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1. Introduction. The purpose of this paper is to expand the classical results of
Picard [6] and Lefschetz [3, p. 23] concerning a one-complex-parameter family of
algebraic varieties St acquiring singularities for isolated values of /. The question to
be answered is: What action on H*(St) is induced by motion of the parameter ??
(//*(  ) will denote (compact) singular homology with real coefficients.)

More precisely, let B be a complex analytic line bundle over a nonsingular
complex projective variety X of (complex) dimension («+ 1). Let s0 and sm be any
two linearly independent holomorphic sections of B -> X such that Z(sm) n Z(dsn)
= 0.(Z( ) will indicate "zeros of ( ) in X.") Let St=Z(s0 + tsm) and S^=Z(sx).
Then (sm/s0) is a meromorphic and hence algebraic function on X, and so St is a
projective hypersurface of X for all t. Since Sx is assumed nonsingular, standard
arguments show that

C0 = {t e C : Z(s0 + tt=o) n Z(ds0 + t dsn) ¥= 0}

is finite.
For t e (C—C0), St has a C™-normal bundle W in X whose fibres are ordinary

two-real-dimensional discs. Let the fibration be given by to: W-> St. For t' near t,
Sf is also nonsingular, and for each P e St the set (a>~\P) n 5r) contains exactly
one point. Thus cu defines a diffeomorphism F(r, t'): St. -> 5t. Given any path y in
(C—C0), beginning at r0 and ending at t, we can define an associated diffeomor-
phism F(y)=F(tk,tk-1)°---°F(t2,t1)°F(t1,t0) where {t0, tx,..., tk = t} is a
sufficiently fine partition of y. The homotopy type of F{y) does not depend on the
choice of normal bundles [4, pp. 19-26], nor on the partition if it is sufficiently fine,
but only on the homotopy class of y in (C— C0).

One asks, then, what is the associated homology isomorphism F(y)*: H#(Sto)
-> H*(St) ? From the discussion above, it clearly suffices to consider the case
Oe C0, {/ : 0< |/| <2}c(C-C0), and y = {exp | : 05 £5 0} whereexp $ = e2ni(. For
such situations, define F(8) = F(y). In [3, p. 23], Lefschetz describes F(q)if: H^iSJ
-> H^iSJ for q e Z, when S0 has isolated double points as its singular locus. This
result is variously called the Picard-Lefschetz Theorem or the Poincare formula.
Pham [5] extended these results to much more general types of isolated singularities.
In the following we will generalize in another direction and allow {St} to acquire an
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arbitrary ordinary singularity at S0. Our general philosophy will be to fibre the
action of F(6) over the singular locus of So- (This approach also yields results in
some simple cases of nonordinary, nonisolated singularities [1].) We will assume
throughout that {0 < 11 \ < 2} £ (C- C0).

Theorem 4.4 of this paper will give, from the topological point of view, an
appropriate generalization of the classical Picard-Lefschetz Theorem to the case
in which we acquire an arbitrary singularity (with arbitrary multiplicities) at S0.
A. Landman, in his Berkeley thesis, treated this same problem from an algebraic
point of view. To see the relation between these two approaches, we might note here
a corollary of the homological dimensions of the subspaces of Sx in Theorem 4.4
and Corollary 4.15:

For 0^a^2« and m = least common multiple of the multiplicities of the com-
ponents of S0 and

fa = F{ik:HJLSJ)-+HJLSd,
the minimal polynomial of the linear transformation fa is a factor of the poly-
nomial

(\m_ J-Jn+l-|a-n|_

2. Ordinary singularities and the fibration of F(6). For notational convenience,
we will set Sm=A(0). Then

Definition 2.1. The family {St} will be said to acquire an ordinary singularity
at r=0 if:

(1) So = /l(l) U - • - U A(h) where the A(i) are nonsingular hypersurfaces of X;
(2) for 0£i<j£h, A(i) and A(j) intersect normally (including the possibility

that A(i) n A(j)= 0).
From now on we assume that {St} is as in §1 and acquires an ordinary singularity

at r=0.
For any open set UQX, let I(U)={ie{0, ...,h): U n A(i)^ 0}. Then locally

we can normalize our defining equation s0 + tsx=0 for St:

Lemma 2.2. There is an open covering {U} of S0 u Sx =A(0) u • • ■ u A(h) in X
and complex analytic functions xt: U —> C for each U e {£/}, / e I(U) such that

(1) (-Vi)ie/(rj) are part of an analytic coordinate system for U in X;
(2) for each U e {U}, Z(xt)=A(i) n Ü;
(3) -((s0/sm) + t) = (Tr{xTw : ieI(U)}-t)on Ue{U}.

The m{i) are integers whose values depend only on / and not on the open set U.
m(0)= — I, and m(i) is a positive integer for z'>0 and is called the multiplicity of
^0') at t=0.

