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ABSTRACT

Interactive visual analysis interfaces are critical in nearly every

data task. Yet creating new interfaces is deeply challenging, as it

requires the developer to understand the queries needed to express

the desired analysis task, design the appropriate interface to ex-

press those queries for the task, and implement the interface using

a combination of visualization, browser, server, and database tech-

nologies. Although prior work generates a set of interactive widgets

that can express an input query log, this paper presents PI2, the

�rst system to generate fully functional visual analysis interfaces

from an example sequence of analysis queries. PI2 analyzes queries

syntactically and represents a set of queries using a novel Difftree

structure that encodes systematic variations between query abstract

syntax trees. PI2 then maps each Difftree to a visualization that

renders its results, the variations in each Difftree to interactions,

and generates a good layout for the interface. We show that PI2
can express data-oriented interactions in existing visualization in-

teraction taxonomies, can reproduce or improve several real-world

visual analysis interfaces, generates interfaces in 2 – 19s (median

6s), and scales linearly with the number of queries.

1 INTRODUCTION

Interactive visual analysis interfaces (or simply interfaces) are criti-

cal in nearly every stage of data management, including data clean-

ing [54], wrangling [23], modeling [16], exploration [35], and com-

munication [12, 17]. Interfaces empower the user to easily express

relevant analysis queries using interactive controls that hide the un-

derlying query complexity. A prominent example is VizQL [47]

(commercialized as Tableau), which was carefully designed for

analyses based on OLAP cube queries. However, analyses are not

restricted to OLAP queries and can be arbitrarily complex. Thus,

translating a custom analysis query workload into a fully functional

interface remains deeply challenging.

Example 1. The two queries in Figure 1(a) di�er in two ways: the

from clause chooses from two subqueries, and the two predicate ranges

may change. Designing a good interface requires numerous nuanced

decisions. Should the queries be rendered together or separately? As

scatterplots (supports panning along the y-axis), bar charts (which do

not), or another chart type? How should the user choose the subquery?

Should textboxes, sliders, range sliders, or panning specify the range

predicates? Should the layout be horizontal or vertical? What if the

screen is wide? Or narrow? Figure 1(c) depicts a sensible interface that

expresses these queries. It visualizes the query results in a scatter plot.

The user can drag the plot to change the x and y predicate ranges,

and click on the buttons to select the desired subquery.

Once a design is established, the developer still needs to ensure that

interactions appropriately transform the underlying queries; imple-

ment the interface using a mix of browser, visualization, server, and

SELECT x, y

FROM .subquery1.

WHERE x ∈ [20, 50]

and y ∈ [30, 60]

SELECT x, y

FROM .subquery2.

WHERE x ∈ [25, 55]

and y ∈ [32, 62]
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q2
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Figure 1: Comparison between prior and this work. (b) Prior

work generates an unordered set of interaction widgets that

express the two queries. (c) This paper presents a novel

model that accounts for widgets, layouts, and interactive vi-

sualizations, and generate fully interactive interfaces.

database technologies; debug her implementation; and �nally deploy

the result. Only then, can she �nally use or share the interface.

The example highlights how intimidating and laborious it is to

navigate design decisions and build interfaces using a multitude of

technologies. To this end, dashboard creators (e.g., Metabase [31],

Retool [40]) and exploration tools (e.g., Tableau [35]) help author

SQL-based analysis dashboards, however they limit the scope of

analyses and queries in order to keep their own interfaces simple.

For instance, Metabase is restricted to parameterized queries [32],

and Tableau to OLAP cube queries [50]. Analyses that go beyond

these restrictions will require manual implementation.

To simplify interface implementation, numerous programming

libraries have been created to recommend [52, 58] or create [5, 41]

visualizations, manipulate the DOM [21], manage a web server [13],

and construct SQL queries [25]. Similarly, tools such as AirTable [2],

Figma [11], and Plasmic [37] focus on rapid interface design. Ulti-

mately, each only solves one step, and programming expertise and

e�ort is needed to use and combine these tools.

An ideal system would directly generate an interface using ex-

ample analysis queries. Prior work [57] (PI1) was a �rst step in this

direction. It modeled interfaces as a visualization that renders and

underlying query’s result, and widgets that syntactically transform

the underlying query; the widgets de�ned the set of all queries that

the interface can express. PI1 modeled each query as an abstract

syntax tree (AST), aligned the trees, and extracted the subtrees that

di�er. It then grouped those di�erences and mapped each group to

an interactive widget. In this way, it returned a set of widgets that

expresses the input set of queries (and perhaps other queries).

Unfortunately, PI1 has several fundamental drawbacks. Its out-

put is limited to unordered set of widgets (e.g., Figure 1(b)) because

it doesn’t consider how the query results are rendered. Thus, it

cannot support interactions within visualizations (e.g., pan&zoom,

selection) nor multiple visualizations in the same interface. Further,

it generates a �at mapping from syntactic di�erences to interactive
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widgets, however the �at mapping cannot model hierarchical inter-

face layouts nor nested widgets (such as tabs containing widgets).

This paper presents PI2, the �rst system to generate interactive

multi-visualization interfaces (such as Figure 1(c)) from a small

number of example queries. To do so, we propose a new interface

generation model that is based on schemamatching. We �rst extend

abstract syntax trees with four types of choice nodes to encode sub-

tree variations between queries. Choice nodes directly correspond

to grammar production rules. For instance, the ANY choice node is

used to choose one of its children—such as the two subqueries in

Figure 1(a))—and corresponds to an ordered choice production rule.

Each tree represents a subset of input queries, and we map the

set of trees to an interface. Speci�cally, each tree’s result table is

mapped to a visualization, each choice node is mapped to a wid-

get or visualization interaction, and the tree structure is mapped

to a hierarchical layout. By de�ning transform rules that merge,

combine, and transform these trees, we are able to search the space

of tree structures that result in di�erent candidate interface de-

signs. Finally, we rank candidate interfaces by combining existing

interface cost models [15, 27, 57] to estimate how easily the user

can use the interface to express the sequence of input queries. PI2
only requires access to a lightly annotated language grammar and

database catalogue in order to determine valid mappings.

Informally, our technical problem is: given an input sequence

of queries, search the space of extended ASTs and interface map-

pings to identify the lowest cost interface. We use Monte Carlo Tree

Search [10, 42] (MCTS) to balance exploration of diverse tree struc-

tures with exploitation of good tree structures found so far, and

generate complex multi-view interfaces in seconds. We contribute:

• PI2, the �rst system to generate fully functional multi-view in-

terfaces from example analysis queries. The system is database

agnostic, and only needs access to the query grammar, a database

connection to execute queries, and the database catalogue.

• A novel model that uni�es SQL query strings, interactive visual-

izations, widgets, and interface layout. The model enables us to

formulate interface mapping in terms of schema mapping.

• An evaluation that shows PI2 expresses all data-related interac-

tions in Yi et al.’s [55] visualization interaction taxonomy. PI2
shows that small di�erence in analysis queries can considerably

change the interface design, and illustrates the importance of

an automated interface generation tool. We further show 3 case

studies that use real-world queries to improve the SDSS web

search interface, reproduce Google’s Covid-19 visualization, and

show how to use queries to author a sales analysis dashboard.

• A set of simple optimizations that reduce interface generation

times from 30s to a median of 6s.We further �nd that PI2 runtime

scales linearly with the number of input queries.

Scope of this work: PI2 is designed to generate task-speci�c anal-

ysis interfaces. It assumes a small sequence of coherent queries

that represent a desired analysis, and is not suitable for open-ended

exploration queries that are often unrelated and seemingly random.

Further, PI2 is the �rst to show that end-to-end interface gener-

ation from queries is even possible, and we leave scalability and

customizability of the generated interfaces to future work.

2 INTERFACE GENERATION OVERVIEW

PI2 transforms an input sequence of queries into an interactive

interface in four steps: parsing queries into a generalization of

abstract syntax trees (ASTs) that we call Difftrees, mapping the

Difftrees to a candidate interface, estimating the interface’s cost,

and either returning the interface or transforming the Difftrees

to generate a new candidate interface. This section walks through

these steps and introduces key concepts using a simple example.

Static Interfaces: Figure 2 lists three input queries on table T

where attribute p, a, b are all integers. Q1 and Q2 transform the

predicate attribute and literal, and Q3 selects a instead of p. PI2
�rst parses each query into their corresponding Difftree (simply a

normal AST). EachDifftree is rendered as a visualization; since the

Difftrees are static, the interface for these three queries consists

of three static charts. For brevity, we omit the FROM and GROUPBY

clauses and show simpli�ed syntax trees.

Interactive Interfaces: Let us temporarily focus on the di�ering

predicate in Q1 and Q2 to show how di�erent Difftrees structures

can result in di�erent interface designs. For instance, Figure 3(a) is

rooted at an ANY node whose children are the two predicates. ANY is

a Choice Node that can choose one of its child subtrees. In general,

Q1
SELECT p, count(*)

WHERE a = 1

Q

p

SELECT

count()

=

a 1

Q

p

SELECT

count()

=

b 2

Q2
SELECT p, count(*)

WHERE b = 2

Q3
SELECT a, count(*)

Q

a

SELECT

count()

c
o
u
n
t

a

c
o
u
n
t

p

c
o
u
n
t

p

Figure 2: Example of three queries and their simpli�edASTs.

A static interface would render one chart for each query.
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Figure 3: Three examples of Difftrees for Q1, Q2, focusing

on the subtree for the predicate. The ANY choice node can

choose one of its children. (a) Each predicate can be chosen

using a radio button that parameterizes the ANY node, (b) the

left and right operands can be individually chosen using ra-

dio buttons, (c) the literal operand is generalized beyond the

input values 1 and 2.
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Q

SELECT

count() =

a b

ANY

1 2

VAL

ANY

p a

OPT

c
o
u
n
t

p

1

a b

p a

Figure 4: A Difftree for Q1-3 and a candidate interface.

choice nodes encode subtree variations1 that the user can control

through the interface. In the example, the ANY node is mapped to

two radio buttons (other widgets such as a dropdown are valid as

well), where clicking on the �rst button would bind the ANY to its

�rst child a=1. The Difftree output is visualized as a bar chart.

