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CHAPTER I

Introduction and Preliminaries

1.1 General Background

1.1.1 Defining our Terms

We begin by defining all the terms in the title of the thesis.

1.1.1.1 Definition. A surface is a two-dimensional projective algebraic variety

over C.

1.1.1.2 Definition. A hypersurface is a geometric object (variety) described by

the zero-set of a single equation in homogenous coordinates, e.g. a two-dimensional

variety described by a single equation; an example is x4 + y4 + z4 + w4 = 0.

We form a family of hypersurfaces by varying the coefficients in the equation. For

example, 2x4 + 5y4 + 3z4 + 10w4 = 0 is in the same family as x4 + y4 + z4 +w4 = 0.

1.1.1.3 Definition. The canonical bundle is the top exterior power of the sheaf of

holomorphic 1-forms, = Λ2ΩS.

1.1.1.4 Definition. A surface is K3 if it is nonsingular, simply-connected and has

trivial canonical bundle.

1



2

1.1.2 The Picard Lattice

1.1.2.1 Definition. The Picard Group Pic(S) is the group of isomorphism classes

of line bundles on S.

For K3 surfaces, this is equivalent to the group of linear equivalence classes of divisors

(linear combinations of curves) on the surface. K3 surfaces are all diffeomorphic. Fur-

thermore, for every K3 surface, H2(S,Z) together with the cup product is naturally

a lattice, i.e. a nondegenerate symmetric bilinear form, isomorphic to (E8)
2 ⊥ (U)3.

One way to distinguish K3 surfaces is to examine sublattices of H2(S,Z). In our

case, Pic(S) injects into H2(S,Z) and its image is Pic(S) = H2(X,Z) ∩H1,1(X,C)

(see sections 1.3.2,1.3.3). We determine the Picard Lattice by restricting the bilinear

form on H2(S,Z) to Pic(S). So computing Pic(S) is essentially computing which

2-cycles are represented by algebraic curves.

In general, it is a difficult and interesting problem to compute Pic(S) for a random

surface.

1.1.3 Fibrations

It happens that most of the surfaces we will examine in this thesis have elliptic

fibrations.

1.1.3.1 Definition. An elliptic fibration is a map π : S → B from our surface S

to some base curve B, such that the general fibre π−1(b) is an elliptic curve.

Here is an example, to give the reader a visual image of Pic(S). We often refer to

irreducible fibres and components of reducible fibre as ‘vertical’ curves.

1.1.3.2 Definition. A section is a divisor which intersects each general fibre at

one point. A multisection, or n-section, intersects each general fibre at n points.
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section

P1

S

π

fibres

3-section

Figure 1.1: A Sample Fibration

Sections and multisections are referred to as ‘horizontal’ curves, and can intersect

themselves and each other (contrary to Figure 1.1, which is drawn for maximal

clarity). In Figure 1.1, Pic(S) is roughly the group of different kinds of curves on

the surface. All the fibres are linearly equivalent; there is one reducible fibre, whose

components contribute to Pic(S); and then there are sections and multisections. For

more on fibrations, see section 1.7. While I have just defined Pic(S) for nonsingular

surfaces, the theory extends to surfaces with A−D − E singularities as well.

1.1.4 Resolving Singularities

One way that we obtain reducible fibres is from desingularizing a surface. (A

surface is nonsingular if it is a manifold.) The intuitive way to desingularize an

object, e.g. for a cusp or node, is to embed the object into a larger-dimensional

ambient space so one can “untwist” it in some sense. There is a way to formalize

this process [BPV, §I.9]: If we have a singular projective surface S in Pn, then

we embed S in Pn × Pn−1. In particular, we examine an open subset U around a

singular point x = �xi, and consequently U × Pn−1. Let us denote the coordinates on
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Pn by (u0, . . . , un) and those on Pn−1 by (v0, . . . , vn−1). Now consider the subset Ū of

U×Pn−1 defined by the set of equations (ui−xi)vj−(uj−xj)vi = 0, for i, j = 0, n−1.

The projection π : Ū → U is an isomorphism outside of x, and π−1(x) ∼= Pn−1. We

often refer to this as “blowing up.”

Consider for a moment a curve in P2 with a singular point x; geometrically,

blowing up is attaching a copy of P1 to x, where t ∈ P1 corresponds to the possible

tangent directions at x. Then the curve intersects P1 once for each tangent vector at

x in the singular model of the curve; in other words, we have “untwisted” the curve

along P1. This is pictured in Figure 1.2.

π

Figure 1.2: Desingularizing a Curve

1.1.5 Objects of Study

Here, we examine all families of K3 surfaces which occur as Gorenstein hyper-

surfaces in weighted projective 4-space. These were classified by Miles Reid; there

are 95 of them. This list of surfaces arises in many subfields of algebraic geometry,

including singularity theory and the birational geometry of three-folds. The appli-

cation here will be to mirror symmetry (see section 1.3). For full details on these

surfaces, see section 1.6.1.

1.1.5.1 Definition. A weighted projective space is denoted by P(q1, q2, . . . , qn). It

is the image of the quotient map

f̄ : P3 → P(q0, q1, q2, q3) = P3/(µq0 × µq1 × µq2 × µq3).
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If the coordinates of P3 are x0, x1, x2, x3, then f̄ sends xj �→ x̄j = x
qj

j .

So, associated to each of the 95 families of hypersurfaces is a weight-vector q =

(q1, q2, q3, q4) which describes the weighted projective space P(q1, q2, q3, q4) in which

it lies. We restrict our attention to a hyperplane of the weighted projective space,

i.e. a 3-fold, so our hypersurface is of a three-fold, which is a surface.

1.2 History of the Problem

In 1974, V.I. Arnold listed 14 surface singularities (called “exceptional unimodal

critical points”). These are of the form f(x1, x2, x3) = 0 and can be projectivized

and smoothed by changing them to f(x1, x2, x3) + xd
0 = 0; they can then be studied

as surfaces. A. Gabrielov calculated the homology of the Milnor Lattice of vanish-

ing cycles for each of these surface singularities. Concurrently, I. Dolgachev was

calculating the resolution of singularities for each one. The results of each calcula-

tion could be expressed as triples of integers associated to the surface. Interestingly,

when Dolgachev’s and Gabrielov’s data were compared, it was found that the sur-

faces paired (S, S ′) in such a way that the Dolgachev numbers for S were the same as

the Gabrielov numbers for S ′ (and, of course, vice-versa). Arnold termed this prop-

erty a “strange duality.” Pinkham, Dolgachev, and Nikulin explained this “strange

duality” in the late 1970s, using the theory of K3 surfaces.

These days many mathematicians and physicists discuss “Mirror Symmetry,” mainly

for Calabi-Yau threefolds. Mirror symmetry pairs two families of manifolds in such

a way that several complicated properties are satisfied (see, for example, [Dolg1] for

details). Now, Calabi-Yau threefolds are the three-dimensional analogue of K3 sur-

faces; both have canonical class equivalent to 0. Naturally it would be interesting to

think about what a K3 analogue of the Calabi-Yau threefold mirror symmetry would
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be, so many people investigated this and found that in fact the “strange duality”

was such an analogue.

The Problem. A newer question, which arose from studying the K3 mirror

symmetry, is as follows: Can one extend this notion of duality to surfaces other than

the original 14? In particular, there is Reid’s list of 95 families of weighted projective

K3-hypersurfaces with Gorenstein singularities, among which the 14 Arnold singu-

larities occur. It would be most interesting to see if all, many, or any of the other

surfaces on the list mirror each other. The quick answer to this is that many do, but

not all. The results are below, in Table 1.1; details are in Chapter 3. The notation

in Table 1.1 is explained in 1.3.3, 1.4, 1.5, 1.6.1, 2.2, and A.0.0.7.

Table 1.1: Pic(S) for the 95 Families and Their Mirrors

No. Rank Pic(S) Mirror Lattice and Family Weights

1 ρ = 1 〈4〉 (E8)
2 ⊥ 〈−4〉 ⊥ U 56, 73 (1, 1, 1, 1)

2 ρ = 12 E6 ⊥ D4 ⊥ U(3) D4 ⊥ A2 ⊥ U(3) not on list (2, 3, 3, 4)
3 ρ = 4 M(1,1,1),(1,1,1),0 E8 ⊥ D4 ⊥ A2 ⊥

U
not on list (1, 1, 2, 2)

4 ρ = 10 T4,4,4 T4,4,4 4 (1, 3, 4, 4)
5 ρ = 1 〈2〉 (E8)

2 ⊥ A1 ⊥ U 52, tetra. (1, 1, 1, 3)
6 ρ = 6 D4 ⊥ U(2) D8 ⊥ D4 ⊥ U 26, 34, 76 (1, 2, 2, 5)
7 ρ = 3 M(1,1),(1,1),0 E8 ⊥ D7 ⊥ U 64 (1, 1, 2, 4)
8 ρ = 7 M(1,1,2,2),(1,1,1,1),−2 q = w1

3,1 ⊥ w−1
2,2 not on list (1, 2, 3, 6)

9 ρ = 10 T2,5,5 T2,5,5 9,71 (1, 4, 5, 10)
10 ρ = 2 U (E8)

2 ⊥ U 65, 46, 80 (1, 1, 4, 6)
11 ρ = 12 E6 ⊥ D4 ⊥ U D4 ⊥ A2 ⊥ U 24 (2, 3, 10, 15)
12 ρ = 6 D4 ⊥ U E8 ⊥ D4 ⊥ U 27, 49 (1, 2, 9, 6)
13 ρ = 8 E6 ⊥ U E8 ⊥ A2 ⊥ U 20, 59 (1, 3, 8, 12)
14 ρ = 10 E8 ⊥ U E8 ⊥ U 14,28,45,51 (1, 6, 14, 21)
15 ρ = 14 E6 ⊥ (A2)

3 ⊥ U (A2)
2 ⊥ U(3) not on list (3, 3, 4, 5)

continued on next page



7

continued from previous page

No. Rank Pic(S) Mirror Lattice and Family Weights

16 ρ = 16 E8 ⊥ (A2)
3 ⊥ U A2 ⊥ U(3) not on list (3, 6, 7, 8)

17 ρ = 14 T2,5,5 ⊥ A4 A4 ⊥

(

2 1
1 −2

)

not on list (2, 3, 5, 5)

18 ρ = 8 M(1,2,2,2),(1,1,1,1),−2 q = w1
3,2 ⊥ w1

3,1 not on list (1, 2, 3, 3)
19 ρ = 7 M(1,1,1,1,2),(1,1,1,1,1),−2 q = v ⊥ w1

2,3 not on list (1, 2, 2, 3)
20 ρ = 12 E8 ⊥ A2 ⊥ U E6 ⊥ U 13, 72 (1, 6, 8, 9)

21 ρ = 2

(

2 1
1 −2

)

E8 ⊥ T2,5,5 30, 86 (1, 1, 1, 2)

22 ρ = 10 E6 ⊥ A2 ⊥ U E6 ⊥ A2 ⊥ U 22 (1, 3, 5, 6)
23 ρ = 11 D5 ⊥ D4 ⊥ U(2) D4 ⊥ A3 ⊥ U(2) not on list (2, 2, 3, 5)
24 ρ = 8 D4 ⊥ A2 ⊥ U E6 ⊥ D4 ⊥ U 11 (1, 2, 4, 5)
25 ρ = 4 A2 ⊥ U E8 ⊥ E6 ⊥ U 43, 48, 88 (1, 1, 3, 4)
26 ρ = 14 D8 ⊥ D4 ⊥ U D4 ⊥ U(2) 6 (2, 4, 5, 9)
27 ρ = 14 E8 ⊥ D4 ⊥ U D4 ⊥ U 12 (2, 3, 8, 11)
28 ρ = 10 E8 ⊥ U E8 ⊥ U 14,28,45,51 (1, 3, 7, 10)
29 ρ = 16 T2,5,5 ⊥ D6 q = w−1

5,1 ⊥ (w−1
2,1)

2 not on list (4, 5, 6, 15)

30 ρ = 18 E8 ⊥ T2,5,5

(

2 1
1 −2

)

21 (5, 7, 8, 20)

31 ρ = 15 E6 ⊥ A7 ⊥ U q = w−1
2,3 ⊥ w1

3,1 not on list (3, 4, 5, 12)
32 ρ = 10 D4 ⊥ D4 ⊥ U(2) D4 ⊥ D4 ⊥ U(2) 32 (2, 2, 3, 7)

33 ρ = 12
M(1,1,1,1,2,2,3),

(1,1,1,1,1,1,1),−4
q = w1

3,1 ⊥ v ⊥

w1
2,1 ⊥ w−1

2,1

not on list (2, 3, 4, 9)

34 ρ = 14 D8 ⊥ D4 ⊥ U D4 ⊥ U(2) 6 (2, 6, 7, 15)
35 ρ = 16 E8 ⊥ A6 ⊥ U M(1,2),(1,1),0 66 (3, 4, 7, 14)

36 ρ = 13 T2,5,5 ⊥ A3 D5 ⊥

(

2 1
1 −2

)

not on list (2, 3, 5, 10)

37 ρ = 9 T3,4,4 T2,5,6 58 (1, 3, 4, 8)
38 ρ = 11 E8 ⊥ A1 ⊥ U E7 ⊥ U 50, 82 (1, 6, 8, 15)
39 ρ = 9 E6 ⊥ A1 ⊥ U E7 ⊥ A2 ⊥ U 60 (1, 3, 5, 9)
40 ρ = 7 D4 ⊥ A1 ⊥ U E7 ⊥ D4 ⊥ U 81 (1, 2, 4, 7)
41 ρ = 13 E6 ⊥ D5 ⊥ U A3 ⊥ A2 ⊥ U not on list (2, 3, 7, 12)
42 ρ = 3 A1 ⊥ U E8 ⊥ E7 ⊥ U 68, 83, 92 (1, 1, 3, 5)
43 ρ = 16 E8 ⊥ E6 ⊥ U A2 ⊥ U 25 (3, 4, 11, 18)
44 ρ = 7 D5 ⊥ U E8 ⊥ A3 ⊥ U not on list (1, 2, 5, 8)
45 ρ = 10 E8 ⊥ U E8 ⊥ U 14,28,45,51 (1, 4, 9, 14)
46 ρ = 18 E2

8 ⊥ U U 10 (5, 6, 22, 33)
continued on next page
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continued from previous page

No. Rank Pic(S) Mirror Lattice and Family Weights

47 ρ = 15 E7 ⊥ E6 ⊥ U A2 ⊥ A1 ⊥ U not on list (3, 4, 14, 21)
48 ρ = 16 E8 ⊥ E6 ⊥ U A2 ⊥ U 25 (3, 5, 16, 24)
49 ρ = 14 E8 ⊥ D4 ⊥ U D4 ⊥ U 12 (2, 5, 14, 21)
50 ρ = 9 E7 ⊥ U E8 ⊥ A1 ⊥ U 38, 77 (1, 4, 10, 15)
51 ρ = 10 E8 ⊥ U E8 ⊥ U 14,28,45,51 (1, 5, 12, 18)
52 ρ = 19 E8 ⊥ D9 ⊥ U ∼=

(E8)
2 ⊥ 〈−4〉 ⊥ U

〈4〉, q = w1
2,2 5 (7, 8, 9, 12)

53 ρ = 15
M(1,2,2,2,3,4),

(1,1,1,1,1,1),−4
q = w1

3,2 ⊥ w1
3,1 ⊥

w−1
2,1

not on list (3, 4, 5, 6)

54 ρ = 16 E8 ⊥ (A2)
3 ⊥ U A2 ⊥ U(3) not on list (3, 5, 6, 7)

55 ρ = 15 D9 ⊥ D4 ⊥ U w1
2,2 ⊥ u not on list (2, 5, 6, 7)

56 ρ = 19 E2
8 ⊥ A1 ⊥ U 〈2〉, q = w1

2,1 1 (5, 6, 8, 11)
57 ρ = 17 E8 ⊥ D5 ⊥ A2 ⊥

U
w5

2,2 ⊥ w−1
3,1 not on list (4, 5, 6, 9)

58 ρ = 11 T2,5,6 T3,4,4 37 (1, 4, 5, 6)
59 ρ = 12 E8 ⊥ A2 ⊥ U E6 ⊥ U 13, 72 (1, 5, 7, 8)
60 ρ = 11 E7 ⊥ A2 ⊥ U E6 ⊥ A1 ⊥ U 39 (1, 4, 6, 7)
61 ρ = 18 E8 ⊥ D8 ⊥ U U(2) not on list (4, 6, 7, 11)
62 ρ = 16 D9 ⊥ D5 ⊥ U q = w1

2,2 ⊥ w5
2,2 not on list (3, 4, 5, 8)

63 ρ = 8 M(1,1,2,3),(1,1,1,1),−2 T2,5,5 ⊥ (A1)
2 not on list (1, 2, 3, 4)

64 ρ = 17 E8 ⊥ D7 ⊥ U M(1,1),(1,1),0 7 (3, 4, 7, 10)
65 ρ = 18 E2

8 ⊥ U U 10 (3, 5, 11, 14)
66 ρ = 4 M(1,2),(1,1),0 E8 ⊥ A6 ⊥ U 35 (1, 1, 2, 3)
67 ρ = 14 E2

6 ⊥ U ∼= E8 ⊥
(A2)

2 ⊥ U
(A2)

2 ⊥ U not on list (2, 3, 7, 9)

68 ρ = 17 E8 ⊥ E7 ⊥ U A1 ⊥ U 42 (3, 4, 10, 13)
69 ρ = 13 D4 ⊥ A7 ⊥ U q = w−1

2,3 ⊥ v not on list (2, 3, 4, 7)
70 ρ = 14 E8 ⊥ A2 ⊥

(A1)
2 ⊥ U

q = w−1
3,1 ⊥ (w1

2,1)
2 not on list (2, 3, 5, 8)

71 ρ = 10 T2,5,5 T2,5,5 9, 71 (1, 3, 4, 7)
72 ρ = 8 E6 ⊥ U E8 ⊥ A2 ⊥ U 20, 59 (1, 2, 5, 7)
73 ρ = 19 E2

8 ⊥ A1 ⊥ U 〈2〉, q = w1
2,1 1 (7, 8, 10, 25)

74 ρ = 17 M(3,3,4,6),(1,1,1,3),−4 q = w−5
2,3 not on list (4, 5, 7, 16)

75 ρ = 13 E7 ⊥ (A1)
4 ⊥ U (A1)

5 ⊥ U not on list (2, 4, 5, 11)
76 ρ = 14 D8 ⊥ D4 ⊥ U D4 ⊥ U(2) 6 (2, 5, 6, 13)
77 ρ = 11 E8 ⊥ A1 ⊥ U E7 ⊥ U 50, 82 (1, 5, 7, 13)

continued on next page
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No. Rank Pic(S) Mirror Lattice and Family Weights

78 ρ = 10 E7 ⊥ A1 ⊥ U E7 ⊥ A1 ⊥ U 78 (1, 4, 6, 11)
79 ρ = 15 E8 ⊥ D5 ⊥ U A3 ⊥ U not on list (2, 5, 9, 16)
80 ρ = 18 E2

8 ⊥ U U 10 (4, 5, 13, 22)
81 ρ = 13 E8 ⊥ (A1)

3 ⊥ U D4 ⊥ A1 ⊥ U 40 (2, 3, 8, 13)
82 ρ = 9 E7 ⊥ U E8 ⊥ A1 ⊥ U 38, 77 (1, 3, 7, 11)
83 ρ = 17 E8 ⊥ E7 ⊥ U A1 ⊥ U 42 (4, 5, 18, 27)
84 ρ = 18 E8 ⊥ A8 ⊥ U q = w−1

3,2 not on list (5, 6, 7, 9)
85 ρ = 13 D4 ⊥ A6 ⊥ A1 ⊥

U
D4 ⊥ 〈14〉 ⊥ U not on list (2, 3, 4, 5)

86 ρ = 18 E8 ⊥ T2,5,5

(

2 1
1 −2

)

21 (4, 5, 7, 9)

87 ρ = 10 T3,4,5 T3,4,5 87 (1, 3, 4, 5)
88 ρ = 16 E8 ⊥ E6 ⊥ U A2 ⊥ U not on list (2, 5, 9, 11)
89 ρ = 8 M(1,2,4),(1,1,2),−2 A10 ⊥ U not on list (1, 2, 3, 5)
90 ρ = 17 E8 ⊥ D6 ⊥ A1 ⊥

U
A1 ⊥ U(2) not on list (4, 6, 7, 17)

91 ρ = 18 E8 ⊥ E7 ⊥ A1 ⊥
U

q = w1
2,1 ⊥ w−1

2,1 not on list (5, 6, 8, 19)

92 ρ = 17 E8 ⊥ E7 ⊥ U A1 ⊥ U 42 (3, 5, 11, 19)
93 ρ = 16 E8 ⊥ D6 ⊥ U (A1)

2 ⊥ U not on list (3, 4, 10, 17)
94 ρ = 16 M(2,3,4,6),(1,1,2,2),−4 q = w1

19,1 not on list (3, 4, 5, 7)
95 ρ = 14 M(1,2,4,6),(1,1,2,3),−4 q = w−1

17,1 not on list (2, 3, 5, 7)

1.3 Defining Mirror Symmetry

1.3.1 Mirror Symmetry for Threefolds

Before we answer the main question, we need to discuss the definition of mirror

families. We will begin by thinking about Calabi-Yau threefolds for a moment. In the

original definition of mirror symmetry, one of the properties that determines when

threefolds X and X ′ are mirrors is the following relationship between the Hodge

numbers:

h1,1(X) = h2,1(X ′), h1,1(X ′) = h2,1(X).
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This property is equivalent to rotating the Hodge Diamond 90◦ counterclockwise

and getting the same values back; in other words, we are setting the rank of Pic(X),

which is h1,1, equal to the dimension of the moduli space (the tangent space to the

space of deformations), which is h2,1. This is explained fully in [Dolg1].

1.3.2 Facts About K3 Surfaces

Let us examine the Hodge Diamond for K3 surfaces. H2 has rank 22, and this

decomposes as h2,0 = h0,2 = 1, h1,1 = 20. We have that h0,0 = 1 = h2,2 and

h2,1 = h1,2 = h0,1 = h1,0 = 0 because K3-surfaces are simply connected (and we use

Poincaré and Serre duality) [BPV, p.241]. The Hodge Diamond is invariant under

rotation 90◦ counterclockwise. In the threefold case, it was h1,1 that we examined,

and h1,1 is now at the center of the Diamond. In particular, both Pic(S) and the

tangent space to the space of deformations lie within H1,1, which suggests that we

will want to look at its structure when defining our analogous mirror symmetry.

H2(S,Z) ∼= (E8)
2 ⊥ (U)3 [BPV, p.241]

for any K3 surface; we consider the intersection form on H2, which gives us the

bilinear form on the lattice.

1.3.2.1 Definition. U is the hyperbolic plane,







0 1

1 0






, and we can think of

this in geometric terms as the intersection matrix of a section with a fibre.

1.3.3 Definition of Mirror Symmetry for K3 Surfaces

To define Mirror Symmetry, we will analyze H2. Pic(S), the group of linear

equivalence classes of Cartier divisors, injects into H2(S,Z) for K3 surfaces [BPV,

p.241]. The image of Pic(S) inH2(S,Z) is the algebraic cycles inH2(S,Z); a theorem
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of Lefschetz says that for ω ∈ H2,0,
∫

γ
ω = 0 if and only if γ is algebraic. Therefore

Pic(S) = H1,1
R
∩H2(S,Z). Note that Pic(S) →֒ H2(S,Z) is a primitive embedding of

lattices, because if nγ ∈ Pic(S) then 0 =
∫

nγ
ω = n

∫

γ
ω so

∫

γ
ω = 0 and γ ∈ Pic(S).

Thus, there is no torsion in the image of Pic(S) in H2(S,Z), so we may consider

Pic(S) as a lattice, and call it the Picard lattice.

1.3.3.1 Definition. Two surfaces form a mirror pair (S, S ′) if

Pic(S)⊥H2(S,Z) = Pic(Š) ⊥ U as lattices.

Just as we call Pic(S) the Picard Lattice, we refer to Pic(Š) as the mirror lattice.

1.4 Calculating ρ(S)

In 1979, M. Reid classified and listed all families of weighted projective Gorenstein

K3-hypersurfaces, but he never published this list. [Yonemura] lists the weight-

vectors for the associated weighted projective spaces for each of the 95 families of

surfaces. Let π : S̃ → S be the resolution of singularities. The first thing we need

to determine is ρ(S̃), the rank of the Picard lattice. We know that S has a natural

desingularization in terms of Apj
singularities (see Section 1.6.2).

1.4.0.2 Theorem. ρ(S̃) = 1 + Σjpj, where the pj are the types of the cyclic

singularities of S.

Proof of 1.4.0.2. We combine the two lemmas below; the first gives the rank of

Pic(S) before desingularizing, and the second addresses the contribution to Pic(S̃)

by desingularizing.
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1.4.0.3 Lemma. Let S be a generic surface in one of the 95 families. Then

ρ(S) = 1.

Proof of 1.4.0.3. The degree of the generic surface is the weight of a variable times

its degree in the equation. In our case, the degree is s = q0+ q1+ q2+ q3 (see Section

1.6.1). In [Cox], the author examines the cup product c : H1(S, TS)0 × H2,0(S) →

H1,1(S) where H1(S, TS)0 represents the variations in S from varying the coeffi-

cients in its equation. He concludes that if this map is surjective, then for generic

S, rk(Pic(S)) = 1. We will now show that this map is surjective when the degree

equals s. Denote by R =
⊕

Rs the graded Jacobian ring C[x0, x1, x2, x3]/∂f . Then,

H2,0(S) = R0, H1,1(S) = Rs by [Dolg3, 4.3.3]; H1(S, TS)0 = H1(S,Ω1
S)0 = (H1,1)0 =

the primitive part of H1,1, which is all of H1,1 on a surface and so H1(S, TS) = Rs.

Because c is just the multiplication in R, it is an isomorphism because R0 is gener-

ated by 1. Thus c is surjective.

1.4.0.4 Lemma. The contribution to Pic(S̃) from desingularizing S is Σjpj where

the pj are the types of the Apj
singularities of S.

Proof of 1.4.0.4. Yonemura calculates (and we verify by computer (see section

1.6)) a minimal desingularization of each surface. Each singularity is of type Apj
(see

section 1.6.1), and so its minimal desingularization produces pj+1 (-2)-curves [BPV,

§V.7]. It is clear that these are independent by examining their intersections with

each other. We know that before desingularizing, Pic(S) ∼= Z; when we desingularize,

we have, up to finite index, the orthogonal decomposition Pic(S̃) = ΣjApj
⊕π∗Pic(S).

Henceforth we will abuse notation by referring to the rank of the Picard Lattice of

the nonsingular model of S as ρ(S).



13

1.4.0.5 Remark. It is interesting to note that there are not many results on the

Picard number of a family of toric hypersurfaces. If there were results for more

general toric hypersurfaces, one could apply most of the techniques listed later to a

wider class of objects.

1.5 Somewhat of an Aside: Lattices

This section summarizes general background on lattices. Further information on

specific types of lattices may be found in Chapter 2 and Appendix 1.

1.5.0.6 Definition. We define a lattice as a pair (L, b) where L is a finite-rank

free Z-module and b is a Z-valued nondegenerate symmetric bilinear form.

We will only consider even lattices, those where b(l, l) is even for all l. We also denote

b(l, l) by 〈l, l〉.

1.5.0.7 Definition. The discriminant of a lattice is the determinant of the matrix

of the associated bilinear form.

1.5.1 The Kodaira Classification of Fibres

Later we will be searching for elliptic fibrations of our K3 surfaces. It would be

useful to know what possibilities there are for elliptic fibres; all of these correspond to

lattices. Good references for proof of this classification are [BPV] and [Miranda].

In Table 1.2 we have the different types of fibres; we list the name, description, and

a graph where applicable.

On the graphs, each vertex represents a curve and each edge represents an inter-

section between two curves. A label on a vertex corresponds to the multiplicity of

that curve in the fibre. Where there is no label, the curve has multiplicity one. The
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Type Description Diagram
I0 smooth elliptic curve —–
I1 nodal rational curve —–

In n ≥ 2;n smooth rational curves forming a
cycle (graph Ãn−1)

I⋆n n + 5 smooth rational curves forming graph
D̃n+4 (n ≥ 0)

}

n+1

mIn n ≥ 0; In with each curve of multiplicity m —–
II cuspidal rational curve —–

II⋆ 9 smooth rational curves forming graph Ẽ8

12

3

234 456

III two smooth rational curves intersecting once
with multiplicity two

III⋆ 8 smooth rational curves forming graph Ẽ7

12 3 2

2

1 34

IV three smooth rational curves intersecting in
one point

IV ⋆ 7 smooth rational curves forming graph Ẽ6

12 3 2

2

1

1

Table 1.2: Kodaira’s Classification of Fibres

self-intersection of each curve in a reducible fibre is −2 because they’re rational (the

irreducible fibres have self-intersection 0). Some of these fibres will never occur on

our 95 surfaces; K3 surfaces do not have multiple fibres [BPV], so we will never see

an mIn.

1.5.2 Dynkin Diagrams

The graphs in Table 1.2 are the extended Dynkin diagrams. There are also

“plain” Dynkin diagrams, some of which are presented in Table 1.3; a good reference

for these is [Humphreys]. The extended Dynkin diagrams are formed from the

Dynkin diagrams by adding a curve with multiplicity one. I am sure that by now the
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reader is wondering, “What do these have to do with lattices?” Of course, there is a

relation: Form the incidence matrix A for the graph by letting the rows/columns be

indexed by the curves (vertices). Entry aij = 1 if curves i and j intersect (if there’s

an edge between vertices i and j) and aij = 0 if curves i and j do not intersect (if

there is no edge between vertices i and j). Set the diagonal entries aii = −2 because

that is the self-intersection of each curve. The incidence matrix is symmetric and

nondegenerate, and so represents the bilinear form for a lattice associated to each

Dynkin Diagram.

An n

Dn

}

n-2

E6

E7

E8

Table 1.3: The Dynkin Diagrams

1.5.3 Nikulin’s results

Almost all of our lattice techniques and facts are contained in [Nikulin], an

awesome (though densely written) paper. Lattices are classified by their discriminant

quadratic forms qL (often referred to simply as q). We define q by qL(x) = 〈x, x〉

mod 2Z; note that q is the quadratic form associated to the bilinear form b which
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defines the lattice L. The discriminant form is defined on the discriminant group

GL = L⋆/L, where L⋆ = Hom(L,Z). We may also view this as

L⋆ = {x ∈ L⊗Z Q|〈x, l〉 ∈ Z for all l ∈ L}.

We list GL for the applicable types of fibres in Table 1.4.

L Type GL

I0 {0}
An In+1, III, IV Zn

Dn I⋆n−4 n even, Z2 ⊕ Z2

n odd, Z4

E6 IV ⋆ Z3

E7 III⋆ Z2

E8 II⋆ {0}

Table 1.4: GL for each type of Elliptic Fibre

Classification of the Forms

We will define three classes of forms on GL: w
ǫ
p,k, uk, vk. An excellent explanation

of these forms can be found in [Brieskorn].

1.5.3.1 Definition. We define the quadratic form wǫ
p,k on Zpk .

Case 1: For p �= 2, it is the form with generator value q(1) = ap−k (mod 2Z), where

a is determined by the quadratic residues of p. A quadratic residue is denoted (a
p
)

and this notation is called the Jacobi-Legendre symbol. It is defined as follows: is

there a solution to the equation x2 = a where x is (modulo p)? If so, we set the

symbol equal to 1, and if not, to −1. Thus we only allow ǫ ∈ {±1}. For ǫ = 1

we choose a to be the smallest positive even number with a quadratic residue; for

ǫ = −1 we choose a to be the smallest positive even number without a quadratic

residue.
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Case 2: For p = 2, there are more possibilities. For k = 1, ǫ ∈ {±1}, wǫ
2,1 is defined

as the form with generator value q(1) = ǫ/2. For k ≥ 1 and ǫ ∈ {±1,±5}, wǫ
2,k is

defined as the form with generator value q(1) = ǫ/2k.

1.5.3.2 Definition. We define the forms uk, vk on Z2k ⊕ Z2k . We will describe

these forms via their matrices,which are

uk = 2−k







0 1

1 0






vk = 2−k







2 1

1 2






.