Proof. Theory of functions of several complex variables. See [2]. |
Definition 2.3. A finite open covering 'V of S0 u Sa in X will be called a

regular covering if
(1) each Ve "V is a simply connected subset of a coordinate disc in X;
(2) Lemma 2.2 holds for {U} = -T;
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(3) for VerjtHV), VnA(j)=0;
(4) for V, V e V with Kn F'/0, V n V is simply connected.
Next define A(I) = C] {A(i) : iel} for /c{0,..., h) and

B{q) = U {A(I) : |/| = q).

Theorem 2.4. There exists a regular covering 'f of S0u S<X! = B(l) and C°°-
mappings:

y(i, V): (A(I(V)) nV)xV->C for is I(V),
z(V):(A(I(V))n V)x j/-+C(n + 1-|/(V)l)

for each Ve'f such that:
(1) ((y(i, F)(P, ))(SJ(y), z(V)(P, )) /or/ws a complex analytic coordinate

system for V centered at P for each P e (A(I(V)) n V);
{2) on V er,- (s0/Sao + t) = (*{y(i, V){P,   )•»«> : i e J(F)} - t);
(3) for and I(V) = I(V):

(a) (y(i, V)(P0, Q)/y(i, V')(P0, 0) is a constant with absolute value 1 for
each fixed P0eVnV n ^(/(K)), i e I(V),

(b) Z(z(F)(7>0, 0)=Z(z(F')(Po, 0)/or £>flC« P0;
(4) for Vn V'± 0 and I(V)^I(V):

(a) for ieI(V), (y(i, V)(Q0, Q)/y(i, V')(P0, Q)) is a nonzero constant for
z(V)(Qo, 0 = 0 for all P0, Q0 fixed such that Q0eVnV'n A(I(V)), P0 e V
n A(I(V')), and z(V')(P0, Q0) = 0,

Z(z(V)(Q0, 0) = Z(z(V')(P0, 0)
(b)

nf]{Z(y(i, V')(P0, Q)-y(i, V')(P0, Q0)) : i e I(V')-I(V)}
for allPQ, Q0 as in (a);

(5) for allVe^V is the disjoint union ofZ(z(V)(P, 0) over Pe(A(I(V)) n V).

Proof. Starting from B(n + 2) = 0, we shall assume that we have a finite cover
■Tq+1 of 5(a4-l) which satisfies (2.3), (l)-(4), and (2.4), (l)-(5), and shall construct
a cover Y~q with the corresponding properties over B(q). Since B(q)
— {J {V : Vei/q+1} is a disjoint union of subspaces, one for each / with |/| =q, it
will clearly suffice to demonstrate the construction of the cover for A{I) u B(q+ 1)
for some / with |/| =q. Thus let 'f' be a finite open covering of the compact set
A(I) — \J {V : Ke^+j} in X. By refining i/q+1 if necessary we can assume that

(1) /(K) = /for all Kef and |/(K)| >q for all Ve"Tq+u
(2) y u Tq+1 satisfies (2.3), (l)-(4) as a finite open covering of A(I) u B(q+1)

in X. (For (2.3)(4), use a covering of X by open stars with respect to a sufficiently
fine triangulation.)

Let r"={VelTq+1 : /S/(F)}. For VelT', let (x(i, V))iEl be the coordinates
as in Lemma 2.2. Let w(V): K-> C<«+i-« be such that ((.*(;, F))7, w(F))form a set
of coordinates for V in Define x(i, V)(P, Q) = x(i, V)(Q) for all P e A(I) n V.
Define w(V)(P, Q) = w(V)(Q)-w(V)(P).
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96 C. H. CLEMENS, JR. [February

For Kef, define
V)(P, Q) = y(i, F)(P0, Q)

where PeVn A(I) and z(V)(P0, P)=0 and i e I;

w(V)(P, Q) = (z(V)(P0, Q), (y(j, V)(P0, Q)-y(j, F)(P0, P)Ww)

with P, P0 as before.
Next for K e      F' e     u tT" and F n F V 0, define

F, F')(P, 0
= Wi, F')(P, Q)My(J, V')(P0, Qy«»«™ :jeI(V')-I})/x(i, V){P, Q)

for i e / with P e A(I) nVnV',P0e A(I(V')) n F' and z(F')(P0, P) = 0. Further,
for F, f'ef u f", let A(K, F')(P) = the Jacobian matrix

(8w(V)(P, Q)/8w(V')(P, Q))\P.

Now if {pv} is a C™ partition of unity of A(I) subordinate^) to the cover "T' u V"
define:

X/, K)(P, Q) = x(i, V)(P, Q)-rr{u(i, V, V"){P, Q)PAP) ■ V'eir- u r"}
for V e "V and i e 7. Further define

z(V)(P, 0
= >v(F)(P, 0-2W-(WF)(P, ß)-A(F, F')(PMF')(P, 0) : refuf'}.

With appropriate restrictions of various open sets of the coverings, these mappings
give the induction step and hence the theorem. ■

The above theorem leads us to consider what happens locally with respect to
normalized coordinates.

3. The normalized case.  For the present chapter only, let St=Z(yTi.y^ — t)
£C. Let mc be the greatest common divisor of {mu ..., mq). Then StzTtx R for
/ ̂  0 where

Tt = {(yi,...,yQ)eSt : = ••• = \yq\m<},
P = {(yu ■ ■ ■, yQ)E Si '• J. real, positive for all /}.