Tree Transformations: Note that both of ANY’s children are rooted at

=, and can thus be pushed above the ANY node. This is an example

of a Tree Transformation Rule that we describe in Section 6. The

resulting Difftree in Figure 3(b) shows two ANY nodes that can

independently choose the left and right operands. This leads to an

interface with two interactions (radio buttons), and also generalizes

the interface beyond the input queries. For instance, the query can

now express SELECT p, count(*) WHERE b=1.

Schemas: A single Difftree can be mapped to many interface

designs, each with di�erent widgets, visualization interactions, and

layouts. For instance, although Figure 3(b) treated the second ANY’s

children 1 and 2 as generic subtrees, we can easily infer that they

are numerically typed. Further, the equality comparison tells us

their values are de�ned by the domains of attributes a and b. Thus,

with access to the database catalogue, we can infer that the second

ANY node’s Schema is the union type of a and b, which are both

numeric. We can then generalize the ANY to a VAL choice node that

replaces itself with the literal that it is bound to (Figure 3(c)). For

instance, when the user changes the slider position to 5, the value

in bound to the VAL node, which resolves itself to 5. This lets us

map the ANY node to a numeric slider that is initialized with the

minimum andmaximum of attribute a and b’s domains. This was an

example of generalization based on relaxing a choice node’s schema

(Section 3.2), and a tree transformation rule that generalizes the

ANY node’s schema and replaces it with the VAL node.

All Three Queries: Now, let us add Q3. The simplest interface would

be to partition the queries into two clusters, where Q3 is rendered

as a static chart, and Q1 and Q2 is mapped to one of the interac-

tive interfaces discussed so far. We can then choose to lay them

out horizontally or vertically (Section 4.3). Another possibility is

to merge all three queries into a single Difftree, which would

map to an interface with a single visualization. Figure 4 illustrates

one possible Difftree structure, where an ANY node in the SELECT

clause chooses to project p or a. This maps to an interface simi-

lar to Figure 3(c), but with a radio button to choose the attribute

to project and another toggle button to express optional status of

the where clause. Naturally, which of these possible interface de-

signs (or others not discussed here) that should be generated and

returned to the user depends on many factors, such as usability,

layout, accessibility, and other factors that are di�cult to quantify.

1Choice nodes can be viewed as generalizing parameterized expressions in SQL
to parameterizing arbitrary syntax structures in a query.

a VAL

1 2

=

c
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n
t

a

c
o
u
n
t

p

Q1: SELECT p, count(*) WHERE a = 1

Q2: SELECT p, count(*) WHERE a = 2

Q

a

SELECT

count()

Q3: SELECT a, count(*)

Figure 5: Multi-view interface where clicking on the right-

side chart updates the left chart.

Difftrees
Choice Nodes

à

Interactions

Difftrees
à

Layouts

Results 

à

Vis

Map Difftrees à Interface

Transform

CostQs

Monte Carlo Tree Search (MCTS)

DB Catalogue

Figure 6: PI2 interface generation pipeline.

Quantitative interface evaluation is an active area of research, and

Section 5 presents the best practices used to develop this paper’s

cost function and its limitations.

Multi-view Interfaces PI2 can also generate interactive multi-

view interfaces. Figure 5 illustrates a slightly di�erent set of queries,

where the Q1 and Q2 only di�er in the literal, and Q3 remains the

same. Since the literal is compared to attribute a, an alternative

to mapping the VAL node to a slider is to map it to a visualization

interaction in Q3’s bar chart. Speci�cally, each bar is derived from a

and count(*) in Q3’s result. Thus, clicking on a bar can also derive

a valid value in attribute a’s domain that can bind to the VAL node.

Summary and Generation Pipeline: To summarize, PI2 gener-

ates interfaces in a four-step process. We �rst parse the input query

sequence Q into Difftrees, and map the Difftrees into an inter-

face. An interface mapping I = (V,M,L) is de�ned by mapping each

Difftree result to a visualization (V), choice nodes to interactions

(widget or visualization interaction) (M), and a layout tree (L). A

cost function C(I,Q) evaluates the interface and either returns the

interface or choose a valid transformation to apply to theDifftrees.

Informally, given queries Q and cost function C, our problem is to

return the lowest cost interface I that can express all queries in the

log. The formal statement is presented in Section 6.

We solve this problem usingMonte Carlo Tree Search [6] (MCTS),

a search algorithm for learning good game-playing strategies and

famously used in AlphaGo [46]. It balances exploitation of good

explored states (Difftree structures), and exploration of new states.

We describe our search procedure and optimizations in Section 6.2.

3 DIFFTREES

Difftrees extend ASTs with Choice Nodes that encode the struc-

tural di�erences between the queries, and are the bridge from

input queries to the output interface. Speci�cally, an interface

I = (V,M,L) is de�ned by mapping each Difftree result to a

visualization (V), choice nodes to interactions (M), and a layout
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tree (L). Candidate visualization and interactionmappings are based

on schema matching between the Difftree result and visualization

schemas, and choice node and interaction schemas respectively.

This section de�nes Difftrees and how their result and choice

node schemas are inferred. The next section will present visualiza-

tion and interaction schemas and the formal mapping procedure.

3.1 Di�tree and Choice Nodes

A Difftree ∆ compactly represents a set of expressible ASTs {∆} =

{δ1, δ2, ...}, where δi is an AST. It extends ASTs with Choice Nodes–

ANY, VAL, MULTI, and SUBSET–that correspond to production rules

in a PEG grammar. This supports arbitrarily complex subtrees, yet

can still be analyzed because the set of variations is prede�ned and

�nite. Finally, Difftrees guarantee that any expressible AST is

syntactically correct. We describe Difftree node types below, the

set of ASTs they express, and how each choice node resolves to an

AST subtree when bound to a set of parameters.
• ANY(c1,..,ck) can choose one of its k children, akin to the

production rule ANY→c1|..|ck. When bound to an index i ∈

[1, k], it resolves to ci. For instance, binding 1 to the ANY in

Figure 3(a) will resolve it to a=1. A special case is when ANY has

two children, where one is an empty subtree. We call this OPT

for optional, and is useful for mapping to binary interactions

such as toggles. This node expresses the ASTs: ∪i∈[1,k]{ci}.

• VAL(c1,..,ck) represents a literal that matches a regex pattern

in a grammar. Its children are all literals and its value domain

is de�ned by the union of its children’s types. In practice, it is

a pass-through node that resolves to any value it is bound to.

For instance, the VAL in Figure 3(c) resolves to the slider’s value.

The next subsection describes types in more detail. Let ci.d refer

to a child node’s domain, then this node expresses ∪i∈[1,k]ci.d.

• MULTI[sep](c) represents lists that express e.g., project lists,

group-by lists, and conjunctions. It expresses the production rule

MULTI→c (sep c)*. It repeats its child c one or more times,

where its child may also be aDifftree. When it is bound to a list

of parameterizations [p1, .., pk], it passes each parameterization

pi to its child and concatenates their resolved ASTs using sep.

This node expresses the ASTs: {sep (t) |t ∈ {c}k ∧ k ∈ N0} that

correspond to an arbitrary number of cross products between

all elements of {c}.

• SUBSET[sep](c1,..,ck) represents the production rule SUBSET→

c1?..ck? with sep as the separator. Bind a set of indices be-

tween 1 and k to it will resolve to the corresponding subset

of its children, concatenated with the separator sep. The node

expresses the ASTs: {sep (t) |t ⊆ {c1, c2, ...ck}} that corresponds

to all possible subsets of the children.

• Non-choice Nodes: Finally, let N(c1,..,ck) be a non-choice

node. If N is a leaf node, it expresses the ASTs: {N}. Otherwise, it

expresses {N(t)|t ∈ {c1} × . . . × {ck}}. Let cs1 , . . . , csn be the subset

of children whose subtrees contain one or more choice nodes.

When N is bound to a list of parameterizations [p1, . . . , pn], it

passes each pi to child csi .

3.2 Schemas

Although PI2 does not reproduce the database front-end’s type

checking, it infers type and schema information to map Difftrees

SUBSET[,]

a

str

b

str

<str?,str?>

(c)

a ANY

1 2

=

T.a

str

T.a

<T.a>

ANY

>

str

b Count(1)

num

<T.a>

<AST|<T.a>>

(a)

AST

ANY

a

str

b

str

MULTI[,]

<str>

<<str>*>

(b)

OPT <<<str>*>?>

Figure 7: Example Difftrees of the four types of choice

nodes, with type and schema annotations.

to an interface. Choice nodes and their ancestors are annotated

with schemas, and all other nodes are annotated with types. We

distinguish these because only choice nodes (or their ancestors)

are mapped to interactions. We use Result Schema to refer to the

schema of the Difftree’s result, and Node Schema to refer to the

schema of a Difftree node.

3.2.1 Types. All non-choice nodes that are not ancestors of a

choice node are annotated with type information. A type de�nes a

domain of values [1] that a node can express. For simplicity we de-

scribe a trivial type hierarchy of primitive types: AST→str→num.

num specializes str, and str specializes AST; AST expresses any

abstract syntax tree. Further, each database attribute a itself repre-

sents an Attribute Type and specializes a primitive type’s domain

to a’s domain. In general, internal nodes are of type AST, while

leaf nodes have more specialized types. We say that a type t1 is

compatible with t2 if its domain is a subset of t2’s domain.