Examples of each of these types of forms are in Appendix 1.

Notions of Isomorphism

The following theorem is a combination of [Nikulin, 1.8.1,1.8.2].

1.5.3.3 Theorem

(i) Every nontrivial, nondegenerate irreducible quadratic form on a finite abelian

group is isomorphic to one of uk, vk, w
ǫ
p,k.

(ii) Every nondegenerate quadratic form on a finite abelian group is isomorphic to

an orthogonal direct sum of uk, vk, w
ǫ
p,k.

(iii) This representation of a quadratic form is not unique. The isomorphism relations

between the forms are as follows:

p �= 2, wǫ
p,k ⊥ wǫ

p,k
∼= wǫ′

p,k ⊥ wǫ′

p,k

uk ⊥ uk
∼= vk ⊥ vk

wǫ
2,k ⊥ wǫ′

2,k
∼= w5ǫ

2,k ⊥ w5ǫ′

2,k

for ǫ′ ≡ ǫ(mod 4), vk ⊥ w−5ǫ′

2,k
∼= wǫ

2,k ⊥ wǫ
2,k ⊥ wǫ′

2,k
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for ǫ′ ≡ −ǫ(mod 4), uk ⊥ w−ǫ′

2,k
∼= wǫ

2,k ⊥ wǫ
2,k ⊥ wǫ′

2,k

vk ⊥ wǫ
2,k+1

∼= uk ⊥ w5ǫ
2,k+1

vk+1 ⊥ wǫ
2,k
∼= uk+1 ⊥ w5ǫ

2,k

wǫ
2,k ⊥ wǫ′

2,k+1
∼= wǫ+2ǫ′

2,k ⊥ w
5(ǫ′−2ǫ)
2,k+1

wǫ
2,k ⊥ wǫ′

2,k+2
∼= w5ǫ

2,k ⊥ w5ǫ′

2,k+2

Of course, there are also isomorphism relations which arise from these relations.

Orthogonality and Mirrors

There are three contexts in which we use orthogonality.

Context 1. One is when we use the ⊥ symbol between two lattices, e.g. L = Ak ⊥

Dm, which indicates that L has an orthogonal decomposition as a block-matrix.

Context 2. We define orthogonality of an element a ∈ GL to a subgroup H ⊂ GL

as when q(a)− q([H] + a) = 0 is satisfied.

Context 3. The final context is when we take the orthogonal complement of a

lattice within a unimodular (trivial q) lattice.

Context 3 is the sense in which we compute mirrors. For a lattice embedded

primitively into a unimodular lattice (this is the case for Pic(S) and H2(S,Z)),

L⊥

H2(S,Z) = M if and only if qL = −qM [Nikulin, 1.6.2]. We determine −q(M) by

multiplying the value of q on each element of GM by −1, and then determining what

form this set of values corresponds to. In practice, this is simple when using the

tables in Appendix 1.
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Existence and Uniqueness

This leaves us with only a few questions: how can we be sure that a mirror

to a given lattice exists? When we have determined a form or a mirror-form, how

can we be sure that this is unique? Fortunately, Nikulin also helps us with these

questions [Nikulin, 1.10.2, 1.13.3]. Notice that the signature of H2(S,Z) is (3, 19);

the signature of Pic(S) will always be (1, ρ − 1) by the Hodge Index Theorem, and

the signature of the mirror-lattice Pic(Š) = M will be (1, 19− ρ) (the remaining U

gives us the missing (1, 1)). We refer to the first coordinate of the signature as t+

and the second coordinate as t−.

1.5.3.4 Theorem [Nikulin, 1.10.2] If 20 − ρ is greater than the number of gen-

erators of GM and if ρ − 18 ≡ tL+ − tL− (mod 8) for some known-to-exist lattice L

with qM = qL, then the mirror-lattice exists.

1.5.3.5 Theorem [Nikulin, 1.13.3] If, additionally, 18 − ρ is greater than the

number of generators of GM and if tM+, tM− ≥ 1, then the mirror-lattice is unique.

If either of these criteria do not hold, it does not mean that the mirror-lattice

does not exist or that it is not unique, but that we need different criteria. This will

be exhibited in the very few cases in which we need it.

1.5.3.6 Theorem [Nikulin, 1.12.3] If ρ + 2 is is greater than the number of gen-

erators of GM , then the mirror-lattice M embeds primitively into H2(S,Z).

1.6 Computing Desingularization Graphs

Generally, we use the toric description of each hypersurface to desingularize it,

and use this desingularization to find an elliptic fibration. Why does this help in
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computing Pic(S)? When the computer desingularizes the hypersurface, it outputs

a graph which depicts each component of a resolved singularity and each face as a

vertex, and intersections between them as edges. The intersections are determined

by the desingularization and the covering relations in the face-lattice. The incidence

matrix of the graph is a bilinear form, which is a lattice. We now have a lattice, of

the same rank as Pic(S), generated by curves on the surface, and which is certainly

a sublattice of Pic(S). In this section, I will describe the process by which we obtain

the desingularization graph.

1.6.1 The Toric Description

The field of toric varieties is a way to use combinatorial language to describe alge-

braic varieties. Usually a toric variety is described by polyhedral cones or polytopes

in Zn, where each lattice point in the object corresponds to a monomial in the coor-

dinate ring of an affine piece (in the gluing sense) of the algebraic variety. Excellent

references for basic information on toric varieties are [Fulton] and [Danilov].

Weighted Projective Space

We denote weighted projective space as P(q1, q2, . . . , qn). A weighted projective

space is different from the projective space Pn−1 only in that the coordinates are

assigned weights, i.e. the variable xi has weight qi. So, associated to each of the

95 families of hypersurfaces is a weight-vector q = (q1, q2, q3, q4) which describes the

weighted projective space P(q1, q2, q3, q4) in which it lies. We denote
∑

qi by s.

Just as we view P2 as a toric variety defined by the fan with edges

{(1, 0), (0, 1), (−1,−1)}
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and Pn−1 as a toric variety defined by the fan with edges

{(1, . . . , 0), . . . , (0, . . . , 1), (−1,−1, . . . ,−1)},

we can consider the weighted projective space

P(q1, q2, . . . , qn) as a toric variety defined by the fan with edges

{(qn, . . . , 0), . . . , (0, . . . , qn), (−q1, . . . ,−qn−1)}.

We also can view Pn−1 as a toric variety defined by the polytope

conv{(1, . . . , 0), . . . , (0, . . . , 1)};

similarly, we can view P(q1, q2, . . . , qn) as a toric variety defined by the polytope

conv{(Πqi/q1, . . . , 0), . . . , (0, . . . ,Πqi/qn)}.

For details of these constructions, see [Fulton, pp. 25-27,35] and [Dolg3, 1.2.5].

Our Objects

All of the 95 hypersurfaces are Gorenstein, i.e. they have the property that

deg(S) = s; this comes from the adjunction formula in weighted projective space

(see [Dolg3]). If we have a polytope conv{�p1, . . . , �pn}, defined by its extremal points

�p1, . . . , �pn, then the hypersurface associated to this polytope has equation
∑

i �xi
�pi .

Thus, as we are looking for hypersurfaces of degree s, we want our monomials to be

of degree s, or equivalently, we want our lattice points to lie in {�x ∈ R4|
∑

qixi = s}.

Therefore, we consider the following object:

conv{(s/q1, . . . , 0), . . . , (0, . . . , s/qn)}

is a rational polytope, which is possibly integral (but generally is not). We wish to

take the convex hull of all integral points of this rational polytope in order to view

the associated hypersurface as a toric variety.
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First, however, notice that the condition
∑

qixi = s means that the rational

polytope lies in a hyperplane of R4. Using this condition, we may consider this

object as lying in R3. After transforming the rational polytope to R3, keeping the

internal lattice fixed, we take the convex hull of all integral points, hereafter referred

to as the Newton polytope.

Many of the combinatorial features of the polytope correspond to geometric as-

pects of the hypersurface. For example, a face of the polytope corresponds to a curve

on the surface, and the number of lattice points on the face corresponds to the genus

of the corresponding curve. An edge corresponds to an open set in the surface.

1.6.2 Desingularizing Hypersurfaces

The desingularization of S is simplified because, as we show in this section, all

singularities of S lie on the edges of the polytope.

Case 1 – Vertices. Almost all equations in the family of hypersurfaces are non-

degenerate with respect to the Newton Polytope [Khovanskĭı, § 2]. If one happens

to choose a degenerate equation, one can always change the coefficients to obtain a

nondegenerate equation. It follows that S intersects each toroidal orbit transversally.

This means that S avoids the vertices of the polytope as transversal intersections

have lesser dimension than either of the intersecting bodies and vertices have dimen-

sion 0.

Case 2 – Faces. A face is 2-dimensional, so its dual is 1-dimensional and must

be a curve. Whether this curve is singular or not is immaterial to whether there are

singularities of S.

Case 3 – Edges. This leaves only the edges. The dual to the 1-dim edge is

2-Rdimensional, i.e. a plane. This plane is spanned by the normal vectors v1, v2 to
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the two faces F1, F2 which intersect to form the edge.

1.6.2.1 Fact [Fulton, p.47]. On a plane, there are only An-type singularities

possible. We can see this because all singularities of the plane occur on the boundary.

Examine the lattice in the plane dual to the edge. The vectors v1, v2 do not necessarily

generate the lattice; we determine n by the number of additional vectors needed to

generate the lattice. The multiplicity of an edge singularity is the number of lattice

points on the edge, minus one.

This gives us series of curves corresponding to the singularities on the edges. In

order to see how these curves intersect with other curves on the surface, we look

at faces. Faces correspond to curves (of arithmetic genus equal to the number of

interior points), and thus because every edge is the intersection of two faces, every

singularity connects 2 curves. In other words, each face corresponds to a curve joining

the singularities corresponding to each edge.

1.6.3 But How Do We Actually Do It?

It is of course possible to perform this process by hand, but the computer is more

reliable and therefore faster and easier in the long run. Therefore, we perform the

following three steps:

1 – The Rational Polytope. We use Mathematica to generate the rational poly-

tope, and to transform the rational polytope so that it lives in R3 (see Appendix 2

for the code). We are careful to retain the same integer lattice.

2 – The Newton Polytope. To obtain the Newton polytope, we use the program

Qhull from the Geometry Center. Qhull is designed to enumerate extremal points

of a polytope, but it generally sacrifices accuracy for speed. We use a zero-tolerance
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setting so that we get integral points back. We also set Qhull to give us output in

Mathematica form. There is a Mathematica procedure which would enumerate the

vertices, but it is too inefficient.

3 – Desingularization. We feed the coordinates of the Newton polytope to aMath-

ematica program (see Appendix 3 for code) which returns the intersection graph of

curves from the desingularization.

1.7 Forming Elliptic Fibrations

1.7.0.1 Definition. An elliptic fibration is a regular map π : S → B from our

surface S to some base curve B, such that the general fibre π−1(b) is an elliptic

curve.

Because our surfaces are K3 (so that H1(OS) = 0 and thus gB = 0), the base curve

is isomorphic to P1. In an elliptic fibration, most fibres will be irreducible. There

may also be finitely many reducible fibres; this is where the Kodaira Classification of

Fibres enters. One can check, using the adjunction formula g = F 2−F ·K
2

+1 = F 2

2
+1,

that each of these reducible fibres has arithmetic genus 1. Thus, we’ll be looking for

subgraphs in the output of theMathematica program which are isomorphic to graphs

of fibres from Table 1.2 (very few of the curves in the graphs which we obtain from

the surfaces have genus 1). Notice that because we can only have An singularities, we

are limited to fibres which are irreducible or which correspond to Extended Dynkin

Diagrams.

We want to partition each output graph into collections of subgraphs correspond-

ing to fibres, sections, and multisections. Our partitions are subject to some con-
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straints:

Constraint 1. Distinct fibres do not intersect.

Constraint 2. A section intersects each fibre with multiplicity one. A multisection

(n-section) intersects each fibre with multiplicity n.

Constraint 3. We only consider elliptic fibrations with a finite number of sections;

under this condition, all sections are torsion sections and are thus disjoint [Miranda,

Lemma, p.72].

Constraint 4. The remaining aspect of forming fibrations is this: if we decompose

the graph into subgraphs such that one of these subgraphs corresponds to an Ex-

tended Dynkin Diagram with a curve deleted, we may add that curve to complete

the fibre.

If we wish to do this, we must show that this is the only possible completion of the

fibration (which is usually trivial). We may not complete the fibre in any way which

would induce additional intersections between the original curves on the graph. Of

course, added curves may intersect sections and multisections as well.

g = 1

Figure 1.3: Number 26 – Step 1

1.7.0.2 Example: see Figure 1.3.
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We have chosen to view curve 2 as a fibre, so that curves 4 and 8 are sections and we

have curves 1, 5-7, 9-12 forming an Ẽ7. We must complete curves 13-17 into a fibre

or fibres. We know that each of these must be in a different reducible fibre because

a section intersects each fibre with multiplicity one, and section 4 intersects each of

these curves with multiplicity at least one. The only fibres which conform to these

constraints are Ãn; each component is of multiplicity one. In fact, for reasons which

will be explained soon, we can only choose Ã1 because otherwise we will generate a

lattice with a rank larger than ρ. Now our fibration looks like Figure 1.4.

g = 1

Figure 1.4: Number 26 – Step 2

It is still not complete, because section 8 must intersect each fibre once, and it

currently does not intersect any of the five Ã1. This is not a contradiction; it must

intersect each of the added curves (see Figure 1.5).

1.7.1 The Mordell-Weil group of sections

We may view a section of the fibration π : S → P1 in two ways: as a regular

map s : P1 → S, or as a curve in S defined by {p ∈ S|p = s(x), x ∈ P1}. We will

view a section as a curve. A section crosses each fibre once, so if we restrict all the

sections to the generic fibre, we can consider the rational points we obtain as a group,
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g = 1

Figure 1.5: Number 26 – Final Step

using the group law for elliptic curves. If we take the closure of these points to form

sections again, we can see this group as formed by the sections themselves (not just

the points). We call this the Mordell-Weil group of sections (or MW ); if there exists

at least one singular fibre, then MW is a finitely-generated abelian group [Miranda,

p. 69].

1.7.2 The Shioda-Tate Formula

The Shioda-Tate formula is useful for analyzing possible elliptic fibrations.

1.7.2.1 Lemma [Shioda, Corollary 1.5]. Let f : S → B b an elliptic fibration

of a nonsingular model of S, and let ρ be the rank of Pic(S). Then

ρ = 2 +
∑

Fi

((♯ components in Fi)− 1) + rk(MW ),

where Fi ranges over all fibres (note that irreducible fibres will not contribute to the

sum). The number “2” corresponds to the contribution from a section an irreducible

fibre.

Most of the time we will find a fibration which shows that rk(MW ) = 0, i.e. MW

is finite. The example of number 26, above, shows this: we have a general fibre, a
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section which intersects it, a reducible fibre with 8 components, and 5 reducible

fibres with 2 components each. We are given that the rank is ρ = 14. Thus, 14 =

2+ 7+ 5 · 1+ rk(MW ) = 14+ rk(MW ) so rk(MW ) = 0. The Shioda-Tate formula

is the reason we could only choose fibres that are Ã1; otherwise the right-hand-side

of the equation would have been larger, and MW cannot have negative rank. When

we have shown that rk(MW ) = 0, we have also shown that our fibration generates

a finite-index subgroup of Pic(S) because the fibration generates a subgroup of rank

ρ.

1.7.3 Bounds on |MW |

If we know that MW is finite, we have additional information which gives us an

upper and lower bound on |MW | = the number of sections. Our lower bound is the

number of sections we have exhibited in the fibration. The upper bound is given by

the gcd of the orders of GFi
, because MW embeds in the discriminant group of each

fibre [Miranda, p.70].

Furthermore, we have

1.7.3.1 Lemma.

|MW |2disc(Pic(S)) =
∏

Fi

disc(Fi).

This follows from [Shioda, Corollary1.7], which states that

disc(Pic(S))

|Pictors(S)|2
=

disc((sij)) ·
∏

Fi
disc(Fi)

|MW |2
.

((sij)) is the incidence matrix of non-torsion sections; we have none. Also, Pictors(S)

is trivial because K3s are simply-connected.

Often the bounds and the use of this formula will be enough to tell us that MW is
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trivial (at which point we are done, as we have shown that the index in Pic(S) = 1).

The next section covers the cases for which we need additional techniques.

1.8 Computing Pic(S): Specific Techniques (with an example

for each)

1.8.1 “Obvious” Elliptic Fibrations

An Elliptic Fibration with a Genus 1 Curve

g = 1

Figure 1.6: Number 65 – First Fibration

Figure 1.6 is number 65. From the output of the Mathematica desingularization

program we know that curve 3 has genus 1. It is irreducible, so we may consider it

to be a fibre and then curves 17 and 19 must be sections. The remaining curves form

a D̃16. Note that curves 16 and 18 have multiplicity one, so that it makes sense for

them to intersect the sections 17 and 197. We examine the Shioda-Tate formula: we

know that ρ = 18. We have a general fibre (curve 3) which intersects a section, and

a 17-component reducible fibre. 2 + 16 = 18 so the Shioda-Tate formula is satisfied

with rk(MW ) = 0. We have exhibited two sections, so there are at least two sections;

GD16
= Z2 ⊕ Z2, so there are at most four sections. Now we will apply the second
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formula to get more information. |MW |2disc(Pic(S)) = 4 and |MW |2 ∈ {4, 9, 16}.

In order for disc(Pic(S)) to be an integer, the only possibility is that |MW |2 = 4,

indicating that there are exactly two sections and that disc(Pic(S)) = 1. We notice

immediately that therefore Pic(S) �= D16 ⊥ U because that lattice has discriminant

4. In a few subsections, we will see what to do in such cases.

An Example of an Elliptic Fibration with no Genus 1 Curve

Figure 1.7: Number 52

In number 52 (see Figure 1.7), there is no elliptic curve, only −2-curves. We can

see an Ẽ6 in curves 3, 9, 10, 12, 13, 20, 21. Then, curves 8, 11, and 22 must be sections

as curves 9, 12, and 21 intersect with multiplicity one. The remaining curves form an

Ã11. Once again, we examine the Shioda-Tate formula. We have at least one fibre and

at least one section, and two degenerate fibres with 7 and 12 components respectively.

ρ = 19; 2 + 6 + 11 = 19 so we know that rk(MW ) = 0. There are at least three

sections (we have exhibited three) and at most three sections (GE6
= Z3, GA11

= Z12),

so |MW | = 3. Using the other formula, we see that 9 ·disc(Pic(S)) = 36. Therefore,

disc(Pic(S)) = 4. Again, we have not yet determined Pic(S) but we will see what to

do soon.
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What If We Find More Than One Fibration? Notions of Isomorphism

Revisited

It happens frequently that we find more than one fibration. A good example is

number 65: in Figure 1.6, we see an elliptic fibration for number 65. See Figure 1.8

for another fibration.

2-section

section

Figure 1.8: Number 65 – Second Fibration

In this fibration, we have chosen to notice that we have two copies of Ẽ8; we

view curve 3 as a 2-section and curve 10 as a section. Here Shioda-Tate reads

18 = 2 + 16 + rk(MW ), indicating that rk(MW ) = 0. We have at least one section

(curve 10) and at most one section (GE8
is trivial); the formula |MW |2disc(Pic(S)) =

∏

Fi
disc(Fi) reads as 1 · disc(Pic(S)) = 1. This matches the discriminant of our

fibration, so we are done and Pic(S) = E8 ⊥ E8 ⊥ U . From the previous fibration

(Figure 1.6), we concluded that disc(Pic(S)) = 1 and from Figure 1.8 we concluded

the same thing. In cases where there seems to be a discrepancy, we reconcile it using

the isomorphism relations on the forms corresponding to the two lattices.
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1.8.2 Tp,q,r Fibrations

Sometimes we will not find any satisfactory fibrations using the Dynkin diagrams,

but will instead find a large configuration of curves in the shape of a T. We denote

these lattices by Tp,q,r where p,q, and r are the lengths of the three legs, counting the

central vertex each time. The discriminant of a Tp,q,r is pqr − pq − pr − qr and its

rank is p+ q + r − 2. Some of these lattices are isomorphic to Dynkin diagrams; for

example, T2,3,7 is E8 ⊥ U . These lattices are well-known; a good source of detailed

in-depth information on them is [Brieskorn]. There is some additional information

in Chapter 2 and Appendix 1.

1.8.2.1 Example. This is number 4, which is one of Arnold’s singularities.

g = 1

Figure 1.9: Number 4

There is no Dynkin diagram (or combination thereof) which gives us a good fibra-

tion, but T4,4,4 is exactly what we need. For Arnold’s singularities, this is sufficient,

but for other cases we will need to use techniques from sections 1.8.3 and 1.8.5 to

show that the Tp,q,r has index 1 in Pic(S).
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1.8.3 Intermediate Lattice Calculations

This technique deals with the problems we had with numbers 65 and 52 above. In

general, we use an intermediate lattice calculation when we have exhibited more than

one section, especially when the number of exhibited sections divides
∏

Fi
disc(Fi).

First, we recall that because we’ve found a lattice of the correct rank, then it must

embed in Pic(S) with finite index. If L is the lattice corresponding to our fibration,

then L ⊆ Pic(S) ⊆ L⋆. Additionally, there is a 1-1 correspondence between the

possible “intermediate lattices” M and q-isotropic subgroups of the discriminant

group GL [Nikulin, 1.4.1(a)]. In fact, there is a constructive method for listing the

different possibilities for Pic(S) via a formula of Nikulin:

1.8.3.1 Theorem, [Nikulin, 1.4.1(b)]. qM = (qL|H
⊥)/H, where H is a qL-

isotropic subgroup of GL.

Let us interpret this statement via an example.

1.8.3.2 Example: Number 26.

g = 1

Figure 1.10: Number 26

Step 1: Find all qL-isotropic subgroups of GL. A subgroup is isotropic if every

element of the subgroup has value qL-value 0 (mod 2Z).
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For number 26, we have Ẽ7 + 5Ã1. Each of these degenerate fibres has discriminant

group Z2, so we’re beginning with (Z2)
6. The form corresponding to E7 is w1

2,1 and

the value on the generator is 1/2. The form corresponding to A1 is w−1
2,1 and the

value on the generator is -1/2. These forms are independent, so in evaluating them

on (Z2)
6 we can just add the values on the components. Immediate examples of qL-

isotropic subgroups are those generated by (1,0,0,0,0,1), (1,0,0,0,1,0), (1,0,0,1,0,0),

(1,0,1,0,0,0), and (1,1,0,0,0,0). While this seems like a lot of subgroups already, we

also have

1.8.3.3 Theorem, [Nikulin, 1.4.2] Two intermediate lattices M1,M2 are iso-

morphic if and only if the corresponding qL-isotropic subgroups H1, H2 of GL are

conjugate under an automorphism of L.

Remark. This corresponds, for example, to the case where we have several copies

of some Dynkin diagram and we permute them, or equivalently to several copies of

a form where we permute the corresponding coordinates.

So in our example, all five of the qL-isotropic subgroups can be represented without

redundancy by (1,1,0,0,0,0). In similar fashion, we have two other distinct isotropic

subgroups represented by (0,0,1,1,1,1) and (1,1,1,1,1,1).

Step 2: Determine H⊥.

To simplify the example, we will only do this forH = (0,0,1,1,1,1). Up to permutation

of the entries, we really only have 5 elements to deal with: (0,0,0,0,0,0), (0,0,0,0,0,1),

(0,0,0,0,1,1), (0,0,0,1,1,1), (0,0,1,1,1,1). We will suppress the first 2 entries as they

are always 0. Now we determine which of these are perpendicular to H = 〈(1,1,1,1)〉

with respect to the quadratic form. This is true for an element a when q(a) −

q(a+(1,1,1,1)) = 0.

So respectively, for these 5 types of elements, we have the data in Table 1.5.
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a a+(1,1,1,1) q(a)− q(a+(1,1,1,1))

(0,0,0,0) (1,1,1,1) 0 - 0 = 0

(0,0,0,1) (1,1,1,0) (-1/2) - (-3/2) = 1

(0,0,1,1) (1,1,0,0) (-1) - (-1) = 0

(0,1,1,1) (1,0,0,0) (-3/2) - (-1/2) = -1

(1,1,1,1) (0,0,0,0) 0 - 0 = 0

Table 1.5: Calculation of H⊥ for Number 26

Step 3: List all elements inH⊥ and their values on qL. Group them by conjugacy

class in order to mod out by H. Using this list of values, determine the form of the

intermediate lattice corresponding to H.

Table 1.6 lists all elements of H = 〈(1,1,1,1)〉 by conjugacy class, and their qL-values.

elt elt + (1,1,1,1) qL value

(0,0,0,0) (1,1,1,1) 0

(0,0,1,1) (1,1,0,0) -1

(0,1,0,1) (1,0,1,0) -1

(0,1,1,0) (1,0,0,1) -1

Table 1.6: Values of the form qM corresponding to H for Number 26

This data corresponds to the form v (one can check this in the table in Appendix

1). We must also retain the original form on the first two copies of Z2 (w−1
2,1 ⊥ w1

2,1)

because they weren’t involved in the calculation; they correspond to the zeros we

suppressed above.

In the example of number 26, we only computed qM for one of the three distinct

qL-isotropic subgroups. Number 26 is very illustrative in that qM ′ and qM ′′ (corre-



36

sponding to the other two qL-isotropic subgroups H
′ and H ′′) are not isomorphic to

v ⊥ w−1
2,1 ⊥ w1

2,1. (Respectively, they are (w−1
2,1)

4 and u ⊥ v.) This creates another

problem: which one is correct? We need to look on the graph for other fibrations

which confirm that one of these choices is correct and that the others are not possible.

To see how this works, examine Section 26 in Chapter 3.

1.8.4 Methods for Fibrations Without Sections

Sometimes we’ll only be able to find a fibration which has only multisections, and

no sections.

1.8.4.1 Definition. A Jacobian fibration is one which exhibits a section. We

construct it by taking the Jacobian variety of the generic fibre and considering this

as the generic fibre of some elliptic surface.

2-section

Figure 1.11: Fibration for Number 19

1.8.4.2 Example. In number 19 (Figure 1.11) we immediately see that curves 2,

7-10 form a D̃4. Thus curve 6 is a 2-section and we can complete curve 1 to form an

Ã1.

By definition, this is a non-Jacobian fibration.
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1.8.4.3 Lemma, [Enriques I, Proposition 5.2.5]. The fibres of S are the same

as those of J(S).

For our example, number 19, there is no fibration in which one can exhibit a section

and satisfy Shioda-Tate with rk(MW ) = 0. However, the Jacobian fibration associ-

ated to Figure 1.11 satisfies Shioda-Tate with rk(MW ) = 0; ρ = 7 so we have 7 = 2

+ 4 + 1.

In other words, a non-Jacobian fibration gives us information about Pic(J(S))

and what we now need to know is the relationship between Pic(S) and Pic(J(S)).

We will show in Chapter 4 that there exists a map

φ : Pic(S)→ Pic(J(S))

of finite index n, where n is the index of multisections, i.e. if we have 3-sections in

our fibration, then n = 3. This completely determines Pic(S), though we do need

the help of other techniques to complete the calculation. Practically speaking, this

usually says that we can just determine Pic(S) from the matrix returned by the

computer. This result was used to calculate Pic(S) in the nine cases for which we

could not exhibit a section.

1.8.5 Calculating Pic(S) from the Matrix

When all else fails, for example when we cannot find a fibration at all, or when

we cannot show that MW is finite, we can try to calculate the quadratic form for

Pic(S) directly from the matrix.

There are ρ+3 vertices on each graph, so the determinant of the incidence matrix

is always zero. To determine the form, one must first remove the three extraneous

rows/columns from the matrix. We may determine the appropriate discriminant
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by computing all the ρ × ρ minors and finding the minimum non-zero value; then,

we assure that the vectors we remove are integral linear combinations of the re-

maining vectors. These operations are easy in Mathematica, using the Minors and

LinearSolve commands.

Now, how do we know that this lattice sits primitively in Pic(S)? We know that

a fibration gives us something of finite index in Pic(S), so if the discriminant of the

matrix is square-free, then the index is 1 and we need merely determine which (again,

usually unique) form the matrix corresponds to. In every case where we showed MW

to be infinite, the discriminant of the matrix was square-free. In the case where we

use the Mukai method, then we know the discriminant of Pic(S) – it matches that

of the matrix, so we are again able to proceed.

Note. The matrices and graphs have dimension (ρ+3)× (ρ+3), and rank ρ, so

to determine the discriminant of such a matrix we must find the minimum value of

the determinants of the ρ× ρ minors.

It should be mentioned that there is no general algorithm for determining the quadratic

form which corresponds to a matrix. One must decide based on the values of the

form on its generators and on the relations between these generators.

Remember, the discriminant quadratic form q is a map defined on the discrimi-

nant group GL,

q : L⋆/L→ Q/2Z.

To evaluate the form on an element v ∈ GL using its matrix Aq, we evaluate
tv ·Aq ·v.

Of course, we wonder how to see the basis vectors e⋆i of GL! Notice that for v to be

an element of L⋆, v ∈ L⊗Q and 〈v, ℓ〉 for all ℓ ∈ L. The columns cj of A
−1
q satisfy

the condition

tcj · Aq · ei ∈ Z,
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and in fact give only the values {0, 1}. Thus, their images give the basis for Zρ and

so we may legally call the cj e⋆i instead. So, the set of values of

t(e⋆i ) · Aq · e
⋆
i

are the values of q on the basis vectors of L⋆. And, in fact, we can now see that any

element v ∈ GL can be expressed as a linear combination of the column vectors of

A−1
q , so we may intuit the relations between the generators from their values. Finally,

modding out by L on the left-hand-side of the map is equivalent to modding out by

2Z on the right-hand-side.

1.8.6 Generalizations and Other Questions

There are a few questions left unanswered by our calculations.

1.8.6.1 Question: We notice that not all families have mirrors on the list. Where

are those mirrors?

Kreuzer and Skarke have done work which gives us an algorithm to find all 3-

dimensional reflexive polytopes, and therefore all K3 surfaces which can be realized

as toric hypersurfaces. Many of the mirrors may be on this list.

1.8.6.2 Question: We notice that there are some distinct families which have the

same Pic(S). What’s going on there? Are they isomorphic, or is something different

happening, and if so, what?

Miles Reid has a conjecture which does not explain this phenomenon, but perhaps will

lead to some enlightenment. Chapter 2 is devoted to a discussion of this conjecture.



CHAPTER II

Miles Reid’s Conjecture

2.1 Statement of the Conjecture

Consider the quotient map

f̄ : P3 → P(q0, q1, q2, q3) = P3/(µq0 × µq1 × µq2 × µq3)

which defines weighted projective space. Denote the coordinates of P3 as x0, x1, x2, x3;

then f̄ sends xj �→ x̄j = x
qj

j . The restriction of this map to the hypersurface S will

be called f . Even though OS(1) is not necessarily locally free, it does correspond to

some Weil divisor D. D is Q-Cartier, so the self-intersection of D is well-defined as

D2 = (nD)2

n2 , where n is the smallest multiple of D which is Cartier. We will calculate

D2 more concretely: first notice that self-intersection changes by the degree of f

when we pull back, so f ∗(D)2 = D2 ·
∏

j qj. Then notice that f ∗(D)2 = (Of∗(S)(1))
2,

which is the degree of f ∗(S). If we write the variables in P(q0, q1, q2, q3) as x
qj

j instead

of as x̄j, we can see that degP3(f ∗(S)) = degP (q0,q1,q2,q3)(S). Finally, we combine these

facts to see that

D2 ·
∏

j

qj = f ∗(D)2 = (Of∗(S)(1))
2 = degP (q0,q1,q2,q3)(S) = d.

40
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We then have that

D2 =
d

∏

j qj
. (⋆)

Now we will desingularize S; it has cyclic quotient singularities Apj
. The desingu-

larization map is π : S̃ → S. Denote the preimage of D as π−1(D) = R +D′, where

D′ is the portion of π−1(D) which contain exceptional curves and R = π∗(D) is the

portion which does not contain any exceptional curves. Denote by Apj
the minimal

resolution of each Apj
.

2.1.0.3 Conjecture [Reid]. R ·Apj
= 1; in fact, this “intersection” is in the ij-th

component. Furthermore, R is linearly independent from the exceptional curves of

the Apj
, and together these curves generate Pic(S).

