

Decoder

for u

Decoder

for k

Nx

Bx

Generated
Snapshots

K̃(z(j))

Generated
Snapshots

F̃ (z(j))

Generated
Snapshots

B̃(z(j))

Predicted
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Ũ(z(j))

Reconstructed
Snapshots
K̃(z(j))

F̃ (z(j))

B̃(z(j))

MMD-based

Loss

Figure 1: The architecture of the PI-VAE framework for solving forward problems. Thin lines show the parts used only during
training; solid thick lines show the parts used both in training and test stages; dashed thick lines are the parts used only during test.
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3.3 Solving inverse problems

In inverse problems, the goal is to calculate the unknown model parameters using measurement data from the response
and boundary conditions. Following the formulation 6, we seek to estimate the random parameter k(x, ω) using
measurements from scattered sensors on these processes, u(x, ω), f(x, ω) and b(x, ω), at locations , {xui }

nu
i=1, {xfi }

nf

i=1

and {xbi}
nb
i=1, where nu, nf , and nb are the respective numbers of sensors. Since we have a physics-based loss which

involves calculation of the residual, we also add a few measurements of k(x, ω) at {xki }
nk
i=1 with nk << nu. Suppose

we have a group of N snapshots, denoted by {S(ω(j))}Nj=1, defined as:

{S(ω(j))}Nj=1 = {K(ω(j)), U(ω(j)), F (ω(j)), B(ω(j))}Nj=1,

K(ω(j)) = (k(xki ;ω(j)))nk
i=1,

U(ω(j)) = (u(xui ;ω(j)))nu
i=1,

F (ω(j)) = (f(xfi ;ω(j)))
nf

i=1,

B(ω(j)) = (b(xbi ;ω
(j)))nb

i=1.

(5)

We assume that we always have sufficient number of sensors for the forcing term f(x, ω) because accurate estimation
of the forcing term is critical in physics-based training. We take similar steps to the three steps discussed in the previous
section and solve the inverse and mixed problems according to Algorithm 3 and Figure 2.

Algorithm 3: PI-VAE for solving mixed and inverse SDEs
Initialization: Set the training steps nt, batch size n, Adam hyper-parameters α, β1, β2, initial values for encoder
and decoder parameters φ, θu, θk, and kernels of MMD estimator {ki}Mi=1.

for i = 1, 2, ..., nt do
Sample N snapshots {S(ω(j))}Nj=1.
Sample N random vectors from the prior {ζj}Nj=1 .
for j = 1, 2, ..., N do

zj = Eφ(S(ω(j)))

{K̃(z(j)), F̃ (z(j)), Ũ(z(j))} = {kθk(x, z(j)), f̃θu,θk(x, z(j)), uθu(x, z(j))}
S̃(z(j)) = [K̃(z(j)), F̃ (z(j)), Ũ(z(j))]

end
L =

∑M
i {S̃(z(j))}Nj=1, {S(ω(j))}Nj=1) + MMDki,U ({z(j)}Nj=1, {ζ(j)}Nj=1)

φ, θu, θk ← Adam(∇L, φ, θu, θk, α, β1, β2)
end

4 Numerical results

In this section, we numerically evaluate how accurately the proposed VAE framework can approximate a stochastic
process, and how well the proposed PI-VAE approach can solve SDEs. We compare our results with Wasserstein GAN
with gradient penalty (WGAN-GP) and Physics-informed WGAN (PI-WGANs) [19].

All test cases commonly share the following default settings unless mentioned otherwise. We use the hyperbolic tangent
function (tanh) as our activation function to ensure the smoothness in high-order derivatives of the developed neural
networks. Every feed-forward network (i.e. encoders and decoders of VAE; generator and discriminator of WGAN)
has four hidden layers of width 128. The latent space is chosen to be an independent multivariate standard Gaussian
multivariate. Adam is the default optimizer with the following default hyper-parameters: β1 = 0.5 and β2 = 0.9. For
WGAN-GP, we set the hyper-parameters in the loss function λ=0.1, nd=5 as default values similarly to [19]. For
the hyper-parameter of Sinkhorn Iteration, we set the default value ε=0.1. For the basic setting of MMD, we will
use five radial basis function (RBF) kernels of different bandwidths for calculation. In all numerical experiments of
approximating stochastic processes, the learning rate is 0.001 as the default value. For SDE cases, we consider special
settings for the learning rate, which will be explained in the following sections. We collect all the training data by
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Figure 2: The architecture of the PI-VAE framework for solving mixed and inverse problems. Thin lines show the parts used only
during training; solid thick lines show the parts used both in training and test stages; dashed thick lines are the parts used only during
test. Note that only few samples from k is used in inverse and mixed problems.

numerically simulating sensor measurements of the stochastic processes based on Finite Difference Method and Monte
Carlo Simulation.