Initialization: We initialize the leaf node’s types by using light-

weight grammar annotations and the database catalogue. Speci�-

cally, we annotate production rules that resolve to str, num with its

corresponding type. Also, we infer the type of a function call based

on it return type in the catalogue.

Inference: When possible, it is useful to specialize a primitive type

to an attribute type. For instance, given a = 1, we would like to infer

that 1 has type a. To do so, we �rst lookup attribute names in the

catalogue to determine its fully quali�ed attribute name and domain.

We use a simple heuristic based on equality comparison expressions

of the form attr = val, and assign val’s type as attr. Finally,

we de�ne the union of two types T1 ∪ T2 as their least common

ancestor in the type hierarchy. For instance, str=num∪str, while

num=num∪num.

Example 2 (Node Types). Figure 7(a) illustrates examples of type

inference in yellow . b, and a are str types that refer to attribute

names (note, they are not attribute types themselves). The catalogue

lists count() as type num. 1, 2 are num types, however they are com-

pared with a so their types are specialized to the fully quali�ed T.a.

3.2.2 Result Schemas. The result schema is de�ned for a Difftree

∆ based on the set of ASTs {δ1, δ2, ...} that it expresses. Speci�cally,

let s(δ) =< aδ1 : tδ1 , .., a
δ
n : tδn > be the standard result schema of an

AST δwithout choice nodes, where ai is the attribute name, and ti is

its type. ∆’s result schema is well de�ned if all s(δ ∈ {δ1, δ2, ...}) are

union compatible. In this case, its result schema is < a1 : t1, . . . , an :

tn > where ai = {aδ
i
|δ ∈ {δ1, δ2, ...}}, and ti = ∪δ∈{δ1 ,δ2 ,...}t

δ

i
.

In short, each attribute name is a concatenation of the unique

attribute names, and each type is the least compatible type across
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all expressible ASTs. For example, the result schema in Figure 4 is

< {T.a ∪ T.p}, num >. If the schemas are not union compatible, the

result schema is unde�ned.

3.2.3 Node Schemas. A choice node or an ancestor is a Dynamic

Node, and all other nodes are Static. Dynamic nodes are annotated

with node schemas that describe the structural variation that they

express. Schema < e1, . . . , en > is a list of type expressions, where

each expression ei is a set operators {|, ?, *} over types and

schemas. {|, ?, *} have regular expression semantics where | is

the or relation (ANY), ? is the existential relation (OPT, SUBSET), and

∗ is repetition (MULTI).

Node Schema Inference: Let N(c1, . . . , cn) denote a dynamic node

and its n children, where its childrenmay be dynamic or static nodes.

Further, let T(N) refer to the node N’s type if it is static, and its

schema if it is dynamic. We now de�ne schema inference rules that

de�ne T(N) for dynamic nodes. Note that schemas may be nested

in order to accomodate nested interfaces, such as tabs.
• ANY(c1,..,cn) considers two conditions. If all children are

static, then T(ANY) =< ∪i∈[1,n]T(ci) >. Its schema is the least

compatible type of its child types. Otherwise, < T(c1)| . . . |T(cn) >

is the OR of its child schemas.

• OPT(c): < T(c)? >.

• MULTI[sep](c): < T(c)∗ >, where ∗ denotes 0+ repetitions.

• SUBSET[sep](c1,..,cn): < T(c1)?, . . . , T(cn)? >.

• AST(c1,..,cn) considers two conditions. A static node (Sec-

tion 3.2.1) has type AST. Otherwise, its schema is the cross prod-

uct of its dynamic children’s schemas < T(cs1 ), . . . , T(csk ) >,

where cs1 , . . . , csk are its dynamic children.

Example 3. Figure 7 annotates Difftrees with node schemas in

green . In Figure 7(a), the bottom ANY only has static children, so its

schema is the union of its child types. The schema of the AST node

= is the cross product of its dynamic children’s schemas, which is

simply < T.A >. Finally, the top ANY expresses its left or right child, so

has a nested schema < AST| < T.a >>. Figure 7(b) illustrates nested

schemas, where MULTI applies * to its child schema, and similarly

OPT applies ?. (c) is an example of SUBSET.

3.2.4 �ery Bindings. We wish to guarantee that the generated

interface can express all of the input queries (and possibly more).

Schema information is unfortunately insu�cient to ensure this

guarantee. For instance, suppose a VAL node has type T.a with

two child literals 1 and 100 from queries q1 and q2. In addition,

a bar chart’s x-axis renders T.a. Naively, one might expect that

clicking on bars in the bar chart can express T.a values, and thus

can be bound to the VAL node. However, it is possible that the query

generating the bar chart �lters out all records where T.a = 100, and

thus cannot express q2.

Thus, we also derive the set of Query Bindings needed for each

dynamic node in order to express all of the input queries. A query

binding is a tuple of values consistent with the node’s schema. This

is done by tracking the binding needed for theDifftrees to express

each input query and unioning the bindings on a per-node basis.

Example 4. Consider Figure 7(b) and two input queries a,a and

b. The Difftree bindings are {Multi:[{ANY:1}, {ANY:1}]} and

{Multi:[{ANY:2}]}. The bindings for each choice node are the union

across query bindings. For instance, the bindings for MULTI are {[{ANY:1},

{ANY:1}],[{ANY:2}] }, and those for ANY are {1,2}.

We will refer to Query Bindings when determining whether a

candidate interaction mapping is safe, described next.

4 INTERFACE MAPPING

PI2 generates candidate visualization (V), interaction (M), and lay-

out (L) mappings in order to generate an interface I = (V,M,L).

These candidates de�ne the search space that PI2 explores in Sec-

tion 6. Visualization and interaction mappings are grounded in

schema matching and seeks to ensure safety (that the interface can

express all input queries). PI2 is extensible, in that developers can

add new visualization types, interaction templates, as well as dif-

ferent types of layouts beyond those used in our prototype. Finally,

we will formally present the interface generation problem.

4.1 Visualization Mapping V

V de�nes the set of mappings from each Difftree to the visualiza-

tion that renders its results. Although there are numerous visualiza-

tion recommendation algorithms, such as ShowMe [29], Draco [34],

and Deepeye [26], each is focused on an individual output chart.

In contrast, PI2 generates multi-visualization interfaces and needs

to take the entire interface into consideration. Speci�cally, some

visualization types, although not individually optimal, may enable

visualization interactions that improve the overall interface. For

this reason, we use a simple set of heuristics to map a Difftree to

a visualization.

Visualizations as Schemas: A visualization renders records from

an input table as marks (points, bars) in a chart. Each visualization

encodes data attributes using a set of visual variables [3], such as x,

y, size, and color, and makes di�erent assumptions about the data

types mapped to those visual variables.

As such, we model each visualization type using a Visualization

Schema < ai : ti, . . . >, where ai is the name of a visual variable, and

ti is either Quantitative (Q) or Categorical (C) type. For instance, a

bar chart renders categorical values along the x axis, quantitative

values along the y axis, and optionally renders categorical values

as the bar color.

In addition, a visualization may enforce functional dependency

(FD) constraints over the input data. For instance, bar charts assume

that x and color functionally determine the y value. This can be

inferred if data is a group-by query since the grouping attributes

determine the aggregate values, or if the attributes mapped to x and

color are unique. Table 1 summarizes the schemas and constraints.

Visualization Mappings: A visualization V can render the result

of a Difftree ∆ if there is a valid mapping from ∆’s result schema

S∆ and the visualization schema SV such that (1) every data at-

tribute d is mapped to a visual attribute v, (2) each visual attribute

is mapped to at most once, (3) every non-optional visual variable

is mapped to, and (4) d’s type in the result schema is compatible

with v’s type in the visualization schema. We de�ne compatibil-

ity as follows: str, and num attributes whose cardinality is below

20, are compatible with categorical visual attributes, and num at-

tributes are compatible with quantitative visual attributes. Finally,
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Vis Schema and FDs Interactions

Table any schema Click

Point <x:Q|C, y:Q,shape:C?, Click, Multi-click,

size:C?, color:C?> Brush-x/y/xy, Pan, Zoom

Bar <x:C, y:Q, color:C?> Click, Multi-click

(x, color)→y Brush-x

Line <x:Q|C, y:Q, shape:C?, Click, Pan, Zoom

size:C?, color:C?>

(x, shape, size, color)→y

Table 1: Visualization schemas, FD constraints, and sup-

ported interactions. Q and C stand for quantitative (numeric)

and categorical types.

we check that the Difftree result satis�es the visualization’s con-

straints based on the query structure (whether it is a group-by) and

database schema constraints.

Example 5. Consider Q1 in Figure 2, which groups by p and com-

putes count(*). We can infer that p determines count, use the data-

base statistics to estimate that p’s cardinality is below 20, and thus

infer that it can be mapped to a quantitative or categorical visual

attribute. The bar chart mapping {p → x, count → y} satis�es the

type compatibility and functional dependency constraints, and maps

all attributes in the result schema, and has mappings to the required

visual attributes.

Candidate Generation: We generate all valid mappings for a

Difftree by iterating through each visualization type, and gener-

ating all permutations of the result schema that result in a valid

mapping to the visualization schema.

4.2 Interaction MappingM

M de�nes the set of interaction mappings from dynamic nodes to

widgets or visualization interactions (collectively called interac-

tions). An interaction mapping δ → I from a dynamic node δ to

interaction I means that when the user manipulates the interaction,

it generates a stream of event tuples whose values bind to δ (Sec-

tion 3.1 describes node bindings). The goal is to generateM such

that there is a binding for every choice node in the Difftrees.

At a high level, PI2 manages a library of interaction templates,

and checks which templates are valid for a given dynamic node. If

valid, PI2 instantiates the interaction with the dynamic node’s in-

formation, and binds its manipulation event stream to those choice

nodes. This subsection �rst models interactions as schemas and

domain constraints, and then de�nes valid and safe interaction

mappings.