We may also express D2 in terms of the Apj
, as

D2 = R2 +
∑

j

ij(pj + 1− ij)

pj + 1
[Reid].

Reid refers to this set of information as numerical data. This data may be visu-

alized in the form of a graph M�p,�ι,R2 , which will be discussed in section 2.2.

A more general form of 2.1.0.3 appears in [Reid]; we verify in section 2.3 that

using Reid’s conjecture to compute Pic(S) for the 95 families gives the same results

as the methods described in Chapter 1. Notice that the conjecture depends on ρ = 1

before desingularization, so that one must be cautious in using the conjecture for a

wider class of surfaces.

2.2 The M�p,�ι,k Lattices

2.2.0.4 Definition. Let �p = (p1, . . . , pn) be an n-tuple of positive integers, ordered

from least to greatest. Let �i = (i1, . . . , in) be an n-tuple of integers such that ij ≤
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⌈
pj

2
⌉. Let k ≥ −4 be an even integer. Then M�p,�ι,k is the lattice defined by the

incidence matrix of the following graph:

Begin with a central vertex c with self-intersection k. For each j, adjoin to this

vertex a Dynkin diagram of type Apj
by adding an edge between c and vertex ij of

the Dynkin diagram.

Dolgachev has calculated the discriminant of a M�p,�ι,k; it is

disc(M�p,�ι,k) = −(−1)
∑n

j=1
pj(p1 + 1) . . . (pn + 1)(k +

n
∑

j=1

ij(pj + 1− ij)

pj + 1
).

When k = −2, n = 3, ij = 1, we have a Tp,q,r lattice.

Note that there is no algorithm for computing the associated quadratic form

(even for the Tp,q,r – see [Brieskorn]). Therefore, we cannot determine which M�p,�ι,k

have primitive embeddings into (E8)
2 ⊥ (U)3, as we do not know the number of

generators of the form in general [Nikulin, 1.12.3].

2.2.1 Questions of Isomorphism

When is M�p,�ι,k
∼= M�π,�ν,κ? We can only answer this question for “∼=” in the sense

of graph theory, not of lattice theory. In terms of lattices, we have many examples

where M�p,�ι,k
∼= M�π,�ν,κ but the graphs are not isomorphic – see, in section 2.3, almost

any pair where Pic(S) =Pic(S ′). This is true also for the Tp,q,r lattices; T2,7,7
∼=

T3,3,10 [Brieskorn] but the graphs are not isomorphic. One minor illumination:

isomorphism of lattices is determined when the matrices have the relation M =

PMP t, for P a composition of elementary row and column operations. We may

restrict P to a composition of elementary operations of the third kind (ri → λrj +

ri, λ ∈ Z) because the those of the first and second kinds are trivial over the integral

symmetric bilinear forms.
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2.2.1.1 Lemma. M�p,�ι,k
∼= M�π,�ν,κ as labeled graphs if and only if the following hold:

• k = −2

• n and n′ are each less than or equal to 3

• at most one ij �= 1.

Under these conditions, we have the following isomorphism relations:

• for p3 ≥ 3, M(p1,p2,p3),(1,1,i),−2
∼= M(i−1,p3−i,p1+p2+1),(1,1,p1+1),−2

∼= M(i−1,p3−i,p1+p2+1),(1,1,p2+1),−2

• M(p1,p2,p3),(1,1,1),−2
∼= M(p1−1,p2+p3+1),(1,p2+1),−2

∼= M(p1−1,p2+p3+1),(1,p3+1),−2

∼= M(p2−1,p1+p3+1),(1,p1+1),−2
∼= M(p2−1,p1+p3+1),(1,p3+1),−2

∼= M(p3−1,p1+p2+1),(1,p1+1),−2

∼= M(p3−1,p1+p2+1),(1,p2+1),−2

• for p2 ≥ 3, M(p1,p2),(1,i),−2
∼= M(p1+1,i−1,p2−i),(1,1,1),−2

• M(p1,p2),(1,1),−2
∼= M(j−1,p1+p2−j),(1,1),−2

Proof. The key is to notice that two different M�p,�ι,k graphs can be isomorphic only

if we can move the central vertex from one spot c to another c′. This immediately

tells us that k = −2. Then, if there are more than three branches, we cannot move

c in any way such that the branches from c′ form As. Therefore, n ≤ 3. Finally, we

have the same problem if more than one branch from c is forked.

We prove the isomorphism relations with pictures; figure 2.1 proves the third relation.

The reader may convince herself of the remaining isomorphism relations by draw-

ing similar pictures.

2.2.2 Signature of M�p,�ι,k

In [Brieskorn, §1.9] the author calculates the signature of the Tp,q,r lattices from

the formula for the discriminant. We have similar results for M�p,�ι,k and will prove

them in a similar fashion. To provide motivation, we re-cast the proof for the Tp,q,r
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 p2  
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p1 + 1

}
}p2 - i 

i - 1  

Figure 2.1: Proof of third relation in Lemma 2.2.1.1

in the notation for M�p,�ι,k; notice that Tp,q,r = M(p−1,q−1,r−1),(1,1,1),−2. Thus,

disc(Tp,q,r) = −(−1)p+q+r−3p · q · r · (−2 +
p− 1

p
+

q − 1

q
+

r − 1

r
).

2.2.2.1 Lemma, [Brieskorn]. Denote by ρ the rank of Tp,q,r. Then, the signature

(ρ−, ρ+, ρ0) of Tp,q,r is

• (ρ− 1, 1, 0) when −2 + p−1
p

+ q−1
q

+ r−1
r

> 0

• (ρ− 1, 0, 1) when −2 + p−1
p

+ q−1
q

+ r−1
r

= 0

• (ρ, 0, 0) when −2 + p−1
p

+ q−1
q

+ r−1
r

< 0.

2.2.2.2 Proof of 2.2.2.1. First, notice that if we consider the sublattice defined

by the graph M(p−1,q−1,r−1),(1,1,1),−2\ central vertex, we see that its matrix is negative

definite because M(p−1,q−1,r−1),(1,1,1),−2\ central vertex = ⊕Aj. Therefore ρ− ≥ ρ− 1.

First, if disc(Tp,q,r) is zero, then the signature must be (ρ− 1, 0, 1) and −2 + p−1
p

+

q−1
q

+ r−1
r

= 0 as p, q, r,−1 �= 0. Now, suppose ρ is odd. If disc(Tp,q,r) is positive (i.e.

−2+ p−1
p

+ q−1
q

+ r−1
r

> 0), then ρ− is even; as ρ− 1 is even, then the signature must

be (ρ − 1, 1, 0). If disc(Tp,q,r) is negative (i.e. −2 + p−1
p

+ q−1
q

+ r−1
r

< 0), then ρ−
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is odd; as ρ− ≥ ρ − 1 and ρ − 1 is even, then the signature must be (ρ, 0, 0). Now

suppose ρ is even. If disc(Tp,q,r) is positive (i.e. −2 + p−1
p

+ q−1
q

+ r−1
r

< 0), then

ρ− is even; as ρ− ≥ ρ − 1 and ρ − 1 is odd, then the signature must be (ρ, 0, 0). If

disc(Tp,q,r) is negative (i.e. −2 + p−1
p

+ q−1
q

+ r−1
r

> 0), then ρ− is odd; as ρ − 1 is

odd, then the signature must be (ρ− 1, 1, 0).

2.2.2.3 Lemma. Denote by ρ the rank of M�p,�ι,k. Then, the signature (ρ−, ρ+, ρ0)

of M�p,�ι,k is

• (ρ− 1, 1, 0) when k +
∑n

j=1
ij(pj+1−ij)

pj+1
> 0

• (ρ− 1, 0, 1) when k +
∑n

j=1
ij(pj+1−ij)

pj+1
= 0

• (ρ, 0, 0) when k +
∑n

j=1
ij(pj+1−ij)

pj+1
< 0.

2.2.2.4 Proof of 2.2.2.3. Notice that the proof of 2.2.2.1 does not depend on the

shape of the graph being a Tp,q,r! It will work for any M�p,�ι,k – thus, we are done.

2.2.2.5 Partial Classification of Hyperbolic M�p,�ι,k. Most M�p,�ι,k are hyper-

bolic; therefore, we list those with signature other than (ρ − 1, 1, 0). For k ≥ 0,

there are only hyperbolic lattices. For k = −2, the following �p,�ι give disc(M�p,�ι,k) =

0: (1,1,1,1),(1,1,1,1); (2,2,2),(1,1,1); (3,3),(2,2); (4,4),(2,1); (5,1),(3,1); (5,2),(2,1);

(7,1),(2,1); (7),(4); (8),(3). For k = −2, the following �p,�ι give negative-definite

M�p,�ι,k: (pj),(1); (pj)(2); (pj, pj′),(1,1); (7),(3); (6),(3); (5),(3); (6,1),(2,1); (5,1),(2,1);

(4,3),(2,1); (4,2),(2,1); (4,1),(2,1); (3,2),(2,1); (3,1),(2,1); (2,2,1),(1,1,1); (2,1,1),(1,1,1);

(1,1,1),(1,1,1). We will not classify lattices with k = −4 other than to say that when

no pj > 4, there are at least 21 general rules and at least 51 individual cases. How-

ever, we have tested all of the 95 Families’ M�p,�ι,k which have k = −4 and all are

hyperbolic.
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2.3 Calculation of Pic(S) for the 95 K3 Hypersurfaces Using

Reid’s Conjecture

In order to calculate Pic(S), we must determine firstM�p,�ι,k and then the quadratic

form to which it corresponds. We find �p from [Yonemura], which lists the cyclic

quotient singularities of each hypersurface.

2.3.0.6 Fact. k = −4 + 2 (♯ 1’s in (q0, q1, q2, q3)).

2.3.0.7 Proof of 2.3.0.6. k = R2 and we use Riemann-Roch on S with R to com-

pute this. h1(R) = h2(R) = 0 by [Reid, pf of 3.2], and χ(OS) = 2. Thus, Riemann-

Roch reads h0(R) = 2+(1/2)R2, or R2 = −4+2h0(R). Now, h0(R) = h0(D) as R is

in the part of the preimage of D which is unaffected by desingularization. The global

sections of D are degree one elements of Of∗(S)(1), so h0(D) = (♯ 1’s in (q0, q1, q2, q3)).

Therefore, R2 = −4 + 2 (♯ 1’s in (q0, q1, q2, q3)).

Now, we must determine �ι. Riemann-Roch ([YPG]) reads

h0(S,D) = 2 +
1

2
D2 +

n
∑

j=1

ij(pj + 1− ij)

2(pj + 1)
.

This of course must be an integer. We determine the possibilities for �ι using a

Mathematica procedure (see Appendix 4); we are given �p, and computed D2 in (⋆)

above. The procedure tests each possibility for�ι and outputs those which are integers,

as well as the discriminant of the matrix. In each case, there is only one such �ι.

Given this information, we can produce the matrix via another Mathematica

procedure (again, see Appendix 4). Then, we can examine the inverse of this matrix

and determine the form it corresponds to (see Chapter 1, 1.8.5).

It is not necessary to actually do these computations! In each of the 95 cases,

ρ = rk(M�p,�ι,k) so that M�p,�ι,k is a sublattice of Pic(S) of finite index. By comparing
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the discriminant of each M�p,�ι,k with that of Pic(S) (these are listed in Table 3.1), we

can determine what index M�p,�ι,k has in Pic(S). In each case, the index is 1, so we

know that M�p,�ι,k = Pic(S). The following table lists �p, �ι, k, and the discriminant.

Table 2.1: Forms of the 95 M�p,�ι,k

No. Weight-Vector �p �ι k Disc.

1 (1, 1, 1, 1) —– —– 4 —–
2 (2, 3, 3, 4) 1, 1, 1, 2, 2, 2, 2 1, 1, 1, 1, 1, 1, 1 -4 108
3 (1, 1, 2, 2) 1, 1, 1 1, 1, 1 0 12
4 (1, 3, 4, 4) 3, 3, 3 1, 1, 1 -2 16
5 (1, 1, 1, 3) —– —– 2 —–
6 (1, 2, 2, 5) 1, 1, 1, 1, 1 1, 1, 1, 1, 1 -2 16
7 (1, 1, 2, 4) 1, 1 1, 1 0 4
8 (1, 2, 3, 6) 1, 1, 2, 2 1, 1, 1, 1 -2 12
9 (1, 4, 5, 10) 1, 4, 4 1, 1, 1 -2 5
10 (1, 1, 4, 6) 1 1 0 1
11 (2, 3, 10, 15) 1, 1, 1, 2, 2, 4 1, 1, 1, 1, 1, 2 -4 12
12 (1, 2, 6, 9) 1, 1, 1, 2 1, 1, 1, 1 -2 4
13 (1, 3, 8, 12) 2, 2, 3 1, 1, 1 -2 3
14 (1, 6, 14, 21) 1, 2, 6 1, 1, 1 -2 1
15 (3, 3, 4, 5) 2, 2, 2, 2, 2, 3 1, 1, 1, 1, 1, 1 -4 81
16 (3, 6, 7, 8) 1, 2, 2, 2, 2, 6 1, 1, 1, 1, 1, 1 -4 27
17 (2, 3, 5, 5) 1, 4, 4, 4 1, 2, 2, 2 -4 25
18 (1, 2, 3, 3) 1, 2, 2, 2 1, 1, 1, 1 -2 27
19 (1, 2, 2, 3) 1, 1, 1, 1, 2 1, 1, 1, 1, 1 -2 32
20 (1, 6, 8, 9) 1, 2, 8 1, 1, 1 -2 3
21 (1, 1, 1, 2) 1 1 2 5
22 (1, 3, 5, 6) 2, 2, 5 1, 1, 1 -2 9
23 (2, 2, 3, 5) 1, 1, 1, 1, 1, 1, 4 1, 1, 1, 1, 1, 1, 2 -4 64
24 (1, 2, 4, 5) 1, 1, 1, 4 1, 1, 1, 1 -2 12
25 (1, 1, 3, 4) 3 1 0 3
26 (2, 4, 5, 9) 1, 1, 1, 1, 1, 8 1, 1, 1, 1, 1, 2 -4 16
27 (2, 3, 8, 11) 1, 1, 1, 10 1, 1, 1, 4 -4 4

continued on next page
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28 (1, 3, 7, 10) 9 3 -2 1
29 (4, 5, 6, 15) 1, 1, 2, 3, 4, 4 1, 1, 1, 1, 1, 1 -4 20
30 (5, 7, 8, 20) 3, 4, 4, 6 1, 2, 2, 1 -4 5
31 (3, 4, 5, 12) 2, 2, 3, 3, 4 1, 1, 1, 1, 2 -4 24
32 (2, 2, 3, 7) 1, 1, 1, 1, 1, 1, 1, 2 1, 1, 1, 1, 1, 1, 1, 1 -4 64
33 (2, 3, 4, 9) 1, 1, 1, 1, 2, 2, 3 1, 1, 1, 1, 1, 1, 1 -4 48
34 (2, 6, 7, 15) 1, 1, 1, 1, 1, 2, 6 1, 1, 1, 1, 1, 1, 1 -4 16
35 (3, 4, 7, 14) 1, 2, 6, 6 1, 1, 2, 2 -4 7
36 (2, 3, 5, 10) 1, 1, 2, 4, 4 1, 1, 1, 2, 2 -4 20
37 (1, 3, 4, 8) 2, 3, 3 1, 1, 1 -2 8
38 (1, 6, 8, 15) 1, 2, 7 1, 1, 1 -2 2
39 (1, 3, 5, 9) 2, 2, 4 1, 1, 1 -2 6
40 (1, 2, 4, 7) 1, 1, 1, 3 1, 1, 1, 1 -2 8
41 (2, 3, 7, 12) 1, 1, 2, 2, 6 1, 1, 1, 1, 3 -4 12
42 (1, 1, 3, 5) 2 1 0 2
43 (3, 4, 11, 18) 1, 2, 2, 10 1, 1, 1, 3 -4 3
44 (1, 2, 5, 8) 1, 1, 4 1, 1, 2 -2 4
45 (1, 4, 9, 14) 1, 8 1, 2 -2 1
46 (5, 6, 22, 33) 1, 2, 4, 10 1, 1, 2, 2 -4 1
47 (3, 4, 14, 21) 1, 2, 2, 3, 6 1, 1, 1, 1, 2 -4 6
48 (3, 5, 16, 24) 2, 2, 4, 7 1, 1, 1, 3 -4 3
49 (2, 5, 14, 21) 1, 1, 1, 4, 6 1, 1, 1, 1, 3 -4 4
50 (1, 4, 10, 15) 1, 3, 4 1, 1, 1 -2 2
51 (1, 5, 12, 18) 4, 5 2, 1 -2 1
52 (7, 8, 9, 12) 2, 3, 6, 7 1, 1, 3, 1 -4 4
53 (3, 4, 5, 6) 1, 2, 2, 2, 3, 4 1, 1, 1, 1, 1, 1 -4 54
54 (3, 5, 6, 7) 2, 2, 2, 4, 5 1, 1, 1, 2, 1 -4 27
55 (2, 5, 6, 7) 1, 1, 1, 5, 6 1, 1, 1, 1, 3 -4 16
56 (5, 6, 8, 11) 1, 7, 10 1, 3, 2 -4 2
57 (4, 5, 6, 9) 1, 1, 2, 4, 8 1, 1, 1, 1, 2 -4 12
58 (1, 4, 5, 6) 1, 4, 5 1, 1, 1 -2 8
59 (1, 5, 7, 8) 4, 7 2, 1 -2 3
60 (1, 4, 6, 7) 1, 3, 6 1, 1, 1 -2 6
61 (4, 6, 7, 11) 1, 1, 5, 10 1, 1, 1, 3 -4 4
62 (3, 4, 5, 8) 2, 3, 3, 7 1, 1, 1, 3 -4 16
63 (1, 2, 3, 4) 1, 1, 2, 3 1, 1, 1, 1 -2 20
64 (3, 4, 7, 10) 1, 6, 9 1, 2, 3 -4 4
65 (3, 5, 11, 14) 4, 13 1, 5 -4 1

continued on next page
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66 (1, 1, 2, 3) 1, 2 1, 1 0 7
67 (2, 3, 7, 9) 1, 2, 2, 8 1, 1, 1, 4 -4 9
68 (3, 4, 10, 13) 1, 3, 12 1, 1, 4 -4 2
69 (2, 3, 4, 7) 1, 1, 1, 1, 2, 6 1, 1, 1, 1, 1, 2 -4 32
70 (2, 3, 5, 8) 1, 1, 4, 7 1, 1, 2, 3 -4 12
71 (1, 3, 4, 7) 3, 6 1, 2 -2 5
72 (1, 2, 5, 7) 1, 6 1, 3 -2 3
73 (7, 8, 10, 25) 1, 4, 6, 7 1, 2, 2, 1 -4 2
74 (4, 5, 7, 16) 3, 3, 4, 6 1, 1, 1, 3 -4 8
75 (2, 4, 5, 11) 1, 1, 1, 1, 1, 3, 4 1, 1, 1, 1, 1, 1, 1 -4 32
76 (2, 5, 6, 13) 1, 1, 1, 1, 4, 5 1, 1, 1, 1, 2, 1 -4 16
77 (1, 5, 7, 13) 4, 6 2, 1 -2 2
78 (1, 4, 6, 11) 1, 3, 5 1, 1, 1 -2 4
79 (2, 5, 9, 16) 1, 1, 4, 8 1, 1, 1, 4 -4 4
80 (4, 5, 13, 22) 1, 4, 12 1, 2, 3 -4 1
81 (2, 3, 8, 13) 1, 1, 1, 2, 7 1, 1, 1, 1, 3 -4 8
82 (1, 3, 7, 11) 2, 6 1, 2 -2 2
83 (4, 5, 18, 27) 1, 3, 4, 8 1, 1, 2, 2 -4 2
84 (5, 6, 7, 9) 2, 4, 5, 6 1, 1, 1, 3 -4 9
85 (2, 3, 4, 5) 1, 1, 1, 2, 3, 4 1, 1, 1, 1, 1, 2 -4 56
86 (4, 5, 7, 9) 3, 6, 8 1, 3, 2 -4 5
87 (1, 3, 4, 5) 2, 3, 4 1, 1, 1 -2 13
88 (2, 5, 9, 11) 1, 4, 10 1, 1, 5 -4 3
89 (1, 2, 3, 5) 1, 2, 4 1, 1, 2 -2 11
90 (4, 6, 7, 17) 1, 1, 3, 5, 6 1, 1, 1, 1, 2 -4 8
91 (5, 6, 8, 19) 1, 4, 5, 7 1, 1, 1, 3 -4 4
92 (3, 5, 11, 19) 2, 4, 10 1, 1, 4 -4 2
93 (3, 4, 10, 17) 1, 2, 3, 9 1, 1, 1, 3 -4 4
94 (3, 4, 5, 7) 2, 3, 4, 6 1, 1, 2, 2 -4 19
95 (2, 3, 5, 7) 1, 2, 4, 6 1, 1, 2, 3 -4 17



CHAPTER III

The Detailed Calculations

The sections are numbered identically to the numbering of the weight-vectors in

[Yonemura]. The title of each section is the weight-vector itself, and in each section

is a representative polynomial from the family, taken from [Yonemura]. Table 3.1

gives the results of the calculations; a ⋆ by a mirror-form indicates that there is a

note about its existence or uniqueness at the end of the table.

Note that families with ρ = 15 do not have mirrors on the list (because no family

has ρ = 5).

Table 3.1: Results for the 95 Families and Their Mirrors

No. Rank Pic(S) Mirror Lattice and Family Weights

1 ρ = 1 〈4〉 (E8)
2 ⊥ 〈−4〉 ⊥ U 56, 73 (1, 1, 1, 1)

2 ρ = 12 E6 ⊥ D4 ⊥ U(3) D4 ⊥ A2 ⊥ U(3) not on list (2, 3, 3, 4)
3 ρ = 4 M(1,1,1),(1,1,1),0 E8 ⊥ D4 ⊥ A2 ⊥

U
not on list (1, 1, 2, 2)

4 ρ = 10 T4,4,4 T4,4,4 4 (1, 3, 4, 4)
5 ρ = 1 〈2〉 (E8)

2 ⊥ A1 ⊥ U 52, tetra. (1, 1, 1, 3)
6 ρ = 6 D4 ⊥ U(2) D8 ⊥ D4 ⊥ U 26, 34, 76 (1, 2, 2, 5)
7 ρ = 3 M(1,1),(1,1),0 E8 ⊥ D7 ⊥ U 64 (1, 1, 2, 4)

continued on next page
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No. Rank Pic(S) Mirror Lattice and Family Weights

8 ρ = 7 M(1,1,2,2),(1,1,1,1),−2 q = w1
3,1 ⊥ w−1

2,2 not on list (1, 2, 3, 6)
9 ρ = 10 T2,5,5 T2,5,5 9,71 (1, 4, 5, 10)
10 ρ = 2 U (E8)

2 ⊥ U 65, 46, 80 (1, 1, 4, 6)
11 ρ = 12 E6 ⊥ D4 ⊥ U D4 ⊥ A2 ⊥ U 24 (2, 3, 10, 15)
12 ρ = 6 D4 ⊥ U E8 ⊥ D4 ⊥ U 27, 49 (1, 2, 9, 6)
13 ρ = 8 E6 ⊥ U E8 ⊥ A2 ⊥ U 20, 59 (1, 3, 8, 12)
14 ρ = 10 E8 ⊥ U E8 ⊥ U 14,28,45,51 (1, 6, 14, 21)
15 ρ = 14 E6 ⊥ (A2)

3 ⊥ U (A2)
2 ⊥ U(3) not on list (3, 3, 4, 5)

16 ρ = 16 E8 ⊥ (A2)
3 ⊥ U A2 ⊥ U(3) not on list (3, 6, 7, 8)

17 ρ = 14 T2,5,5 ⊥ A4 A4 ⊥

(

2 1
1 −2

)

not on list (2, 3, 5, 5)

18 ρ = 8 M(1,2,2,2),(1,1,1,1),−2 q = w1
3,2 ⊥ w1

3,1 not on list (1, 2, 3, 3)
19 ρ = 7 M(1,1,1,1,2),(1,1,1,1,1),−2 q = v ⊥ w1

2,3 not on list (1, 2, 2, 3)
20 ρ = 12 E8 ⊥ A2 ⊥ U E6 ⊥ U 13, 72 (1, 6, 8, 9)

21 ρ = 2

(

2 1
1 −2

)

E8 ⊥ T2,5,5 30, 86 (1, 1, 1, 2)

22 ρ = 10 E6 ⊥ A2 ⊥ U E6 ⊥ A2 ⊥ U 22 (1, 3, 5, 6)
23 ρ = 11 D5 ⊥ D4 ⊥ U(2) D4 ⊥ A3 ⊥ U(2) not on list (2, 2, 3, 5)
24 ρ = 8 D4 ⊥ A2 ⊥ U E6 ⊥ D4 ⊥ U 11 (1, 2, 4, 5)
25 ρ = 4 A2 ⊥ U E8 ⊥ E6 ⊥ U 43, 48, 88 (1, 1, 3, 4)
26 ρ = 14 D8 ⊥ D4 ⊥ U D4 ⊥ U(2) 6 (2, 4, 5, 9)
27 ρ = 14 E8 ⊥ D4 ⊥ U D4 ⊥ U 12 (2, 3, 8, 11)
28 ρ = 10 E8 ⊥ U E8 ⊥ U 14,28,45,51 (1, 3, 7, 10)
29 ρ = 16 T2,5,5 ⊥ D6 q = w−1

5,1 ⊥ (w−1
2,1)

2 not on list (4, 5, 6, 15)

30 ρ = 18 E8 ⊥ T2,5,5

(

2 1
1 −2

)

⋆ 21 (5, 7, 8, 20)

31 ρ = 15 E6 ⊥ A7 ⊥ U q = w−1
2,3 ⊥ w1

3,1
⋆ not on list (3, 4, 5, 12)

32 ρ = 10 D4 ⊥ D4 ⊥ U(2) D4 ⊥ D4 ⊥ U(2) 32 (2, 2, 3, 7)

33 ρ = 12
M(1,1,1,1,2,2,3),

(1,1,1,1,1,1,1),−4
q = w1

3,1 ⊥ v ⊥

w1
2,1 ⊥ w−1

2,1

not on list (2, 3, 4, 9)

34 ρ = 14 D8 ⊥ D4 ⊥ U D4 ⊥ U(2) 6 (2, 6, 7, 15)
35 ρ = 16 E8 ⊥ A6 ⊥ U M(1,2),(1,1),0 66 (3, 4, 7, 14)

36 ρ = 13 T2,5,5 ⊥ A3 D5 ⊥

(

2 1
1 −2

)

not on list (2, 3, 5, 10)

37 ρ = 9 T3,4,4 T2,5,6 58 (1, 3, 4, 8)
38 ρ = 11 E8 ⊥ A1 ⊥ U E7 ⊥ U 50, 82 (1, 6, 8, 15)

continued on next page
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39 ρ = 9 E6 ⊥ A1 ⊥ U E7 ⊥ A2 ⊥ U 60 (1, 3, 5, 9)
40 ρ = 7 D4 ⊥ A1 ⊥ U E7 ⊥ D4 ⊥ U 81 (1, 2, 4, 7)
41 ρ = 13 E6 ⊥ D5 ⊥ U A3 ⊥ A2 ⊥ U not on list (2, 3, 7, 12)
42 ρ = 3 A1 ⊥ U E8 ⊥ E7 ⊥ U 68, 83, 92 (1, 1, 3, 5)
43 ρ = 16 E8 ⊥ E6 ⊥ U A2 ⊥ U 25 (3, 4, 11, 18)
44 ρ = 7 D5 ⊥ U E8 ⊥ A3 ⊥ U not on list (1, 2, 5, 8)
45 ρ = 10 E8 ⊥ U E8 ⊥ U 14,28,45,51 (1, 4, 9, 14)
46 ρ = 18 E2

8 ⊥ U U 10 (5, 6, 22, 33)
47 ρ = 15 E7 ⊥ E6 ⊥ U A2 ⊥ A1 ⊥ U not on list (3, 4, 14, 21)
48 ρ = 16 E8 ⊥ E6 ⊥ U A2 ⊥ U 25 (3, 5, 16, 24)
49 ρ = 14 E8 ⊥ D4 ⊥ U D4 ⊥ U 12 (2, 5, 14, 21)
50 ρ = 9 E7 ⊥ U E8 ⊥ A1 ⊥ U 38, 77 (1, 4, 10, 15)
51 ρ = 10 E8 ⊥ U E8 ⊥ U 14,28,45,51 (1, 5, 12, 18)
52 ρ = 19 E8 ⊥ D9 ⊥ U ∼=

(E8)
2 ⊥ 〈−4〉 ⊥ U

〈4〉, q = w1
2,2

⋆ 5 (7, 8, 9, 12)

53 ρ = 15
M(1,2,2,2,3,4),

(1,1,1,1,1,1),−4
q = w1

3,2 ⊥ w1
3,1 ⊥

w−1
2,1

not on list (3, 4, 5, 6)

54 ρ = 16 E8 ⊥ (A2)
3 ⊥ U A2 ⊥ U(3) not on list (3, 5, 6, 7)

55 ρ = 15 D9 ⊥ D4 ⊥ U w1
2,2 ⊥ u not on list (2, 5, 6, 7)

56 ρ = 19 E2
8 ⊥ A1 ⊥ U 〈2〉, q = w1

2,1
⋆ 1 (5, 6, 8, 11)

57 ρ = 17 E8 ⊥ D5 ⊥ A2 ⊥
U

w5
2,2 ⊥ w−1

3,1 not on list (4, 5, 6, 9)

58 ρ = 11 T2,5,6 T3,4,4 37 (1, 4, 5, 6)
59 ρ = 12 E8 ⊥ A2 ⊥ U E6 ⊥ U 13, 72 (1, 5, 7, 8)
60 ρ = 11 E7 ⊥ A2 ⊥ U E6 ⊥ A1 ⊥ U 39 (1, 4, 6, 7)
61 ρ = 18 E8 ⊥ D8 ⊥ U U(2) not on list (4, 6, 7, 11)
62 ρ = 16 D9 ⊥ D5 ⊥ U q = w1

2,2 ⊥ w5
2,2 not on list (3, 4, 5, 8)

63 ρ = 8 M(1,1,2,3),(1,1,1,1),−2 T2,5,5 ⊥ (A1)
2 not on list (1, 2, 3, 4)

64 ρ = 17 E8 ⊥ D7 ⊥ U M(1,1),(1,1),0 7 (3, 4, 7, 10)
65 ρ = 18 E2

8 ⊥ U U 10 (3, 5, 11, 14)
66 ρ = 4 M(1,2),(1,1),0 E8 ⊥ A6 ⊥ U 35 (1, 1, 2, 3)
67 ρ = 14 E2

6 ⊥ U ∼= E8 ⊥
(A2)

2 ⊥ U
(A2)

2 ⊥ U not on list (2, 3, 7, 9)

68 ρ = 17 E8 ⊥ E7 ⊥ U A1 ⊥ U 42 (3, 4, 10, 13)
69 ρ = 13 D4 ⊥ A7 ⊥ U q = w−1

2,3 ⊥ v ⋆ not on list (2, 3, 4, 7)
70 ρ = 14 E8 ⊥ A2 ⊥

(A1)
2 ⊥ U

q = w−1
3,1 ⊥ (w1

2,1)
2 not on list (2, 3, 5, 8)

continued on next page
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71 ρ = 10 T2,5,5 T2,5,5 9, 71 (1, 3, 4, 7)
72 ρ = 8 E6 ⊥ U E8 ⊥ A2 ⊥ U 20, 59 (1, 2, 5, 7)
73 ρ = 19 E2

8 ⊥ A1 ⊥ U 〈2〉, q = w1
2,1

⋆ 1 (7, 8, 10, 25)
74 ρ = 17 M(3,3,4,6),(1,1,1,3),−4 q = w−5

2,3
⋆ not on list (4, 5, 7, 16)

75 ρ = 13 E7 ⊥ (A1)
4 ⊥ U (A1)

5 ⊥ U not on list (2, 4, 5, 11)
76 ρ = 14 D8 ⊥ D4 ⊥ U D4 ⊥ U(2) 6 (2, 5, 6, 13)
77 ρ = 11 E8 ⊥ A1 ⊥ U E7 ⊥ U 50, 82 (1, 5, 7, 13)
78 ρ = 10 E7 ⊥ A1 ⊥ U E7 ⊥ A1 ⊥ U 78 (1, 4, 6, 11)
79 ρ = 15 E8 ⊥ D5 ⊥ U A3 ⊥ U not on list (2, 5, 9, 16)
80 ρ = 18 E2

8 ⊥ U U 10 (4, 5, 13, 22)
81 ρ = 13 E8 ⊥ (A1)

3 ⊥ U D4 ⊥ A1 ⊥ U 40 (2, 3, 8, 13)
82 ρ = 9 E7 ⊥ U E8 ⊥ A1 ⊥ U 38, 77 (1, 3, 7, 11)
83 ρ = 17 E8 ⊥ E7 ⊥ U A1 ⊥ U 42 (4, 5, 18, 27)
84 ρ = 18 E8 ⊥ A8 ⊥ U q = w−1

3,2
⋆ not on list (5, 6, 7, 9)

85 ρ = 13 D4 ⊥ A6 ⊥ A1 ⊥
U

D4 ⊥ 〈14〉 ⊥ U not on list (2, 3, 4, 5)

86 ρ = 18 E8 ⊥ T2,5,5

(

2 1
1 −2

)

21 (4, 5, 7, 9)

87 ρ = 10 T3,4,5 T3,4,5 87 (1, 3, 4, 5)
88 ρ = 16 E8 ⊥ E6 ⊥ U A2 ⊥ U not on list (2, 5, 9, 11)
89 ρ = 8 M(1,2,4),(1,1,2),−2 A10 ⊥ U not on list (1, 2, 3, 5)
90 ρ = 17 E8 ⊥ D6 ⊥ A1 ⊥

U
A1 ⊥ U(2) not on list (4, 6, 7, 17)

91 ρ = 18 E8 ⊥ E7 ⊥ A1 ⊥
U

q = w1
2,1 ⊥ w−1

2,1 not on list (5, 6, 8, 19)

92 ρ = 17 E8 ⊥ E7 ⊥ U A1 ⊥ U 42 (3, 5, 11, 19)
93 ρ = 16 E8 ⊥ D6 ⊥ U (A1)

2 ⊥ U not on list (3, 4, 10, 17)
94 ρ = 16 M(2,3,4,6),(1,1,2,2),−4 q = w1

19,1 not on list (3, 4, 5, 7)
95 ρ = 14 M(1,2,4,6),(1,1,2,3),−4 q = w−1

17,1 not on list (2, 3, 5, 7)

3.0.1 Existence and Uniqueness of Mirror Lattices

There is a paper [Mir-Mor] by Miranda and Morrison, which helps us determine

when a lattice is unique, in cases where ρ ≥ 3 but Nikulin’s criteria do not apply.