Lemma 3.1. For t^O, Tt consists of mc disjoint tori, each of real dimension (q — 1).

Proof, (yfi ■ ■ -y^") — t factors into

■*{yV.y>-h :l^k^mc}

where the tk are the distinct wjc-roots of t and n^irn^m^). Tt has at least one com-
ponent corresponding to each factor. But for the case mc = 1, it is easily seen that
Tt is pathwise connected. Hence in general Tt has exactly mc components. An
induction on q then gives that each factor is a {q — l)-torus. |

(*) See definition in [2, Appendix A].
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It is immediate that RxiR*)"-1. Let

Rj = Kru ■ ■   rt)eR : rf< = rp for all i,jeJ, rf< £ rfi for ieJ,j^J},

Rj.e = {(yi, ■ ■ ■> yd '• 3(ru ■ ■ ■, rq) e R}, 0, ̂  0 for all i 6 / such that

'S {mi6l : iej} = 6, yt = (exp      for i eJ,yt = rt for i $ J).

Define Pe = U {Rj.e ■ J^{h ■ ■ -,<?},-7^ 0}. Then Re^St where r=exp 6, and Pe
is a continuous perturbation of R = R0.

Further, for /S{1,..., q}, and a fixed constant K> 1, define

^(y) = n{z(yd :ieJ}^ C",
Y(J) = {(*,...,*, : bi|m- < Jf,»6/},

= {(*, • • • •*) e Y{J) : \y,\*t ^ K,j^J},
A'(J) = ,4(7) n r(7),

and let p.(J):Cl(Y'(J))->A'(J) be the natural projection produced by setting
v,=0 for iej.

Define
9:R^Q = {(Pl,...,Pq)eR« : 2 ft = 1}

by pj = (log A^-w, log log K. ar = Rn Y({l,...,q}) corresponds under <p to
ap = {p e g : Pi = 0 f°r all i). For /S{1,..., q}, define ^(7) to be the subsimplex
spanned by the collection of vertices of <jb which have 1 in they'th position for some
j e J. Let 7= the closed unit interval.

Lemma 3.2. There is a C™ retraction <ji: Qx I-> Q of Q onto ap such that
(1) </i( , 0) = identity on Q,
(2) , a) = identity on a neighborhood of {\jq,..., \/q) for all a e 7,
(3) 0( , a)(cp(J)) = ap(J)for all J£{1,..., q), a e 7,
(4) 0( ,1): <p(F'(7) n 0 antf" ma/j is independent of the variables rt

forj^J.

Proof. Use induction on q. (This retraction is similar to the one used by Pham
[5, p. 338].) ■

Define p: R <jp to be the composition 4>( , 1) ° <p- Then we can define P(ö): 5i
->■ Seme by

T^Xj) = (exp O>10/m1)>'1,..., exp (pq0/mq)yq)

where (/>!,..., p,) = p(|yx\,..., |>"9|). F(0) is induced by a C^-normal bundle
construction as in §1 and its action is fibred over A'(J) by the fibrations /u(J)
defined above. Further F(6)(R) is homotopic to Re in iSexP8 in such a way that

(1) the homotopy respects the fibration /x(7) of SexpB n F'(7);
(2) under the homotopy, F(6)(o-r) corresponds to

ae = RenC\(Y({l,...,q})).
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98 C. H. CLEMENS, JR. [February

If we orient <jt = o0 by the natural order of local coordinates ru .. .,rq_1, then F(6)
induces an orientation on each

°j.o = Rj,e^C\(Y({\,...,q})) of «ts.

For /= {1,..., q}, this orientation is equal to (— 1)" ~1 times the orientation induced
by the natural order of the local coordinates 6U ..., 6q _ x. This follows from Lemma
3.2(2) and the fact that under F(6) we have (89^) <0 at (\/q,\/q).

Let m be any common multiple of {m^ ..., mq). For J={\,..., q}, we consider
oq as a (q— l)-homology chain with orientation and coefficients of its simplicial
decomposition given by considering ag as the image under F(6) of the oriented
simplex <?0. Then oj^k-u is parametrized by

(8U ...,       : 0« = 0 for all i, 2 {mA : 1 = i Si ?-1} = mk and wio- 0io ä w}

for any fixed 1 5''05<7- 1. Using this fact and direct calculation one obtains that the
chain

V«-l — ^m^-l)-y    j    j(Tm(5-2)+^    2   Jam(Q-3)~ ' ' " I ^        jj^mO

is a (a — l)-chain parametrized by 05»1,0,5 m, 15/5o— 1.
Let 7 be the (o— l)-torus in Fj which has nonempty intersection with R. Tis a

topological group with a component 7" of {(jj,..., ^,) e T : yq-\ = 1} as a maximal
connected subgroup, and

{(ji,.. .,^) eF : j1= • ■ ■ =yq-2 = 1 and >>,_,. = exp 9q_1,
0 5        ^ (g.c.d. {Bit,..., mq_2, mg}/mc)}

a transverse set for 777". Thus by our remarks on orientation above and induction
on q we have

Formulae 3.3. 7}miQ_1 = (—l)q~1(mq~1mc/n{mt: 15/5ö})-7 and if is ori-
ented by its complex structure, then as an intersection number formula:

°o<vr«,«-i) = (-ir'-i),2(m<-
Finally, define

W) = {fo,..., yq) e St : \yt\m< = \y}\m> for ijej}.