4.1 Approximating stochastic processes

4.1.1 Processes with different kernels

We consider Gaussian Processes with zero mean and two different kernels: a squared exponential kernel and an
exponential kernel, as follows

f1(x) ∼ GP(0, exp(− 1

2l2
(x− x′)2)), x, x′ ∈ [−1, 1],

f2(x) ∼ GP(0, exp(− 1

2l2
(x− x′)2)), x, x′ ∈ [−1, 1],

where l is the correlation length scale, which will be set to 0.2, 0.5, or 1. The number of sensors is 6 or 11. Sensors are
uniformly placed over the domain [−1, 1]. In the following case, to show that our method can find the pattern from a
limited number of scattered measurements, we will only use 2,000 snapshots for our training data as the default setting.
Also, to ensure that the effect of batch size is considered, we will use a batch size of 1000 for our training, which is
different from [19]. For each case, we run the code with different random seeds. Few sample paths of the stochastic
processes are shown in Figure 3. As we can see in the figure, stochastic processes of the exponential kernel results in
more locally correlated processes, which will be more challenging to be approximated.

For length scales of 1.0, 0.5, and 0.2, we train our VAE model and WGAN-GP for 500, 1000, and 1500 training
epochs, respectively. After the training is finished, we will use 101 uniformly distributed coordinates over the domain
for validation of the trained neural network. We pick 100 decoders at the last 100 training epochs and use them to
reconstruct sample paths on the validation coordinates as reconstructed samples. The ground truth samples are collected
by re-sampling of the stochastic processes. To validate the accuracy of the algorithms, in Figures 4 and 5, respectively
for squared exponential and exponential kernels, we compare the reconstructed and ground truth sample paths in terms
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Figure 3: Sample paths of Gaussian processes of different kernel function and length scale. Sample paths of different correlation
lengths: l = 1 (left), 0.5 (middle), and 0.2 (right) and different kernels: squared exponential kernel (top) and exponential kernel
(bottom) are shown.

of (1) the spectra of the sample paths, i.e., the eigenvalues of the covariance matrices, and (2) the Wasserstein distance
W1.

In these figures, theW1 distance between reconstructed samples and ground true samples are shown at different training
epochs, and one can see the convergence after 500 training epochs. It can be seen that the Wasserstein distance for
all the cases converge to approximately 1, except for exponential kernels with length scales of 0.5 and 0.2, where we
cannot achieve the same desired accuracy when we use only 6 sensors.

To compare the eigenvalues, as the ground truth, we calculate the eigenvalues of the analytical form of the covariance
matrix of the stochastic processes. The eigenvalues of the reconstructed sample paths are calculated using 1,000 training
sample paths, and as can be seen from the the spectra of the covariance matrices of these process, our model can
effectively reconstruct samples with similar spatial distributions. It should be noted that the approximation errors is
larger for the more dominant eigenvectors. Also, the approximation errors are smaller in the squared exponential kernel
case since these processes are less locally correlated, compared to processes with exponential kernels, and are easier to
approximate. Similar justification can be used for the larger error observed in smaller length scales. Improvements in
approximation errors can be seen when more sensors are used. In the cases of length scale = 1.0 and 0.5, WGAN and
our method can accurately reproduce the samples of covariance of similar spectral structures. However, for the smaller
length scale of 0.2, our VAE model has slightly better performance compared to WGAN-GP.

4.1.2 Different choices of loss functions

As mentioned in Section 3.1, the VAE model can be built using different distance measures between probability
distribution. In this section, we evaluate the performance of our proposed model when different distance measures are
used, we now use different distance measures as the loss function in the training of (unconstrained) Gaussian processes
and Gaussian processes constrained on the boundaries.