4.2.1 Interaction Model. PI2 manages an extensible library of in-

teraction templates (widgets and visualization interactions). An

interaction template de�nes a schema that is used to identify can-

didate choice node mappings, and optional constraints that are

applied to the choice nodes’ query bindings.

An interaction mapping δ → I is valid if there is a schema match

from the dynamic node’s schema Sδ to the interaction’s schema SI,

and δ’s query bindings satisfy the interaction’s constraints (if any).

ANY

3 4

list

T.a T.a

<v:T.a><v:T.a>

(a) (d)

BETWEEN

a

ANY

1 2

T.a T.a

<a1:T.a, a2:T.a>

1 3

(b)

2

4

1

3Q1: SELECT .. WHERE

a BETWEEN 1 and 3

Q2: SELECT .. WHERE

a BETWEEN 2 and 4

(c)

<a1:T.a, a2:T.a>

Figure 8: Annotated Difftree for highlighted portion of

Q1 and Q2. (b, c) are candidate interaction mappings for the

BETWEEN or list dynamic nodes.

Widgets Schema Constraint

Radio, Dropdown, Textbox <v:_>

Toggle <v:_?>

Checkbox <v:_*>

Slider <v:num>

RangeSlider <s:num,e:num> s≤e

Table 2: Examplewidget schemas and constraints. _matches

any schema or type expression.

Speci�cally, a schema match exists if (1) Sδ and SI have the same

number of type expressions, and (2) each type expression eδ
i
in Sδ

is compatible with the corresponding expression eIi in SI. Table 2

lists example widget schemas and constraints.

Example 6. Consider the Difftree in Figure 8. A radio list has

schema <_>, where _ matches any schema or type expression, and is

compatible with each ANY node’s schema. The schema mapping for

each ANY node would be (ANY.v → radio.v).

Alternatively, A range slider has schema <s:num, e:num>. The

list node in Figure 8(b) has schema <a1:T.a,a2:T.a>, which is

compatible with the range slider’s schema because T.a is numeric. The

schema mapping is (a1 → s, a2 → e). Note that since list is not a

choice node, the event tuples generated by the range slider that are

bound to the node will be routed to its child ANY nodes. Thus, the two

ANY nodes are bound by this interaction mapping.

The second criteria for a valid mapping is that δ’s query bindings

satisfy the interaction’s constraints. For instance, the range slider

has the constraint that the start value s is ≤ to the end value e. We

can see that the query bindings for the list node in Figure 8 are

(1, 3), (2, 4), and satisfy the constraints. Thus, it is valid to map the

list node to the range slider.

Finally, a mapping is safe if there exist user manipulations to

produce event tuples for each of the dynamic nodes’ query bindings.

For widgets, safety is ensured by construction because each widget

is initialized with the dynamic node’s query bindings. Safety is not

always guaranteed for visualization interactions, and we discuss

this below.

Widgets: PI2 is prepopulated with a library of common widgets,

including button, radio list, checkbox list, dropdown, slider, range

slider, adder, and textbox. For space reasons, Table 2 lists a subset

of their schemas and constraints.

Visualization Interactions: A visualization is modeled as a one-

to-one projection of input records to marks rendered on the screen.
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3   101
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<T.a, num>

<T.a, T.a>

<T.a, T.b, idx>

(a) Click Interaction (b) Brush-x Interaction

Figure 9: Examples of visualization interactions and their

event data. A visualizationmaps each input record to amark

in the chart. Usermanipulations generate one ormore event

streams. Event schemas are in green .

There are three concerns when modeling interactions in visualiza-

tions: (1) each visualization type can support multiple interaction

types (e.g., click, brush, pan), (2) each interaction can generate mul-

tiple event streams during user manipulations, and (3) the schemas

of the event data depend on the visualization’s own mapping (Sec-

tion 4.1). We illustrate these concerns using the bar chart and scat-

terplot in Figure 9:

Example 7. The bar chart renders its input four records using the

visualization mapping (a → x, count → y). One of the interactions

that a bar chart supports is click interactions. For instance, if the user

clicks the fourth bar, it corresponds to selecting the fourth input record,

and thus the event stream emits (4, 120) with the schema <T.a, num>.

The scatterplot renders its input records using the mapping (a →

x, b → y). It illustrates a 1-D brush interaction (along the x-axis) that

emits two event streams. The �rst stream represents the minimum and

maximum bounds of the selection box and has schema <T.a,T.a>,

while the second stream represents the set of selected records, and thus

has the same schema as the input data. PI2 internally tracks the index

of each record, which is useful for binding ANY nodes.

Interaction schemas can depend on the visualization mapping. If

the scatterplot used the mapping (b → y, a → x), then the �rst

stream’s schema would instead be <T.b, T.b>.

To this end, each visualization type de�nes a set of interactions

and the event stream schemas for each interaction. The schemas

are speci�ed in terms of the visualization’s visual attributes, and PI2
uses the visualization mapping to automatically translate them to

be in terms of Difftree’s result schema. Thus, each visualization

mapping corresponds to a set of interaction event schemas that

are candidates for interaction mapping. Table 1 summarizes the

interactions each visualization type supports.

4.2.2 Visualization Interaction Safety. Visualization interactions

introduce a unique safety concern because their input data is based

on the result of a Difftree. In contrast to widgets, whose domains

are initialized based on query bindings in the Difftree and thus

guaranteed to be safe, the values that a visualization interaction

can express depends on the contents of its input data. Concretely,

consider the bar chart’s click interaction in Figure 9. The output

of its Difftree ∆ contains four records, thus the click interaction

can express the T.a values: 1, 2, 3, 4. Suppose there is a choice node

Layout

HRadio Slider

VRadio Toggle

(a) Layout Tree (b) Horizontal (c) Vertical

1 2

a 

b

1 2

a 

b

Figure 10: Layout tree and their bounding boxes when the

layout nodes (Layout, Toggle) are horizontal or vertical.

VAL(4,5)with schema <num>. Based on the above rules, it is valid to

map this choice node to the click interaction because their schemas

match. However, this speci�c chart cannot express the query binding

5!

We use a simple heuristic to check safety. Given a candidate

interaction mapping to an interaction in visualization V, we can

check V’s visualization mapping ∆ → V. Since we know the subset

of input queries that ∆ expresses, we can (logically) instantiate the

visualization with each query’s result table, and check the subset of

query bindings that the interaction can express. If there exists an

input query that can express every query binding, then the inter-

action mapping is safe. This heuristic appears e�ective in practice,

however as we see in the runtime experiments, checking safety

for every candidate mapping degrades PI2 runtime when there are

many input queries. We leave optimizations to future work.

4.3 Layout Mapping L

After visualization and interaction mapping, we can mark the dy-

namic nodes in the Difftrees that correspond to widgets on the

screen. L de�nes a layout tree over the visualizations and widgets,

where each layout node either horizontally (H) or vertically (V) lays

out its child elements.

Let a Difftree node that has been mapped to a widget be called

a Widget Node. For a given Difftree ∆, we �rst create a layout

tree W∆ for its widgets: each widget is a leaf node, and we create a

layout node for the least common ancestor of every pair of widget

nodes in the Difftree. ∆’s layout tree L∆ is a layout node whose

children are W∆ and the Difftree’s visualization. The �nal layout

tree L is a root layout node whose children is each Difftree’s

layout tree. Note that layout is currently best e�ort, users are free

to change the widget positioning themselves.

One point of note is that some widgets may themselves be layout

nodes. For instance, a radio list, toggle, or tab list may be used to

choose di�erent sub-interfaces, but also require space to render

the widget themselves. Typically, these “layout widgets” will be

mapped to choice nodes that have descendant choice nodes, and

thus takes the place of a layout node.

Finally, PI2 also uses the layout tree to estimate the bounding

box of every node in the tree. This is used during interface cost

estimation to assess the amount of e�ort that the user must move

between widgets and visualizations in order to express a given

query, and penalize interfaces that exceed an optional screen size.

To do so, we also estimate text and widget sizes based on their

initialization parameters.
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Q1: WHERE X = 1

Q2: WHERE Y = 5
X Yw1 w2

D

Figure 11: User navigates from w1 to w2 to change Q1 to Q2 .

Example 8. Figure 10 illustrates a layout tree with three leaf wid-

gets, the toggle layout widget, and a root layout node. Vradio (Hradio)

renders its elements vertically (horizontally), and the toggle button is

always in the top left above its children. Figure 10(a) and (b) illustrate

the layout and bounding boxes if the layout nodes were horizontal or

vertical, respectively.

5 COST MODEL

The space of possible interfaces is very large, and a cost model is

needed to estimate the quality of a candidate interface mapping.

This is deep and long standing problem in HCI research, and a

common measure is based on the expected time the user will take to

perform the manipulations needed to complete a set of tasks using

an interface [7, 15, 24, 45]. PI2 uses a simple cost model C(I, Q) =

CU(I, Q) + CL(I) that combines usability and layout characteristics

of an interface. For usability, we estimate CU as the time needed for

the user to express the sequence of input queries using the interface.

For layout, CL accounts for the interface size.

Usability: We measure usability based on SUPPLE [15], which

models the interface cost CU(I, Q) = Cm(I, Q) + Cnav(I, Q) as the

time to manipulate each widget (or visualization) Cm and the time

to navigate between interactions cnav.

Manipulation cost Cm(w) for a widget w is modeled as a second

order polynomial Cm(w) = a0 + a1|w.d| + a2|w.d|2, where |w.d| is the

size of the widget’s domain. Widgets that enumerate options (e.g.,

radio, dropdown, and checkboxes) de�ne |w.d| as the number of

options; other widgets set |w.d| = 0. The manipulation cost for the

interface Cm(I) is the total cost of manipulating the widgets needed

to express each input query. Our prototype uses parameters �t to

widget interaction traces in prior work [9, 57], and sets visualization

interaction costs to low constants to encourage choosing them.