The authors compute the number of equivalence classes of primitive embeddings into

a unimodular lattice. Of course, if this number is 1, the lattice is unique. [Venkov]

states that any rank 2 form of determinant 4 is unique up to isomorphism. These
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are enough to show that almost all of the mirror lattices are unique. Here are the

exceptions:

30 – It exists because we have found the mirror and is unique [MirE].

31 – We are unable to check the existence of the mirror lattice because we know of

no existing lattice of any rank with this form.

52 – It exists because we found the mirror. It is not unique.

56 – It exists because we found the mirror. It is not unique.

69 – We are unable to check the existence of the mirror lattice because we know of

no existing lattice of any rank with this form.

73 – It exists because we found the mirror. It is not unique.

74 – We are unable to check the existence of the mirror lattice because we know of

no existing lattice of any rank with this form.

84 – We are unable to check the existence of the mirror lattice because we know of

no existing lattice of any rank with this form. If it exists, it is not unique.

For each of the fibrations discussed below, I have checked to see every curve of

genus ≥ 2 has equal intersection multiplicity with each fibre.

3.0.1.1 Definition. A fibration has good rank if it satisfies the Shioda-Tate formula

with rk(MW ) = 0.

3.1 (1,1,1,1)

A representative equation for this family of hypersurfaces is x4 + y4 + z4 + w4.

This was already calculated by Dolgachev to have Pic(S) = 〈4〉, and the polytope is

nonsingular anyway; thus, the computer programs would produce nothing.
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3.2 (2,3,3,4)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A representative equation for this family of hypersurfaces is x6 + y4 + z4 + w3.

The Fibration. ρ = 12; curves 1,3, and 4 have genus 1 and the edges between 1

and 4 and between 3 and 4 have multiplicity 2. No fibration of good rank admits a

section.

A Non-Jacobian Fibration. If we compute the discriminant of the corresponding

matrix, we have 108 = 27 ·4, so we expect to either find a fibration with discriminant

27 or discriminant 12. We begin with the natural Ẽ6 formed by curves 2, 8-13. This

means that curves 1,3,4,and 14 are 3-sections. So, to get a fibration with disc. =

27 we need to form a lattice of discriminant 9 and rank 4 (impossible) and to get a

fibration with disc. = 12 we need to form something of discriminant 4 and rank 4

– this could only be D̃4, we may form one by adding a curve which intersects the

remaining four curves. The corresponding Jacobian fibration has good rank.

Method: Mukai and Matrix. We can apply Mukai’s theorem to see that Pic(S)

is of index 3 in Pic(J(S)), so that disc Pic(S) = 9 · Pic(J(S)) and the intersection

matrix for our graph determines Pic(S).

Calculate the Form. We have two value-1 generators of order 2; their sum is 1,

so they must correspond to the form v. We have three value-2/3 generators of order

3, and at least one of these must correspond to a w−1
3,1. We have 5 value-1 order 6
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generators; each must have a component of order 3 and of order 2, and v has gen-

erator values of 1 only so the order 3 component must have value 0, which could be

2/3 + 2/3 + 2/3 or 4/3 + 2/3. There must be a 4/3-valued generator in order to

embed this lattice into w−1
3,1 ⊥ v, so that we have the form (w−1

3,1)
2 ⊥ w1

3,1 ⊥ v. This

corresponds to E6 ⊥ D4 ⊥ U(3).

3.3 (1,1,2,2)

1
2

5

6

7

A representative equation for this family of hypersurfaces is x6 + y6 + z3 + w3.

The Fibration. ρ = 4; curves 1 and 2 have genus 1. There is no fibration which

has good rank. Therefore MW is infinite and we will have to consult the intersection

matrix of the graph.

Method: Matrix Calculations. The matrix has discriminant 12, and there are

4 generators. There are two 1-value generators of order 2; their sum has value 1, so

this indicates we have form v. Then, we have a a 5/3-value generator of order 6;

the value 5/3 must be 1 + 2/3 and so our form is v ⊥ w−1
3,1. This has no isotropic

subgroups, so it must have index 1 in Pic(S). This lattice has no representation as

a sum of Dynkin lattices. However, we can express this form as M(1,1,1),(1,1,1),0.
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3.4 (1,3,4,4)

1

2

5 6

7

8

9

10

11

12 13

A representative equation for this family of hypersurfaces is x12+y4+z3+w3. This is

one of Arnold’s 14 original surface singularities. Curve 2 is elliptic, and the remaining

curves form the lattice Pic(S) = T4,4,4. This lattice has no representation as a sum

of Dynkin lattices.

3.5 (1,1,1,3)

A representative equation for this family of hypersurfaces is x6 + y6 + z6 + w2.

The polytope is nonsingular, and Pic(S) was already calculated by Dolgachev.

3.6 (1,2,2,5)

2

5

6

7

8

9
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A representative equation for this family of hypersurfaces is x10 + y5 + z5 + w2.

The Fibration. ρ = 6; curves 2, 6-9 form a D̃4 and then curve 5 is a 2-section.

This is the only fibration we have, and as these fibres are the same for the Jacobian

fibration, we see that J(S) has good rank.

Method: Mukai. We apply the results of Mukai to see that Pic(S) has index 2 in

Pic(J(S), so we need to consult the matrix.

Matrix Calculations. The matrix has discriminant 16. We have one 0-value gen-

erator of order 2 and 4 1-value generators of order 2. Therefore the discriminant

group must be (Z2)
4. See Appendix 1 for the possible forms. Because Pic(J(S)

has discriminant form v, Pic(S) must embed in v. By examining the isotropic sub-

groups of each possibility, we see that the only two which embed into v are u ⊥ v

and v ⊥ w1
2,1 ⊥ w−1

2,1. Now we need to determine which of these corresponds to the

generators we have. Mathematica tells us that the sum of the 0-value generator with

one of the 1-value generators has value 0. Such elements exist in u ⊥ v but not in

v ⊥ w1
2,1 ⊥ w−1

2,1. Therefore Pic(S) = u ⊥ v. This lattice has no representation as a

sum of Dynkin lattices.

3.7 (1,1,2,4)

1 2

5

6
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A representative equation for this family of hypersurfaces is x8 + y8 + z4 + w2.

The Fibration. ρ = 3; there is no fibration which has good rank. Therefore MW

must be infinite.

Method: Matrix Calculations. The matrix has discriminant 4 and has a 7/4-

value generator of order 4; thus, the form must be w−1
2,2. This form has no isotropic

subgroups, so Pic(S) = w−1
2,2. This lattice has no representation as a sum of Dynkin

lattices. However, we can express this form as M(1,1),(1,1),0.

3.8 (1,2,3,6)

1 2

5

67

89

10

A representative equation for this family of hypersurfaces is x12 + y6 + z4 + w2.

The Fibration. ρ = 7; there is no fibration which has good rank, so MW is infinite.

Method: Matrix Calculations. This has discriminant 12. There is a 1/4-

value generator of order 4 and a 2/3-value generator of order 3. They are inde-

pendent, so our form is w1
2,2 ⊥ w−1

3,1. This form has no isotropic subgroups, so

Pic(S) = w1
2,2 ⊥ w−1

3,1. This lattice has no representation as a sum of Dynkin lattices.

However, we can express this form as M(1,1,2,2),(1,1,1,1),−2.
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3.9 (1,4,5,10)

1 2

5

6 7 8

9

10 11 12

13

A representative equation for this family of hypersurfaces is x20 + y5 + z4 + w2.

This is one of Arnold’s 14 original surface singularities. ρ = 10. Curve 2 has genus

1. Note that aside from curve 2, we have Pic(S) = T2,5,5. (It corresponds to form

q−1
5,1.) This lattice has no representation as a sum of Dynkin lattices.

3.10 (1,1,4,6)

1

2

5

A representative equation for this family of hypersurfaces is x12 + y12 + z3 + w2.

ρ = 2. Curves 1 and 2 have genus 1; if we consider these to be fibres, then curve 5

is a section. Therefore Pic(S) = U .
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3.11 (2,3,10,15)

1
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A representative equation for this family of hypersurfaces is x15 + y10 + z3 + w2.

ρ = 12. None of the curves has genus 1, so we may form curves 2,8,13,14,15 into

a D̃4, so that curve 7 is a section and curves 1,5,6,9-12 form an Ẽ6. This fibration

has good rank, and we have exhibited one section; furthermore, the form associated

with this fibration has no isotropic subgroups. Therefore, Pic(S) = D4 ⊥ E6 ⊥ U .

3.12 (1,2,6,9)

1 2

5

6

7

8

9

A representative equation for this family of hypersurfaces is x18 + y9 + z3 + w2.

ρ = 6 and curve 2 has genus 1. If we consider curve 2 as a fibre, then curve 6 is

a section and curves 1, 5, 7-9 form a D̃4. This fibration has good rank, and the

associated form v has no isotropic subgroups, so Pic(S) = D4 ⊥ U .
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3.13 (1,3,8,12)

1 2

5 6

78 9

10 11

A representative equation for this family of hypersurfaces is x24 + y8 + z3 + w2.

This is one of Arnold’s 14 original surface singularities. ρ = 8 and curve 2 has genus

1. If we consider curve 2 to be a fibre, then curve 7 is a section and we are left with a

Ẽ6. This fibration has good rank and the associated form has no isotropic subgroups

so Pic(S) = E6 ⊥ U .

3.14 (1,6,14,21)

1 2

5

6

7 8 9 1011

12

13

A representative equation for this family of hypersurfaces is x42 + y7 + z3 + w2.

This is one of Arnold’s 14 original surface singularities. ρ = 10 and curve 2 has genus

1. If we consider this to be a fibre, then curve 10 is a section and we are left with

Ẽ8. This has good rank and is unimodular so Pic(S) = E8 ⊥ U .
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3.15 (3,3,4,5)
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A representative equation for this family of hypersurfaces is −x5+y5+xz3+yz3+w3.

The Fibration. ρ = 14 and curves 2 and 5 have genus 1. If we consider these to be

fibres, then curves 1,3,and 4 are sections and the most obvious way to complete the

remaining fibres is to make 6Ã2. This fibration has good rank, but we have exhibited

three sections.

Method: Intermediate Lattice Calculation. The discriminant group of our

lattice is (Z3)
6; there are scads of conjugate isotropic subgroups. It suffices to check

representatives, which we choose to be (1,1,1,0,0,0) and (1,1,1,1,1,1). We will use

Miranda’s notation for this calculation.

Begin with (1,1,1,0,0,0). We will suppress the last three entries and append (w1
3,1)

3

to the result. There are ten elements now (up to permutation), and we determine

which of these are perpendicular to (1,1,1) by testing q(a)− q(a+(1,1,1)) = 0.

(0,0,0) – 0 - 0 = 0 ; (0,0,1) – 1/3 - 0 = 1/3

(0,0,2) – 1/3 - 2/3 = -1/3 ; (0,1,1) – 2/3 - 0 = 2/3

(0,1,2) – 2/3 - 2/3 = 0 ; (0,2,2) – 2/3 - 1/3 = 1/3

(1,1,1) – 0 - 0 = 0 ; (1,1,2) – 0 - 2/3 = -2/3

(1,2,2) – 0 - 1/3 = -1/3 ; (2,2,2) – 0 - 0 = 0
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This leaves us with

(0,0,0) (1,1,1) (2,2,2) 0

(0,1,2) (1,2,0) (2,0,1) -2/3

(0,2,1) (1,0,2) (2,1,0) -2/3

where we have written out all the permutations of the elements, by coset, and their

values. This corresponds to the form w−1
3,1, so the result is (w1

3,1)
3 ⊥ w−1

3,1.

Now we will work with (1,1,1,1,1,1). Up to permutation, we have 28 distinct

elements. We determine which are perpendicular to (1,1,1,1,1,1); the columns are

for the element, its value, the value when 111111 is added, and whether it is perpen-

dicular or not.

000000 0 0 Y

000001 1/3 0 N

000002 1/3 -2/3 N

000011 2/3 0 N

000012 2/3 -2/3 Y

000022 2/3 -1/3 N

000111 0 0 Y

000112 0 -2/3 N

000122 0 -1/3 N

000222 0 0 Y

001111 1/3 0 N

001112 1/3 -2/3 N

001122 1/3 -1/3 Y

001222 1/3 0 N

002222 1/3 -2/3 N

011111 2/3 0 N

011112 2/3 -2/3 Y

011122 2/3 -1/3 N

011222 2/3 0 N

012222 2/3 -2/3 Y

022222 2/3 -1/3 N

111111 0 0 Y

111112 0 -2/3 N

111122 0 -1/3 N

111222 0 0 Y

112222 0 -2/3 N

122222 0 -1/3 N

222222 0 0 Y

This leaves us with (arranged by coset class, and still up to permutation):
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elt elt+111111 elt+222222 value no. of such elts

000000 111111 222222 0 1

000012 011112 012222 -2/3 30

000111 111222 000222 0 20

001122 (same) (same) -1/3 30

So we wish to find which form on (Z3)
4 has 21 0-values, 30 -2/3-values, and 30

-1/3-values. See Appendix 1 for the possibilities; the form must be (w1
3,1)

3 ⊥ w−1
3,1.

This is exactly what we found for the first isotropic subgroup, so Pic(S) = E6 ⊥

(A2)
3 ⊥ U .

3.16 (3,6,7,8)

1
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A representative equation for this family of hypersurfaces is x8 + y4 + xz3 + w3.

The Fibration. ρ = 16 and curve 2 has genus 1. If we consider it to be a fibre,

then curves 3,4, and 7 are sections and we are left with Ẽ6 + 4Ã2. This has good

rank and we have exhibited three sections.

Method: Intermediate Lattice Calculation. Each fibre has discriminant group

Z3, so we are beginning with (Z3)
5. We will use Miranda’s notation; we have three

distinct isotropic subgroups, (1,1,0,0,0), (0,0,1,1,1), and (1,1,1,1,1).

We begin with (1,1,0,0,0), and will suppress the last three entries. There are nine



66

elements now, and we’ll determine which of these are perpendicular to (1,1) by testing

q(a)− q(a+(1,1)) = 0. (0,0) – 0-0=0

(0,1) – 1/3 - 0 = 1/3 ; (0,2) – 1/3 - 0 = 1/3

(1,0) – 2/3 - 0 = 2/3 ; (1,1) – 0 - 0 = 0

(1,2) – 0 - 2/3 = -2/3 ; (2,0) – 2/3 - 1/3 = 1/3

(2,1) – 0 - 1/3 = -1/3 ; (2,2) – 0 - 0 = 0

This leaves us with (0,0), (1,1), and (2,2) which are all identified if we mod out by

the subgroup generated by (1,1). So we are left with (w1
3,1)

3.

For (0,0,1,1,1), we suppress the first two entries. There are 27 entries this time.

(0,0,0) – 0 - 0 = 0 (1,0,0) – 1/3 - 0 = 1/3 (2,0,0) – 1/3 - 2/3 = -1/3

(0,0,1) – 1/3 - 0 =1/3 (1,0,1) – 2/3 - 0 = 2/3 (2,0,1) – 2/3 - 2/3 = 0

(0,0,2) – 1/3 - 2/3 = -1/3 (1,0,2) – 2/3 - 2/3 = 0 (2,0,2) – 2/3 - 1/3 = 1/3

(0,1,0) – 1/3 - 0 = 1/3 (1,1,0) – 2/3 - 0 = 2/3 (2,1,0) – 2/3 - 2/3 = 0

(0,1,1) – 2/3 - 0 = 2/3 (1,1,1) – 0 - 0 = 0 (2,1,1) – 0 - 2/3 = -2/3

(0,1,2) – 2/3 - 2/3 = 0 (1,1,2) – 0 - 2/3 = -2/3 (2,1,2) – 0 - 1/3 = -1/3

(0,2,0) – 1/3 - 2/3 = -1/3 (1,2,0) – 2/3 - 2/3 = 0 (2,2,0) – 2/3 - 1/3 = 1/3

(0,2,1) – 2/3 - 2/3 = 0 (1,2,1) – 0 - 2/3 = -2/3 (2,2,1) – 0 - 1/3 = -1/3

(0,2,2) – 2/3 - 1/3 = 1/3 (1,2,2) – 0 - 1/3 = -1/3 (2,2,2) – 0 - 0 = 0

We arrange these by cosets of (1,1,1):

(0,0,0) (1,1,1) (2,2,2) value is 0

(0,1,2) (1,2,0) (2,0,1) value is 2/3

(0,2,1) (1,0,2) (2,1,0) value is 2/3

This is Z3 and the value indicates that we have w−1
3,1 for a total of w−1

3,1 ⊥ w−1
3,1 ⊥ w1

3,1

which, by the first isomorphism relation, is equivalent to (w1
3,1)

3.

For (1,1,1,1,1): up to permutation, we have the following elements and values:
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(0,0,0,0,0) – 0 (1,0,0,0,0) – 2/3 (2,0,0,0,0) – 2/3

(0,0,0,0,1) – 1/3 (1,0,0,0,1) – 0 (2,0,0,0,1) – 0

(0,0,0,0,2) – 1/3 (1,0,0,0,2) – 0 (2,0,0,0,2) – 0

(0,0,0,1,1) – 2/3 (1,0,0,1,1) – 1/3 (2,0,0,1,1) – 1/3

(0,0,0,1,2) – 2/3 (1,0,0,1,2) – 1/3 (2,0,0,1,2) – 1/3

(0,0,0,2,2) – 2/3 (1,0,0,2,2) – 1/3 (2,0,0,2,2) – 1/3

(0,0,1,1,1) – 0 (1,0,1,1,1) – 2/3 (2,0,1,1,1) – 2/3

(0,0,1,1,2) – 0 (1,0,1,1,2) – 2/3 (2,0,1,1,2) – 2/3

(0,0,1,2,2) – 0 (1,0,1,2,2) – 2/3 (2,0,1,2,2) – 2/3

(0,0,2,2,2) – 0 (1,0,2,2,2) – 2/3 (2,0,2,2,2) – 2/3

(0,1,1,1,1) – 1/3 (1,1,1,1,1) – 0 (2,1,1,1,1) – 0

(0,1,1,1,2) – 1/3 (1,1,1,1,2) – 0 (2,1,1,1,2) – 0

(0,1,1,2,2) – 1/3 (1,1,1,2,2) – 0 (2,1,1,2,2) – 0

(0,1,2,2,2) – 1/3 (1,1,2,2,2) – 0 (2,1,2,2,2) – 0

(0,2,2,2,2) – 1/3 (1,2,2,2,2) – 0 (2,2,2,2,2) – 0

Now, because the condition for perpendicularity toH is q(a)−q(a+(1, 1, 1, 1, 1)) = 0,

which can be rewritten as q(a) = q(a+(1, 1, 1, 1, 1)), we just have to add (1, 1, 1, 1, 1)

to each element and see if the quadratic form value matches. Here’s a list for which

the condition holds (arranged, as usual, by coset):

(0,0,0,0,0) (1,1,1,1,1) (2,2,2,2,2) 1 element value 0

(0,0,0,1,2) (1,0,1,1,2) (2,0,1,2,2) 12 elements value 2/3

(0,0,1,1,1) (1,1,2,2,2) (2,0,0,0,2) 4 elements value 0

(0,0,2,2,2) (1,0,0,0,1) (2,1,1,1,2) 4 elements value 0

(0,1,1,2,2) (1,0,0,2,2) (2,0,0,1,1) 6 elements value 1/3
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Each element (except the identity) is of order 3, so with 27 elements we’re looking

at Z3
3. By examining the possibilities in Appendix 1, we see that we have (w1

3,1)
3.

The Answer. This corresponds to Pic(S) = E8 ⊥ (A2)
3 ⊥ U .

3.17 (2,3,5,5)
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A representative equation for this family of hypersurfaces is x6y + x5z + x5w + y5 +

z3 + w3.

ρ = 14 and there are no curves of genus 1. There are no fibrations with good rank.

Method: Matrix Calculation. The matrix has discriminant 25, and all gen-

erators have order 5, so the discriminant group is (Z5)
2. There are a 6/5-valued

generator and a 8/5-valued generator which are independent of each other, so the

form must be w−1
5,1 ⊥ w1

5,1. This form has no isotropic subgroups, and the associated

lattice of rank 14 is Pic(S) = T2,5,5 ⊥ A4.
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3.18 (1,2,3,3)

1 3

4

6

7

8

9

10

11

A representative equation for this family of hypersurfaces is x9 + xy4 + y3z + y3w +

z3 + w3.

The Fibration. ρ = 8 and curve 3 has genus 1. There is no Jacobian fibration of

good rank, so we look at curves 1, 6-11 as forming a Ẽ6, so that curves 3 and 4 are

3-sections. Thus, the associated Jacobian fibration has good rank.

Method: Mukai and Matrix. We can apply Mukai’s theorem to see that Pic(S)

is of index 3 in Pic(J(S)), so that disc Pic(S) = 9 · Pic(J(S)) and the intersection

matrix for our graph determines Pic(S). The matrix has discriminant 27. We have

order 9 generators with values of 14/9 and 2/9, so we have w−1
3,2. We also have order

3 generators with value 2/3 each, so we have w−1
3,1.

The Answer. Pic(S) = w−1
3,2 ⊥ w−1

3,1. This lattice has no representation as a sum of

Dynkin lattices. However, we can express this form as M(1,2,2,2),(1,1,1,1),−2.
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3.19 (1,2,2,3)
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A representative equation for this family of hypersurfaces is x8 + y4 + z4 + x2w2 +

yw2 + zw2.

The Fibration. ρ = 7 and no curves have genus 1. We will see curves 2, 7-10 as

a D̃4 so that curve 6 is a 2-section and curve 1 is part of an Ã1. The corresponding

Jacobian fibration has good rank.

Method: Mukai and Matrix. We may apply Mukai’s theorem to see that Pic(S)

is of index 2 in Pic(J(S)), so that disc Pic(S) = 4 · Pic(J(S)) and the intersection

matrix for our graph determines Pic(S). The discriminant of the matrix is 32. We

have generators of orders 2, 4, and 8. Thus the discriminant group is either Z8 ⊕ Z4

or Z8 ⊕ Z2 ⊕ Z2.

We need to embed the form in v ⊥ w−1
2,1; examine the forms on Z8. w1

2,3 and w5
2,3

reduce to w1
2,1; in order obtain something isomorphic to v ⊥ w−1

2,1, the remaining

part must be (w1
2,1)

2. w−1
2,3 and w−5

2,3 reduce to w−1
2,1; the remaining part could only be

v. So we must determine which of the four possible forms we have. We have two

7/8-valued generators which are dependent; what sum of generators could this be?

We can have 1/8 + {1/2, 1}, 5/8 + {1/2, 1}, 13/8 + {0, 1},& 15/8 + {0, 1}. The only

combination which gives 7/8 is 15/8 + 1, so Pic(S) = w−1
2,3 ⊥ v. This lattice has no

representation as a sum of Dynkin lattices. However, we can express this form as
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M(1,1,1,1,2),(1,1,1,1,1),−2.

3.20 (1,6,8,9)
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A representative equation for this family of hypersurfaces is x24+y4+z3+x6w2+yw2.

This is one of Arnold’s 14 original surface singularities. ρ = 12 and curve 3 has genus

1. If we consider curve 3 to be a fibre, then curve 2 is a section and we are left with

Ẽ8 and Ã2. We assume that the fibre must be completed. This fibration has good

rank and the associated form has no isotropic subgroups, so Pic(S) = E8 ⊥ A2 ⊥ U .

3.21 (1,1,1,2)

A representative equation for this family of hypersurfaces is x5 + y5 + z5 + xw2 +

yw2 + zw2.

ρ = 2 and we will go directly to the matrix as there is no graph. The matrix is




























2 2 1 5 2

2 2 1 5 2

1 1 −2 0 1

5 5 0 10 5

2 2 1 5 2




























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which easily reduces to







2 1

−1 2






which corresponds to the form w−1

5,1. We will

continue to specify it by the simplified matrix, and it has no representation as a sum

of Dynkin lattices.

3.22 (1,3,5,6)
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A representative equation for this family of hypersurfaces is −x15 + y5 + z3 +x3w2 +

yw2.

This is one of Arnold’s 14 original surface singularities. ρ = 10 and curve 3 has

genus 1. If we consider curve 3 to be a fibre, then curve 2 is a section and we are left

with Ẽ6 and Ã2. We assume that the fibre must be completed. This fibration has

good rank, but the associated form has an isotropic subgroup. There are at most 3

sections because the discriminant groups on Ẽ6 and Ã2 is Z3. If there are 3 sections,

then disc(Pic(S)) = 1; the only unimodular lattice of rank 10 is E8 ⊥ U , but this

only has one section. Contradiction! If there are 2 sections, then 4 ·disc(Pic(S)) = 9

and disc(Pic(S)) is not an integer; contradiction. Therefore our fibration has only

one section (which we have exhibited), so Pic(S) = E6 ⊥ A2 ⊥ U .
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3.23 (2,2,3,5)
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A representative equation for this family of hypersurfaces is x6+y6+z4+xw2+yw2.

The Fibration. ρ = 11 and curves 1 and 4 have genus 1. If we consider these as

fibres, then curves 2 and 5 are sections and we may complete each of curves 9-14 to

an Ã1 and curves 6,7,8 to an Ã3. This fibration has good rank but we have exhibited

two sections.

Method: Intermediate Lattice Calculation. Our discriminant group is Z4 ⊕

(Z2)
6. The last six entries can be permuted without harm, so up to this permu-

tation we have the following possible isotropic subgroup generators: (0,0,0,1,1,1,1),

(2,1,1,0,0,0,0), and (2,1,1,1,1,1,1).

We begin with (0,0,0,1,1,1,1). Our initial discriminant form is w5
2,2 ⊥ (w−1

2,1)
6; we will

suppress the three empty entries in our calculation. Up to permutation, we have the

following elements and values:

0000 0 1111 0

0001 -1/2 0111 -3/2

0011 -1 0011 -1

We have 8 elements (no longer up to permutation), arranged by coset of (1,1,1,1):
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0000 1111 0

0011 1100 -1

0101 1010 -1

1001 0110 -1

This corresponds to the form v so we have v ⊥ w5
2,2 ⊥ (w−1

2,1)
2.

Now , using the same procedure, we examine (2,1,1,0,0,0,0).

000 0 211 0

001 -1/2 210 1/2

011 -1 200 1

100 5/4 311 1/4

101 3/4 310 3/4

111 1/4 300 5/4

So in H⊥ we have, arranged by coset,

000 211 0

011 200 1

101 310 3/4

110 301 3/4

which corresponds to w−5
2,2, so we have w−5

2,2, ⊥ (w−1
2,1)

4.

Now, using the same procedure, we do (2,1,1,1,1,1,1).

0000000 0 2111111 0

0000001 -1/2 2111110 1/2

0000011 -1 2111100 -1

0000111 1/2 2111000 -1/2

0001111 0 2110000 0

0011111 -1/2 2100000 1/2

0111111 -1 2000000 1

1000000 5/4 3111111 1/4

1000001 3/4 3111110 3/4

1000011 1/4 3111100 5/4

1000111 -1/4 3111000 7/4

1001111 5/4 3110000 1/4

1011111 3/4 3100000 3/4

1111111 1/4 3000000 5/4

so in H⊥ we have, arranged by coset of H,
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element elt. + H value no. of elts.

0000000 2111111 0 1

0000011 2111100 -1 15

0001111 2110000 0 15

0111111 2000000 1 1

1000001 3111110 3/4 6

1000111 3111000 7/4 20

1011111 3100000 3/4 6

There are elements of order 4, so the discriminant group is Z4 ⊕ (Z2)
4. We can

eliminate all forms which involve w±1
2,1 as there would be elements with value 1/2 or

-1/2. This leaves us with {w−1
2,2 or w−5

2,2} ⊥ {u ⊥ u ∼= v ⊥ v or u ⊥ v}. Checking the

values for each of these possibilities shows that the form must be w−5
2,2 ⊥ u ⊥ v ∼=

w−1
2,2 ⊥ v ⊥ v.

Now we need to determine which lattice is the correct one. The only way to do

this is to (a) exhibit a fibration corresponding to one of the forms and (b) show that

none of the other lattices can be exhibited as a fibration. There are three possibilities

for a fibration here: (A1)
2 ⊥ D4 ⊥ A3 ⊥ U , (A1)

4 ⊥ D5 ⊥ U , and D5 ⊥ D4 ⊥ U(2).

With much pain, one may show that the first two of these are not possible, no matter

what kind of curves are added. We may see the last one in the following way.
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Referring to our original fibration with the 6Ã1, name the curves attached to curves

9 - 14 by A - F, and the curve attached to curves 6 and 8 by G. Then, we may view

curves 7 - 10, G as forming a D̃5, so that curves 1, 4, 6, 11 - 14, A, B are 2-sections,

and curves 2, C - F form a D̃4.

Thus, Pic(S) = D5 ⊥ D4 ⊥ U(2).

3.24 (1,2,4,5)

2

3

4
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7

8
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A representative equation for this family of hypersurfaces is x12+y6+z3+x2w2+yw2.

ρ = 8 and curve 3 has genus 1. If we consider it as a fibre, then curve 2 is a section

and we are left with curves 4, 8-11 as a D̃4 and we can complete curves 7,8 to Ã2.

This fibration has good rank. The discriminant form is v ⊥ w1
3,1, which has no

isotropic subgroups. Therefore, Pic(S) = D4 ⊥ A2 ⊥ U .
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3.25 (1,1,3,4)

2 3

5

6

7

A representative equation for this family of hypersurfaces is −x9+y9+z3+xw2+yw2.

ρ = 4 and curves 5 and 2 have genus 1. If we consider these as fibres, then curve 3

is a section and we may complete the remaining curves 6,7 to an Ã2. This fibration

has good rank, and the associated form w1
3,1 has no isotropic subgroups, so Pic(S) =

A2 ⊥ U .