As mentioned before, the loss function of the VAE consists of dissimilarity measures in both latent space and input
data space. In this work, we always use MMD as the dissimilarity measure in the latent space. In the high-dimensional
data space, we consider three choices for the similarity measure: Mean Square Error (MSE), Sinkhorn Iteration and
MMD, and assess the three corresponding models. Although cross entropy loss is also a popular loss function, it is
recommended to adopt MSE as the loss function when the data of original space is not binary [22].
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Figure 4: Results of using our method to approximate Gaussian Process of squared exponential kernel.The first three plots shows
the spectral of the covariance matrix of the reconstructed samples and ground true samples. The last plot shows the similarity of
reconstructed samples and ground true samples in terms of W1 distance.

Figure 5: Results of using our method to approximate Gaussian Process of exponential kernel.The first three plots shows the spectral
of the covariance matrix of the reconstructed samples and ground true samples. The last plot shows the similarity of reconstructed
samples and ground true samples in terms of W1 distance.
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Figure 6: Reconstructed samples of models trained by different loss function which are MSE, Sinkhorn and MMD in input space.
The ground truth samples are also shown for comparison.

Figure 7: Wasserstein distance (left) and training loss (right) versus the training epoch of the three models using different training
loss.

The reconstructed samples of models of different loss functions are shown in Figure 6. All these models can reproduce
smooth sample paths, which means that functions represented by our trained model have good continuity. Compared
with ground truth samples, samples of MSE loss are much more spatially concentrated than the other two models.
Although samples from the model using Sinkhorn loss are similar to the training sample paths, the length scale of the
sample paths is not as small as the training samples. Among these three models, the model with the MMD loss can
reproduce samples that are most similar to the training data.

The following numerical results are in accordance with the results shown in Figure 7, which shows the training loss
converges and that there is no over-fitting. But we observe that the Wasserstein distance from the MSE-based VAE
model is significantly larger than that from the other two models, which indicates that the generated samples from the
MSE-based VAE model does not match the distribution of input data statistically. Besides, the Wasserstein distance for
the Sinkhorn-based model is slightly larger than the Wasserstein distance of the MMD-based model.

The spectra comparison in Figure 8 shows that the Sinkhorn-based model and MSE-based models fail to capture
covariance information as accurately as the MMD-based model. The MSE-based model can not perform as well as the
other two models. This can be due to the fact that the MSE is only verified to be effective when input data follows a
Gaussian distribution with an approximately diagonal covariance [22]. For the case of highly correlated Gaussian data,
it seems that MSE cannot give us a very promising results. However, it is surprising to observe that Sinkhorn model
performs worse than MMD model because theoretically Sinkhorn divergence is closer to Wasserstein distance than
MMD [32]. We can associate this to the suboptimal selection of the hyper-parameter of Sinkhorn algorithm.

One of the drawbacks of Sinkhorn Iteration is the difficulty in choosing an appropriate hyper-parameter, specifically the
convergence threshold [38]. In our numerical experiments, we observed that the whole training will easily collapse
when a small threshold is used, while a large threshold leads to inaccurate estimation of the distribution distance[38].
So, we note that the Sinkhorn-based model can be potentially improved with further fine-tuning of its hyper-parameter,
but also underscore that the MMD-based model is the most advantageous since it is the most accurate model without
any need for hyper-parameter fine-tuning.

Let us now approximate a stochastic process with a fixed boundary condition. Specifically, we consider f(x, ω) =
(x2 − 1)g(x, ω), where g(x, ω) is a Gaussian process. The mean and standard deviation of the generated samples are
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Figure 8: the spectral of the covariance matrix of the reconstructed samples of different models and ground truth samples

Figure 9: Mean and variance estimate of Sinkhorn-based model (left) and MMD-based model (mid) and the MMD-based model with
MSE penalty on the boundary (right). Blue line represent the reference mean and blue shade area represents the reference standard
deviation. In contrast, orange line and orange shade area represent the mean and std of the reconstructed samples, respectively.

compared for accuracy evaluation. We use 100 decoders and evaluate their average performance after 500 training
epochs. It is observed that Sinkhorn-based model can approximate better on the boundary than MMD model, which
indicates that Sinkhorn model can better detect the pattern of concentrated data distribution.

However, in some cases (e.g. solving SDEs), we will have an additional penalty term in the loss function to constrain
the boundary condition. To increase the accuracy of our approximation on the boundary, we can add a penalty term on
the boundary using MSE loss for MMD-based model. In our example, no trade-off is needed between different loss
terms. As we can see in Figure 9, the approximation is much better than the vanilla MMD model.