The navigation cost Cnav, proposed in SUPPLE [15], is based on

Fitts’ law [27, 45], a model of human movement widely used in

HCI and ergonomics. It states that the time to move to a target area

increases with its distance D and inversely to its width W along

the axis of motion, and has been shown to apply to digital cursors

as well as human movement: a + b · log2 2D/W.

Given the bounding boxes of two widgets, we estimate D as the

distance between their centroids, and W as the minimum of the

target widget’s box width and height [27].

Example 9. Figure 11 shows two truncated queries that di�er in

the left and right operands of the equality predicate. To express Q1, the

user manipulates w1 and w2 to select X and Y, and again to express

Q2, and navigates from w1 → w2 → w1 → w2. In the Fitts’ law

model, D is the distance between the + markers, andW is set of the

box heights. Our prototype sets a = 1 and b = 25 based on manual

experimentation.

We compute the navigation cost needed to express the input

queries in sequence, and navigate the widgets in order of their

depth �rst traversal in the Difftrees.
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Figure 12: Example sequence of transformation rules ap-

plied to three input queries.

Layout: The navigation cost implicitly takes the layout into ac-

count, as excessively wide or tall interfaces will require more costly

navigation. Thus, by default we set the layout cost CL = 0. However,

if the user speci�es a maximum desired width and height, then we

add a penalization term CL(I) = α∗(max(0, I.w–width)+max(0, I.h–

height)) if the interface size exceeds the desired maximum.

6 INTERFACE GENERATION

As we saw in Section 2, the same set of queries can be expressed by

many Difftree structures, each of which can be mapped to many

possible interfaces. Given the de�nitions in the previous sections,

we can now present the interface generation problem:

Problem 1 (Interface Generation Problem). Given input

query sequence Q and interface cost model C(I), return an interface

mapping I∗ = (V,M,L) such that I expresses Q and minimizes C(I).

We solve this problem using a search-based approach, where

we initialize a set of Difftrees, and iteratively transform the

Difftrees and map them to candidate interfaces. This section de-

scribes the set of transformation rules that de�nes the search space,

and then describes the search procedure based on Monte Carlo Tree

Search (MCTS) [10].

6.1 Difftree Transformation Rules

We de�ned four categories of Difftree transformation rules that

de�ne the search space. Each rule takes as input a choice node and

transforms the subtree rooted at the node. All rules are guaranteed

to preserve or increase the expressiveness of the Difftrees; since

the initial set of Difftrees directly corresponds to the input queries,

any reachable set of Difftrees can also express those queries.

Figure 13 shows all the rules. In the diagram, x, y, z represent

subtrees that are distinguished by their root node — the root of x

and x’ are the same, and di�erent than the y’s. A represents a AST

node and choice represents Choice nodes.

Each rule category serves a di�erent purpose. Refactoring rules

identify and refactor shared substructures in order to isolate the

precise di�erences between the queries; these include PushANY,

PushOPT1, PushOPT2, and Partition. PushANY pushes ANY nodes

down if their children have the same root node and introduces new

ANY or OPT to express the di�erences between the children’s chil-

dren. Partition which groups subsets of an ANY node’s children,

and PushOPT1 and PushOPT2. PushOPT1 pushes OPT node down
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Figure 13: Four categories of Difftree transformation rules that de�ne the search space.

to the Choice node and leaves a new CO-OPT at the original place

indicating that only if the OPT exists, the subtree rooted at CO-OPT

exists. PushOPT2 pushes the OPT down to all the children of the list

node, which increases the expressiveness of the Difftrees. Cross-

tree rules are used to Merge multiple Difftrees into one if their or

Split one Difftree into multiple. Mutation rules transform one

type of choice node into another, for instance ANY → VAL, MULTI,

and SUBSET in Figure 13 . Finally, Simpli�cation rules are used to

simplify the tree structure, for instance Noop removes ANY nodes

with a single unique child, and MergeANY reduces a cascade of ANY

nodes into a single one.

Example 10. Figure 12 applies a sequence of transform rules

on three input query fragments. Each query is initially a separate

Difftree, and Merge combines them into a singleDifftree. Partition

groups the ANY’s children into homogenous clusters, and combines

each non-singular cluster with an ANY. In practice, Partition is used

to initially cluster the input queries by their result schema in order to

reduce the number of redundant visualizations and maximize the like-

lihood of non-tabular visualization mappings. Split then removes

the root ANY so that its children are separate Difftrees. Since both

equality predicates are rooted with =, PushANY pushes the ANY down.

Finally, the ANY on the right has numeric children, so it is lifted to a

VAL.

6.2 Monte Carlo Tree Search

A search problem is de�ned by its states, transitions, and cost

function. In our problem, each set of Difftrees is a state, and

transform rules de�ne the transitions. To assess the quality of each

state, we apply the cost model in Section 5 to a set of K random

interface mappings. The search returns a set of Difftrees, and we

perform a more complete search for the �nal interface mapping I.

Since the number of applicable transform rules is very large, it is

infeasible to exhaustively search even a small portion of the search

space. Thus, we adopt Monte Carlo Tree Search [10] (MCTS), a

randomized search algorithm famously applied to problems with

massive search spaces, such as Google’s AlphaGo [46]. MCTS bal-

ances exploration of new states with exploitation of known good

states. Another bene�t is that MCTS works well when high-cost

states are needed in order to reach an optimal state, as is common

in games like Go. Since MCTS is traditionally used in two-player

games, we use a single-player variation [42].

6.2.1 MCTS Search Procedure. Single-player MCTS [42] explores

the search space by iteratively growing a search tree, where each

node is a search state2. Each iteration grows the tree using the

following four steps. Note that we add a special TERMINATE rule

that is a valid transition for every state. Choosing this rule results

in a terminal state that has no outgoing transitions. The algorithm

stops when all leaves reach a terminal state.

(1) Select a leaf state in the search tree. Starting from the root state
R, we recursively select a child until we reach a leaf state S.
Child selection is based on the Upper Con�dence Bound for

Trees strategy (UCT) [42]: let Ni be the i
th child of current state

N, we choose the child that maximizes

X + c

√

ln t(N))

t(Ni)
+

√

∑

x2 – t(Ni)X
2
+ d

t(Ni)
(1)

2State refers to a search tree node in order to distinguish from a Difftree node.
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Where t(N) is the number of times that a node N was visited.

This estimates an upper con�dence bound for the expected

reward X̄, which is the negative cost. The term exploits the

existing reward, the second term prefers the unexplored nodes,

and the third term prefers nodes with high reward variance. c

and d are empirically set constants and control the preference

for exploration and high variance nodes, respectively.

(2) Expand the leaf S by adding all of its children (result of valid

transform rules) to the search tree (their visit count would be 0,

which will prioritize them in future iterations). Then randomly

choose a child state C to simulate.

(3) Simulate a random playout by applying random transform

rules to C until there are no more valid transform rules to apply,

or if the TERMINATE rule is chosen.

(4) Backpropagate the leaf node’s reward from C to R by incre-

menting the visit count and appending the reward to all states

in its path. We estimate the reward by generating K = 5 random

interface mappings, estimating their costs, and returning the

negative of the minimum cost (and thus the maximum reward).

In addition, we developed a set of optimizations that work well

in practice. The �rst is when choosing the best Difftree to re-

turn once the search terminates. MCTS traditionally returns the

state with the highest average reward. In contrast, we follow Cadi-

aplayer [4] and return the state with the maximum reward encoun-

tered (during its rollouts and random interface mappings).

The second is to run the search iterations in parallel. Every

s iterations, the coordinator synchronously receives the highest

reward state from eachworker and distributes themaximum reward

state back to the workers. We further use early stopping, where

each worker sends an early stop signal if its local optimal state

has not changed in es iterations. If the coordinator receives stop

signals from all workers and does not receive a higher reward state,

it terminates the search. Section 7.3 evaluates these optimizations.

6.2.2 Interface Mapping Generation. Given the output state from

MCTS, we perform a more exhaustive search for the lowest cost

interface mapping. This is done in three phases, where �rst, we

enumerate all possible visualization mappingsV, and then derive all

the valid visualization interactions over these visualizations. After-

wards, we search for all the mappings from the choice nodes to the

widgets and visualization interactionsM. Finally, we construct the

layout tree and use a prior branch-and-bound-based algorithm [15]

to assign horizontal and vertical layouts to each layout node. Since

manipulation cost Cm term in the cost model is independent of the

layout, and typically the dominant factor, we separate the search

into two steps: �rst, we search for the top k mappings of V,M in

terms of Cm, and second, we search the optimal layout for each

of these top k mappings. In the end, we return the overall optimal

interface. We �nd k = 10 is su�cient to �nd the optimal interface

empirically.

Algorithm 1 shows the pseudo code of our search algorithm

for V,M. At �rst, we enumerate V as shown in the searchV func-

tion(line 19). Then, we considerM. An interaction mappingM is

valid if and only if all the interactions exactly express the choice

nodes once – namely, to �nd the exact cover of the choice nodes us-

ing widgets or visualization interactions. Notice that, the attribute

Algorithm 1: V,MMapping Generation Algorithm

Result: Given Difftrees ∆ and queries Q, �nd the top k

mappings of V andM with lowest Cm.