3.26 (2,4,5,9)
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A representative equation for this family of hypersurfaces is x10 + y5 + z4 + xw2.

The Fibration. ρ = 14 and curve 2 has genus 1. If we consider it to be a fibre,

then curves 4 and 8 are sections and curves 1, 5-7, 9-12 form a Ẽ7. The remaining

curves 13-17 can each be completed to an Ã1. This fibration has good rank and we
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have exhibited two sections.

Method: Intermediate Lattice Calculation. Each of these fibres has discrimi-

nant group Z2, so we begin with (Z2)
6. The quadratic form on the generator for E7

evaluates to -3/4 and on the generator for A1 evaluates to -1/4 (using Miranda’s nota-

tion). Therefore, the three distinct isotropic subgroups are generated by (1,1,0,0,0,0),

(0,0,1,1,1,1), and (1,1,1,1,1,1).

Begin with (1,1,0,0,0,0). We suppress the last four entries. There are only four ele-

ments: (0,0) , (0,1) , (1,0) , (1,1).

We determine which of these are perpendicular to H =(1,1) with respect to the

quadratic form. This is true for a when q(a)− q(a+(1,1)) = 0; we reverse the order

because we only care about the magnitude:

(0,0) – 0 - 0 = 0 ; (0,1) – 1/4 - 3/4 = -1/2

(1,0) – 3/4 - 1/4 = 1/2 ; (1,1) – 0 - 0 = 0

This leaves us with (0,0) and (1,1) which are congruent under H, so we are left with

the identity group and so the form is (w−1
2,1)

4.

On to (0,0,1,1,1,1). Up to permutation of the entries, we have 5 elements:

(0,0,0,0,0,0), (0,0,0,0,0,1), (0,0,0,0,1,1), (0,0,0,1,1,1), (0,0,1,1,1,1),

We will suppress the first 2 entries. Now we determine which of these are perpen-

dicular to H =(1,1,1,1) with respect to the quadratic form. Respectively, for these

5 types of elements, we get: (0,0,0,0,0,0) – 0-0=0

(0,0,0,0,0,1) – -1/4-(-3/4)=1/2 ; (0,0,0,0,1,1) – -2/4-(-2/4)=0

(0,0,0,1,1,1) – -3/4-(-1/4)=-1/2 ; (0,0,1,1,1,1) – 0-0=0

and can then list all elements in H⊥ by coset of H:
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(0,0,0,0) (1,1,1,1)

(0,0,1,1) (1,1,0,0)

(0,1,0,1) (1,0,1,0)

(0,1,1,0) (1,0,0,1)

These determine the form v. We retain w−1
2,1 ⊥ w1

2,1 from the suppressed entries.

Now for (1,1,1,1,1,1). This time, up to permutation, we have twelve elements:

(0,0,0,0,0,0), (0,0,0,0,0,1), (0,0,0,0,1,1), (0,0,0,1,1,1), (0,0,1,1,1,1), (0,1,1,1,1,1),

(1,0,0,0,0,0), (1,0,0,0,0,1), (1,0,0,0,1,1), (1,0,0,1,1,1), (1,0,1,1,1,1), (1,1,1,1,1,1).

Now we determine which of these are in H⊥:

(0,0,0,0,0,0) – 0-0 = 0 ; (0,0,0,0,0,1) – 1/4 -3/4 = -1/2

(0,0,0,0,1,1) – 2/4 - 2/4 = 0 ; (0,0,0,1,1,1) – 3/4-1/4 = 1/2

(0,0,1,1,1,1) – 0 - 0 = 0 ; (0,1,1,1,1,1) – 1/4 - 3/4 = 1/2

(1,0,0,0,0,0) – 3/4 - 1/4 = 1/2 ; (1,0,0,0,0,1) – 0-0 = 0

(1,0,0,0,1,1) – 1/4 - 3/4 = 0 ; (1,0,0,1,1,1) – 2/4 - 2/4 = 0

(1,0,1,1,1,1) – 3/4 - 1/4 = 0 ; (1,1,1,1,1,1) – 0 - 0 = 0

So, perpendicular to (1,1,1,1,1,1) and arranged by coset, we have:

(0,0,0,0,0,0) (1,1,1,1,1,1)

(0,0,0,0,1,1) (1,0,0,1,1,1)

(0,0,1,1,1,1) (1,0,0,0,0,1)

Counting the elements shows that there are 10 elements with value 1/2 and 6 with

value 0. Every element is of order 2, so a simple check shows that these values

correspond to u ⊥ v.

Now we need to determine which of the H is the correct one. The only way to do

this is to (a) exhibit a fibration corresponding to one of the forms and (b) show that

none of the other lattices can be exhibited as a fibration. There are three possibilities
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for a fibration here: E8 ⊥ (A1)
4 ⊥ U , E7 ⊥ D4 ⊥ A1 ⊥ U , and D4 ⊥ D8 ⊥ U . With

much pain, one may show that the first two of these are not possible, no matter what

kind of curves are added. We may see the last one in the following way.
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Referring to our original fibration with the 5Ã1, name the curves attached to curves

13 - 17 by A - E. Then we can see curves 4, 12, 15 - 17 as forming a D̃4, so that

curve 11 is a section and curves 1, 13, 14, C - E are 2-sections. Then curves 1, 5 -

10, A, B form a D̃8. Thus, Pic(S) = D8 ⊥ D4 ⊥ U .

3.27 (2,3,8,11)
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A representative equation for this family of hypersurfaces is x12 + y8 + z3 + xw2.

ρ = 14. None of the curves have genus 1, so we will see an Ẽ8 composed of curves 1,

5-9, 12-14. Then curve 10 is a section and we curves 2, 11, 15-17 form a D̃4. This

fibration has good rank, so Pic(S) = E8 ⊥ D4 ⊥ U .
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3.28 (1,3,7,10)
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A representative equation for this family of hypersurfaces is x21 + y7 + z3 + xw2.

ρ = 10 and curve 2 has genus 1. If we consider it as a fibre, then curve 10 is a section,

leaving curves 1, 5-9, 11-13 forming an Ẽ8. This fibration has good rank, and has

trivial discriminant group, so Pic(S) = E8 ⊥ U .

3.29 (4,5,6,15)
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A representative equation for this family of hypersurfaces is x5y2+x6z+y6+z5+w2.

The Fibration. ρ = 16. None of the curves has genus 1. The easiest fibre to see is

an Ã9 formed by curves 4, 5, 12-19, so that curves 1 and 11 are sections, which leaves

curves 3, 7-10 forming a D̃4 and we may complete curve 6 to an Ã1. This fibration

has good rank.
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Method: Intermediate Lattice Calculation. Using Miranda’s mod Z conven-

tion, the only distinct isotropic subgroup is generated by (5, (1,1), 1). We list

elements and their values with a view to determine which are in H⊥.

0 00 0 0 5 11 1 0

0 00 1 -1/4 5 11 0 -3/4

0 01 0 -1/2 5 10 1 0

0 01 1 -3/4 5 10 0 -3/4

0 10 0 -1/2 5 01 1 0

0 10 1 -3/4 5 01 0 -3/4

0 11 0 -1/2 5 00 1 -1/2

0 11 1 -3/4 5 00 0 -1/4

1 00 0 -9/20 6 11 1 -19/20

1 00 1 -14/20 6 11 0 -14/20

1 01 0 -19/20 6 10 1 -19/20

1 01 1 -4/20 6 10 0 -14/20

1 10 0 -19/20 6 01 1 -19/20

1 10 1 -4/20 6 01 0 -14/20

1 11 0 -19/20 6 00 1 -9/20

1 11 1 -4/20 6 00 0 -4/20

2 00 0 -4/5 7 11 1 -4/5

2 00 1 -1/20 7 11 0 -11/20

2 01 0 -6/20 7 10 1 -4/5

2 01 1 -11/20 7 10 0 -11/20

2 10 0 -6/20 7 01 1 -4/5

2 10 1 -11/20 7 01 0 -11/20

2 11 0 -6/20 7 00 1 -6/20

2 11 1 -11/20 7 00 0 -1/20

3 00 0 -1/20 8 11 1 -11/20

3 00 1 -6/20 8 11 0 -6/20

3 01 0 -11/20 8 10 1 -11/20

3 01 1 -4/5 8 10 0 -6/20

3 10 0 -11/20 8 01 1 -11/20

3 10 1 -4/5 8 01 0 -6/20

3 11 0 -11/20 8 00 1 -1/20

3 11 1 -4/5 8 00 0 -4/5

4 00 0 -1/5 9 11 1 -4/20

4 00 1 -9/20 9 11 0 -19/20

4 01 0 -14/20 9 10 1 -4/20

4 01 1 -19/20 9 10 0 -19/20

4 10 0 -14/20 9 01 1 -4/20

4 10 1 -19/20 9 01 0 -19/20

4 11 0 -14/20 9 00 1 -14/20

4 11 1 -9/20 9 00 0 -9/20

Here is a table of members of H⊥ arranged by coset of H.
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0 00 0 5 11 1 0

0 01 1 5 10 0 -3/4

0 10 1 5 01 0 -3/4

0 11 0 5 00 1 -1/2

1 00 1 6 11 0 -14/20

1 01 0 6 10 1 -19/20

1 10 0 6 01 1 -19/20

1 10 0 6 01 1 -19/20

1 11 1 6 00 0 -4/20

2 00 0 7 11 1 -4/5

2 01 1 7 10 0 -11/20

2 10 1 7 01 0 -11/20

2 11 0 7 00 1 -6/20

3 00 1 8 11 0 -6/20

3 01 0 8 10 1 -11/20

3 11 1 8 00 0 -4/5

4 01 1 9 10 0 -19/20

4 10 1 9 01 0 -19/20

4 11 0 9 00 1 -14/20

4 11 1 9 00 0 -9/20

It appears that we have two distinct subgroups of order 2 generated by 0 01 1 and

0 10 1 with value -3/4, and a subgroup of order 5 generated by 2 00 0 with value

-4/5. These generate a group of order 20 (which we have), so we have the form

w−1
5,1 ⊥ (w1

2,1)
2, and so Pic(S) = T2,5,5 ⊥ D6.

3.30 (5,7,8,20)
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A representative equation for this family of hypersurfaces is x8 + xy5 + z5 + w2.

The Fibration. ρ = 18 and no curves have genus 1. The easiest fibration to see is

to combine curves 1, 3, 9-16 into a Ã9 and curves 2, 6-8, 17-19, 21 into a Ẽ7, which

leaves curves 5 and 20 as sections. This fibration has good rank.
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Method: Intermediate Lattice Calculation. Using Miranda’s mod Z conven-

tion, the only isotropic subgroup H is generated by (5,1), and here is a table of

elements and values so that we can determine which elements are in H⊥.

(0,0) 0 (5,1) 0

(0,1) -3/4 (5,0) -1/4

(1,0) -9/20 (6,1) -19/20

(1,1) -1/5 (6,0) -1/5

(2,0) -4/5 (7,1) -4/5

(2,1) -11/20 (7,0) -1/20

(3,0) -1/20 (8,1) -11/20

(3,1) -4/5 (8,0) -4/5

(4,0) -1/5 (9,1) -1/5

(4,1) -19/20 (9,0) -9/20

Now we list the elements of H⊥ arranged by coset of H so we can determine our

form.

(0,0) (5,1) 0

(1,1) (6,0) -1/5

(2,0) (7,1) -4/5

(3,1) (8,0) -4/5

(4,0) (9,1) -1/5

This corresponds to the form w−1
5,1, so Pic(S) = E8 ⊥ T2,5,5.

3.31 (3,4,5,12)
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A representative equation for this family of hypersurfaces is x8+y6+x3z3+yz4+w2.

The Fibration. ρ = 15 and none of the curves have genus 1. There is no Jacobian

fibration of good rank. Instead, we find a non-Jacobian fibration whose Jacobian

fibration has good rank: curves 1, 6, 8-13 form an Ẽ7 and curves 2, 4, 14-18 form an

Ẽ6, leaving curves 3 and 7 as 2-sections.

Method: Mukai and Matrix. We apply Mukai’s theorem to see that Pic(S) is

of index 2 in Pic(J(S)), so that disc Pic(S) = 4 · Pic(J(S)) and the intersection

matrix for our graph determines Pic(S). The matrix has discriminant 24. We have

a 1/8-valued generator of order 8 and the 2/3-valued generator of order 3 which are

independent, so our form is w1
2,3 ⊥ w−1

3,1. This does, in fact, embed into w1
2,1 ⊥ w−1

3,1

(see 3.19), and so Pic(S) = E6 ⊥ A7 ⊥ U .

3.32 (2,2,3,7)
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A representative equation for this family of hypersurfaces is −x7+y7+xz4+yz4+w2.

The Fibration. ρ = 10 and curves 2 and 5 are of genus 1. if we consider them to

be fibres, then curves 3 and 4 are sections and we may complete each of curves 6-13

to a Ã1. The fibration 8Ã1 has good rank.

Method: Intermediate Lattice Calculation. The only two q-isotropic subgroups
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(up to permutation) are generated by (1,1,1,1,0,0,0,0) and (1,1,1,1,1,1,1,1).

For (1,1,1,1,0,0,0,0), we suppress the last four zeros. Up to permutation, we have the

following elements and values: (0,0,0,0) – 0, (0,0,0,1) – -1/4, (0,0,1,1) – -1/2, (0,1,1,1)

– -3/4, and (1,1,1,1) – 0. We evaluate these as to whether they are perpendicular to

(1,1,1,1) and list them, as usual, by coset:

(0,0,0,0) (1,1,1,1) value is 0

(0,0,1,1) (1,1,0,0) value is -1/2

(0,1,0,1) (1,0,1,0) value is -1/2

(0,1,1,0) (1,0,0,1) value is -1/2

This form corresponds to v, so we have v ⊥ (w−1
2,1)

4.

For (1,1,1,1,1,1,1,1), up to permutation we have the following elements and values:

(0,0,0,0,0,0,0,0) 0

(0,0,0,0,0,0,0,1) -1/4

(0,0,0,0,0,0,1,1) -1/2

(0,0,0,0,0,1,1,1) -3/4

(0,0,0,0,1,1,1,1) 0

(0,0,0,1,1,1,1,1) -1/4

(0,0,1,1,1,1,1,1) -1/2

(0,1,1,1,1,1,1,1) -3/4

(1,1,1,1,1,1,1,1) 0

This leaves us with the following types of elements:

(0,0,0,0,0,0,0,0) (1,1,1,1,1,1,1,1) value 0 1 element

(0,0,0,0,0,0,1,1) (0,0,1,1,1,1,1,1) value -1/2
(

8
2

)

= 28 elements

(0,0,0,0,1,1,1,1) (0,0,0,0,1,1,1,1) value 0
(

8
4

)

/2 = 35 elements

So, what form is this? Examining App. 1, we see that we have u ⊥ u ⊥ u.

Now we need to determine which of the H is the correct one. The only way to do

this is to (a) exhibit a fibration corresponding to one of the forms and (b) show that

none of the other lattices can be exhibited as a fibration. There are two possibilities

for a fibration here: D4 ⊥ (A1)
4 ⊥ U and D4 ⊥ D4 ⊥ U(2). With much pain, one
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may show that the first is not possible, no matter what kind of curves are added.

We may see the last one in the following way.
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Referring to our original fibration with the 8Ã1, name the curves attached to curves

6 - 13 by A - H. Then we may see curves 4, 10 - 13 as a D̃4 so that curves E - H, A,

7 - 9 are 2-sections, and curves 3, 6, B - D form the other D̃4.

Thus, Pic(S) = D4 ⊥ D4 ⊥ U(2).

3.33 (2,3,4,9)
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A representative equation for this family of hypersurfaces is x9+y6+xz4+y2z3+w2.

The Fibration. ρ = 12 and curve 3 has genus 1. The fibration will be non-Jacobian

but its Jacobian fibration has good rank. There is only one such fibration which in-

tersects with curve 5 correctly; namely, consider curve 3 as a 2-section, and see

curves 1, 11-14 as a D̃4 and curves 2, 4, 7-10, 15 as an Ẽ6, leaving curve 6 as another
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2-section.

Method: Mukai and Matrix. We can apply Mukai’s theorem to see that Pic(S)

is of index 2 in Pic(J(S)), so that disc Pic(S) = 4 · Pic(J(S)) and the intersection

matrix for our graph determines Pic(S). The matrix has discriminant 48. We have

two of the 1-valued generators which are independent of a 2/3-valued generator of

order 3, and the sum of the two 1-valued generators has value 1, which indicates that

we have w−1
3,1 ⊥ v. To complete the calculation, we examine some 2/3-valued gener-

ators of order 6. The sum of two of them has value 2/3, indicating that the order-3

portion of each represents the same element of Z3, and that the order-2 portions

each have value 0 and sum-value 0. The only order-2 form values that exist which

sum to 0 are 0 from u, 1 + 1 where one is from u and one is from v (we can’t have

two u and v ⊥ v won’t reduce to v), or 1/2 + 3/2 where the 1/2 is from w1
2,1 and

the 3/2 is from w−1
2,1. So our possibilities for the sum of the order-2 portions of these

two generators are 0 + 0 = 1 in u, 1+1 + 1+1 = 1 (1+1 in u = 0, 1 +1 in v = 1),

and 1/2 + 3/2 + 1/2 + 3/2 = 0. So our form must be w−1
3,1 ⊥ v ⊥ w1

2,1 ⊥ w−1
2,1. This

lattice has no representation as a sum of Dynkin lattices. However, we can express

this form as M(1,1,1,1,2,2,3),(1,1,1,1,1,1,1),−4.

3.34 (2,6,7,15)

A representative equation for this family of hypersurfaces is x15 + y5 + xz4 +w2.

See (3.26). They have the same rank and configuration of curves.
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3.35 (3,4,7,14)
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A representative equation for this family of hypersurfaces is x8y+x7z+y7+ z4+w2.

The Fibration. ρ = 16 and curve 5 has genus 1. If we consider curve 5 to be

a fibre, then curves 4 and 19 must be sections. We are left with curves 2, 3, 6-17

forming an Ã13 and we may complete curve 18 to be an Ã1. This fibration has good

rank; we have exhibited 2 sections.

Method: Intermediate Lattice Calculation. We use Miranda’s notation. The

only element in Z14 with a value of -3/4 is 7, so our only isotropic subgroup is of

order 2 and generated by (7,1). We have 28 elements and corresponding values:

(0,0) – 0 (0,1) – -1/4

(1,0) – -13/28 (1,1) – -5/7

(2,0) – -6/7 (2,1) – -3/28

(3,0) – -5/28 (3,1) – -3/7

(4,0) – -3/7 (4,1) – -19/28

(5,0) – -17/28 (5,1) – -6/7

(6,0) – -5/7 (6,1) – -2/7

(7,0) – -3/4 (7,1) – 0

(8,0) – -5/7 (8,1) – -2/7

(9,0) – -17/28 (9,1) – -6/7

(10,0) – -3/7 (10,1) – -19/28

(11, 0) – -5/28 (11,1) – -3/7

(12,0) – -6/7 (12,1) – -3/28

(13,0) – -13/28 (13,1) – -5/7

When we test to see which of these are perpendicular to (7,1) (by adding (7,1)

and comparing values) we find that we have the following elements (arranged by
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coset of (7,1)) and values:

(0,0) (7,1) 0

(2,0) (9,1) -6/7

(4,0) (11,1) -3/7

(6,0) (13,1) -5/7

(8,0) (1,1) -5/7

(10,0) (3,1) -3/7

(12,0) (5,1) -6/7

Examining the table shows that this form is w1
7,1, so Pic(S) = E8 ⊥ A6 ⊥ U .

3.36 (2,3,5,10)
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A representative equation for this family of hypersurfaces is x10+xy6+y5z+z4+w2.

The Fibration. ρ = 13 and curve 5 has genus 1. Staring at the graph for hours will

show that no fibration exists which has good rank; therefore, we assume that MW

is infinite.

Method: Matrix Calculations. Mathematica shows that the discriminant of this

form is 20. Among the generators, there are a 5/4-valued generator of order 4 and an

8/5-valued generator of order 5 which are independent. This completely determines

the form, which is w5
2,2 ⊥ w−1

5,1. Furthermore, this is of index 1 in Pic(S) because the
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form has no isotropic subgroups. Therefore, Pic(S) = T2,5,5 ⊥ A3.

3.37 (1,3,4,8)
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A representative equation for this family of hypersurfaces is x16+xy5+y4z+z4+w2.

This is one of Arnold’s 14 original surface singularities. ρ = 9. Curve 3 has genus 1.

Note that aside from curve 3, we have a T3,4,4. This lattice has no representation as

a sum of Dynkin lattices.

3.38 (1,6,8,15)

2 4 5

6
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8

910

11 12 13 14

A representative equation for this family of hypersurfaces is−x30+y5+x6z3+yz3+w2.

This is one of Arnold’s 14 original surface singularities. ρ = 11 and curve 2 has genus
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1; if we consider it as a fibre, then curve 4 is a section and the remaining curves form

an Ẽ8 and an Ã1. This fibration has good rank and the associated form has no

isotropic subgroups, so Pic(S) = E8 ⊥ A1 ⊥ U .

3.39 (1,3,5,9)
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91011
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A representative equation for this family of hypersurfaces is x18+y6+x3z3+yz3+w2.

This is one of Arnold’s 14 original surface singularities. ρ = 9 and curve 2 has genus

1; if we consider it as a fibre, then curve 4 is a section and the remaining curves

form an Ẽ6 and an Ã1. This fibration has good rank and the associated form has no

isotropic subgroups, so Pic(S) = E6 ⊥ A1 ⊥ U .

3.40 (1,2,4,7)
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A representative equation for this family of hypersurfaces is−x14+y7+x2z3+yz3+w2.

ρ = 7 and curve 2 has genus 1. If we consider it to be a fibre, then curve 4 is a section

and curves 5, 7-10 form a D̃4 while curve 6 can be completed to form an Ã1. This

fibration has good rank. There are no isotropic subgroups of the latticeD4 ⊥ A1 ⊥ U

so the index in Pic(S) must be 1; Pic(S) = D4 ⊥ A1 ⊥ U .

3.41 (2,3,7,12)
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A representative equation for this family of hypersurfaces is x12+y8+x5z2+yz3+w2.

The Fibration. ρ = 13 and curve 4 has genus 1. We may see curves 2, 8, 9, 12-15

as an Ẽ6 and 1, 3, 6, 10, 11, 16 as a D̃5, where curve 7 is then a section and curve 4

is a 4-section. This has good rank.

The Answer. We know that MW is trivial because MW injects into the discrim-

inant group of each fibre (see [Miranda, p.70]) and the orders of the discriminant

groups of D5 and E6 are coprime. Therefore Pic(S) = E6 ⊥ D5 ⊥ U .
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3.42 (1,1,3,5)

2
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6

A representative equation for this family of hypersurfaces is x10+y10+xz3+yz3+w2.

ρ = 3 and curves 3 and 4 have genus 1. If we consider them to be fibres, then curve

2 is a section and curve 6 may be completed to an Ã1. This fibration has good rank

and the corresponding form has no isotropic subgroups, so Pic(S) = A1 ⊥ U .

3.43 (3,4,11,18)
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A representative equation for this family of hypersurfaces is x12 + y9 + xz3 + w2.

ρ = 16 and curve 1 has genus 1. We consider curves 2, 5, 6, 11-15, 19 as forming

an Ẽ8, so that curve 16 is a section, curve 1 is a 2-section, and curves 3, 7-10,

17, 18 form an Ẽ6. This fibration has good rank and the index in Pic(S) is 1, so

Pic(S) = E8 ⊥ E6 ⊥ U .
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3.44 (1,2,5,8)
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A representative equation for this family of hypersurfaces is x16+y8+xz3+y3z2+w2.

ρ = 7 and curve 1 has genus 1. If we consider it to be a fibre, then curve 6 is a section

and we are left with curves 2, 4, 7-10 forming a D̃5. This fibration has good rank

and the form associated to D5 has no isotropic subgroups, so Pic(S) ∼= D5 ⊥ U .

3.45 (1,4,9,14)
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A representative equation for this family of hypersurfaces is x28 + y7 + xz3 + w2.

ρ = 10 and curve 2 has genus 1. If we consider it to be a fibre, then curve 10 is

a section and the remaining curves form an Ẽ8. This fibration has good rank and

because we have an Ẽ8, the index in Pic(S) is 1 and so Pic(S) = E8 ⊥ U .
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3.46 (5,6,22,33)
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A representative equation for this family of hypersurfaces is x12y + y11 + z3 + w2.

The Fibration. ρ = 18 and curve 3 has genus 1. If we consider it as a fibre, then

curves 17 and 19 are sections and the remaining curves form a D̃16.

Method: Intermediate Lattice Calculation. The form associated to D16 is u;

we can take either (0,1) or (1,0) to be the generator of an isotropic subgroup; we’ll

use (0,1) for convenience. In (0,1)⊥ we have (0,0) and (0,1) which are in the same

coset so we are left with the trivial form. Therefore Pic(S) = E8 ⊥ E8 ⊥ U .

3.47 (3,4,14,21)
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A representative equation for this family of hypersurfaces is x14+x2y9+y7z+z3+w2.

ρ = 15 and curve 5 has genus 1. We consider curve 5 as a 2-section, then we may see



97

curves 4, 13-18 as forming an Ẽ6, curve 12 as a section, and curves 2, 3, 6-11 as an

Ẽ7. This does have good rank, and because MW must embed in the discriminant

groups of E6 and E7 (which have coprime orders), MW must be trivial. Therefore

Pic(S) = E7 ⊥ E6 ⊥ U .

3.48 (3,5,16,24)

A representative equation for this family of hypersurfaces is x16 + xy9 + z3 +w2.

See (3.43). They have the same rank and configuration of curves.

3.49 (2,5,14,21)

1

2

5

6

7

8

9

10

11

12

13

14

15

16

17

A representative equation for this family of hypersurfaces is x21 + xy8 + z3 + w2.

ρ = 14 and none of the curves have genus 1. We can, however, see curves 1, 5-9,

12-14 as an Ẽ8, so that curve 10 is a section and the remaining curves 2, 11, 15-17

form a D̃4. Because we have an E8 with trivial discriminant group, MW is trivial

and Pic(S) = E8 ⊥ D4 ⊥ U .
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3.50 (1,4,10,15)
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A representative equation for this family of hypersurfaces is x30+x2y7+y5z+z3+w2.

This is one of Arnold’s 14 original surface singularities. ρ = 9 and curve 3 has genus

1. If we consider curve 3 as a fibre, then curve 10 is a section and we are left with a

Ẽ7. This fibration has good rank and the associated form has no isotropic subgroups,

so Pic(S) = E7 ⊥ U .

3.51 (1,5,12,18)
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A representative equation for this family of hypersurfaces is x36 + xy7 + z3 + w2.

ρ = 10 and curve 2 has genus 1. If we consider it as a fibre, then curve 10 is a

section and the remaining curves form an Ẽ8. This fibration has good rank; therefore

Pic(S) ∼= E8 ⊥ U .



99

3.52 (7,8,9,12)
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A representative equation for this family of hypersurfaces is x4y + y3w + z4 + w3.

The Fibration. ρ = 19; there are no curves of genus 1. Though one cannot see this

from the picture above, this graph has symmetry group Z4 on the curves 1, 2, 3, 4.

We view curves 3, 9, 10, 12, 13, 20, 21 as an Ẽ6, curves 8, 11, 22 as sections, and

the remaining curves as an Ã11. The Ã11 is somewhat difficult to see in this picture;

also, curves 1 and 5 are not connected to curve 2, but only to each other (much as

one might think otherwise from the presentation of this graph).

Method: Intermediate Lattice Calculation. The only isotropic subgroup is

generated by (4,1). We have 36 elements and corresponding values:

(0,0) – 0 (0,1) – -2/3 (0,2) – -2/3

(1,0) – -11/24 (1,1) – -1/8 (1,2) – -1/8

(2,0) – -5/6 (2,1) – -1/2 (2,2) – -1/2

(3,0) – -1/8 (3,1) – -19/24 (3,20) – -19/24

(4,0) – -1/3 (4,1) – 0 (4,2) – 0

(5,0) – -11/24 (5,1) – -1/8 (5,2) – -1/8
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(6,0) – -1/2 (6,1) – -1/6 (6,2) – -1/6

(7,0) – -11/24 (7,1) – -1/8 (7,2) – -1/8

(8,0) – -1/3 (8,1) – 0 (8,2) – 0

(9,0) – -1/8 (9,1) – -19/24 (9,2) – -19/24

(10,0) – -5/6 (10,1) – -1/2 (10,2) – -1/2

(11,0) – -11/24 (11,1) – -1/8 (11,2) – -1/8

When we test to see which of these are perpendicular to (4,1) we find that we

have the following elements (arranged by coset of (4,1)) and values:

(0,0) (4,1) (8,2) 0

(3,0) (7,1) (11,2) -1/8

(6,0) (10,1) (2,2) -1/2

(9,0) (1,1) (5,2) -1/8

The element (3,0) is of order 4 so the corresponding form is w−1
2,2. Therefore

Pic(S) = E8 ⊥ D9 ⊥ U .

3.53 (3,4,5,6)
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A representative equation for this family of hypersurfaces is x6+x2y3+y3w+y2z2+

xz3 + w3.
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The Fibration. ρ = 15 and curve 1 has genus 1. There is no Jacobian fibration

which has good rank; we view curves 2, 11-16 as an Ẽ6, and curves 3, 5-8, 10, 17, 18

as an Ẽ7, which leaves curves 1, 4, 9 as 3-sections. The Jacobian fibration associated

to this has good rank.

Method: Mukai and Matrix. We can apply Mukai’s theorem to see that Pic(S)

is of index 3 in Pic(J(S)), so that disc Pic(S) = 4 · Pic(J(S)) and the intersection

matrix for our graph determines Pic(S). The matrix has discriminant 54. We have

order-9 generators with value 2/9 and 8/9 and order-3 generators with value 2/3, so

part of our form is w−1
3,2 ⊥ w−1

3,1. The form for Pic(S) must embed in w1
2,1 ⊥ w−1

3,1 so

we can be sure that the form on Z2 is w1
2,1. Thus, Pic(S) = w1

2,1 ⊥ w−1
3,2 ⊥ w−1

3,1. This

lattice has no representation as a sum of Dynkin lattices. However, we can express

this form as M(1,2,2,2,3,4),(1,1,1,1,1,1),−4.

3.54 (3,5,6,7)
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A representative equation for this family of hypersurfaces is −x7+x2y3+y3z+xz3+

w3.

The Fibration. ρ = 16 and curve 1 has genus 1. If we consider it to be a fibre,

then curves 2, 3, 4 are sections. Then we may see curves 6-7, 8-9, 10-11, 12-13 as
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4Ã2 and curves 5, 14-19 as an Ẽ6. This fibration has good rank.

The Answer. This fibration is the same as that of number 16 (see 3.16), so we have

the same lattice: Pic(S) = E8 ⊥ (A2)
3 ⊥ U .

3.55 (2,5,6,7)
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“I could’ve had an E8!”

A representative equation for this family of hypersurfaces is −x10+y4+xz3+x3w2+

zw2.

The Fibration. ρ = 15 and curves 4 and 5 have genus 1. The edge between curves

4 and 5 has multiplicity 2. If we consider curve 4 as a fibre, then curves 1 and 3 are

sections and we may see curves 2, 6-8, 12-15 as an Ẽ7, and complete curves 16-18 to

3Ã1 and curves 9-11 to an Ã3. This fibration has good rank.

Method: Intermediate Lattice Calculation. The value for E7 is 1/2, for A1 is

-1/2, and for A3 is 5/4. Thus the only isotropic subgroups, up to permutation of the

entries, are generated by (1,1,0,0,0), (0,0,1,1,2), and (1,1,1,1,2).

We will begin with (1,1,0,0,0) and leave off the last three entries. Here is a table of

elements by coset, their values, and whether they are in 〈(1, 1)〉⊥ or not.
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(0,0) 0 (1,1) 0 yes

(0,1) -1/2 (1,0) 1/2 no

Therefore we have only the trivial form and are left with (w−1
2,1)

2 ⊥ w5
2,2.

Now for (0,0,1,1,2). We will leave off the first two entries. Here is a table of

elements by coset and their values.