4.1.3 Issue of mode collapse

The MMD measure calculates the distance between probability distributions using finite samples of reconstruction and
input data. The number of samples will affect the accuracy of the estimation. Theoretically, the number of samples
needed for MMD estimation is approximately proportional to the dimensionality of the data space [39]. This indicates
that MMD estimation will not suffer from the "curse of dimensionality". In the numerical examples presented in this
paper, the dimensions of the data are not large, allowing us to use regular mini-batch sizes to measure MMD. However,
it is still necessary to assess the effect of batch size on the performance of the proposed method.

To this end, we show the calculated Wasserstein distance and the spectra of the covariance matrix in Figure 10 for
different batch sizes. It can be seen the performance of our proposed model will decrease as the batch size in each
training epoch decreases. This indicates that the reduction in the number of samples deteriorates the accuracy in MMD
estimation. However, this performance decline in the covariance spectra is not significant except for the batch size of 10.
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Figure 10: Wasserstein distance (left) of reconstructed samples and ground true samples and spectral of the covariance matrix
(rigth) of the reconstructed samples of different batch size are shown.

Figure 11: A few sample paths of k(x, ω), u(x, ω), and f(x, ω) used in the forward problem.

Similar observation can be made for the Wasserstein distance results, showing that our model is not sensitive to the
common choices of batch size in low dimensional problems.

4.2 Forward problem

As a benchmark problem, similarly to [19], let us consider the following one-dimensional elliptic SDE

− 1

10

d

dx
[k(x, ω)

d

dx
u(x, ω)] = f(x, ω), x ∈ [−1, 1],

u(−1) = u(1) = 0,
(6)

where on the domain boundary we impose homogeneous Dirichlet boundary conditions on u(x, ω). The independent
stochastic processes k(x, ω) and f(x, ω) are given by

k(x) = exp[
1

5
sin(

3π

2
(x+ 1)) + k̂(x)],

k̂(x) ∼ GP(0,
4

25
exp(−(x− x′)2)),

f(x) ∼ GP(
1

2
,

9

400
exp(−25(x− x′)2)),

(7)

where k(x, ω) is set to be strictly positive. In order to generate training data, we draw random sample paths of the
stochastic processes k(x, ω) and f(x, ω), based on which we use the finite difference method to solve the corresponding
deterministic differential equation to obtain realizations of the solution u(x, ω), as the reference.

In order to train the neural network models, we use 17 k-sensors , 21 f -sensors, and 2 u-sensors, at locations uniformly
distributed over the computational domain. The sample paths of k(x, ω), u(x, ω), and f(x, ω) are shown in Figure 11.
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Figure 12: Relative error of QoIs of PI-WGAN trained using different learning rate of 0.0001 (left) and 0.001 (right).

Our main quantity of interest in this problem is the mean and standard deviation of u(x, ω) on the validation coordinates,
i.e., µ(x) = Ew[u(x, ω)] and σ2(x) = Ew[(u(x, ω)− µ(x))2]. The number of validation points is 101. To study the
influence of latent dimension, we fix the number of training snapshots to be 1000 and vary the latent dimension to be 2,
4, 10. Subsequently, we fix the latent dimension as 4 and vary the number of training snapshots to be 2000, 5000, and
10000 to study the influence of the number of training snapshots. During the training process, we keep the batch size to
be 1000. One numerical solution of PI-WGAN using 10,000 snapshots with a four-dimensional latent space is obtained
for comparison.

Due to the instability of GAN training, the hyper-parameters of the training scheme should be carefully chosen. To
ensure a fair comparison between PI-WGANs and our PI-VAE method, we first need to select appropriate hyper-
parameters for the PI-WGAN training. Most of the parameters are chosen following [19]. Although the default value of
the learning rate is 0.001, we observed that using a small learning rate (i.e. 0.0001) will result in better convergence of
PI-WGAN, as shown in Figure 12. The transparent curves show the exact error values, whereas the solid lines shown
the error averaged over 50 training epochs for better comparison. We call the accuracy satisfactory, when average error
is less that 0.1. In both these experiments, satisfactory accuracy leis achieved after approximately 1500 epochs, but the
smaller learning rate has resulted in a more stable performance. Based on these two numerical experiments, we choose
0.0001 as the learning rate for PI-WGAN training.