From the considerations of Lemma 3.1 it is clear that there exists an m(/)-sheeted
complex analytic covering space Ct(J) of A'(J), where m(J) = g.c.d. {w; : / e7}, and
the following commutative diagram of fibrations:

StnC\(Y'(J)) S C1(F'(7))

(3.4) Tt(J)
77(7)^ A(7)

QCO-> A'(J)
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where v has fibre a (<?'— l)-real torus and t has fibre a (q' — l)-simplex, a' = |.7|.
Then for |y| =fl-1, r= 1, and j0$J, \(J)'1(P e A'(J) : \y10\mUo) = K) has mc
components and for C=any one of these components:

(3.5) tt(J)~ 1(C) X (one of the (q— l)-tori of Tx), with this isomorphism given by
the projection t(7): Sx n Cl (7'({1, ■ ••,<?})) -> 7\ where |/| =q.

4. Vanishing bundles and the action of F(9). We now return to the general
problem considered in §1 and §2.

Theorem 4.1. There are tubular neighborhoods Y(i) of A{i) in X for O^i^h
such that for Y(I) = (~) {Y(i) : ie 1} there is a C™-normal bundle fibration

p(I):Cl(Y(I))-+A(I).

Further the following conditions are satisfied:
(1) For W(q) = {J{Y(I) : \I\=q} and 7'(/) = Y(I)-W(\I\ + 1), A\I) = A{1)

- W(\I\ +1), one has that n{I)-1(A'(I)) = C\ (Y'(I)).
(2) For each P e A'(I), there isaVe'T with I(V) = I and /*(/) - \P) £ V, where 'f

is the regular covering of Theorem 2.4.
(3) For /£/, /x(7) o tx(J) = ri(I) on Cl (7(7)).
(4) For each /£{0,...,«} with |7| =q, there is a constant K(I)>0 such that, for

PeA'(I)andV^ix- 1(P), the mapping p'^^C given by {y(i, V)(P, Q))te, is an
isomorphism of ri~1(P) onto the closedpolycylinder with radii KllmU) in C.

(5) fiiiy^P) n A\J) is a (|7| -\J\)-real torus for P e A'(I), JZl.
(6) (W(q) — C\ (lV(q+l))) is a disjoint union of open sets, one for each I with

Proof. To construct w(7) use Theorem 2.4, parts 3(b), 4(b), and (5). Then all the
properties of the theorem follow from Theorem 2.4 and the behavior of normalized
coordinates as seen in §3. H

Next let us construct F(6): Sx —> Sexpe which is induced by a normal bundle
construction as in §1 and which behaves like the F(9) constructed in §3 on each
Kiy^P) for P e A'(I). Let St: X^ [0, 1] be a C"-function such that:

(1) Sf= 1 in a neighborhood of A(i);
(2) St = 0 on X- Y(i);
(3) for PeA'(I), is I, and Q, Q e p" X(P) £ V with

\y(i, V)(P, ß)| =       V){P, 0)|

we have Sl(Q) = 8i(Q'). For t sufficiently small, we have for each Qe St that
S;(0 = 1 for some i e {1,..., h}. We can assume that we have this condition for
|/|<2. Define, for QeSu

Pi(Q) = 0(0/2^(0) = 1 =7 = «})-«o(0
for lg/gAand po(0 = So(0-
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Define F(6, P): n(I)-\P) nS^ n(I)-\P) n Sexv e for P e ^'(/) by:

F(e,P)((y(i, V)(P, 0)ie/) = ((exp (ft(00/m(/)) v(/, F)(P, 0)ie/)
where Theorem 2.4, parts (3) and (4), shows that this definition is
independent of the choice of V and that the F(6, P) piece together to give a C'-
mapping:

(4.2) F(6):S1^Sexpe.

This mapping is easily seen to be induced by a normal bundle construction as
described in §1. Hence we can assume that, whenever {St} acquires an ordinary
singularity at t=0, then F(6) is as constructed in (4.2).

We now proceed to introduce the other constructions used in §3 to the general
case with the help of normalized coordinates and the fibrations /x(7).

On fi(/)~1(/>) with P e A'(I), we will let (ydi^ be any of the coordinate systems
(y(i, V)(P, ))tsl for V^p-\P) and I(V) = I. By Theorem 2.4, the choice of V
will not matter in what follows.

For 0$ I, define

UP) = {QeStp Y\I) : = \y^ for ijel}.
Then for t sufficiently small, hence we assume for 0< \t \ <2, Tt{I) n p(I)~1(P) is,
by Lemma 3.1, m(I) real tori each of real dimension (|/| -1), for P e A'(I). (m(I)
= greatest common divisor of {m(i) : i e /}.) Then there exists a complex manifold
C((7), which is an w(/)-sheeted covering space of A'(I) and such that Tt{I) is a
(q — l)-torus bundle over Ct{I), where q= \ I\.