(0,0,0) 0 (1,1,2) 0

(0,0,1) 5/4 (1,1,3) 1/4

(0,0,2) 1 (1,1,0) -1

(0,0,3) 5/4 (1,1,1) 1/4

(0,1,0) -1/2 (1,0,2) 1/2

(0,1,1) 3/4 (1,0,3) 3/4

(0,1,2) 1/2 (1,0,0) -1/2

(0,1,3) 3/4 (1,0,1) 3/4

So those in 〈(1, 1, 2)〉⊥ are

(0,0,0) (1,1,2) 0

(0,0,2) (1,1,0) 1

(0,1,1) (1,0,3) 3/4

(0,1,3) (1,0,1) 3/4

The corresponding form is w−5
2,2, so we have w1

2,1 ⊥ w−1
2,1 ⊥ w−5

2,2.

Finally, we do (1,1,1,1,2). Here is a table of elements by coset (up to permutation

of the entries), their values, and whether they are in 〈(1, 1, 1, 1, 2)〉⊥ or not.

(0,0,0,0,0) 0 (1,1,1,1,2) 0 yes

(0,0,0,0,1) 5/4 (1,1,1,1,3) 1/4 no

(0,0,0,0,2) 1 (1,1,1,1,0) -1 yes

(0,0,0,0,3) 5/4 (1,1,1,1,1) 1/4 no

(0,0,0,1,0) -1/2 (1,1,1,0,2) 1/2 no

(0,0,0,1,1) 3/4 (1,1,1,0,3) 3/4 yes

(0,0,0,1,2) 1/2 (1,1,1,0,0) -1/2 no

(0,0,0,1,3) 3/4 (1,1,1,0,1) 3/4 yes
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(0,0,1,1,0) -1 (1,1,0,0,2) 1 yes

(0,0,1,1,1) 1/4 (1,1,0,0,3) 5/4 no

(0,0,1,1,2) 0 (1,1,0,0,0) 0 yes

(0,0,1,1,3) 1/4 (1,1,0,0,1) 5/4 no

(0,1,1,1,0) -3/2 (1,0,0,0,2) 3/2 no

(0,1,1,1,1) -1/4 (1,0,0,0,3) 7/4 yes

(0,1,1,1,2) -1/2 (1,0,0,0,0) 1/2 no

(0,1,1,1,3) -1/4 (1,0,0,0,1) 7/4 yes

This leaves us with (arranged by coset):

(0,0,0,0,0) (1,1,1,1,2) 0

(0,0,0,0,2) (1,1,1,1,0) 1

(0,0,0,1,1) (1,1,1,0,3) 3/4

(0,0,1,0,1) (1,1,0,1,3) 3/4

(0,1,0,0,1) (1,0,1,1,3) 3/4

(0,0,0,1,3) (1,1,1,0,1) 3/4

(0,0,1,0,3) (1,1,0,1,1) 3/4

(0,1,0,0,3) (1,0,1,1,1) 3/4

(0,0,1,1,0) (1,1,0,0,2) 1

(0,1,0,1,0) (1,0,1,0,2) 1

(0,1,1,0,0) (1,0,0,1,2) 1

(0,0,1,1,2) (1,1,0,0,0) 0

(0,1,0,1,2) (1,0,1,0,0) 0

(0,1,1,0,2) (1,0,0,1,0) 0

(0,1,1,1,1) (1,0,0,0,3) 7/4

(0,1,1,1,3) (1,0,0,0,1) 7/4

All of the 1-valued elements and 0-valued elements (aside from the identity) are of

order 2; the rest are of order 4. So we have the group Z2 ⊕ Z2 ⊕ Z4. The form on

Z4 must be w−1
2,2 as there is one copy of the values for this form; because the other

values are 0,1 the other elements must correspond to the form u or v. Testing each

shows that our form must be w−1
2,2 ⊥ v.

We have different answers, and now we need to determine which of the isotropic

subgroups is the correct one. The only way to do this is to (a) exhibit a fibration

corresponding to one of the forms and (b) show that none of the other lattices

can be exhibited as a fibration. There are three possibilities for a fibration here:

E8 ⊥ A3 ⊥ (A1)
2 ⊥ U , E7 ⊥ D5 ⊥ A1 ⊥ U , and D4 ⊥ D9 ⊥ U . With much pain,

one may show that the first two of these are not possible, no matter what kind of

curves are added.
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We may see the last one in the following way. We can see curves 3, 14, 16 - 18

as forming a D̃4, so that curve 13 is a section and curve 11 is a 2-section and curve

5 is a 3-section. Then curves 1, 2, 6 - 10, 12, 15 may be completed to form a D̃9 by

adding a curve which intersects curve 9.

Thus, Pic(S) = D9 ⊥ D4 ⊥ U .

3.56 (5,6,8,11)
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A representative equation for this family of hypersurfaces is x6 + y5 + yz3 + zw2.

The Fibration. Curve 4 has genus 1. If we consider it as a fibre, then curves 20,

21, and 22 are sections. The remaining curves form an Ã17. As ρ = 19, this fibration

has good rank.

Method: Intermediate Lattice Calculation. The discriminant group for Ã17 is

Z18, with generator value -17/36 (mod Z). It has a q-isotropic subgroup generated

by (6).

Here are the elements and their values:
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(0) 0

(1) -17/36 (17)

(2) -8/9 (16)

(3) -1/4 (15)

(4) -5/9 (14)

(5) -29/36 (13)

(6) 0 (12)

(7) -5/36 (11)

(8) -2/9 (10)

(9) -1/4

When we test to see which of these are perpendicular to (6), we find that we have

the following elements (arranged by cosets) and values:

(0) (6) (12) 0

(3) (9) (15) -1/4

This corresponds to the form w−1
2,1 and so we have Pic(S) = E8 ⊥ E8 ⊥ A1 ⊥ U .

3.57 (4,5,6,9)
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A representative equation for this family of hypersurfaces is x6+xy4+y3w+z4+zw2.

The Fibration. Curve 1 has genus 1. We may consider curves 2, 4, 9, 10, 16 - 20

as forming an Ẽ8. Then curves 1 and 11 are 3-sections, curve 3 is a 2-section, and

curve 6 is a section. We must find a completion for this fibration. If we check the

matrix, we find that it has discriminant 12, so whatever fibration we find must have

discriminant 3 or 12 in order to comply with Lemma 1.7.3.1. Thus, we must find
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either an Ẽ6 or an Ã2. There are no discriminant 3 or 12 fibrations of rank 17 with

an Ẽ6 and no discriminant 3 fibration of rank 17 with an Ã2. There is exactly one

discriminant 12 fibration of rank 17 with an Ã2, which is Ẽ8 + Ã2 + D̃5. In fact, we

can exhibit this. We complete curves 14, 15 to form an Ã2 (and intersect the extra

curve with curve 3), and add a curve intersecting curves 7, 8, 13 to form a D̃5; this

curve must also intersect curve 11 twice.

The Answer. As this fibration contains an Ẽ8, the index of this lattice in Pic(S)

must be 1 and so Pic(S) = E8 ⊥ D5 ⊥ A2 ⊥ U .

3.58 (1,4,5,6)
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A representative equation for this family of hypersurfaces is x16 + y4 + xz3 + z2w +

x4w2 + yw2.

This is one of Arnold’s 14 original surface singularities. ρ = 11 and curve 5 has genus

1. Note that aside from curve 5, we have a T2,5,6. This lattice has no representation

as a sum of Dynkin lattices.
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3.59 (1,5,7,8)
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A representative equation for this family of hypersurfaces is −x21+xy4+z3+x5w2+

yw2.

Curve 3 has genus 1. If we consider it as a fibre, then curve 2 must be a section.

Then curves 4, 8 - 15 easily form an Ẽ8 and we may complete curves 6 and 7 to an

Ã2. As ρ = 12, we see that this fibration has good rank. Because we have exhibited

an Ẽ8, we know that |MW | = 1 and Pic(S) = E8 ⊥ A2 ⊥ U .

3.60 (1,4,6,7)
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A representative equation for this family of hypersurfaces is x18 + x2y4 + y3z + z3 +

x4w2 + yw2.

This is one of Arnold’s 14 original surface singularities. ρ = 11 and curve 5 has genus
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1. If we consider curve 5 to be a fibre, then curve 2 is a section and we are left with

Ẽ7 and Ã2. This fibration has good rank and the associated form has no isotropic

subgroups, so Pic(S) = E7 ⊥ A2 ⊥ U .

3.61 (4,6,7,11)
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A representative equation for this family of hypersurfaces is x7 + xy4 + z4 + yw2.

Curve 4 has genus 1. We note that curves 2, 7 - 11, 15, 16, and 19 form an Ẽ8 ,

so that curve 6 is a section, curve 17 is a 2-section, curve 4 is a 3-section, and the

remaining curves form a D̃8. This fibration has good rank. As we have exhibited an

Ẽ8, |MW | = 1 and so Pic(S) = E8 ⊥ D8 ⊥ U .

3.62 (3,4,5,8)
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A representative equation for this family of hypersurfaces is x4y2 + y5 + x5z + z4 +

x4w + yw2.

The Fibrations. There are no genus 1 curves. We have a choice of fibrations: We

may see curves 1, 4, 5, 7, 10, 17 - 19 as an Ẽ7 so that curves 3, 6 are sections and

curves 11 -13 may be completed to an Ã3, curves 14 - 16 may be completed to an

Ã3, curve 8 may be completed to an Ã1, and curve 9 is a 2-section. As ρ = 16,

this fibration has good rank. However, this leads to a long and painful intermediate

lattice calculation, so instead we will look at a better fibration. We can see curves

1, 4, 5, 7 - 10, 17 as an Ẽ7, and curves 6, 11 - 16, 19 as another Ẽ7, so that curves 3

and 18 are 2-sections. The Jacobian fibration has good rank.

The Method: Mukai and Matrix. Mukai tells us that we may just get the form

from the matrix. It has discriminant 16. There are several order-4 generators of

value 3/4 and of value 1/2. The sum of two 3/4-value generators has value 1/2. The

only way this can come about is if one of the generators has value 3/4 = 7/4 + 1,

where the 7/4 is the value of an order-4 generator and the 1 is the value of an order

2 generator (twice the 3/4-valued order 4 generator). Thus the two generators for

this form have values 3/4 and 7/4.

The Answer. This form, w−1
2,2 ⊥ w−5

2,2, corresponds to the lattice D9 ⊥ E5 ⊥ U , so

Pic(S) = D9 ⊥ E5 ⊥ U .
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3.63 (1,2,3,4)
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A representative equation for this family of hypersurfaces is x10 + y5 + xz3 + y2z2 +

z2w + x2w2 + yw2.

The Fibration. Curve 4 has genus 1. Inspection of the graph will convince the

reader that there is no possible fibration which indicates that rk(MW ) = 0.

The Method: Examine the Matrix. We learn from Mathematica that the ma-

trix has discriminant 20. Here are the generator orders and values:

order 5 1 10 10 10 2 10 5

value 8/5 0 1/10 9/10 7/5 1 9/10 8/5

The value of 8/5 on an order 5 generator tells us that the form must contain w−1
5,1. We

can then see that the remainder of the form is (w1
2,1)

2 by noting that 9/10 = 2/5 +1/2

(note that we cannot write it as a sum with 3/2 or we will be using the wrong form

on Z5). We then see that the value of the sum of the fourth and seventh generators is

1, which indicates that the two sub-generators of value 1/2 are independent of each

other. Thus, Pic(S) = w−1
5,1 ⊥ (w1

2,1)
2; this lattice has no isotropic subgroups and

cannot be expressed as a sum of Dynkin lattices. However, we can express this form

as M(1,1,2,3),(1,1,1,1),−2.
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3.64 (3,4,7,10)
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A representative equation for this family of hypersurfaces is x8+y6+xz3+z2w+yw2.

The Fibration. Curve 1 has genus 1 and if we consider it to be a fibre, then curves

7 and 8 are sections. The remaining curves form an Ã15. This fibration has good

rank as ρ = 17.

Method: Intermediate Lattice Calculation. The discriminant group for Ã15 is

Z16 and the value of the generator of the discriminant form is -15/32 (mod Z). There

is one isotropic subgroup, generated by (8). The even elements are perpendicular to

(8), and after modding out by (8), we have:

0 – 0 2 – -7/8 4 – -1/2 6 – -7/8

This form is w1
2,2. Thus, Pic(S) = E8 ⊥ E7 ⊥ U .

3.65 (3,5,11,14)

A representative equation for this family of hypersurfaces is x11 + xy6 + z3 + yw2

See (3.46). They have the same rank and configuration of curves.
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3.66 (1,1,2,3)
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A representative equation for this family of hypersurfaces is x7 + y7 + xz3 + yz3 +

z2w + xw2 + yw2.

The Fibration. Curves 1 and 6 have genus 1; if we consider these as fibres, then

curves 3 and 5 are sections and we must complete curve 7 to an Ã1. As ρ = 4,

this fibration satisfies Shioda-Tate with rk(MW ) = 1. There is no other possible

fibration.

Method: Use the Matrix. When we examine the matrix, we see that it has

discriminant 7 and form w1

7,1. This lattice has no representation as a sum of Dynkin

lattices. However, we can express this form as M(1,2),(1,1),0.
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3.67 (2,3,7,9)
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A representative equation for this family of hypersurfaces is x9y + y7 + x7z + z3 +

x6w + yw2.

Curve 4 has genus 1. We see curves 1, 3, 5, 8, 13 - 17 as forming an Ẽ8, so that

curve 6 is a section, curve 4 is a 2-section, and curve 7 is a 3-section. Then we may

complete curves 11, 12 to an Ã2 and curves 9, 10 to an Ã2. This fibration has good

rank. Because this fibration contains an Ẽ8, the index of this lattice in Pic(S) is 1

so that Pic(S) = E8 ⊥ (A2)
2 ⊥ U .

3.68 (3,4,10,13)
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A representative equation for this family of hypersurfaces is x10+x2y6+y5z+z3+yw2.

Curve 1 has genus 1. We notice that curves 3, 6, 7, 9 - 13, and 19 form an Ẽ8, so
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that curve 14 is a section and curve 1 is a 2-section. This leaves curves 2, 4, 8, 15 -

18, and 20 forming an Ẽ7. As ρ = 17, this fibration has good rank. It contains an

Ẽ8, so the index of this lattice in Pic(S) is 1, so Pic(S) = E8 ⊥ E7 ⊥ U .

3.69 (2,3,4,7)
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A representative equation for this family of hypersurfaces is x8 + x2y4 + y4z + z4 +

y3w + xw2.

The Fibration. Curve 3 has genus 1. We may view curves 6, 9 - 12 as forming a

D̃4. Then, curves 3 and 8 are 2-sections and curves 2, 4, 5, 7, 13 - 16 form an Ẽ7.

The Jacobian fibration has good rank.

Method: Mukai and the Matrix. We know that the Mukai technique works in

this case, so that the form is that which corresponds to the matrix. The matrix has

discriminant 32. Here are the orders and values of the generators of the form:

order 1 1 1 4 4 2 8 8 8 8 4 2 4

value 0 0 0 1/2 1/2 0 9/8 9/8 9/8 9/8 1/2 0 1/2

Because this lattice must embed in the lattice w1
2,1 ⊥ v, the only possibilities for this

lattice are w1
2,3 ⊥ v and w5

2,3 ⊥ v. (See 3.19 for explanation.) Because the value on
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the sum of generators 7 and 8 is 3/2, we deduce that we have the form w1
2,3 ⊥ v.

Thus, Pic(S) = D4 ⊥ A7 ⊥ U .

3.70 (2,3,5,8)
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A representative equation for this family of hypersurfaces is x9 + y6 + x4z2 + yz3 +

z2w + xw2.

The Fibration. Curve 3 has genus 1. We can see curves 1, 2, 4, 5, 7, 12 - 17 as

forming a D̃10; then curve 3 is a 3-section, curve 8 is a section, and curve 11 is a

2-section. We can then complete curves 9 and 10 to form an Ã2 as long as the extra

curve intersects curves 3 and 11 correctly. As ρ = 14, this fibration has good rank.

The Answer. Because MW must embed in the discriminant group of each fibre,

and because the orders of these discriminant groups are coprime (4 and 3 respec-

tively), MW must be trivial. Thus, the index of this lattice in the Picard Lattice is

1, and Pic(S) = D10 ⊥ A2 ⊥ U .
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3.71 (1,3,4,7)
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A representative equation for this family of hypersurfaces is x15 + y5 + x3z3 + yz3 +

x2w + xw2.

Curve 6 has genus 1. We see all curves except curve 6 as forming a T2,5,5. This has

rank 10, so we need to determine its index in Pic(S). Mathematica shows that the

discriminant of the matrix is 5, so Pic(S) = T2,5,5.

3.72 (1,2,5,7)
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A representative equation for this family of hypersurfaces is x15 + xy9 + y5z + z3 +

y4w + xw2.

Curve 1 has genus 1. If we consider it as a fibre, then curve 11 must be a section

and the remaining curves form an Ẽ6. As ρ = 8, this fibration has good rank. There
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are no isotropic subgroups of Z3 and we have only exhibited one section; we know

there can be no more than three sections, and formula Nameless (1.7.3.1) indicates

that there can only be one section. Thus, Pic(S) = E6 ⊥ U .

3.73 (7,8,10,25)
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A representative equation for this family of hypersurfaces is x6y + y5z + z5 + w2.

See section 3.56. Number 56 has the same rank and configuration of curves. (How-

ever, this presentation of the graph is more attractive.)

3.74 (4,5,7,16)
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A representative equation for this family of hypersurfaces is x8+x3y4+y5z+xz4+w2.

The Fibration. There are no curves of genus 1. We can see curves 5, 14 - 20 as
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forming an Ẽ7, so that curves 3 and 13 are sections, curves 2, 4, 7 - 12 form an Ã7,

and we can complete curve 6 to form an Ã1. As ρ = 17, this fibration has good rank.

Method: Intermediate Lattice Calculation. The form is w1
2,1 ⊥ w−1

2,1 ⊥ w1
2,3.

Here are the elements and their values:

(0,0,0) 0 (0,1,0) 3/2 (1,0,0) 1/2 (1,1,0) 0

(0,0,1) 1/8 (0,1,1) 13/8 (1,0,1) 5/8 (1,1,1) 1/8

(0,0,2) 1/2 (0,1,2) 0 (1,0,2) 1 (1,1,2) 1/2

(0,0,3) 9/8 (0,1,3) 5/8 (1,0,3) 13/8 (1,1,3) 9/8

(0,0,4) 0 (0,1,4) 3/2 (1,0,4) 1/2 (1,1,4) 0

(0,0,5) 9/8 (0,1,5) 5/8 (1,0,5) 13/8 (1,1,5) 9/8

(0,0,6) 1/2 (0,1,6) 0 (1,0,6) 1 (1,1,6) 1/2

(0,0,7) 1/8 (0,1,7) 13/8 (1,0,7) 5/8 (1,1,7) 1/8

The three possible isotropic subgroups are 〈(1, 1, 0)〉, 〈(0, 0, 4)〉, and 〈(1, 1, 4)〉. Here

we show the elements which are perpendicular to each subgroup, arranged by coset,

and then solve for the associated form.

〈(1, 1, 0)〉

(0,0,0) 0 (1,1,0)

(0,0,1) 1/8 (1,1,1)

(0,0,2) 1/2 (1,1,2)

(0,0,3) 9/8 (1,1,3)

(0,0,4) 0 (1,1,4)

(0,0,5) 9/8 (1,1,5)

(0,0,6) 1/2 (1,1,6)

(0,0,7) 1/8 (1,1,7)

This corresponds to the form w1
2,3 and thus to the lattice E8 ⊥ A7 ⊥ U .
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〈(0, 0, 4)〉

(0,0,0) 0 (0,0,4)

(0,1,0) 3/2 (0,1,4)

(1,0,0) 1/2 (1,0,4)

(1,1,0) 0 (1,1,4)

(0,0,2) 1/2 (0,0,6)

(0,1,2) 0 (0,1,6)

(1,0,2) 1 (1,0,6)

(1,1,2) 1/2 (1,1,6)

The generators corresponding to (0,1,0), (1,0,0), and (0,0,2) are independent, so this

corresponds to the form (w1
2,1)

2 ⊥ w−1
2,1 and thus to the lattice E7 ⊥ E7 ⊥ A1 ⊥ U .

〈(1, 1, 4)〉

(0,0,0) 0 (1,1,4)

(0,1,1) 13/8 (1,0,5)

(0,0,2) 1/2 (1,1,6)

(0,1,3) 5/8 (1,0,7)

(0,0,4) 0 (1,1,0)

(0,1,5) 5/8 (1,0,1)

(0,0,6) 1/2 (1,1,2)

(0,1,7) 13/8 (1,0,3)

This corresponds to w5
2,3, which has no representation as a sum of Dynkin lattices.

Now we need to decide how to tell which of these represents the Picard Lattice.

The only way to do this is to show that none of the other lattices can be exhibited

as a fibration. There are three possibilities for a fibration here: E8 ⊥ E7 ⊥ U ,

E8 ⊥ A7 ⊥ U , and E7 ⊥ E7 ⊥ A1 ⊥ U . With much pain, one may show that none

of these are possible, no matter what kind of curves are added.

Thus, Pic(S) = w5
2,3. This lattice has no representation as a sum of Dynkin

diagrams. However, we can express this form as M(3,3,4,6),(1,1,1,3),−4.
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3.75 (2,4,5,11)
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A representative equation for this family of hypersurfaces is x11+xy5+y3z2+xz4+w2.

The Fibration. Curve 4 has genus 1, and if we consider it as a fibre, then cures

1 and 13 are sections. then curves 2, 5, 6, 12, 14 - 16 form a D̃6, and curves 7 - 11

may each be completed to an Ã1. As ρ = 13, this fibration has good rank.

Method: Intermediate Lattice Calculation. The corresponding form is (w1
2,1)

2 ⊥

(w−1
2,1)

5; up to conjugacy, the different elements and values are:

((0,0),0,0,0,0,0) 0 ((0,1),0,0,0,0,0) 1/2 ((1,1),0,0,0,0,0) 1

((0,0),0,0,0,0,1) 3/2 ((0,1),0,0,0,0,1) 0 ((1,1),0,0,0,0,1) 1/2

((0,0),0,0,0,1,1) 1 ((0,1),0,0,0,1,1) 3/2 ((1,1),0,0,0,1,1) 0

((0,0),0,0,1,1,1) 1/2 ((0,1),0,0,1,1,1) 1 ((1,1),0,0,1,1,1) 3/2

((0,0),0,1,1,1,1) 0 ((0,1),0,1,1,1,1) 1/2 ((1,1),0,1,1,1,1) 1

((0,0),1,1,1,1,1) 3/2 ((0,1),1,1,1,1,1) 0 ((1,1),1,1,1,1,1) 1/2

So, up to conjugacy, the distinct isotropic subgroups are 〈((0, 1), 0, 0, 0, 0, 1)〉,

〈((1, 1), 0, 0, 0, 1, 1)〉, 〈((0, 0), 0, 1, 1, 1, 1)〉, and 〈((0, 1), 1, 1, 1, 1, 1)〉. We now view,

for each of these, the perpendicular elements arranged by coset. We suppress the

zero entries for ease of calculation.
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〈((0, 1), 0, 0, 0, 0, 1)〉

((0),0) 0 ((1),1)

We are left with w1
2,1 ⊥ (w−1

2,1)
4.

〈((1, 1), 0, 0, 0, 1, 1)〉

((0,0),0,0) 0 ((1,1)),1,1)

((0,0),1,1) 1 ((1,1)),0,0)

((0,1),0,1) 0 ((1,0)),1,0)

((1,0),0,1) 0 ((0,1)),1,0)

This corresponds to u, so we now have u ⊥ (w−1
2,1)

3. This form is isomorphic to

w1
2,1 ⊥ (w−1

2,1)
4.

〈((0, 0), 0, 1, 1, 1, 1)〉

(0,0,0,0) 0 (1,1,1,1)

(0,0,1,1) 1 (1,1,0,0)

(0,1,0,1) 1 (1,0,1,0)

(1,0,0,1) 1 (0,1,1,0)

This corresponds to v, so we now have v ⊥ (w1
2,1)

2 ⊥ w−1
2,1. This form is isomorphic

to w1
2,1 ⊥ (w−1

2,1)
4.



123

〈((0, 1), 1, 1, 1, 1, 1)〉

((0),0,0,0,0,0) 0 ((1),1,1,1,1,1)

((0),0,0,0,1,1) 1 ((1),1,1,1,0,0)

((0),0,0,1,0,1) 1 ((1),1,1,0,1,0)

((0),0,1,0,0,1) 1 ((1),1,0,1,1,0)

((0),1,0,0,0,1) 1 ((1),0,1,1,1,0)

((0),0,0,1,1,0) 1 ((1),1,1,0,0,1)

((0),0,1,0,1,0) 1 ((1),1,0,1,0,1)

((0),1,0,0,1,0) 1 ((1),0,1,1,0,1)

((0),0,1,1,0,0) 1 ((1),1,0,0,1,1)

((0),1,0,1,0,0) 1 ((1),0,1,0,1,1)

((0),1,1,0,0,0) 1 ((1),0,0,1,1,1)

((0),0,1,1,1,1) 0 ((1),1,0,0,0,0)

((0),1,0,1,1,1) 0 ((1),0,1,0,0,0)

((0),1,1,0,1,1) 0 ((1),0,0,1,0,0)

((0),1,1,1,0,1) 0 ((1),0,0,0,1,0)

((0),1,1,1,1,0) 0 ((1),0,0,0,0,1)

This corresponds to u ⊥ v, so we now have u ⊥ v ⊥ w1
2,1. This form is isomorphic

to w1
2,1 ⊥ (w−1

2,1)
4.

The Answer. We obtained the same form in each case. As ρ = 13, Pic(S) =

E7 ⊥ (A1)
4 ⊥ U .

3.76 (2,5,6,13)
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A representative equation for this family of hypersurfaces is x13+x3y4+y4z+xz4+w2.

The Fibration. Curve 1, with genus 1, is a fibre; curves 3, 4 are sections, curves
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5, 11 - 17 form an Ẽ7 and curves 6 - 10 each complete to an Ã1. As ρ = 14, this

fibration has good rank.

Method: Intermediate Lattice Calculation. We did this particular calculation

already for number 26, so see 3.26. We must choose from the variety of answers.

The Answer. Here is a fibration which reflects one of the possibilities: view curves

4, 8 - 11 as a D̃4, so that curves 1 and 7 are 2-sections and curve 12 is a section.

Then the remaining curves can only be completed to form a D̃8 so that curves 3 and

13 will have multiplicities 2 and 3 respectively. Thus, Pic(S) = D8 ⊥ D4 ⊥ U .

3.77 (1,5,7,13)
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A representative equation for this family of hypersurfaces is x26+xy5+x5z3+yz3+w2.

Curve 2 has genus 1. If we consider it as a fibre, then curve 4 is a section. Curves 5,

7 - 14 form an Ẽ8, and curve 6 may then be completed to form an Ã1. As ρ = 11,

this fibration has good rank. As we have an Ẽ8, we know that MW is trivial and so

the index of this lattice in Pic(S) is 1. Therefore, Pic(S) = E8 ⊥ A1 ⊥ U .
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3.78 (1,4,6,11)
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A representative equation for this family of hypersurfaces is x22+x23y5+y4z+x4z3+

yz3 + w2.

This is one of Arnold’s 14 original surface singularities. ρ = 10 and curve 3 has genus

1. If we consider curve 3 to be a fibre, then curve 1 is a section and we are left with

Ẽ7 and Ã1. This fibration has good rank, but the associated form has an isotropic

subgroup. However, there are at most 2 sections as the discriminant groups of Ẽ7 and

Ã1 are Z2. If there are 2 sections, then disc(Pic(S)) = 1 and the only unimodular

lattice of rank 10 is E8 ⊥ U ...but this only has one section. Contradiction! Therefore

Pic(S) = E7 ⊥ A1 ⊥ U .

3.79 (2,5,9,16)
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A representative equation for this family of hypersurfaces is x16+xy6+x7z2+yz3+w2.

Curve 4 has genus 2 and ρ = 15. We can see curves 2, 8 - 12, 15, 16, 18 as

forming an Ẽ8, so that curve 7 is a section and curve 4 is a 2-section, and then the

remaining curves form a D̃5. This fibration has good rank. As we have an Ẽ8, we

know that MW is trivial and so the index of this lattice in Pic(S) is 1. Therefore,

Pic(S) = E8 ⊥ D5 ⊥ U .

3.80 (4,5,13,22)

A representative equation for this family of hypersurfaces is x11 +xy8 + yz3 +w2.

See (3.46). They have the same rank and configuration of curves.

3.81 (2,3,8,13)
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A representative equation for this family of hypersurfaces is x13+xy8+y6z+xz3+w2.

There are no curves of genus 1. We may, however, see curves 3, 5, 10 - 16 as forming

an Ẽ8, so that curve 4 is a section and each of curves 7 - 9 may be completed to

form an Ã1. As we have an Ẽ8, we know that MW is trivial and so the index of this

lattice in Pic(S) is 1. Therefore, Pic(S) = E8 ⊥ (A1)
3 ⊥ U .
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3.82 (1,3,7,11)
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A representative equation for this family of hypersurfaces is x22+xy7+y5z+xz3+w2.

Curve 1 has genus 1; if we consider it as a fibre, then curve 6 is a section and the

remaining curves form an Ẽ7. As ρ = 9, this fibration has good rank.This lattice

has discriminant 2, which is square-free and thus it has index 1 in Pic(S). Thus

Pic(S) = E7 ⊥ U .

3.83 (4,5,18,27)

A representative equation for this family of hypersurfaces is x11y2 + xy10 + x9z+

z3 + w2.

See section 3.68. Number 68 has the same rank and configuration of curves.
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3.84 (5,6,7,9)
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A representative equation for this family of hypersurfaces is x3y2+x4z+yz3+y3w+w3.

The Fibration. There are no curves of genus 1. However, we may see curves 1, 7

- 10, 14, 15 as an Ẽ6, so that curves 2, 5, 11 are sections, curves 3, 4, 6, 12, 13, 18 -

21 form an Ã8, and curves 16, 17 may be completed to form an Ã2. As ρ = 18, this

fibration has good rank.

Method: Intermediate Lattice Calculation. The form corresponding to this

fibration is w−1
3,1 ⊥ w1

3,1 ⊥ w1
3,2. Here are the elements and values:

(0,0,0) 0 (0,1,0) 4/3 (0,2,0)

(1,0,0) 2/3 (2,0,0) (1,1,0) 0 (1,2,0),(2,1,0),(2,2,0)

(0,0,1) 4/9 (0,1,1) 16/9 (0,2,1)

(1,0,1) 10/9 (2,0,1) (1,1,1) 4/9 (1,2,1),(2,1,1),(2,2,1)

(0,0,2) 16/9 (0,1,2) 10/9 (0,2,2)

(1,0,2) 4/9 (2,0,2) (1,1,2) 16/9 (1,2,2),(2,1,2),(2,2,2)

(0,0,3) 0 (0,1,3) 4/3 (0,2,3)

(1,0,3) 2/3 (2,0,3) (1,1,3) 0 (1,2,3),(2,1,3),(2,2,3)
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(0,0,4) 10/9 (0,1,4) 4/9 (0,2,4)

(1,0,4) 16/9 (2,0,4) (1,1,4) 10/9 (1,2,4),(2,1,4),(2,2,4)

(0,0,5) 10/9 (0,1,5) 4/9 (0,2,5)

(1,0,5) 16/9 (2,0,5) (1,1,5) 10/9 (1,2,5),(2,1,5),(2,2,5)

(0,0,6) 0 (0,1,6) 4/3 (0,2,6)

(1,0,6) 2/3 (2,0,6) (1,1,6) 0 (1,2,6),(2,1,6),(2,2,6)

(0,0,7) 16/9 (0,1,7) 10/9 (0,2,7)

(1,0,7) 4/9 (2,0,7) (1,1,7) 16/9 (1,2,7),(2,1,7),(2,2,7)

(0,0,8) 4/9 (0,1,8) 16/9 (0,2,8)

(1,0,8) 10/9 (2,0,8) (1,1,8) 4/9 (1,2,8),(2,1,8),(2,2,8)

There are three isotropic subgroups, 〈(1, 1, 0)〉, 〈(0, 0, 3)〉, and 〈(1, 1, 3)〉. In deal-

ing with the first two of these, we will omit the last and first two entries respectively,

in order to simplify the calculation. First, the reader may notice that the elements

perpendicular to 〈(1, 1, 0)〉 = 〈(1, 1)〉 are exactly (0,0), (1,1), (2,2), all of which have

value 0. Thus, we are left with w1
3,2, which corresponds to the lattice E8 ⊥ A8 ⊥ U .