Now let us compare the performance of PI-VAE against PI-WGAN in terms of accuracy and efficiency. In Figure 13,
we present the error of QoI versus the training epoch. In our experiments, we observed that only the training data size
will affect the convergence and that different choices of dimension for the latent space has limited effects. It can be
seen, that even though a much larger learning rate is used for PI-VAE training, the model performance remains stable
after achieving satisfactory accuracy. Also, the training of PI-VAE is more stable than the training of PI-WGAN since
no over-fitting or abnormal "bounce" of the error is detected in any of the numerical experiments.

It should be noted that the definition of an epoch is different in the training of PI-WGAN and PI-VAE. Thus, a more
detailed efficiency comparison is presented in Table 1. It should be noted that the computation cost of each training
epoch is different in PI-VAE and PI-WGAN models. In the procedure of GAN training, we need to perform nd steps of
optimizing discriminator parameters before a single update of generator parameters (with nde = 5 as the default value).
This is because we need to maintain the discriminator to be near-optimal during the whole training [40]. However, VAE
training is carried out similarly to the training of feed-forward neural networks. In other words, VAE training involves
only one forward propagation and one backward propagation over the encoder and decoder parts. In contrast, GAN
training involves six forward propagations over the generator and discriminator, five backward propagations over the
discriminator, and one backward propagation over the generator.

Although the computation cost of backward will be higher, the computation cost of these two processes is at the same
order of magnitude. Also, the architecture of the PI-VAE and PI-WGAN are similar, since we use the same neural
network architecture between the encoder of PI-VAE and the discriminator of PI-WGAN, and also between the decoder
of PI-VAE and the generator of PI-WGAN. As a result, the computational cost of one PI-WGAN training epoch is 4 to
5 times as large as the computational cost for one PI-VAE mini-batch training epoch.
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Figure 13: Relative error of QoIs versus training epoch of PI-VAE (top) and PI-WGANs (bottom) using different training data size
2000 (left), 5000(mid), and 10000(right) are shown.

Table 1: Comparison of converge time of different models(forward problem)

model
data
size

converge
epoch

time
(sec) model

data
size

converge
epoch time improvement

PI-VAE 2000 1300 338 PI-WGAN 2000 2500 1550 4.58x

PI-VAE 5000 400 260 PI-WGAN 5000 1800 1143 4.40x

PI-VAE 10000 300 390 PI-WGAN 10000 2400 1560 4.00x

Training is performed on an NVIDIA P100 GPU using the batch size of 1000. We need 0.62s for one training epoch of
PI-WGAN while 0.13s for updating network parameters of PI-VAE using one mini-batch, which is consistent with our
estimation. Based on the criterion mentioned before to evaluate the necessary training epoch of the model, we observe
that at least 75% of the computational cost can be saved if PI-VAE is used instead of PI-WGAN to solve this SDE.

For accuracy evaluation, we use the approximation errors obtained in the last 100 training epochs as the criterion to
evaluate the accuracy of the models. Figure 14 shows the mean and standard deviation (std) of the QoIs calculate for
different models. It can be seen that even though PI-WGAN has better accuracy in estimating the standard deviation, it
offers lower accuracy in estimating the mean. Among the PI-VAE models, by varying the dimension of latent space in
PI-VAE-1 to PI-VAE-3, we observe that the accuracy in the standard deviation estimates increase if we increase the
dimension of the latent space, since more latent variables allow for more information of the high-dimensional input data
to be encoded. This accuracy improvement is not significant beyond the dimensionality of 4. This is because higher
dimension latent space is more difficult to sample, leading to a discrepancy between random samples and the prior
distribution of latent space. It can also be seen from the figure, by comparing PI-VAE-2, PI-VAE-4, and PI-VAE-5, that
larger number of training data also contributes to higher accuracy, although the effect is not as significant as that seen
for different latent space dimensions. As shown in Figure 14, the Monte Carlo Simulation (MCS) approach, which
involves random sampling of the full trajectory, is the most accurate way to assess the statistics of QoIs, but it requires a
large number of samples along the trajectory and is not practical in real-world applications.

Next, we use the trained PI-VAE-2 model to further evaluate the reproduced distribution for the process over the whole
domain and also at one particular location. Specifically, in Figure 15 we show satisfactory accuracy in estimating the
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Figure 14: Relative error of QoIs of different model for the forward problem is shown in this figure. Effect of number of snapshots
and latent dimension on the accuracy of our method are shown in case 1 to case 5. Results of PI-WGANs and full trajectory sample
paths in case 6 and case 7 are shown for comparison.