1 clist := an ordered list of choice nodes in ∆;

2 icand := each choice node’s all valid visualization

interaction candidates;

3 wcand := each choice node’s all valid widget candidates ;

4 G[N] := the lowest Cm among all widget covers of N;

5 F[N] := the top k exact widget covers of N with lowest Cm;

6 minHeap := the top k mappings of V andM with lowest Cm;

7 Function G(N):

8 if G[N] hasn’t been calculated then

9 G[N] = min(Cm(w, Q) + G (N-w.cover) | w ∈

wcand[[N[0]]])

10 return G[N]

11 Function F(N):

12 if F[N] hasn’t been calculated then

13 L = ∅;

14 for w in wcand[N[0]] do

15 if w.cover ⊆ N then

16 L = L ∪{C ∪ {w.cover → w}

|C ∈ F(N – w.cover)}

17 F[N] = top K elements in L with lowest costs

18 return F[N]

19 Function searchV(∆, V,M):

20 for v in all possible visualization mapping: do

21 V = v;

22 compute icand;

23 searchM(∆, 0, V,M );

24 Function searchM(∆, i, V,M):

25 N := the choice nodes without mapping in clist[0:i];

26 Ns := all the choice nodes without mapping;

/* pruning */

27 if Cm({V,M}, Q) + G (N) >= minHeap[k].cost then

28 return

29 if i == len(clist) then

30 for m in F (N) do

31 M.add (m);

32 if Cm({V,M}, Q) < minHeap[k].cost then

33 insert into minHeap;

34 M.delete (m);

35 return

36 for vinteraction in icand[i] do

37 if vinteraction.cover ⊆ Ns and compatible withM

then

38 M.add (vinteraction);

39 searchM (∆, i + 1, V,M);

40 M.delete (vinteraction);

41 searchM (∆, i + 1, V,M) ;

42 searchV (∆, ∅, ∅);

43 return minHeap
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cover(line 15) of a choice node’s candidate interaction means be-

sides this choice node, all the choice nodes it expresses at the same

time. For example, in Figure 8, both ANY have RangeSlider as its

candidate widget and RangeSlider.cover are these two ANY. Also,

visualization interaction mapping is more sophisticated in that 1○

one visualization interaction can not be mapped to multiple times

in the same Difftree because it will decrease the expressiveness;
2○ on one visualization, some interactions are con�icted, such as

brush along x-axis and brush along y-axis, so that only one of them

can be chosen. With such concerns, the interaction mapping can

not be solved by single dynamic programming. Thus, we separate

visualization interaction mapping and widget mapping – �rst, enu-

merate the compatible visualization interactions (line 36); and for

each visualization interaction mapping, �nd the optimal widget

mappings(line 30) for the left uncovered choice nodes using dy-

namic programming in F(N)(line 11). Also, we prune the search

space by proposing a lowest bound(line 27), which equals to the

existing visualization interaction mapping’s cost plus the lowest

possible widget mapping cost for uncovered choice nodes computed

by G(N)(line 7). When this lowest bound is greater than the existing

kth optimal cost, we prune this branch.

7 EXPERIMENTS

The primary success criteria for PI2 is to generate fully functional

interactive visualizations from a small number of input examples.

We break this down into three questions. 1) Can PI2 generate ex-

pressive interactive visualization interfaces? To evaluate this, we

follow the evaluation in Vega-lite [41] and show examples that

cover the data-oriented interactions in Yi et al.’s [55] taxonomy of

interaction methods. We further show that PI2 can reproduce the

COVID visualization shown at the top of Google’s search results

page for the search query “covid19”. 2) How PI2 help interface cre-

ation in realistic settings? We illustrate this by using a subset of

queries from the Sloan Digital Sky Survey [56] (SDSS) to produce

a custom interface. We also show a case study to create an analy-

sis dashboard for the Kaggle supermarket sales dataset [22] from

complex sales analysis queries that existing authoring tools (e.g.,

Metabase, Tableau) do not support. 3) How quickly can PI2 gener-

ate interfaces? We evaluate PI2’s latency and generated interface

quality varies with respect to its search parameters.

Our focus is on the functionality of the output interface (whether

it can easily express the underlying analysis) rather than its style

and presentation. Thus, when applicable, we may modify the font,

spacing, and other CSS-based interface stylings.

7.1 Interaction Expressiveness

We use Yi et al.‘s [55] taxonomy of visualization interaction tech-

niques to highlight PI2’s expressiveness. Their paper describes

seven interaction types: Select interesting data; Explore: show dif-

ferent subsets of the data; Abstract: change the level of detail; Filter

the data; Connect: highlight related data (such as in a di�erent

chart); Encode: change the visual representation (e.g., from scatter-

plot to bar chart); Recon�gure: rearrange the visual presentation

(e.g., change from linear to log scale) Of these, encode and recon-

�gure are unrelated to query-level transformations. Every example

supports selection, so we evaluate the remaining four types.

In each example, we highlight query fragments that di�er

from the preceding query, use .. when a long substring does not

change, and use BTWN min & max to mean BETWEEN min AND max.

Q1 SELECT hp , mpg , origin from Cars

WHERE hp BTWN 50 & 60 AND mpg BTWN 27 & 38

Q2 ..WHERE hp BTWN 60 & 90 and mpg BTWN 16 & 30

Listing 1: Explore

Explore: The queries in Listing 1 project horsepower (hp), miles

per gallon (mpg), and origin from the Cars dataset, and change

the range predicates on hp and mpg. The generated interface in

Figure 14a renders the attributes as the x-axis, y-axis, and color,

respectively, and enables panning and zooming to control the range

predicates (thus it also satis�es Abstract interaction described next).

Q1 SELECT date , price FROM sp500

Q2 .. WHERE date > ’2001-01-01’ AND date < ’2003-01-01’

Q3 ..WHERE date > ’2001-02-01’ AND date < ’2003-02-01’

Listing 2: Abstract

Abstract The queries in Listing 2 also vary a range predicate,

however Q1 does not have a WHERE clause. The overview-and-detail

interface (Figure 14c) has a static overview chart for Q1; brushing

it updates the detail line chart that expresses the �ltered data.

Q1 SELECT hp , disp , id FROM Cars

Q2 SELECT mpg , disp , id in (1, 2) as color FROM Cars

Q3 SELECT mpg , disp , id in (20,22) as color FROM Cars

Listing 3: Connect

Connect: Q1 in Listing 3 returns horsepower (hp), displacement

(disp), and id from the Cars dataset, while the latter queries return

miles per gallon (mpg), and a boolean color attribute based on the

ids of the rows. In Figure 14b, the left scatterplot renders hp and

disp as the x and y axes (id is a primary key so is not rendered by

default), while the right scatterplot also encodes the boolean color

attribute as the mark color. Thus, selecting points in the hp chart

highlights the corresponding rows in the mpg chart.

Filter: Listing 4 lists three sets of queries; each is grouped by a

di�erent attribute (hour, delay, and dist). Q1,4,7 do not �lter the

table, and the subsequent queries �lter by the grouping attributes

of the other two sets. For instance, Q2,3 group on hour and �lter on

delay and dist. These queries describe cross-�ltering, which PI2
automatically derives from �rst principles (Figure 14d). Brushing in

a chart updates the corresponding predicates in both other charts,

and clearing the brush disables the predicate (toggles its existence).

Q1 SELECT hour ,count (*) FROM flights GROUP BY hour

Q2 .. WHERE delay BTWN 0 & 50 AND dist BTWN 400 & 800 ..

Q3 ..WHERE delay BTWN 10 & 60 AND dist BTWN 10 & 300 ..

Q4 SELECT delay ,count (*) FROM flights GROUP BY delay

Q5 .. WHERE hour BTWN 10 & 16 AND dist BTWN 400 & 800 ..

Q6 ..WHERE hour BTWN 15 & 20 AND dist BTWN 200 & 700 ..

Q7 SELECT dist , count (*) FROM flights group by dist

Q8 .. WHERE hour BTWN 10 & 16 AND delay BTWN 0 & 50 ..

Q9 ..WHERE hour BTWN 8 & 19 AND delay BTWN 20 & 61 ..

Listing 4: Filter

7.2 Case Studies

We show case studies that use a real-world query log, reproduce a

real-world visualization, and author a complex sales dashboard.
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(a) Explore

(b) Connect

(c) Abstract

(d) Filter

Figure 14: Interfaces that express Yi et al.’s [Yi et al.] interaction taxonomy using queries in Listing 1, Listing 3, Listing 2 and

Listing 4. (a) panning ans zooming interaction, (b) linked selection, (c) overview and details interaction, (d) cross-�ltering.

(a) (b) (c)

Figure 15: Interfaces generated for case studies. (a) new interface from real SDSS queries, (b) reproducing Google’s Covid-19

Vis, (c) authoring a custom sales analysis dashboard.

Q1 SELECT DISTINCT gal.objID , gal.u, gal.g, gal.r,

gal.i, gal.z, s.z, s.ra , s.dec

FROM galaxy as gal , specObj as s

WHERE s.bestObjID = gal.objID AND s.z BTWN 0.1362 & 0.141 AND

s.ra BTWN 213.3 & 214.1 AND s.dec BTWN -0.9 & -0.2

Q2 ..AND s.ra BTWN 213.4191 & 213.9 AND s.dec BTWN -0.565 & -0.3111

Q3 ..AND s.ra BTWN 213.5 & 213.8 AND s.dec BTWN -0.34 & -0.2

-- many similar queries --

Q8 select DISTINCT ra, dec FROM specObj

WHERE ra BTWN 213.2 & 213.6 AND dec BTWN -0.3 & -0.1

Q9 ..WHERE ra BTWN 213 & 214 AND dec BTWN -0.8 & -0.4

Listing 5: Subset of SDSS queries

SDSS queries: Visitors can use textbox-based forms on the SDSS

website [43] to select a subset of stars that are returned as a text

table. The non-interactive forms are complex to support a wide

range of analyses. PI2 uses a subset of SDSS queries [44] (Listing 5)

to generate a custom analysis interface. Q1 is a join query to �lter

stars by their celestial coordinates (z, ra, dec) and Q2-7 vary the

right ascension (ra) and declination (dec). Finally, Q8,9 return star

locations within a bounding box. Figure 15a renders the �rst set

of queries as a table because those queries return 9 attributes, and

renders the star locations (Q8,9) as a scatterplot. Users can pan and

zoom in the scatterplot to update the table. In short, PI2 transformed

a text-based form into a fully interactive visual analysis interface.