Further we can define a'fibration r{I): (St n Cl (F'(/)))    Tt(I) by

r{I)-\Q) = {Q'e(Stn^(I)-\P)) : Argjtfß') = Arg^(ß) for all iel}
where P=/j.(I)(Q). Then we have a commutative diagram of projections for
0<|r|<2:

StnCl(F'(/)) S C1(F'(/))
r(I)

(4.3) Tt(I) pi!)

I       A(/) *
Q(I)-A\I),

which is a replica of (3.4) on each p{I)~\P), P e A'(I).
By (3.5) and Theorem 4.1(5), tt(/): T^I) -> Ci(/) can be factored into a series of

circle bundles. Hence the composition of the Gysin maps associated to each of the
circle bundles gives maps:

H*{Cm-> H^-MD)-> H^-dSd,

HtidW, Km -+ //* + (,-i,(7,1(/), Cl (W(q+\))) -> H^-riS» Cl       + 1))),
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where, intuitively, the horizontal maps take a cycle of CX{I) into the fibre above it
in TX{I). Since it will cause no confusion, we will denote both of the horizontal
composition maps by i/>(7).

By §3, t(7) has fibre a (q — l)-simplex so that we can apply the Thom-Gysin
isomorphism and construct:

H^Si) -> Hm(Slt K(I)) x H*-(q.MI), Cl {W{q+ 1)))
where K{I) = C\ {S1- Y'(I)). Call this composition x(/).

Now let w = a common multiple of {m(l),..., m(h)}. Define r7m = /7(m)*— (iden-
tity) : H^S,) -> H^iSA where F(0)* is as in §1 and hence can be assumed to be
defined by F(6) in (4.2). Since there is little danger of confusion, we shall use -qm
also to refer to the analogous

F(m)* - (identity): H^SJ    H^S,, Cl (W(q+1))).

We are now ready to state and prove a generalized Poincare formula.
Let TP(I) denote a basis for HpiC^I), 3Ci(7)), and let rp.(I) denote its dual basis

in Hp'iC^I)) wherep+p' = 2(n—q+1). Assume CX(I) to be oriented from the com-
plex structure of A'(I). For ye TP(I) we shall denote its dual by y . Finally let
/,-{/£{!,...,«} : |7|=a}.

Theorem 4.4. The mapping (vm)"'1: /7P + ,_1(51) -> /fp+,_1(S1, Cl (fV(q+1))) is
gwen by

(r?m)9"1(«) = (-1)'«'-1 2 (WOMOXä'^m) = y e rp(7), /e/J
wAere r = (q(q-1)/2) +p(q- 1).

Proof. For 0e/, let r1(/) = C1(/) = ^'(^) and define r(/) = M(/) |SinCi<ru»
?t(/) = A(7) = identity map. We will need a series of lemmas.

Lemma 4.5. For0eI,Pe A(I), /x(7)" J(P) n is a« analytic polydisc of complex
dimension \I\ — 1.

Proof of lemma. By Definition 2.1, A{I) is a nonsingular subvariety of Sx.
Further it(7): 7(7) ,4(7) is a normal bundle in X. Hence each rx{I)~1{P) must
intersect    normally. |

Lemma 4.6. TAere exists a finite cellular decomposition of 5(1) = £0 u such
that:

(1) 77?e decomposition respects the chain of subspaces 5(1)^5(2)=? • • -5(71-1-2)
= 0 as well as each of the subspaces A'(I), 7e{0,...,«};
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(2) for a p-cell a of A'{I), there is a V e'f (see Theorem 2.4) with y.(I)~1(a)c V
andI=I(V); and for e = {Q e (A(J) n Cl (F'(7)) : y,(Q) real ^0} and

e' = \Q e (A(J) n Cl (Y'(I)) : b,(0| = W""'}
and 8 = e n e with J u {j} = /, we have e, e £ (p + \)-skeleton of A(J), 8 sp-skeleton

ofAXJ);
(3) (7/f? decomposition lifts through X to a cellular decomposition of each C(7).

Proof of lemma. (1) and (3) are immediate from the elementary theory of C-W
complexes. For (2) use Theorem 4.1(5). ■

Define

Yk = U M/)-W)~^-skeleton of d(7))) : 7 £ {0,.. .,h},p+\I\ = k}.

Lemma 4.7. The natural mapping Hk^1(Yk) -> Hk_1(Si) is onto.

Proof of lemma. Let TC^Si- W(g)) u Fk and assume _ ̂ A",+x) -> Hk.1(S1)
is onto. We have an exact sequence:

Hk-l(Kg)      Hk-l(Kg+l) ~> #k-l(^s+l> Kg)-

However by Lemma 4.6(2), and using the Thom-Gysin isomorphism for t(7)
(see (4.3) and Lemma 4.5), we have for p = k—g and F1(/)p=t7(/)_1(/'-skeleton of
CM))-

ft-ift+i. K„) « 2 W, TX(I), : / £ {0,..., h}, \I\ = g}.
Using that t(7) can be factored into circle bundles, each with an ordinary Gysin
sequence, it is easily concluded that:

W » 77,(^(7),/.-skeleton) = 0.