Figure 15: Mean and variance estimate of QoIs using trained model in case 2 are shown. Blue line represent the reference mean and
blue shade area represents the reference standard deviation. In contrast, orange line and orange shade area represent the mean and std
of the reconstructed samples, respectively.

mean response and the 68% confidence interval. The reference responses is calculated by obtaining another 10000 full
trajectory sample paths.

Also, the stochastic response x = 0 is selected as another QoI. The reconstructed response is obtained by drawing
10,000 samples of latent variables and a feeding them to the trained decoder to generate data points at x = 0. It can be
seen in Figure 16, that the probability density functions (PDFs) of the reconstructed response is very close to that of the
ground truth.

4.3 Inverse and mixed problems

In this section, using the SDE formulation of Equation 6, we evaluate the proposed PI-VAE method in solving a range
of problems, from forward problems to inverse problems and mixed problems in between. We consider k(x, ω) and
f(x, ω) to be independent processes, and we study the following four problems each with a different sensor placement
scenario. The setting of all scenarios are shown in Table 2

We use 5, 000 snapshots as training set with a batch size of 1000. We select the 100 models from the last 100 epochs
of the training to generate the reconstructed sample paths. The mean and standard deviation of k(x, ω) and u(x, ω)
are still selected as QoIs and are shown in Figure 17 for different trained models. In the case of mixed problems, by
comparing the results from PI-WGAN-2 and PI-VAE-2, that our proposed PI-VAE method is slightly more accurate. In
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Figure 16: Probability density distribution of the reconstructed samples and ground true samples of u(x, ω) at the coordinate of
x = 0 are shown.

Table 2: Number of sensors used in different cases

Case Problem type k-sensor
u-sensor

non-boundary
u-sensor
boundary f-sensor

PI-VAE-1 Inverse problem 1 15 2 21

PI-VAE-2 Mixed problem 5 9 2 21

PI-VAE-3 Mixed problem 11 3 2 21

PI-VAE-4 Forward problem 17 0 2 21

solving inverse problem, by comparing the results of PI-WGAN-1 against PI-VAE-1, one can see that PI-VAE offers
significantly higher accuracy levels at a much shorter training time. It can also be seen the errors in estimating k(x, ω)
statistics will decrease as the problem setup is changed from an inverse problem setting to a forward problem setting, by
exploiting more information from k(x, ω).

Figure 18 shows approximation errors versus training epoch for the inverse problem (scenario 1) and a mixed problem
(scenario 2) settings. It can be seen that PI-VAE consistently converges much faster than PI-WGAN in inverse and
mixed problems. In these experiments, we observed over 80% of computational time saving when PI-VAE replaced
PI-WGAN in solving these two cases.

4.4 High-dimensional problems

In this section, we consider the same SDE formulation of Equation 6, now with a high-dimensional Gaussian process
representation either for the coefficient term k(x, ω) or forcing term f(x, ω) and not both. This is to evaluate the ability
of the PI-VAE method to solve the problems where there is an imbalance between the dimensionality of the coefficient
and forcing terms. We do not analyze the case where both k(x, ω) and f(x, ω) are high-dimensional, as in those cases
we to place more sensors to measure these processes. The stochastic processes are formulated as:

k(x) = exp[
1

5
sin(

3π

2
(x+ 1)) + k̂(x)],

k̂(x) ∼ GP(0,
4

25
exp(− 1

a2
(x− x′)2)),

f(x) ∼ GP(
1

2
,

9

400
exp(− 1

b2
(x− x′)2)),

(8)
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Figure 17: Relative error of QoIs of different model for the mixed problem and the inverse problem is shown in this figure. Results
of PI-WGANs and in case 1 and case 2 are shown for comparison.

Figure 18: Relative error of QoIs versus training epoch of PI-VAE (top) and PI-WGANs (bottom) of different cases: inverse
problem (left), mixed problem (right) are shown.
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(a) Training samples for the case with high dimensional f

(b) Training samples for the case with high dimensional k

Figure 19: Samples of response u(x), k(x) and f(x) used in the training. The index 1 refers to the case where f has a high-
dimensional representation and k a low dimensional representation. Index 2 refers to the case where the process k is high-dimensional
and f is low-dimensional.