Next, the reader may notice that the elements perpendicular to 〈(0, 0, 3)〉 = 〈(3)〉 are

exactly (0), (3), (6), all of which have value 0. Thus, we are left with w−1
3,1 ⊥ w1

3,1,

which corresponds to E8 ⊥ E6 ⊥ A2 ⊥ U . Finally, we have the elements perpendic-

ular to 〈(1, 1, 3)〉 arranged by coset:

0 (0,0,0) (1,1,3) (2,2,6)

0 (0,0,3) (1,1,6) (2,2,0)

0 (0,0,6) (1,1,0) (2,2,3)

10/9 (0,1,2) (1,2,5) (2,0,8)

4/9 (0,1,5) (1,2,8) (2,0,2)

16/9 (0,1,8) (1,2,2) (2,0,5)

16/9 (0,2,1) (1,0,4) (2,1,7)

4/9 (0,2,4) (1,0,7) (2,1,1)

10/9 (0,2,7) (1,0,1) (2,1,4)

This is the form w1
3,2, which corresponds to the lattice E8 ⊥ A8 ⊥ U .
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Now we need to determine which of these is the correct lattice. The only way

to do this is to (a) exhibit a fibration corresponding to one of the forms and (b)

show that none of the other lattices can be exhibited as a fibration. There are two

possibilities for a fibration here: E8 ⊥ E6 ⊥ A2 ⊥ U , and E8 ⊥ A8 ⊥ U . With much

pain, one may show that the first is not possible, no matter what kind of curves are

added. We may see the last one in the following way.

1

2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

A

B

We can see curves 2 - 4, 10 - 13, 20, 21 as an Ẽ8, so that curve 9 is a section, curve 6 is

a 2-section, and curves 8, 16, 18 are 3-sections. We may now complete curves 1, 5, 7,

14, 15, 17, 19 to form an Ã8 by adding curves A and B. Thus, Pic(S) = E8 ⊥ A8 ⊥ U .

3.85 (2,3,4,5)
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A representative equation for this family of hypersurfaces is x7++xy4+y2z2+xz3+

y3w + x2w2 + zw2.
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Curves 3 and 5 each have genus 1, and they intersect with multiplicity 2. If we

consider either of these as a fibre, we will have a nightmare, so instead we will look

for another fibration beginning. It is easy to see curves 1, 11 - 14 as forming a D̃4, so

that curve 6 is a section, curves 3 and 16 are 2-sections, and curve 5 is a 3-section.

Then we may complete curve 10 to an Ã1 and the remaining curves to an Ã6. As

ρ = 13, this fibration has good rank. As the discriminants of these fibres are coprime,

we know that MW is trivial (it must embed in the discriminant group of each fibre).

Therefore Pic(S) = D4 ⊥ A6 ⊥ A1 ⊥ U .

3.86 (4,5,7,9)
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A representative equation for this family of hypersurfaces is x5y+y5+xz3+x4w+zw2.

The Fibration. Curve 3 has genus 1. If we consider it as a fibre, then curves 4, 6,

11 are sections, curves 1, 2, 5, 7 - 10, 12 - 19 form an Ã14, and curves 20, 21 may be

completed to form an Ã2. As ρ = 18, this fibration has good rank.

Method: Intermediate Lattice Calculation. The discriminant group for this

fibration is Z15 ⊕ Z3. We will use Miranda’s notation. Here is a table of elements

and values:
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(0,0) 0 (0,1) -1/3 (0,2)

(1,0) -7/15 (1,1) -4/5 (1,2)

(2,0) -13/15 (2,1) -1/5 (2,2)

(3,0) -1/5 (3,1) -8/15 (3,2)

(4,0) -7/15 (4,1) -4/5 (4,2)

(5,0) -2/3 (5,1) 0 (5,2)

(6,0) -4/5 (6,1) -2/15 (6,2)

(7,0) -13/15 (7,1) -1/5 (7,2)

(8,0) -13/15 (8,1) -1/5 (8,2)

(9,0) -4/5 (9,1) -2/15 (9,2)

(10,0) -2/3 (10,1) 0 (10,2)

(11,0) -7/15 (11,1) -4/5 (11,2)

(12,0) -1/5 (12,1) -8/15 (12,2)

(13,0) -13/15 (13,1) -1/5 (13,2)

(14,0) -7/15 (14,1) -4/5 (14,2)

The only isotropic subgroup is generated by 〈(5, 1)〉. If we look at the perpendicular

elements arranged by coset, we see...

0 (0,0) (5,1) (10,2)

-1/5 (3,0) (8,1) (13,2)

-4/5 (6,0) (11,1) (1,2)

-4/5 (9,0) (14,1) (4,2)

-1/5 (12,0) (2,1) (7,2)

...that this corresponds to the form w−1
5,1, which is the lattice E8 ⊥ T2,5,5.

3.87 (1,3,4,5)

2

3

5
6

7

8

9

10
11

12

13



133

A representative equation for this family of hypersurfaces is x13 + xy4 + y3z + xz3 +

z2w + x3w2 + yw2.

This is one of Arnold’s 14 original surface singularities. ρ = 10. Curve 2 has genus

1. Note that aside from curve 2, we have a T3,4,5. This lattice has no representation

as a sum of Dynkin lattices.

3.88 (2,5,9,11)
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A representative equation for this family of hypersurfaces is x11y+ xy5 + x9z + z3 +

x8w + yw2.

Curve 2 has genus 1 and ρ = 16. We can see curves 4, 7 - 14 as an Ẽ8, so that curve

15 is a section and curve 2 is a 2-section. Then, the remaining curves form an Ẽ6.

This fibration satisfies the Shioda-Tate formula with rk(MW ) = 0. And, because we

have an Ẽ8, the index of this lattice in Pic(S) is 1. Thus, Pic(S) = E8 ⊥ E6 ⊥ U .
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3.89 (1,2,3,5)

1 2

5 6

7

8

9

1011

A representative equation for this family of hypersurfaces is x11 +xy5 + y4z+x2z3 +

yz3 + y3w + z2w + xw2.

Curve 6 has genus 1; ρ = 8 and there is no fibration with good rank. Thus, we must

look at the matrix. It has discriminant 11, and corresponds to w−1
11,1. Because 11

is square-free, the lattice has index 1 in Pic(S) and is thus equal to Pic(S). This

lattice has no representation as a sum of Dynkin lattices. However, we can express

this form as M(1,2,4),(1,1,2),−2.

3.90 (4,6,7,17)
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A representative equation for this family of hypersurfaces is x7y+xy5+x5z2+yz4+w2.

Curve 3 has genus 1. Consider curves 3, 7 - 12, 18, 19 as an Ẽ8. Then curve 2 is a
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section, curve 20 is a 2-section, and curve 1 is a 3-section. Curves 4, 5, 13 - 17 form

a D̃6, and curve 6 can be completed to form an Ã1. As ρ = 17, this fibration has

good rank, and because we have an Ẽ8, the index of this lattice in Pic(S) is 1. Thus,

Pic(S) = E8 ⊥ D6 ⊥ A1 ⊥ U .

3.91 (5,6,8,19)
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A representative equation for this family of hypersurfaces is x4y3+x6z+y5z+yz4+w2.

Curve 2 has genus 1. We can consider curves 3, 3, 8 - 10, 13 - 17 as an Ẽ8, so that

curve 5 is a section, curve 7 is a 2-section, an curve 2 is a 3-section. Then curves

1, 4, 6, 11, 12, 18 - 20 form an Ẽ7, and curve 21 can be completed to form an Ã1.

As ρ = 18, this fibration has good rank. Because we have an Ẽ8, the index of this

lattice in Pic(S) is 1. Thus, Pic(S) = E8 ⊥ E7 ⊥ A1 ⊥ U .

3.92 (3,5,11,19)

A representative equation for this family of hypersurfaces is x11y + xy7 + x9z +

yz3 + w2.

See section 3.68. Number 68 has the same rank and configuration of curves.
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3.93 (3,4,10,17)
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A representative equation for this family of hypersurfaces is x10y+x2y7+x8z+y6z+

yz3 + w2.

The Fibration. Curve 2 has genus 1 and if we consider it as a fibre, then curves

3 and 4 are sections. All remaining curves except curve 7 and 8 form a D̃12, and

curves 7 and 8 can each be completed to form an Ã1. As ρ = 16, this fibration has

good rank.

Method: Intermediate Lattice Calculation. The associated form is v ⊥ (w−1
2,1)

2.

Here are elements of the discriminant group and their values:

((0,0),0,0) 0 ((0,0),0,1) 3/2 ((0,0),1,0) ((0,0),1,1) 1

((1,0),0,0) 1 ((1,0),0,1) 1/2 ((1,0),1,0) ((1,0),1,1) 0

((0,1),0,0) 1 ((0,1),0,1) 1/2 ((0,1),1,0) ((0,1),1,1) 0

((1,1),0,0) 1 ((1,1),0,1) 1/2 ((1,1),1,0) ((1,1),1,1) 0

There are three conjugate isotropic subgroups, generated by 〈((1, 1), 1, 1)〉,

〈((0, 1), 1, 1)〉, and 〈((1, 0), 1, 1)〉. We will choose to work with the first of these. The

perpendicular elements, arranged by coset, are
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((0,0),0,0) 0 ((1,1),1,1)

((0,0),1,1) 1 ((1,1),0,0)

((1,0),0,1) 1/2 ((0,1),1,0)

((1,0),1,0) 1/2 ((0,1),0,1)

This corresponds to the form (w1
2,1)

2, so Pic(S) = E8 ⊥ D6 ⊥ U .

3.94 (3,4,5,7)
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A representative equation for this family of hypersurfaces is x5y+xy4+x3z2+yz3+

x4w + y3w + zw2.

Curve 7 has genus 1; there is no fibration with good rank. The matrix has discrim-

inant 19; as this is square-free, the lattice has index 1 in Pic(S). The form is w−1
19,1;

ρ = 16 and this cannot be represented as a sum of Dynkin lattices. However, we can

express this form as M(2,3,4,6),(1,1,2,2),−4.
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3.95 (2,3,5,7)
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A representative equation for this family of hypersurfaces is x7y+ xy5 + x6z+ y4z+

xz3 + x5w + z2w + yw2.

Curve 8 has genus 1; there is no fibration with good rank. The matrix has discrimi-

nant 17; as this is square-free, the corresponding lattice has index 1 in Pic(S). The

form is w−1
17,1; ρ = 14 and this cannot be represented as a sum of Dynkin lattices.

However, we can express this form as M(1,2,4,6),(1,1,2,3),−4.



CHAPTER IV

Pic(S) versus Pic(J(S))

This chapter is an extension of Section 1.8.4.

4.0.0.2 Definition. A vector bundle E over S is simple if

Ext0
OS

(E,E) = EndOS
(E) = C.

4.0.0.3 Definition. A bundle E is stable with respect to an ample divisor H if

c1(B) ·H

rk(B)
≤

c1(E) ·H

rk(E)

for any subsheaf B of E with rk(B) < rk(E), and if the equality holds, then

c2
1(B)− 2c2(B)− c1(B) ·K

2rk(B)
<

c2
1(E)− 2c2(E)− c1(E) ·K

2rk(E)
.

4.0.0.4 Definition. A bundle E is µ-stable (resp.µ-semi-stable) if

c1(B) ·H

rk(B)
<

c1(E) ·H

rk(E)
(resp.

c1(B) ·H

rk(B)
≤

c1(E) ·H

rk(E)
)

for any subsheaf B of E with rk(B) < rk(E).

4.1 Moduli Spaces of Vector Bundles

4.1.0.5 Definition. Define the extended K3 lattice H̃(S,Z) = H0(S,Z)⊕H2(S,Z)⊕

H4(S,Z).

139
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Notice that H0(S,Z) ∼= Z because H0 counts connected components and H4(S,Z) ∼=

Z because S is compact.

4.1.0.6 Remark. There is a natural Hodge structure on H̃(S,Z) obtained by

restricting the Hodge structure on H̃(S,C) = H̃(S,Z)⊕ C. In this way, H2(S,Z) is

both a sublattice and a Hodge substructure of H̃(S,Z).

4.1.0.7 Definition. Elements of the extended K3 lattice are denoted (r, l, s) and

for a vector bundle E on S we associate a vector v to E by r = rk(E), l = c1(E),

and s = rk(E) + 1
2
c2
1(E)− c2(E).

4.1.0.8 Definition. We extend the inner product on H2(S,Z) to H̃(S,Z) as fol-

lows: v2 = c2
1 − 2rs (and more generally, v · v′ = l · l′ − rs′ − r′s).

We can now talk about various moduli spaces of vector bundles with v(E) = v.

The moduli space on which we will focus is MH(v), the moduli space of H-stable

vector bundles E with v(E) = v, where H is an ample divisor on S.

Recall that we are looking for a map between Pic(S) and Pic(J(S)). We will see

that if we can satisfy the hypotheses of [Mukai2, Proposition 6.4], we can use it to

obtain such a map. These hypotheses are:

• v is primitive and isotropic.

• MH(v) is nonempty and compact.

The reason for the first condition is that if nonempty, MH(v) has dimension v2 + 2

[Mukai1], so v must be isotropic.

To use the Proposition for our purposes, we also need

• J(S) ∼= MH(v). This will be shown in 4.3.

4.1.0.9 Proof that v = (d, F, 0) is primitive and isotropic. A vector v ∈

H̃1,1(S,Z) is primitive if H̃1,1(S,Z)/Z · v has no torsion. Our vector is (d, F, 0) so
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H̃1,1(S,Z)/Z · v having no torsion is equivalent to saying that there exists no vector

(a, C, b) �∈ 〈v〉 where k(a, C, b) ∈ 〈v〉. If such a vector existed, then kC = k′F so that

F = k
k′
C. If k

k′
≤ 1 then (a, C, b) ∈ 〈v〉, contradicting our assumption, and if k

k′
> 1

then this implies that F is a multiple fibre (and K3 surfaces have none).

To be clearer, note that linear equivalence is Pic(S)-equivalence and numerical equiv-

alence is H2-equivalence; because Pic(S) injects into H2, if two elements of Pic(S)

are numerically equivalent, then they are also linearly equivalent. So if F is numeri-

cally equivalent to a multiple of C, then it is linearly equivalent to a multiple of C,

and the only things a fibre is linearly equivalent to are other fibres, so this means

the multiple of C is a fibre and thus there’s a multiple fibre.

It’s easier to show that v = (d, F, 0) is isotropic: v2 = (d, F, 0)2 = F 2− 2d · 0 = 0.

4.2 Construction of Vector Bundles

We aim to show that we can construct a vector bundle from a minimal index

multisection, so that J(S) will be isomorphic toMH(d, F, 0). We take the intersection

of a minimal index ( = d) multisection with the generic fibre, and restrict to any

fibre; this intersection is a group of points, or a zero-cycle ξ on the surface. [Tyurin]

gives us the construction we need. Denote by Iξ the ideal sheaf corresponding to the

cycle ξ, and by Iξ(F ) the ideal sheaf twisted by OS(F ).

4.2.0.10 Theorem. Let F be a fibre of a K3 elliptic surface S. Let ξ ⊂ F be a

0-cycle of degree d > 1. Then there exists a vector bundle E(ξ, F ) defined by the

non-split extension

0→ H1(Iξ(F ))⊗OS → E(ξ, F )→ Iξ(F )→ 0.
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Proof of 4.2.0.10. We need to show that h1(Iξ(F )) > 0 so that the extension

makes sense. First we will show that h1(OS(F )) = 0; we use Riemann-Roch on S.

H0(OS(F )) is the space of divisors on the surface equivalent to the fibre. This has

projective dimension 1, or linear dimension 2. h2(OS(F )) = h0(OS(−F )) = 0 as F

is effective. Then Riemann-Roch reads h1(OS(F )) = 2 + 0− F 2/2− 2 = 0.

Now we will use the fact that h1(OS(F )) = 0 in the proof that h1(Iξ(F )) = d−1.

Begin with the exact sequence

0→ Iξ → OS → Oξ → 0

and tensor by OS(F ) to get

0→ Iξ(F )→ OS(F )→ Oξ ⊗ L(F )→ 0.

A dimension count on the long exact cohomology sequence shows that H1(Iξ(F ))

has dim = d− 1 for any degree d cycle ξ ⊂ F .

4.2.0.11 Remark. Notice that H0(OS(F )) and H1(OS(F )) are independent of the

cycle, so we know also that if we have any cycle of degree d with h1(Iξ(F )) = d− 1,

then it is contained in F .

Now note, using Serre Duality, that

Ext1
OS

(Iξ(F ), ωS) = [Ext1
OS

(OS, Iξ(F ))]∗ = H1(Iξ(F ))∗ = Hom(H1(Iξ(F )),OS).

Therefore,

Ext1
OS

(Iξ(F ), H1(Iξ(F ))) = Hom(H1(Iξ(F )), H1(Iξ(F ))).

If we look at the identity element in Hom(H1(Iξ(F )), H1(Iξ(F ))) we may view it as

the cocycle defining the extension

0→ H1(Iξ(F ))→ E(ξ, F )→ Iξ(F )→ 0 (see [Tyurin]).
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It remains to show that E(ξ, F ) is locally free (and thus a vector bundle).

[Tyurin, Lemma 1.2 and Corollary 1] gives a criterion: E(ξ, F ) is locally free if

for every subcycle ξ′ ⊂ ξ, h1(Iξ′(F )) < h1(Iξ(F )). We now show this. We examine

the cohomology exact sequence [Tyurin, 1.9]:

0→ H0(Iξ(F ))→ H0(Iξ′(F ))→ Cd−d′ → H1(Iξ(F ))→ H1(Iξ′(F ))→ 0

where d′ is the degree of ξ′, and consider the dimensions of the spaces. We know

that because ξ′ ⊂ ξ, we have d′ < d and h0(Iξ′(F )) = h0(Iξ(F )) = 1, and that dim

Cd−d′ = d − d′, so an alternating sum argument tells us that h1(Iξ′(F )) = d′ − 1 <

d− 1 = h1(Iξ(F )).

This completes the proof of 4.2.0.10.

4.3 The Correspondence Between J(S) and Vector Bundles

4.3.0.12 Theorem. J(S) ∼= MH(d, F, 0).

We will prove the theorem by constructing a map and showing that it is an

isomorphism. First we show that the target space is nonempty.

4.3.0.13 Theorem. MH(d, F, 0) is nonempty and compact.

In order to prove this, we need the following fact:

4.3.0.14 Fact [Dolg4]. There exists a µ-stable E with vector (d, F, 0), constructed

as in 4.2.0.10.

4.3.0.15 Proof of 4.3.0.13 A µ-stable vector bundle E is simple ([Mukai1]), and

the dimension of Ext1
OS

(E,E) is 2 by [Tyurin, eqn. (4.2)]. Under these conditions,

we may apply [Mukai2, Theorem 4.3] to see that there exists some ample H such

that MH(d, F, 0) is nonempty and compact.
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J(S) is defined to be the compactification of Jac(Sη) ∼= Pic◦(Sη) (with the corre-

spondence between the distinguished point created on Sη and a distinguished divisor

∑

nipi such that
∑

ni = 0). Another way to view the Jacobian fibration is as a

compactification of the relative Picard variety Pic◦S/P1 [Enriques I].

Now examine the symmetric product S(d), where points are 0-cycles on S. If we

restrict the fibration f : S → P1 to the smooth fibres ( as f ′ : S ′ → U ⊂ P1), we

may consider the relative symmetric product S
(d)

P1 ; points of this variety are 0-cycles

ξ on S, contained in the generic fibre Sη. Note that the closure of such a 0-cycle is

a d-section (denoted D).

If we take a map from S
(d)

P1 to MH(d, F, 0) by sending a 0-cycle to a vector bundle,

then this map will factor through Pic◦S/P1 because S has a d-section. Thus, the image

of the space S
(d)

P1 is Zariski open in J(S).

4.3.0.16 Definition.

α : J(S)→MH(d, F, 0)

α(ξ) �→ E(ξ, F )

This map begins with ξ ∈ S
(d)

P1 . (We consider its closure in S.) Then we use Theorem

4.2.0.10 to produce a vector bundle E(ξ, F ).

Of course, we need to know that E(ξ, F ) ∈ MH(d, F, 0); this is a consequence of

4.3.0.14.

4.3.1 Proof that α is well-defined

Recall that the closure of ξ in S is a d-section D. If D ∼ D′ ∈ Picd(Sη), then

OSη
(D) ∼= OSη

(D′). If we choose a rational function f on Sη such that (f)0 = D

and (f)∞ = D′, then this gives us an isomorphism OSη
(D)→ OSη

(D′) and when we
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restrict this to a suitable fibre F , we then have an isomorphism OF (ξ) → OF (ξ
′).

Then we may apply [Tyurin K3, Lemma 2.5] which tells us that this implies that

E(ξ, F ) = E(ξ′, F ). To choose f suitably means that f does not have any zeros or

poles along F ; this is always possible because there are an infinite number of fibres

and f can only have a finite number of zeros and poles.

4.3.1.1 Remark. Not every vector bundle E has a cycle ξ associated to it. For

the many requirements E must satisfy, see [Tyurin, § 2].

4.3.1.2 Definition. B(E) is the variety of cycles associated to a bundle E.

4.3.2 Proof that α is injective

We need to show that if E(ξ, F ) = E(ξ′, F ) then D ∼ D′.

We can compute the dimension of B(E); it is a Zariski open subset of the Grass-

manian G(rk(E)− 1, H0(E ⊗K∗

S)) [Tyurin, §3] which for us is G(d− 1, H0(E)) =

Gr(d − 1, d). This has dimension (d − 1)(d − (d − 1)) = d − 1 so dim B(E) ≤

d − 1. On the other hand, if ξ produces E, then ξ′ ∼ ξ will also produce E (see

[Tyurin K3, Lemma 2.5]). What is the dimension of the space of cycles equiva-

lent to ξ? It is h0(OF (ξ)), which we can compute using Riemann-Roch for curves:

h0(OF (ξ))− h0(OF (−ξ)) = d+1− gF . h
0(OF (−ξ)) = 0 as ξ is effective, and gF = 1

as F is elliptic. So h0(OF (ξ)) = d which corresponds to projective dimension d− 1.

This is the minimum dimension of B(E) – after all, there could be some other cycle

ξ′ �∼ ξ which also produces E. But as dimB(E) ≤ d− 1 and ≥ d− 1, it equals d− 1

and so we have that if E(ξ, F ) = E(ξ′, F ) then ξ ∼ ξ′.

Now we must show that if ξ ∼ ξ′ then D ∼ D′. This is not hard: our results

above hold for most F (i.e. F hasn’t the wrong zeros and poles for ξ) so if ξ ∼ ξ′ then
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OF (ξ) = OF (ξ
′) for general F , which is the same as saying OF (D|F ) = OF (D

′|F )

for general F , where D and D′ are constructed by extending ξ across the F . (Recall

that we chose ξ, ξ′ by intersecting a d-section with F .) So OSη
(D|F ) = OSη

(D′|F )

for generic F , so OSη
(D) = OSη

(D′) which means that D ∼ D′.

4.3.2.1 Note: There is an error in Tyurin’s calculation of dim B(E); he claims

that in our case (s ≤ 0) that dim B(E) = 0 [Tyurin, Lemma 4.1(5)], which we have

shown it is not. For K3 surfaces, the only case where E(ξ, F ) has dim B(E) = 0 is

when rk(E) = d− 1, c2(E) = d.

4.3.3 Proof that α is an isomorphism of varieties

One can show that α is algebraic. By [Mukai2, Theorem 1.4], MH(d, F, 0) is

a minimal irreducible K3 surface. Because α is an injection between projective

varieties of the same dimension, it must be a birational morphism; now, because

J(S) and MH(d, F, 0) are both minimal, we satisfy the conditions of the minimal

model theorem – thus, α is an isomorphism.

4.4 The Map Pic(S) →֒ Pic(J(S))

4.4.0.1 Theorem. If S has multisection index d, then Pic(S) embeds in Pic(J(S))

with index d.

We will prove this theorem by showing that we can use a theorem of Mukai to produce

this map.

4.4.0.2 Theorem [Mukai2, Theorem 1.5 and Proposition 6.4]. Suppose that

v is primitive and isotropic, and that MH(v) is nonempty and compact. Then

• There is an isometry φ : v⊥/Zv → H2(MH(v),Z) which induces a Hodge isometry
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on transcendental cycles φ′ : TS → TMH(v).

• cokerφ ∼= Zd, where d = minu{|〈u · v〉|, u ∈ H̃1,1(S,Z), 〈u · v〉 �= 0}.

Recall that a Hodge isometry preserves cup product and Hodge structure, i.e.

φ(H2,0(S)) = H2,0(MH(v)). By 4.3.0.13, we have satisfied the hypotheses of 4.4.0.2;

in this case, we have that J(S) ∼= MH(d, F, 0). It remains to show that d above is

the multisection index, and that the map φ is also a map on the Picard lattices.

4.4.0.3 Fact. d in Theorem 4.4.0.2 is the same as d our multisection index.

Proof of 4.4.0.3. u ∈ H̃1,1(S,Z) means that u = (s,L, t) where s, t ∈ Z and

L ∈ Pic(S) = H1,1(S,Z). (u · v) = L · [F ]− ds− 0; s can be any integer and L · [F ]

can be either 0 (if L = [F ′]) or kd if L is horizontal. (Combinations of horizontal and

vertical curves have L· [F ] = k′d and reducible-fibre components have L· [F ] = 0.) In

summary, (u · v) = (k− s)d where we allow either k or s to be 0. So in other words,

the range of values for (u · v) is multiples of d, and the minimal positive element in

that set is d.

4.4.0.4 Fact. The map φ extends to a map φext/res : Pic(S)→ Pic(J(S)).

Proof of 4.4.0.4. We know (TS)
⊥

H2 = Pic(S). φ is a Hodge isometry, induced from

a homomorphism of Hodge structures [Mukai2, paragraph before Thm 1.5] so in

particular, there is a homomorphism φext of Hodge structures on H2, which takes

H2,0
S → H2,0

J(S)

Pic(S) ∼= H1,1
S → H1,1

J(S)
∼= Pic(J(S))

H0,2
S → H0,2

J(S)
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Therefore, as this map preserves transcendental cycles TS, and because TS embeds

primitively into H2, it preserves algebraic cycles as well (Pic(S)). So we may restrict

φext to a map φext/res on the Picard lattices.

Now we can calculate coker φext/res. coker φ = Zd and the discriminants of

TS and Pic(S) are the same by definition (they are orthogonal complements, so

qTS
= −qPic(S)), so coker φext/res = Zd as well.

Aside. Why does this make sense? We know that disc Pic(J(S)) divides

disc Pic(S), and they could be equal. If the index of Pic(S) in Pic(J(S)) is n, then

disc Pic(S)/disc Pic(J(S)) = n2 because Pic(S) →֒n Pic(J(S)) →֒ Pic(J(S))⋆ →֒n

Pic(S)⋆, and L →֒n M →֒ M⋆ →֒n L⋆ means L⋆/L = M⋆/M · n2. Therefore we

expect Pic(J(S))/φext/res(Pic(S)) to be n (= d).

This completes our proof of Theorem 4.4.0.1.

4.4.0.5 Note. Mukai often claims that his results hold for ρ > 11. Reading

his papers carefully reveals that this is because he is only certain that TS embeds

primitively intoH2 for ρ > 11. However, for us Pic(S) always embeds primitively into

H2; primitive embeddings are defined for orthogonal pairs, so TS embeds primitively

as well. Thus, we may use Mukai’s results when ρ ≤ 11.

4.5 Further Conjectures

4.5.0.6 Conjecture (Dolgachev). The discriminants disc(Pic(S)) and disc(Pic(J(S)))

of an elliptic surface are related by the formula

disc(Pic(S)/torsion) =

(

index

lcm(mi)

)2

disc(Pic(J(S))),
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where the index is that of the lowest multisection and the mi are the multiplicities

of multiple fibres.

A stronger conjecture, on which I am also working, is that there is a map Pic(S)→

Pic(J(S)) so that

[Pic(J(S)) : Pic(S)/torsion] =
index

lcm(mi)
.
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APPENDIX A

Tables of Forms and Values

We list the forms and their values for every form used in this thesis. After these

tables, we list the possible forms for popular discriminants such as 16, 27, and 32.

Table A.1: Forms and Values for p �= 2

Form mod 2Z mod Z Diagram(s)

w1
3,1 4/3 2/3 = -1/3 A2

w−1
3,1 2/3 1/3 = -2/3 E6

w1
3,2 4/9, 16/9, 0, 10/9 2/9 = -7/9 A8

w−1
3,2 2/9, 8/9, 0, 14/9 1/9 = -8/9

w1
5,1 4/5, 6/5 2/5 = -3/5 A4

w−1
5,1 2/5, 8/5 1/5 = -4/5 T2,5,5

w1
7,1 2/7, 8/7, 4/7 1/7 = -6/7 A6

w−1
7,1 6/7, 10/7, 3/7 3/7 = -4/7

w1
11,1 4/11, 16/11, 14/11, 20/11 2/11 A10

w−1
11,1 2/11, 8/11, 18/11, 10/11 1/11

w1
13,1 4/13

w−1
13,1 2/13 T3,4,5

w1
17,1 2/17 1/17 = -16/17 A16

w−1
17,1 6/17 3/17, 12/17, 10/17, 14/17,

7/17, 6/17, 11/17, 5/17
w1

19,1 4/19 2/19 = -17/19; 8/19, 18/19,
13/19, 12/19, 15/19, 3/19,
14/19, 10/19 = -9/19

A18

continued on next page
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continued from previous page

Form mod 2Z mod Z Diagram(s)

w−1
19,1 2/19

Z10 -9/20 A9

Z14 -13/28 A13

Z12 -11/24 A11

Z16 -15/32, -28/32, -7/32, -
16/32, -23/32, -28/32, -
31/32, 0

A15

Z18 -17/36 A17

Table A.2: Forms and Values for p = 2

Form mod 2Z mod Z Diagram(s)

w1
2,1 1/2 1/4 = -3/4 E7

w−1
2,1 -1/2 = 3/2 3/4 = -1/4 A1

(w1
2,1)

2 D6 ≡ D14

(w−1
2,1)

2 D10

u 0 ,0, 1, 0 0 ,0, 1/2, 0 D8

v 1, 1, 1, 0 1/2, 1/2, 1/2, 0 D4 ≡ D12

w1
2,2 1/4, 1 1/8 = -7/8 D7

w−1
2,2 -1/4 = 7/4 -1/8 D9

w5
2,2 5/4, 1 5/8 = -3/8 A3

w−5
2,2 -5/4 = 3/4 -5/8 D5 ≡ D13

w1
2,3 1/8,1/2,9/8,0 -7/16 A7

w−1
2,3 -1/8 = 15/8,3/2,7/8,0

w5
2,3 5/8,1/2,13/8,0

w−5
2,3 -5/8 = 11/8,3/2,3/8,0
u2 0, 0, 0, 0, 0, 1/2, 1,

3/2, 0, 1, 0, 1, 0, 3/2,
1, 1/2

0, 0, 0, 0, 0, 1/4, 1/2,
3/4, 0, 1/2, 0, 1/2, 0,
3/4, 1/2, 1/4

v2 0, 1/2, 0, 1/2, 1/2,
3/2, 1, 1/2, 0, 3/2, 0,
3/2, 1/2, 1/2, 3/2, 3/2

0, 1/4, 0, 1/4, 1/4,
3/4, 1/2, 1/4, 0, 3/4,
0, 3/4, 1/4, 1/4, 3/4,
3/4

We also have the lattice U which is of rank 2 and has trivial quadratic form.

A.0.0.7 Definition. U(m) is a lattice of rank 2 which is defined on Zm × Zm. It

has quadratic form values ab
m
, a ∈ Zm, b ∈ Zm, all mod Z.
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U(m) values Brieskorn form

U(2) 0,0,0,1/2 u

U(3) 0,0,0,0,1/3,2/3,0,2/3,1/3 w1
3,1 ⊥ w−1

3,1

U(4) 0,0,0,0,0,1/4,1/2,3/4,0,1/2,0,1/2,0,3/4,1/2,1/4 u2

Table A.3: Values of the forms U(m)

A.0.1 Discriminant group (Z2)
3

There are only four possible forms.