Hence Hk.1(Kg) is onto by the composition of two surjective maps. |

Lemma 4.8. The natural mapping Hk_1(Yk) -> 77fc_1(Ffc, Fk_i) i'j injective.

Proof of lemma. It suffices to show that 77fc_1(Ffc_1) = 0. Define

L9 = U {r(7)-1W7)-1(/'-skeleton of Cx(7))) : />+|7| = fc-1 and |7| £ g}.

Suppose 77fc_!(£9+1) = 0. Z,9 has as a strong deformation retract the space

4+i UU {Ti(!)t : |7| =g}
for p = k— 1— g. However each 7\(7) has dimension at most p + (\I\ — \) = k — 2.
Hence Hk-1(Lg,LgJrl) = 0 and therefore 77k_1(L9)=0. |

F(m) as constructed in (4.2) respects all the subspaces constructed above.
Hence by Lemmas 4.7 and 4.8, it suffices to characterize

Vm = F(m)* - (identity) :#fc-i(n, I*-*) -> fffc-i(r*, Ffc_x).

Let a be a />cell of d(7) for p+\I\=k. Let M=t(7)-1(7t(7)-1(ct)). Then
the boundary of M, which we shall denote by AT, is equal to the union of
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/V=t(/)-1(t(/)-1(0) and G=M-W(\I\). Finally let G = GnYk.1. Then
Hk-i{Yk, Yk-X) is the direct sum of groups of the form:

(4.9) H^^GuN);

hence it suffices to consider ijm: //^(Af, Gu N)^ Hk-i(M, G u N), since each
subspace of this type is preserved by F{m) as constructed in (4.2). Further we have
the exact sequence:

(4.10) HkS, G)    Hk _ X{M, GUN)^ Hk _ X(M, G u TV).

Using Lemma 4.6(2), the generator for Hk_1{M, G u N) can be represented by the
cell

(4.11) w = {QgM : j>,(0 = rtyt for all i e 7 for some (r,) e 5}

where 7? is as in §3 and pi=yi(Q) for any fixed Q e ?t(7) ~ ̂ o-). For the proper choice
of Q, oj s G u N by the construction of the cellular decomposition in Lemma 4.6(2).

(4.12) Since 77fc_i(G, G) is itself a direct sum of groups of the form (4.9), but over
/>cells a' of Ci(7') withp'+ |/| =/c and [/'[ < |/| we can inductively assume that any
element of Hk_1(G, G) has a representative co' which is a sum of cells of type (4.11)
with real coefficients over //-cells a' with p' >p.

By (4.10), for any cycle a of Hk_1{M, G u N), there is a representative chain of
the form a(o)oj + w' with w and w' as in (4.11) and (4.12) and a{p) e Ä. Now by
(4.2) and the first of Formulae 3.3, (F(m) — (identity))"_2(o/) is homologous to a
sum of chains of the form tt(/')- ^ct') where a' is as in (4.12) and q= But F(m)
as constructed in (4.2) is homotopic in each fibre to the identity on each tt(/') " 1(<r').
Hence (F(m)- (identity))5 _1(to') is homologous to 0 in TY^.^M, G U TV). Further
by the same formula we have that up to sign:

(4.13) (F(m)-(identity))9~\oj)~(m'>-1m(I)/ttIm(i))Ta if 7e/„ where

7; = {Q g M : b,(ß)r> = bXC)!*05 for all /,/€7},
and (F(m)- (identity))5 -1(co)~0 otherwise. (~ indicates homologous to in
77k_3(M,Gu/V).)

Now let ä g 77P+Q_1(5'1). Then ä has a representative cycle a in Yp+q which is
made up of cells of the form a{o)oj with oj as in (4.11). Further, for 7e fv

2 M<7> : a />cell of d(7)}

is, with appropriate orientation, the cycle of 77P(C1(7), Cl (fF(ö+1))) given by
^7Kx(^)(°D). (xCO was defined earlier in §4.) The theorem then follows from (4.13)
and the fact that orientation for the mapping y(7) can be chosen so that:

((fi(0(W)))inS,i) = (-^-'KiHiMmm-y')
in c\(7)). The calculation of the sign in the theorem is then essentially given by the
second formula of Formulae 3.3. This completes the proof of Theorem 4.4. |
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Note 4.14. Let H0(I) be the bundle associated to A ° n: T^I) A'(I) with fibre
tfoCCV)-1^)) for P e A'(I), (see [7, p. 151]). Then

HJiCm) ~ HP(A'(I); H0(I)),
H^CxilX dem) «   W),      ; #„(/)). ■

Corollary 4.15. Lev a    an element of H^-MSi-Wiq+l)). Then

UTK*) = (- W12 (Wfl/'MOX^W): y' £ r;(j), ie fq)
in Hk_1(Si) where r = (q(q-\)ß)+pq.