Figure 20: Relative error of QoIs of different model for the high-dimensional k(x, ω) problems (left) and high-dimensional f(x, ω)
problems (right) is shown.

where a and b are the kernel length scales of the stochastic processes k(x, ω) and f(x, ω), respectively, with the default
values a = 1 and b = 1. A process is transformed to a high-dimensional process by changing its length scale to the small
value of 0.08. The sample paths of solutions u1(x, ω) and u2(x, ω), respectively corresponding to high-dimensional
f(x, ω), k(x, ω), are shown in Figure 19 together with the sample paths of f(x, ω), k(x, ω). The number of sensors for
a high-dimensional processes, whether k(x, ω) or f(x, ω), is set to be 51 to capture sufficient information. When a low
dimensional process is concerned, the number of sensors remains the same as previous setting (i.e. 17 k-sensors, 21
f -sensors, and 2 u-sensors on the boundary).

We use 5, 000 snapshots as the training data, and we set the batch size to be 1,000. We train PI-VAE for 1,000 training
epochs and train PI-WGAN for 5,000 training epochs, indicating that parameters of the decoder of PI-VAE and the
generator of PI-WGAN go through the same number of parameter updates. It should be noted that solving the problem
with high-dimensional k(x) is more difficult than that with high-dimensional f(x), since the derivative information
of k(x) is incorporated in the training loss. It can be seen in Figure 20 that we can obtain much higher accuracy in
the case of high-dimensional f(x, ω). Also, the results from the high-dimensional f(x, ω) case is even more accurate
compared to the results from low dimensional processes, mainly because more sensor information is obtained from the
external forcing term. Except for the variance estimation of k(x, ω), all QoIs satisfy the desired accuracy level.

20



A PREPRINT - MARCH 23, 2022

(a) PI-VAE: high dimensional f (b) PI-VAE: high dimensional k

(c) PI-WGAN: high dimensional f (d) PI-WGAN: high dimensional k

Figure 21: Mean and variance estimate of QoIs using trained model of PI-VAE (top) and PI-WGAN (bottom) for high-dimensional
k(x, ω) problems (left) and high-dimensional f(x, ω) problems (right) are shown. Blue line represent the reference mean and blue
shade area represents the reference standard deviation. In contrast, orange line and orange shade area represent the mean and std of
the reconstructed samples, respectively.

In comparison with PI-WGAN, Figure 21 shows that PI-VAE offers significantly better performance than PI-WGAN,
especially in the problem with high-dimensional k(x, ω). The disadvantage of PI-WGAN can be explained to be due to
the gradient penalty [41] in the loss function that constrains the gradient magnitude of the trained neural networks. In
the case of high-dimensional k(x, ω), if we constrain the norm of the gradient, we cannot approximate k(x, ω) well
enough even with sufficiently large number of k-sensors. In particular, we observed that the estimation error for k
obtained from PI-VAE over the range of x is at most 18%, while PI-WGAN has estimation errors above 50%.

5 Conclusion

In this paper, we focused on solving problems governed by PDEs where the governing differential equation is known to
us while information about the solution or the parameters of the differential equation are either unavailable, or partially
available from sparse measurement sensors. We proposed PI-VAE; a new class of physics-informed Neural networks
to efficiently solve these problems using inspirations from variational autoencoders. In comparison with PI-WGAN,
which is another generative approach for solving similar problems, the presented results in this paper show that our
method can obtain satisfactory accuracy with less training time in most of the studied cases. Furthermore, the presented
numerical results showed our method was more effective in forward, inverse and mixed problems, and also problems
where random parameters of the governing physics are represented by a high-dimensional stochastic model.

However, limitations exist in our method. First of all, the accuracy of the loss function in our training depends on the
size of the mini-batch. In particular, in high-dimensional differential equations where we need to differentiate the neural
network many times, the GPU constraint will require us to use a small batch size in the training. Also, we now assume
that all sensors will give us accurate information while, in practice, measurement noises exist and should be accounted
for. Finally, even though our method achieved better accuracy levels compared to PI-WGAN in all the cases, in a
few of numerical experiments presented in the paper, the performance levels can still be improved in further research
extensions. Future research directions also include quantifying the the sensor uncertainty as well as the modeling
uncertainty into the framework.
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