Q1 SELECT date , cases FROM covid WHERE state='CA'

Q2 ..WHERE state= ’WA’ and date>date(today(), ’-30 days’)

Q3 ..WHERE state= ’CA’ and date >date(today(), ’-7 days’ )

Q4 SELECT date , deaths FROM covid WHERE state='CA'

Q5 ..WHERE state= ’NY’

Q6 ..WHERE state='WA' and date>date(today(),’-14 days’)

Q7 ..WHERE state='WA' and date >date(today(), ’-7 days’ )

Q8 ..WHERE state= ’NY’ and date >date(today(),'-7␣days')

Listing 6: Covid visualization queries

Reproducing Google’s Covid-19 Vis This example uses queries

in Listing 6 to reproduce the Covid-19 visualization on Google’s

results page for “covid19”. Q1-3 compute daily con�rmed cases for
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di�erent states and date intervals, while Q4-8 report daily deaths.

Note that Q1,Q4 do not �lter by date. Figure 15b reproduces the

interactions in Google’s visualization. The dropdowns change the

reported metric, state �lter, and date interval. The latter is an ex-

ample of a nested interaction, because the �lter on date interval

dropdown is only enabled when the toggle is turned on.

Q1 SELECT city , product , sum(total) FROM sales as ss

WHERE ss.date

GROUP BY city , product

HAVING sum(total) >= ( SELECT max(t) FROM

(SELECT sum(total) as t FROM sales as s

WHERE s.city = ss.city and

GROUP BY s.city , s.product ) )

Q2 ..WHERE ss.date BTWN ’2019-01-25’ & ’2019-02-15’

.. HAVING sum(total) >= ( SELECT max(t)

..s.date BTWN ’2019-01-25’ & ’2019-02-15’ ..'

Q3␣.. WHERE␣ss.date␣BTWN␣ ’2019-01-25’ & ’2019-02-15’

.. HAVING sum(total) >= ( SELECT max(t)

..s.date BTWN ’2019-01-25’ & ’2019-02-15’ ..

Q4 SELECT date, sum(total) FROM sales

WHERE branch = ’A’ AND product = ’Health and beauty’

GROUP BY date

Q5 .. WHERE branch = ’B’ and product = ’Electronics’ ..

Q6 .. WHERE branch = ’C’ and product = ’Lifestyle’ ..

-- many similar queries --

Listing 7: Complex sales analysis queries

Authoring a Sales Dashboard: This example is an analysis that

current authoring tools can’t create. Query 1 in Listing 7 returns

the total sales for products in di�erent cities with the maximum

total sales; it has multiple nested queries in the HAVING clause. Q2

modi�es the query by specifying the date range, Q3 modi�es Q2’s

date predicate in the outer and nested queries, and the remaining

return total sales by date for di�erent branches and products. The

top chart in Figure 15c renders the total sales by date, with controls

to �lter by branch and product; brushing it updates the bar chart

(which renders the product with top sales for each city during the

time period speci�ed by the brush). PI2 can transform arbitrarily

complex queries, and link visualizations. Existing authoring tools

cannot generate this interface: Metabase only supports parameters

in the WHERE clause [32], and Tableau does not parameterize custom

queries [49].

7.3 PI2 Performance and Quality

PI2 is primarily a�ected by three parameters:

Early Stop: stop MCTS if the optimal Difftree doesn’t change

in es ∈ [5, 100] iterations (default 30).

Parallelize over p ∈ [1, 4] workers (default 3).

Synchronization Interval: every s ∈ [5, 100] MCTS iterations

(default 10).

We measure runtimes for MCTS search and the �nal interface

mapping separately. We report the interface quality as follows:

given c as an interface’s cost, and c∗ as the minimum cost over all

evaluated conditions for a query log, we report c∗

c . 1 means the gen-

erated interface is optimal, and worse interfaces converge towards

0. We visually veri�ed that interfaces with c∗ were indeed the best,

and qualitatively, interfaces with quality above 85% are nearly the

same as the optimal (see appendix for examples of interfaces of

varying qualities).

We used all 7 query logs above, and average over 10 runs/con-

dition on 4x2.2GHz 16GB RAM Google Cloud VMs with Ubuntu

20.04 LTS.

Figure 16: Runtime-quality trade-o�s across all conditions.

Figure 17: Varying early stop and synchronization interval

increases runtime without tangible improvements to inter-

face quality. In contrast, parallelization increases the MCTS

cost, but can �nd higher quality Difftree structures for

complex interfaces such as Filter.

Runtime-Quality Trade-o�: We �rst report the end-to-end run-

time and interface quality from a sweep of all the parameters. We

vary es and s between 5 to 100 in increments of 5, and vary the

parallelization from 1 to 4. We �nd that PI2 is able to �nd the op-

timal interface in less than 1 second for the “simpler” query logs

(e.g., Explore, Connect, Sales, SDSS). Filter and Covid are more chal-

lenging because they result in many visualizations or interactions,

and we see a general trade-o� where con�gurations with longer

runtimes tend to generate higher quality results. We will dive into

the sensitivity to each parameter below. To avoid crowding the

graphs, we will use Explore to represent the “simpler” logs.

Parameter Sensitivity Figure 17 reports the three metrics (rows)

while varying each parameter (cols). To keep the plots legible, we

report results for Explore, Filter, and Covid because the remaining

logs have results nearly identical to Explore. Varying early stop and

the synchronization interval increases the MCTS runtime, but does

not impact interface quality. This is because PI2 �nds the optimal

Difftree structure very quickly, so larger early stop values or

synchronization intervals simply delay MCTS termination.
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Varying parallelization (middle col) slows MCTS search due to

synchronization overhead and stragglers. The mapping cost for

Filter when there is no parallelization is higher because the poor

qualityDifftree contains a huge number of choice nodes that must

bemapped. High qualityDifftrees tend to have fewer choice nodes,

which reduces the number of redundant interactions. Increasing

parallelization improves quality for Filter because MCTS explores

a larger subset of the search space. Note that the y-axis for quality

ranges from 85% to 100%, thus even with low parallelization, the

interfaces have reasonable quality.

Scalability:We also evaluated the runtime as the number of input

queries increases from 9 to 900 (by duplicating the Filter log). We

�nd that the runtime increases roughly linearly from a few seconds

to ≈2000s for 900 queries. This is expected as PI2 is not optimized

for scalability, and is dominated by (1) increased number of search

states, (2) higher cost to estimate the navigation cost due to the

larger number of queries, and (3) increased cost to check safety. We

expect sampling, caching, and approximation optimizations can

reduce these bottlenecks considerably. Further, we note that in an

authoring setting, the number of queries is unlikely to be large.

8 RELATED WORK

Interface generation: Existing works either take analysis queries

into account, nor generate fully interactive analysis interfaces. For

instance, prior work in the DB community generates form-based

search and record creation interfaces based solely on the database

content [18–20], but may generate over-complex forms because

it does not leverage analysis queries. Similarly, techniques from

the HCI community rely on the developer to provide task and

data speci�cations [14, 36, 38, 48, 51]. In this sense, PI2 models the

desired task using example queries. Visualization recommendation

algorithms [28, 30, 33, 52, 53, 58] output visualization designs based

on an input dataset but not full analysis interfaces. PI1 [57] uses

input queries, but is limited to unordered sets of widgets.

Authoring Tools: There are numerous interface [8, 21, 39] and

visualization [5, 41] programming libraries available, and tools like

AirTable [2], Figma [11], and Plasmic [37] help interface design-

ers rapidly iterate on the interface design. However, these still

require programming e�ort to use and combine. Dashboard au-

thoring tools such as Metabase [31], Retool [40], and Tableau [35]

let non-technical users create interactive SQL-based analysis dash-

boards. However, they restrict types of analyses and queries (e.g.,

to parameterized literals or OLAP queries) in order to keep their

own interfaces simple. In contrast, PI2 supports arbitrarily complex

queries and structure transforms for nearly any syntactic element

in the queries. Users “program” PI2 by providing example queries.

9 DISCUSSION AND CONCLUSION

PI2 is the �rst system to generate fully functional interactive vi-

sualization interfaces from a few examples analysis queries. PI2
introduces the Difftree structure to succinctly encode syntactic

variations between input queries as choice nodes. It formulates in-

terface generation as a schema matching problem from Difftree

results to visualizations, choice nodes to interactions, andDifftree

structure to layout. Transform rules “refactor” the Difftrees to

produce di�erent interfaces. PI2 can generate interfaces to cover

the interaction taxonomy proposed by Yi et al. [55], can generate

useful interfaces from real-world query logs, and replicate existing

visualizations, and can be used to author visualizations that are not

possible in existing visual authoring tools. In the evaluation, PI2
generated interfaces in 2 – 19s, with a median of 6s.

Our future work plans to improve system usability so users

can control how much PI2 generalizes from the input queries, and

replace subsets of the interface they do not like. Further, we will

focus on generating informative labels, support design principles

such as alignment and spacing, and improve scalability.

REFERENCES
[1] Alfred V Aho, Ravi Sethi, and Je�rey D Ullman. 1986. Compilers, principles,

techniques. Addison wesley 7, 8 (1986), 9.
[2] Airtable. 2021. Airtable. https://airtable.com/.
[3] Jacques Bertin. 1983. Semiology of graphics; diagrams networks maps. Technical

Report.
[4] Yngvi Bjornsson and Hilmar Finnsson. 2009. Cadiaplayer: A simulation-based

general game player. IEEE Transactions on Computational Intelligence and AI in
Games 1, 1 (2009), 4–15.