Proof. Choose a representative cycle for a in (Yk — W(q+l)) and proceed as in
Theorem 4.4. Note that (y' • y) = (- l)p. ■

In the case q= 1, Theorem 4.4 is true if we define to be the standard homology
map

HASd-+Hm(S1, C1(W(2))).
However this provides no new information. For the sake of completeness, we shall
add here the more appropriate result for the case q=l. For Ie fx and

M(I) = {exp (k/m(I)) : k e Z}

with generator £(7) = exp (l/m(7)), we have that M(I) acts on S± n Cl (Y'(I)) as in
(4.2). For y £ H^Ctf), dC^I)), 0(7)(y) = y. Let

As in [5], the group-ring Z(M(I)) acts on H^C^I), dC^I)). Define
Je = exp (k/m(I)).

Theorem 4.16. For a e H^SJ and 6^1, then, in H^S^ Cl (W{2))),

Vb(a) = ^ {(«-y')£-V%) : 0 g * 5 6-1, y e rp(7), Ie

In particular, if b is a multiple of m(i) for all 15 i= h, then r)b(a) = 0 in
H^S,, Cl (W(2))).

Proof. Immediate from the fact that -qb = F(b)% - (identity) and from the con-
struction of F(d) in (4.2). Note that, for

. f = 2 & ' 1 = k =        e z( W)),
we have f • </<y) = 0 for all y £ r„(/). ■

Corollary 4.17 Let a be an element of       -Cl (W{2))). Then

= (-Dp2{(a-y)^-A(y') :01tki-l,/er;(7),7e/,}
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5. Applications. The proof of Theorem 4.4 actually shows the action of
F(/)*: H^SA -> H^SJ for any /SO. For if a e Hk_.(S,), then there is a
ß e //fc_i(Fk, Ffc_j) which has a common preimage with a in 7Yfc_ j( Ffc). Further, jS
has as representative a sum of cells of the form aa ■ to with aae R and w as in (4.11).
Then F(/)*(/S) is represented in Hk„1(Yk, Yk_1) by the sum of cells aa-wl where

°>i = {Q e M : yi{Q) = r,yt for all i e I for some (r,) e R,}

with M as in (4.9) and F, as in §3. By Lemma 4.8, such an element of Hk _ j( yfc, Yk _ 0
comes from a unique element of yYfc_1(Fk.) which in turn determines F(l)%(a)
e Hk_1(S1). However, in general this is an unwieldy process.

In this final section we will give a formula which helps characterize F(m)*: H^S,)
-> H^Si) without necessitating the explicit construction outlined above, (m here,
as before, is a common multiple of m{i) for l^/^A.) With this formula and
Theorem 4.4 we will completely construct

Vm = Fim)*-(identity): H^SJ H^SJ

for the case n — 2. (The case n = 0 is trivial and for n= 1, which corresponds to the
classical Picard-Lefschetz formula, t]m is completely given by Theorem 4.4.)

Formula 5.1. Let a be an element of H„.+q_1(S1-W(q+2)). Then for all
ßeH^-ASJ with/>+/>'= 2(«-fl):

(v«m-l(a).ß) + (-\)<>(a.rj«m-\ß))

= (- \y{q-\)nf 2 {WflMOX«-««')-« : v e rp(/), 7e Sv+1)

where r = ((? + l)o/2)-r-/?(fl +1).
Proof. By Corollary 4.15, the right-hand side of the formula is simply

(q—l)rj^(a) ß. However rjqm(a) is invariant under F(m)* and F(m) is an orientation-
conserving automorphism. Hence r)^(a) ß = T)^(a)-F(m)l(ß) f°r a'l k e Z. Thus the
right-hand side of the formula is equal to

2ma)-F(m)Uß)
which in turn is equal to:

2 {(- ^'"(j) WMF(mW) :0£jgq,l£k£q-l\-

This last summation reduces to -r)9m~ 1(a)-ß + (-l)"(a-7i^~1(ß)) by repeated use of
the equality:

F(m)i(a) ■ F(m)l(ß) = F(m)>+<(«) • F(m)%+ \ß)  for all / e Z ■

Now let us examine -qm: H^Sy) H^S^ for n = 2. For j=0 and 4, rjm = 0
trivially. For j= 1, rim is given by Corollary 4.15. For j=3, r/m is given by Theorem
4.4 since the natural map /^(Si) -+ H^S^ Cl (IF(3))) is an injection. We shall now
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characterize ?im: H^S^ -> H^SJ. Note that W(4) = 0 and so for any a, ß e T/^OSY)
we have that:

vJa)-ß + a-vJß) = (- l)m2 2 {(m(I)/nimm*-KvW->Kv)) ■ Y n r0(7), Ie f3}

by Formula 5.1. Define the right-hand side of this expression to be equal to <J>(a, ß).
This formula has as corollaries that:

(5.2) For all «, ß e Ha(S0: ■ Vm(ß) =-*(«, ß) since a • ̂ (/3) = *(«, j8) by
Theorem 4.4;

(5.3) r?2(a) = 0 for a e H^SJ if and only if r)J<x) ■ in Ja) = 0 (since i?m(a) • i?m(a) = 0
implies («-^(y)) = 0 for y e r0(7), 7e /3).