(w1
2,1)

3 ∼= w−1
2,1 ⊥ v

(w1
2,1)

2 ⊥ w−1
2,1
∼= w1

2,1 ⊥ u

w1
2,1 ⊥ (w−1

2,1)
2 ∼= w−1

2,1 ⊥ u

(w−1
2,1)

3 ∼= w1
2,1 ⊥ v

A.0.2 Discriminant group (Z2)
4

There are only six possible forms.

(w1
2,1)

4 ∼= w1
2,1 ⊥ w−1

2,1 ⊥ v ∼= (w−1
2,1)

4

(w1
2,1)

3 ⊥ w−1
2,1
∼= (w1

2,1)
2 ⊥ u ∼= (w−1

2,1)
2 ⊥ v

(w1
2,1)

2 ⊥ (w−1
2,1)

2 ∼= w1
2,1 ⊥ w−1

2,1 ⊥ u

(w−1
2,1)

3 ⊥ w1
2,1
∼= (w1

2,1)
2 ⊥ v ∼= (w−1

2,1)
2 ⊥ u

u ⊥ v

v ⊥ v ∼= u ⊥ u

A.0.3 Discriminant group (Z2)
5

There are only four possible forms.

(w1
2,1)

5 ∼= (w1
2,1)

2 ⊥ w−1
2,1 ⊥ v ∼= w1

2,1 ⊥ u ⊥ v ∼= (w−1
2,1)

3 ⊥ u ∼= (w−1
2,1)

4 ⊥ w1
2,1
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(w1
2,1)

4 ⊥ w−1
2,1
∼= w1

2,1 ⊥ (w−1
2,1)

2 ⊥ v ∼= w−1
2,1 ⊥ u ⊥ v ∼= (w1

2,1)
3 ⊥ u ∼= (w−1

2,1)
5

(w1
2,1)

3 ⊥ (w−1
2,1)

2 ∼= (w−1
2,1)

3 ⊥ v ∼= w1
2,1 ⊥ v ⊥ v ∼= w1

2,1 ⊥ u ⊥ u ∼= (w1
2,1)

2 ⊥ w−1
2,1 ⊥ u

(w1
2,1)

2 ⊥ (w−1
2,1)

3 ∼= (w1
2,1)

3 ⊥ v ∼= w−1
2,1 ⊥ v ⊥ v ∼= w−1

2,1 ⊥ u ⊥ u ∼= w1
2,1 ⊥ (w−1

2,1)
2 ⊥ u

A.0.4 Discriminant group (Z2)
6

We will only analyze those with u and v as components. Then, we can have

u ⊥ u ⊥ u ∼= u ⊥ v ⊥ v or v ⊥ v ⊥ v ∼= v ⊥ u ⊥ u. We count the number of

elements in (Z2)
6 with value 0 for each form; u ⊥ u ⊥ u has 36 0-valued elements

and v ⊥ v ⊥ v has 28 0-valued elements. This is an easy way to distinguish them.

A.0.5 Discriminant group (Z3)
2

There are only two possible forms. Table A.4 shows their values.

elt. w1
3,1 ⊥ w−1

3,1 (w1
3,1)

2

(0,0) 0 0

(0,1) 2/3 2/3

(0,2) 2/3 2/3

(1,0) 4/3 2/3

(1,1) 0 4/3

(1,2) 0 4/3

(2,0) 4/3 2/3

(2,1) 0 4/3

(2,2) 0 4/3

Table A.4: Values of the forms on (Z3)
2
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A.0.6 Discriminant group (Z3)
3

There are only two possible forms.

(w1
3,1)

3 ∼= (w−1
3,1)

2 ⊥ w1
3,1 has 6 elements with value 4/3, 12 elements with value 2/3,

and 9 elements with value 0.

(w−1
3,1)

3 ∼= (w1
3,1)

2 ⊥ w−1
3,1 has 6 elements with value 2/3, 12 elements with value 4/3,

and 9 elements with value 0.

A.0.7 Discriminant group (Z3)
4

There are only two possible forms. Table A.5 shows their values.

(w1
3,1)

4 ∼= (w−1
3,1)

2 ⊥ (w1
3,1)

2 ∼= (w−1
3,1)

4

(w1
3,1)

3 ⊥ w−1
3,1
∼= (w−1

3,1)
3 ∼= w1

3,1

elt. type (w1
3,1)

4 w1
3,1 ⊥ (w1

3,1)
3 no. such elts.

(0,0,0,0) 0 0 1

(0,0,0,1) 2/3 2/3 6

(0,0,1,1) 4/3 4/3 12

(0,1,1,1) 0 0 8

(1,1,1,1) 2/3 0 16

(1,0,0,0) 2/3 4/3 2

(1,0,0,1) 4/3 0 12

(1,0,1,1) 0 2/3 24

Table A.5: Values of the forms on (Z3)
4
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APPENDIX B

Yonemura.ma

This appendix is an edited version of my Mathematica notebook Yonemura.ma.

Herein we document programs which, given the weight-vectors from Yonemura’s

paper,

– generate the rational polytope

– transform the rational polytope into 3-space

– find the extremal points of the Newton Polytope

– find the extremal points of the dual of each Newton Polytope

– give the f-vector and face-lattice for each Newton Polytope and its dual.

Please note that these procedures will not work for objects other than hypersurfaces

in weighted projective space, with the exception of the functions which determine

the f-vector and face-lattice.

Given a weight-vector {w1, w2, w3, w4} and the total weight w = w1+w2+w3+w4), we

can obtain the rational polytope associated to this weight-vector; it is defined as the

portion of the hyperplane w1x1+w2x2+w3x3+w4x4 = w where xi ≥ 0. It is also the

convex hull of the points {w/w1, 0, 0, 0}, {0, w/w2, 0, 0}, {0, 0, w/w3, 0}, {0, 0, 0, w/w4}.

The Newton Polytope of this rational polytope is the convex hull of the integer

points in the rational polytope. We list all integer points in a rectangular box
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enclosing the appropriate sector of the hyperplane, and check each one to see if

it is in the rational polytope. We will use this list of integer points to generate

the extremal points of the Newton Polytope. In the following cell, BoxofPoints

generates all integer points in the rectangular box, and ListIntegerPoints tells us

which of those are in the rational polytope.

LIP[wv_] := Block[{w},

BoxofPoints[w_] := Block[{i,k,l,m,q1,q2,q3,q4},

q1 = Ceiling[w[[5]]/w[[1]]];

q2 = Ceiling[w[[5]]/w[[2]]];

q3 = Ceiling[w[[5]]/w[[3]]];

q4 = Ceiling[w[[5]]/w[[4]]];

Flatten[Table[{i-1,m-1,k-1,l-1},

{i,q1+1},{m,q2+1},{k,q3+1},{l,q4+1}],3]

];

BoP = BoxofPoints[wv];

BoxL = Length[BoP];

ListIntegerPoints[w_,p_] := Intersection[p,Table[

If[{w[[1]],w[[2]],w[[3]],w[[4]]}.p[[j]]==w[[5]],p[[j]]],

{j,BoxL}]];

ListIntegerPoints[wv,BoP]

];

One would think that the easiest thing to do would be to use the VertexEnumeration

[VE] procedure to get the extremal points of the Newton Polytope, by taking the

convex hull of our LIP.

As it turns out, it is simpler to find each dual (P ∗), and then dualize P ∗. Note

that the dimension of our dual depends on our ambient space. If we take the dual

of a polygon contained in R3, for example, we get an infinite cylinder; therefore, we

must translate our LIP into R3 by transforming the lattice it lives in to Z3.

We use an algorithm given by Lev Borisov to get a 4 by 3 transformation matrix

from the lattice in our hyperplane to Z3. Unfortunately, this map is not surjective.

TransMat[wv_] := Block[{q1,q2,q3,q4,r,s,t,k,l,u1,u2,TM},

q1=wv[[1]]; q2=wv[[2]]; q3=wv[[3]]; q4=wv[[4]];

x[4]=r*GCD[q1,q2,q3]/GCD[q1,q2,q3,q4];
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l=-r*q4/GCD[q1,q2,q3,q4];

u2=ExtendedGCD[GCD[q1,q2],q3];

x[3]=l*u2[[2,2]] + s*GCD[q1,q2]/GCD[q1,q2,q3];

k=l*u2[[2,1]] - s*q3/GCD[q1,q2,q3];

u1=ExtendedGCD[q1,q2];

x[2]=k*u1[[2,2]] + t*q1/GCD[q1,q2];

x[1]=k*u1[[2,1]] - t*q2/GCD[q1,q2];

TM = Table[x[i],{i,4}];

triggle =Table[Collect[TM[[i]],{t,s,r}],{i,4}];

Table[{Coefficient[triggle[[i]],t],Coefficient[triggle[[i]],s],

Coefficient[triggle[[i]],r]},{i,4}]

];

Notice that the point (1, 1, 1, 1) is in each hyperplane because
∑

(wi) = w. Thus,

we translate the hyperplane to the origin by subtracting this vector. Then we have to

take care of the fact that our map isn’t surjective. We know that the columns of the

matrix supply us with three vectors (v1, v2, v3) such that each point in our hyperplane

can be expressed as a unique combination of them: p = a1v1 +a2v2 +a3v3 for scalars

ai. This equation gives us our point in 3-space (a1, a2, a3). We add the point p as

the fourth column of the transformation matrix, and find the vector which generates

the null space of the resulting matrix; this is the point �a. (This technique provided

by Prof. Dolgachev.)

LIP0 = Map[(#-{1,1,1,1})&,LIP[wv]];

lipleng = Length[LIP0];

TM = TransMat[wv];

LIP3 = Table[LIP0[[i]].TM,{i,lipleng}]

As it turns out, while VertexEnumeration is extremely accurate, it’s too slow

given the huge number of points we’re dealing with in some cases. Instead we send

the data through qhull, a program which takes the hull less accurately but much

faster. The following program makes the appropriate 95 input files for qhull.

WilliamMatrix[l_,wv_] := Table[{l[[i,1]],l[[i,2]],

l[[i,3]],wv[[i]]},{i,4}]
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swv = OpenRead["weightvectors"]

Do[ num = Read[swv,Number];

wvect = Read[swv,{Number,Number,Number,Number,Number}];

listopoints = LIP[wvect];

transmatrix = TransMat[wvect];

LIP0 = Map[(#-{1,1,1,1})&,listopoints];

lipleng = Length[LIP0];

prev3 = Table[Flatten[NullSpace[WilliamMatrix

[transmatrix,LIP0[[k]]]]],{k,lipleng}];

LIP3 = Table[{-prev3[[m,1]]/prev3[[m,4]],

-prev3[[m,2]]/prev3[[m,4]],

-prev3[[m,3]]/prev3[[m,4]]},{m,lipleng}];

snew = OpenWrite[ToString[StringForm["qhull.input‘‘",j]]];

Write[snew,3];

Write[snew,lipleng];

Do[ WriteString[snew,LIP3[[k,1]]," ",LIP3[[k,2]]," ",

LIP3[[k,3]],"\n"], {k,lipleng}];

Close[snew];

Print[j],

{j,95} ]

Close[swv]

Now we have output from qhull (extP3). Are these polytopes reflexive? Luckily,

one of the definitions of reflexivity for an integral polytope is that its dual is integral.

So by computing all the duals, we can answer this question. By outputting the f-

vectors and face-lattices of each polytope (and its dual), we can begin to determine

if any are isomorphic to each other (none are).

Recall that there is an easy way of finding the dual of a polytope, from [Brøndsted,

Theorem 9.1]. If P = conv{pi}, then P ∗ = ∩i[K(pi, 1)], where the K(pi, 1) are closed

halfspaces with pi as the outward normal vectors, and the equation of the bounding

hyperplanes are set equal to 1.

This should find the dual of a polytope given by extP3[wv]. Notice that the

origin is automatically contained in this set, as we subtracted (1, 1, 1, 1) already and

the transformation matrix takes (0, 0, 0, 0) to (0, 0, 0). The code does this: Load

in the package, then shift the whole mess of hyperplanes about 1000 points away,
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so that we are assured that the whole dual will be contained in the positive- only

quadrant (the DualM.c lines). We find the vertices of the resulting polytope, and

then translate them back to the origin.

<<VertexEnum.m;

Off[General::spell]; Off[General::spell1];

dim=3;

size=Length[extP3[wv]];

DualM = extP3[wv];

c = {1000,1000,1000};

Dualb = Table[1,{size}]+DualM.c;

AlmostDual = VertexEnumeration[DualM,Dualb];

extdual = Map[(#-c)&,AlmostDual[[1]]];

Dualwv = {extdual,AlmostDual[[2]]}

To find the extremal points etc. of the original polytope, we do almost exactly

the same thing.

Origb = Table[1,{Length[AlmostDual[[1]]]}] +

centeredextdual.c; AlmostOrig =

VertexEnumeration[AlmostDual[[1]],Origb]; VlistP =

Map[(#-c+center)&,AlmostOrig[[1]]]; vlist = {VlistP,AlmostOrig[[2]]}

We also need to output the f-vector and a diagram of the face-lattice for each

polytope and its dual. Once we have specified our polytope as vlist, then the

FaceLattice package operates on its activesets (sets of hyperplane conditions each

vertex satisfies) to produce the f-vector and the face-lattice. To do the same thing

for the dual, we use the same code but with Dualwv and Dflist. You’ll notice

an interesting extra command, flinks. This outputs a string where ”each element

k,m,k+1,n.., indicates that the m-th face of dimension k is covered by the n-th face

of dimension k+1.” (from documentation with [FL])

<<FaceLattice.m;

Off[General::spell]; Off[General::spell1];

flist=KFaceList[vlist[[2]]];

fvector=FVector[flist]

Show[FaceLatticeDiagram[flist]]
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flinks=FaceLatticeLinks[flist];

<<VertexEnum.m;

<<FaceLattice.m;

Off[General::spell]; Off[General::spell1];

dim=3;

TransMat[wv_] := Block[{q1,q2,q3,q4,r,s,t,k,l,u1,u2,

TM},

q1=wv[[1]]; q2=wv[[2]]; q3=wv[[3]]; q4=wv[[4]];

x[4]=r*GCD[q1,q2,q3]/GCD[q1,q2,q3,q4];

l=-r*q4/GCD[q1,q2,q3,q4];

u2=ExtendedGCD[GCD[q1,q2],q3];

x[3]=l*u2[[2,2]] + s*GCD[q1,q2]/GCD[q1,q2,q3];

k=l*u2[[2,1]] - s*q3/GCD[q1,q2,q3];

u1=ExtendedGCD[q1,q2];

x[2]=k*u1[[2,2]] + t*q1/GCD[q1,q2];

x[1]=k*u1[[2,1]] - t*q2/GCD[q1,q2];

TM = Table[x[i],{i,4}];

triggle =Table[Collect[TM[[i]],{t,s,r}],{i,4}];

Table[{Coefficient[triggle[[i]],t],Coefficient[triggle[[i]],s],

Coefficient[triggle[[i]],r]},{i,4}]

];

WilliamMatrix[l_,wv_] := Table[{l[[i,1]],l[[i,2]],l[[i,3]],wv[[i]]},

{i,4}];

swv = OpenRead["weightvectors"]

snp = OpenWrite["Table2.2Y"]

sdd = OpenWrite["DualPsData"]

spd = OpenWrite["PsData"]

Do[num = Read[swv,Number];

wvect = Read[swv,{Number,Number,Number,Number,Number}];

qhullfile = OpenRead[ToString[StringForm["qhull.output‘‘",j]]];

qhull = ReadList[qhullfile,Expression];

Close[qhullfile];

qhullmod = Flatten[qhull];

temp3 = Union[Flatten[Table[qhullmod[[f,1]],{f,Length[qhullmod]}],1]];

vert3 = Table[Rationalize[temp3[[k,l]]],{k,Length[temp3]},{l,3}];

size=Length[vert3];

TM = TransMat[wvect];

thing = Transpose[TM];

want = Table[vert3[[a,1]]*thing[[1]]

+ vert3[[a,2]]*thing[[2]]

+ vert3[[a,3]]*thing[[3]],{a,size}];

vert = Map[(#+{1,1,1,1})&,want];

Write[snp,j];

Write[snp,vert];
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DualM = vert3;

c = {1000,1000,1000};

Dualb = Table[1,{size}]+DualM.c;

AlmostDual = VertexEnumeration[DualM,Dualb];

extdual = Map[(#-c)&,AlmostDual[[1]]];

Dualwv = {extdual,AlmostDual[[2]]};

flistD = KFaceList[Dualwv[[2]]];

fvectorD = FVector[flistD];

graphicD = FaceLatticeDiagram[flistD];

wantD = Table[extdual[[b,1]]*thing[[1]]

+ extdual[[b,2]]*thing[[2]]

+ extdual[[b,3]]*thing[[3]],{b,Length[extdual]}];

vertD = Map[(#+{1,1,1,1})&,wantD];

Write[sdd,j];

Write[sdd,Dualwv[[1]]];

Write[sdd,fvectorD];

Write[sdd,vertD];

If[fvectorD != {1,4,6,4,1},Write[sdd,graphicD]];

Origb = Table[1,{Length[extdual]}] + extdual.c;

AlmostOrig = VertexEnumeration[extdual,Origb];

VlistP = Map[(#-c)&,AlmostOrig[[1]]];

vlist = {VlistP,AlmostOrig[[2]]};

flist = KFaceList[vlist[[2]]];

fvector = FVector[flist];

graphic = FaceLatticeDiagram[flist];

wantP = Table[VlistP[[d,1]]*thing[[1]]

+ VlistP[[d,2]]*thing[[2]]

+ VlistP[[d,3]]*thing[[3]],{d,Length[extdual]}];

vertP = Map[(#+{1,1,1,1})&,wantP];

Write[spd,j];

Write[spd,vlist[[1]]];

Write[spd,fvector];

Write[spd,vertP];

If[fvector != {1,4,6,4,1},Write[spd,graphic]];

Print[j]

,

{j,95}];

Close[snp]

Close[swv]

Close[sdd]

Close[spd]
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APPENDIX C

Desingularize.ma

This appendix is an edited version of my Mathematica notebook Desingular-

ize.ma. Herein we document programs which compute canonical classes of 2-dimensional

toric varieties and desingularize them.

CanonicalClass[dualverts_]

The input is a list of vertices for the polar dual polyhedron, and the output is a

formal sum of codimension 1 subvarieties (in this case they are faces or subsets

thereof, and so are denoted F[i]). If one begins with any of the usual descriptions

of the polyhedron D corresponding to PD, it is simple to use the VertexEnumeration

package [VE] to derive the vertices of the polar dual.

CanonicalClass[dualverts_] :=

Block[{c,Origb,AlmostOrig, VlistP,vlist,a,i,FaceNumber,fv,kfl},

<<VertexEnum.m;

<<FaceLattice.m;

Off[General::spell]; Off[General::spell1];

dim=3;

c = {1000,1000,1000};

Origb = Table[1,{Length[dualverts]}] + dualverts.c;

AlmostOrig = VE[dualverts,Origb];

VlistP = Map[(#-c)&,AlmostOrig[[1]]];

vlist = {VlistP,AlmostOrig[[2]]};

a[k_] := -Min[Table[Dot[-dualverts[[k]],
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VlistP[[j]]],{j,Length[VlistP]}]];

kfl = FaceLattice‘KFaceList[vlist[[2]]];

fv = FaceLattice‘FVector[kfl];

FaceNumber = fv[[4]];

Print[Sum[(a[i]-1)*F[i],{i,FaceNumber}]]

];

Explanation of the code: First we load in the packages required. We move the

dual polytope far into the all-positive orthant so that VertexEnumeration will work

correctly. The dual’s vertices also correspond to positive normal vectors to the

bounding hyperplanes of the polytope, and VE uses this information to produce

information on the original polytope. We use this information to compute with the

formula KX = O(S(ai − 1) ∗ Fi), where the ai are defined by ai = minj < ni, vj >,

the ni are the negative normal vectors to the faces, and the vj are the vertices.

SingGraph[dualverts_,LIP_,filename_].

This command, given the vertices for the dual polytope (positive normal vectors to

the faces of the polytope) and a filename, writes a description of the graph obtained

by desingularizing the polytope. It also puts out a file filename.extras, which

notes which edges of the graph are multiple and what genus the curve corresponding

to each face has. Note: This command is designed to be executed on only one

polytope! There is another command which is designed to work within a loop (not

detailed in this appendix). One can view the results of SingGraph by loading the

Combinatorica package and using the command

ShowLabeledGraph[ReadGraph["filename"]]. I chose to write the specifications of

the graph to a file to minimize possible memory problems for Mathematica in storing

both the huge matrix for a graph and the graphics primitives.

SingGraph[dualverts_,LIP_,filename_] :=

Block[{c,Origb,
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AlmostOrig,VlistP,vlist,kfl,facesonly,facesinorder,ni,fv,

fll,edgecovers1,edgecovers2,edgecovers3,edgefaces,

vertexcovers1,vertexcovers2,vertexcovers3,edgescover1,

edgescover2,edgevertices,upperindex,an1,an2,v1,v2,n1,n2,

st,sn,extras,morextras,thing1,thing2,thing3,piece,whole,

wholegraph,neededvert,getface,getedge,getvert,PointsOnFace,

PsInFace,POFs},

<<VertexEnum.m;

<<FaceLattice.m;

Off[General::spell]; Off[General::spell1];

dim=3;

c = {1000,1000,1000};

Origb = Table[1,{Length[dualverts]}] + dualverts.c;

AlmostOrig = VertexEnum‘VE[dualverts,Origb];

VlistP = Map[(#-c)&,AlmostOrig[[1]]];

vlist = {VlistP,AlmostOrig[[2]]};

kfl = FaceLattice‘KFaceList[vlist[[2]]];

facesonly = Table[kfl[[4,i]]-{3},{i,Length[dualverts]}];

facesinorder = Table[dualverts[[facesonly[[i,1]]]],

{i,Length[dualverts]}];

ni = facesinorder*(-1);

fv = FaceLattice‘FVector[kfl];

fll = FaceLattice‘FaceLatticeLinks[kfl];

edgecovers1 = Flatten[Select[fll,Part[#,1,1] ==1 &]];

edgecovers2 = Table[edgecovers1[[2i]],

{i,Length[edgecovers1]/2}];

edgecovers3 = Delete[edgecovers2,Partition[

Table[4(i-1)+3,{i,Length[edgecovers2]/4}],1]];

edgefaces = Partition[edgecovers3,3];

vertexcovers1 = Select[fll,Part[#,1,1] ==0 &];

vertexcovers2 = Table[Flatten[vertexcovers1][[2i]],

{i,Length[Flatten[vertexcovers1]]/2}];

vertexcovers3 = Partition[vertexcovers2,2];

edgescover1 = Table[Reverse[vertexcovers3[[i]]],

{i,Length[vertexcovers3]}];

edgescover2 = Flatten[Sort[edgescover1]];

edgevertices = Partition[Delete[edgescover2,

Partition[Table[4(i-1)+3,

{i,Length[edgescover2]/4}],1]],3];

upperindex = fv[[3]];

enumerate = fv[[4]];

singtype[n1_,n2_] := GCD[n1[[1]]-n2[[1]],

n1[[2]]-n2[[2]],n1[[3]]-n2[[3]]] -1;

singnumber[v1_,v2_] := GCD[v1[[1]]-v2[[1]],

v1[[2]]-v2[[2]],v1[[3]]-v2[[3]]];

Do[

an1 = edgefaces[[k,2]];
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an2 = edgefaces[[k,3]];

v1 = vlist[[1,edgevertices[[k,2]]]];

v2 = vlist[[1,edgevertices[[k,3]]]];

n1 = ni[[an1]];

n2 = ni[[an2]];

st = singtype[n1,n2];

sn = singnumber[v1,v2];

If[st == 0,

piece[k] = {{an1,an2}};

extras = OpenAppend[ToString[filename]<> ".extra"];

WriteString[extras, "the edge between faces ",

an1," and ",an2," has multiplicity ",sn,".\n"];

Close[extras];

Continue[]];

thing1 = Table[{an1,st*i+1+enumerate},{i,0,sn-1}];

thing2 = Table[{st*i+enumerate,an2},{i,sn}];

thing3 = Flatten[Table[Table[{(j-1)*st+i+enumerate,

(j-1)*st+i+1+enumerate},

{i,st-1}],{j,sn}],1];

piece[k] = Join[thing1,thing2,thing3];

enumerate += st*sn

,{k,upperindex}];

whole = Flatten[Table[piece[i],{i,upperindex}],1];

wholegraph = DiscreteMath‘Combinatorica‘FromUnorderedPairs[whole];

DiscreteMath‘Combinatorica‘WriteGraph[wholegraph,

ToString[filename]];

Do[

getface = Select[fll,Part[#,2] =={2,r} &];

getedge = Select[fll,Part[#,2] ==getface[[1,1]] &];

getvert[r] = getedge[[1,1,2]];

,{r,fv[[4]]}];

neededvert = Table[VlistP[[getvert[r]]],{r,fv[[4]]}];

Do[

PointsOnFace[m] = {};

Do[

If[

Dot[facesinorder[[m]],LIP[[o]]-neededvert[[m]]] == 0,

PointsOnFace[m] = Append[PointsOnFace[m],LIP[[o]]]]

,{o,Length[LIP]}]

,{m,fv[[4]]}];

POFs = Table[PointsOnFace[q],{q,fv[[4]]}];

morextras = OpenAppend[ToString[filename]<> ".extra"];

Do[

PsInFace = Complement[PointsOnFace[p],

Flatten[Delete[POFs,p],1]];

WriteString[morextras,"Face ",p," has genus ",

Length[PsInFace],".\n"]
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,{p,fv[[4]]}];

Close[morextras]

];

The few lines of code (through the definition of the list ni) serve the purpose

of correlating the enumeration of our list of the faces to the enumeration of the

VertexEnumeration and KFaceList process. After that, reformat the cover relations

for vertices and edges from the face-lattice poset. This format is lists (edgefaces

and edgevertices) {{edge, face1, face2}, . . . } and {{edge, vertex1, vertex2}, . . . }

respectively, corresponding to the fact that each edge is the intersection of two faces

and each edge has a vertex on each end.

Now we define two functions (singtype and singnumber) which tell us the type

and multiplicity of singularity for each edge. Even if edge is nonsingular, it may have

multiplicity anyway; so, we write this information to the file filename.extras.

For each edge, we determine the number and type of singularity, and create a list

of unordered pairs which tell us exactly where edges should be in the graph. (For

example, a pair 7,3 tells us that vertex 7 is joined to vertex 3 by an edge.) Finally,

we put all the information from the edges into one big list, being careful with the

labeling, and create and write to a file the Mathematica information for the graph.

The remaining code determines the number of points in the interior of each face,

i.e. the genus of the corresponding curve. To do this, we dot LIP with the normal

vector to the plane of the face. Any vector calculus book will tell you that this

only works if we first subtract off some point in that plane, so the getstuff variables

perform the function of finding some vertex on the face. After we know which points

are on each face, we check to see which points are on no edge. These are in the

interior of the face. Then, of course, we write all this to filename.extras.
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APPENDIX D

M�p,�i,k programs

Here is program which computes �i and the discriminant for one of the hypersur-

faces. The inputs are the weight-vector, degree, �p and k. The program generates all

possible �i and tests each in the formula for h0(S,OS(K)); if the result is an integer,

the procedure prints that �i and the associated discriminant.

Mqpkdisc[q_,d_,p_,k_] := Block[{s,p2,i,t,u,n,m,j,disc},

D2 = d/Product[q[[m]],{m,4}];

s = Length[p];

p2 = Table[Ceiling[p[[j]]/2],{j,s}];

i = {Table[1,{j,s}]};

Do[

Do[ x = i[[u]];

Do[ x =ReplacePart[x,x[[t]]+1,t];

i = Append[i,x],

{v,p2[[t]]-1}],

{u,Length[i]}],

{t,s}];

Do[disc[r] = Product[p[[m]]+1,{m,s}]*

(-k-Sum[i[[r,j]]*(p[[j]]+1-i[[r,j]])/(p[[j]]+1),

{j,s}]);

If[IntegerQ[D2/2 - Sum[i[[r,j]]*(p[[j]]+1-i[[r,j]])/

(2*(p[[j]]+1)),{j,s}]],Print[i[[r]],disc[r]]],

{r,Length[i]}]

];

This procedure constructs the matrix associated to an M�p,�i,k. To form such a

matrix, we take the direct sum of the Cartan matrices associated to the Apj
, and
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add a row/column which reflects which components intersect with the central vertex.

We accomplish this by beginning with the identity matrix and then replacing portions

of the rows/columns as appropriate. The variables cump and cumi are vectors for

cumulative �p and �i so that the loops index correctly; the large Do-loop in the middle

determines the correct Cartan matrix for the particular Apj
.

Mpikmatrix[p_,i_,k_] := Block[{cump,cumi,M,mrank},

mrank = Sum[p[[j]],{j,Length[p]}]+1;

cump = Flatten[{0,Table[

Sum[p[[j]],{j,q}],{q,Length[p]}]}];

cumi = Table[i[[j]]+cump[[j]],{j,Length[i]}];

M = IdentityMatrix[mrank];

Do[

Do[

If[cump[[s]]+1==cump[[s+1]],

M=ReplacePart[M,-2,{cump[[s]]+1,cump[[s]]+1}],

If[ j==cump[[s]]+1,

M=ReplacePart[M,-2,{cump[[s]]+1,cump[[s]]+1}];

M=ReplacePart[M,1,{cump[[s]]+1,cump[[s]]+2}],

If[j==cump[[s+1]],

M=ReplacePart[M,1,{cump[[s+1]],cump[[s+1]]-1}];

M=ReplacePart[M,-2,{cump[[s+1]],cump[[s+1]]}],

M=ReplacePart[M,1,{j,j-1}];

M=ReplacePart[M,-2,{j,j}];

M=ReplacePart[M,1,{j,j+1}]

]

]

]

,{j,cump[[s]]+1,cump[[s+1]]}]

,{s,Length[cump]-1}];

Do[

M = ReplacePart[M,1,{mrank,cumi[[j]]}];

M = ReplacePart[M,1,{cumi[[j]],mrank}]

,{j,Length[cumi]}];

M = ReplacePart[M,k,{mrank,mrank}];

Print[M];

Mpikmatrix[p,i,k] = M

]
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ABSTRACT

Picard Lattices of Families of K3 Surfaces

by

sarah-marie belcastro

Chair: Igor Dolgachev

It is a nontrivial problem to determine the Picard Lattice of a given surface; the

object of this thesis is to compute the Picard Lattices of M. Reid’s list of 95 fami-

lies of Gorenstein K3 surfaces which occur as hypersurfaces in weighted projective

space. Reid’s list arises in many problems; here we look at an application to Mirror

Symmetry.

One can define an analogue of Mirror Symmetry for Calabi-Yau threefolds for

K3 surfaces. This analogue coincides with the “strange duality” for the 14 surface

singularities of V. I. Arnold. Here we investigate the Mirror Symmetry of Reid’s 95

families of surfaces; Arnold’s singularities are on this list.

Denote a surface by S and a mirror family by Š. Then we define a mirror family

by

Pic(S)⊥H2(S,Z) = Pic(Š) ⊥ U.

By computing the Picard Lattice for each of these 95 surfaces, I am able to determine

whether the mirror family for each one is also on Reid’s list.



1

I begin the thesis by reviewing the history of the problem, and then discuss the

problems with computing the rank ρ of the Picard Lattice. The bulk of Chapter 1

is devoted to exposition of lattices / quadratic forms and background on K3 elliptic

surfaces. There is also an explanation of the computer programs I wrote to assist

with the computations.

Chapter 2 concerns a conjecture by Reid on how to compute the Picard Lattice.

I discuss this conjecture and investigate the new lattices M�p,�i,k which arise therein,

and use the conjecture to re-compute the Picard Lattice for the 95 families.

Chapter 3 details the 95 calculations I made when computing the Picard lattices.

In Chapter 4, I prove the existence of an index d embedding of Pic(S) into PicJ(S)

for S with multisection index d.

I include several appendices which contain theMathematica code for my programs

and various tables of quadratic forms and their values.