[5] M. Bostock, Vadim Ogievetsky, and J. Heer. 2011. D3 Data-Driven Documents.
IEEE Transactions on Visualization and Computer Graphics 17 (2011), 2301–2309.

[6] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,
Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,
Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree
Search Methods. IEEE Transactions on Computational Intelligence and AI in Games
4 (2012), 1–43.

[7] S. Card, T. Moran, and A. Newell. 1983. The psychology of human-computer
interaction.

[8] Winston Chang, Joe Cheng, J Allaire, Yihui Xie, Jonathan McPherson, et al. 2015.
shiny: Web Application Framework for R, 2015. In CRAN.

[9] Y. Chen and EugeneWu. 2020. Monte Carlo Tree Search for Generating Interactive
Data Analysis Interfaces. Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (2020).

[10] Rémi Coulom. 2006. E�cient Selectivity and Backup Operators in Monte-Carlo
Tree Search. In Computers and Games.

[11] Figma. 2021. Figma: the collaborative interface design tool.
https://www.�gma.com.

[12] FiveThirtyEight. 2021. All Posts Tagged Data Visualization.
https://�vethirtyeight.com/tag/data-visualization/.

[13] Flask. 2021. Welcome to Flask — Flask Documentation (2.0.x).
https://�ask.palletsprojects.com/en/2.0.x/.

[14] Krzysztof Z Gajos and Daniel S. Weld. 2004. SUPPLE: automatically generating
user interfaces. In IUI ’04.

[15] Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock. 2010. Automatically
generating personalized user interfaces with Supple. Artif. Intell. 174 (2010),
910–950.

[16] Google. 2021. Facets - Know Your Data. https://pair-code.github.io/facets/.
[17] iCheck. 2021. iCheck. icheckuclaim.org.
[18] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao Li,

Arnab Nandi, and Cong Yu. 2007. Making database systems usable. In SIGMOD.
[19] Magesh Jayapandian andHV Jagadish. 2008. Automated creation of a forms-based

database query interface. In PVLDB. VLDB Endowment.
[20] Magesh Jayapandian and H. V. Jagadish. 2006. Automating the Design and

Construction of Query Forms. In TKDE.
[21] JQuery. 2021. jQuery. https://jquery.com/.
[22] Kaggle. 2021. Dataset: Supermarket Sales. https://www.kaggle.com/aungpyaeap/

supermarket-sales.
[23] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. 2011. Wrangler: interactive

visual speci�cation of data transformation scripts. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2011).

[24] D. Kieras. 1994. GOMS modeling of user interfaces using NGOMSL. In CHI ’94.
[25] Knex.js. 2021. A SQL Query Builder for Javascript. http://knexjs.org/.
[26] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. Deepeye: Towards

automatic data visualization. In 2018 IEEE 34th international conference on data
engineering (ICDE). IEEE, 101–112.

[27] I Scott MacKenzie and William Buxton. 1992. Extending Fitts’ law to two-
dimensional tasks. In Proceedings of the SIGCHI conference on Human factors
in computing systems. 219–226.

[28] Jock Mackinlay. 1986. Automating the design of graphical presentations of
relational information. In Transactions On Graphics.

[29] J. Mackinlay, P. Hanrahan, and Chris Stolte. 2007. Show Me: Automatic Pre-
sentation for Visual Analysis. IEEE Transactions on Visualization and Computer

https://www.kaggle.com/aungpyaeap/supermarket-sales
https://www.kaggle.com/aungpyaeap/supermarket-sales


PI2 : Generating Visual Analysis Interfaces From�eries

Graphics 13 (2007).
[30] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show me: Automatic

presentation for visual analysis. In TVCG.
[31] Metabase. 2021. Metabase. https://www.metabase.com.
[32] Metabase. 2021. Metabase Documentation: SQL Parameters. https://www.

metabase.com/docs/latest/users-guide/13-sql-parameters.html.
[33] Dominik Moritz, Chenglong Wang, Greg L. Nelson, H. Lin, Adam M. Smith, Bill

Howe, and Je�rey Heer. 2018. Formalizing Visualization Design Knowledge as
Constraints: Actionable and Extensible Models in Draco.. In TVCG.

[34] Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Adam M. Smith,
Bill Howe, and J. Heer. 2019. Formalizing Visualization Design Knowledge as
Constraints: Actionable and Extensible Models in Draco. IEEE Transactions on
Visualization and Computer Graphics 25 (2019), 438–448.

[35] Daniel Murray. 2013. Tableau Your Data!: Fast and Easy Visual Analysis with
Tableau Software.

[36] Je�rey Nichols, Brad A Myers, and Kevin Litwack. 2004. Improving automatic
interface generation with smart templates. In IUI.

[37] Plasmic. 2021. Plasmic: The visual builder for your tech stack.
https://www.plasmic.app/.

[38] Angel R Puerta, Henrik Eriksson, John H Gennari, and Mark A Musen. 1994.
Model-based automated generation of user interfaces. In AAAI.

[39] React. 2021. A JavaScript library for building user interfaces. https://reactjs.org/.
[40] Retool. 2021. Build internal tools, remarkably fast. https://www.retool.com.
[41] A. Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and J. Heer. 2017.

Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on Visualization
and Computer Graphics 23 (2017), 341–350.

[42] Maarten PD Schadd, Mark HMWinands, H Jaap Van Den Herik, Guillaume MJ-B
Chaslot, and Jos WHM Uiterwijk. 2008. Single-player monte-carlo tree search.
In International Conference on Computers and Games. Springer, 1–12.

[43] SDSS. 2021. SDSS Skyserver Website. http://skyserver.sdss.org/dr16/en/tools/
search/radial.aspx.

[44] SDSS. 2021. SDSS Weblog SQL Search. http://skyserver.sdss.org/log/en/tra�c/
sql.asp?url=http://skyserver.sdss.org/log/en/tra�c///help/download/.

[45] A. Sears. 1993. Layout Appropriateness: A Metric for Evaluating User Interface
Widget Layout. IEEE Trans. Software Eng. 19 (1993), 707–719.

[46] D. Silver, Aja Huang, Chris J. Maddison, A. Guez, L. Sifre, G. V. D. Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot,
S. Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, T.
Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. 2016. Mastering
the game of Go with deep neural networks and tree search. Nature 529 (2016),
484–489.

[47] C. Stolte, Diane Tang, and P. Hanrahan. 2008. Polaris: a system for query, analysis,
and visualization of multidimensional databases. Commun. ACM 51 (2008), 75–84.

[48] Amanda Swearngin, Chenglong Wang, Alannah Oleson, James Fogarty, and
Amy J Ko. 2020. Scout: Rapid Exploration of Interface Layout Alternatives
through High-Level Design Constraints. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. 1–13.

[49] Tableau. 2021. Connect to a Custom SQLQuery. https://help.tableau.com/current/
pro/desktop/en-us/customsql.htm.

[50] Tableau. 2021. CubeData Sources. https://help.tableau.com/current/pro/desktop/en-
us/cubes.htm.

[51] Jean Vanderdonckt. 1994. Automatic generation of a user interface for highly
interactive business-oriented applications. In CHI.

[52] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J
Ko. 2021. Falx: Synthesis-Powered Visualization Authoring. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–15.

[53] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Je�rey Heer. 2016. Voyager: Exploratory analysis via faceted browsing
of visualization recommendations. In TVCG.

[54] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining away outliers in
aggregate queries. (2013).

[55] J. S. Yi, Y. Kang, J. Stasko, and J. Jacko. 2007. Toward a Deeper Understanding
of the Role of Interaction in Information Visualization. IEEE Transactions on
Visualization and Computer Graphics 13 (2007), 1224–1231.

[56] Donald G York, J Adelman, John E Anderson Jr, Scott F Anderson, James Annis,
Neta A Bahcall, JA Bakken, Robert Barkhouser, Steven Bastian, Eileen Berman,
et al. 2000. The sloan digital sky survey: Technical summary. The Astronomical

Journal 120, 3 (2000), 1579.
[57] Qianrui Zhang, Haoci Zhang, Thibault Sellam, and Eugene Wu. 2019. Mining

precision interfaces from query logs. In Proceedings of the 2019 International
Conference on Management of Data. 988–1005.

[58] Jonathan Zong, D. Barnwal, Rupayan Neogy, and A. Satyanarayan. 2021. Lyra
2: Designing Interactive Visualizations by Demonstration. IEEE Transactions on
Visualization and Computer Graphics 27 (2021), 304–314.

A EXAMPLES OF INTERFACES OF VARYING
QUALITIES

Below shows two non-optimal interfaces. Figure 18 shows an in-

terface for �lter queries in Listing 4 with its quality equal to 0.87.

Compared with the optimal interface in Figure 14d, it has an extra

toggle button which toggles the existence of the �rst chart’s �lter

predicates. If the toggle is on, the brushing in the second and third

charts will update the �rst chart by adding corresponding predi-

cates to its underlying query’s where clause, otherwise, the �rst

chart will not be a�ected by the brushing interactions on the other

charts. Figure 19 shows the interface for sales analysis queries in

Listing 7 whose quality is 0.893. Compared to the optimal one in

Figure 15c, the third static chart is newly added which only ex-

press Q1 – the total sales for products in di�erent cities with the

maximum total sales without any date range constraint. The other

charts stay the same that brushing in the �rst chart will update the

second chart by specifying the date range. From above, we can see

that although we did not �nd the optimal Difftrees in these two

example, such non-optimal interfaces with high quality above 85%

are already nearly the same as the optimal ones .

Figure 18: Non-optimal interface for �lter usecasewith qual-

ity = 0.87.
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Figure 19: Non-optimal interface for sales analysis queries

with quality = 0.893.
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