Let
E={J{A{I):IeM

(E is called the set of triple points of the hypersurface S0.) Let 7i=A~1(£') and
for each 7>eC(7), 7e/3, let T(P) = 7t(I)-\P), W{P) = t(1)-\tt(1)-\P)). Let
QP be fixed in T(P) and let wP be as in (4.11). Let

Then by the Thom-Gysin isomorphism and Lemma 4.5, 772(50 -*■ ̂(Si) is onto.
Let

D(J) = tt(J)(\J {T^J) nojP:PeB})
and let

K={J{t{J)-\it{J)-\Q) : QeD(J)}.
Then, as in §4, we define for/e f2:

4>(J): HiiOiJ), D(J)) ~> H^S, - W(3), K)

with orientations chosen as in the final paragraph of the proof of Theorem 4.4.
(x(J) corresponds to n{J) ° x(J) of §4.)

For each P e B, let tp be a generator of H2{W{P)) = H2{T(P)). Let {t1; ..., tJ
be a maximal linearly independent set in {rP : P e B} and let {«j,..., as} be a dual
set under the intersection pairing in 7/2(5,i).

Lemma 5.4. Tftere are unique elements ?)j e //äf^) /or 15/5j jwc/j ///a/ fAere
exw? elements £P e H2(W(P), K) for P e B such that:

(1) if cpi= -mZ{(m(J)/tt}m(j))>p(J) <> x(J)(«i) ■ J ^ A) where a't is some pre-
image of <xt in H2(S[),       the image of i)f in H2(S1, K) is given by

(2) for l^i,j£s, i7,a,+a,ij, = <&(«(, a;).

Proof. There is a representative of af' of the form

e + 2 {(ai' TP)aPwP : P e B}
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where £ is a cycle of (S± — W{3)) relative to K and the aP are constants in R. Then
F(m) fixes (S^- W(3)), K, and W{P) for each P by (4.2), and so:

(1) Vm- H2(S1-W(3), K) -> H2(S1-W(3), K) takes {e} into 9i by the proof of
Theorem 4.4;

(2) T7m: H2{W(P), K)H2(W(P), K) takes {aPwP} into an element of
H2(W(P), K) which we will call £P.

Then putting rjn(at), the existence of a collection {tiJ satisfying the lemma is
proved. For uniqueness, suppose i)u yl for l^i^s satisfy the conditions of the
lemma. Let £P, £'P be the corresponding elements of H2(W(P), K) for all PeB.
Then

*-*'-2{(«-*>X6-fö):*e*}
in H^SltK). However H2(K)=0 and a*(f»-&)=0 in /^(AT) and so (&>-&)
comes from an element /j^Tp in H^SA. To get the uniqueness of the ti4 it suffices
to show that for l^i^s:

(*) 2{0vtp)&pTp : PeB"i = °-
But by condition (2) of the lemma:

(ijt - rfy -«j+at        >?}) = 0.
Hence for all 1 ̂ y'^s, we have that:

2 2{M«i-Tp)(a,-TP) : PeB} = 0.

Since the a, form a dual basis to the subspace of H^S,) generated by {tp : P e B},
this suffices to prove (*). |

Corollary 5.5.   = ^(ce,) e /^(S^) /or a//1 ^ /^ 5. |

Now T^J), the basis for H^C^J), dC^J)) for 7 e ,/2, can be so chosen that:

r^j) = a,(y) u Qx<7),    rico=ajc/) u oj(/)
where A^/) generates the image of H^C^J)) in H^C^J), dC^J)) and £21(7)
generates the image of the mapping H^dC^J)) -> 7/1(C1(7)) and y e Ai(7) implies
that y' e Ai(7). For any a e /^(Si),

«" = «-^{(a-TiK :l^'5s}

comes from an element (which we shall also call a") of H2(S± ~ W(3)). By Corollary
4.15,

= (-l)m2 = r' e ri(7), 7 e f2}

in TVa^i). Now rj(7)=Ai(7) U Q[(J) and for y e Qi(7), </-(y') is contained in the
subspace of H^Sx) generated by {tp : P e B} by (3.5). Hence

VmW') = (-l)mZ{(m(J)kMjW'-mMy') lyeAxiJlJeA}
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However by Formula 5.1 and Corollary 5.5, (a" ■T]i) + (r)m(a.")-ai) = 0(a", at) = 0 for
all 1<. i£s. Thus intersecting this last formula for T)m(a") with at we have that:

blaT) -m^Wfil*MM*-mX*-W)) :yeA1(J),Jef2}-(a"-Vt).
Define

for y e A^J), 7 e f2. Then a • </i(y) = a" • </r(y). Define

Theorem 5.6 For a e H2(Sx), then

- m J ' #y) W) = y e A^J), / e f2}

- 2««-flDn = 1 = ' = *}
in H2(S]), where m is a common multiple of m(j) for all 1 = j^h.

Proof. The formula is an immediate consequence of the formulae and definitions
just preceding. |

I would like to thank Professor Phillip A. Griffiths of the University of Cali-
fornia at Berkeley for suggesting the problem which led to this paper and for many
valuable conversations.
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