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Consider the punctured unit Euclidean m-ball B:0<|x|<1(x=(x1,

…
,xm),m≧2) and a harmonic function u(x) on B, i.e.Δu=0(Δ=

δij∂2/∂xi∂xj) on B. The additional requirement that u(x) has an upper

or lower bound implies that u(x)=cS(x)+h(x) where c is a constant,

h(x) a harmonic function on|x|<1, and S(x) the fundamental sin-

gularity |x|2-m(m≧3) or -log|x|(m=2). This classical result, the so

called principle of positive singulanity, originally obtained by Picard

for m=2, is reformulated by Bouligand under the name Picard principle

as follows: The dimension of the half module of nonnegative harmonic

functions on B with vanishing boundary values zero on |x|=1 is one.

As a result the Riemann theorem an removable singularities follows,

the weak form of which states that the boundedness of u(x) on B yields

the existence of limx→0u(x). Conversely the Picard principle can be derived

from the Riemann theorem as the original proof of Picard on Picard

principle suggests, and therefore the Picard principle and the Riemann

theorem are equivalent in essence. The primary purpose of this paper

is to discuss this duality relation between the Picard principle and the

Riemann theorem if the base region B and the operator Δ are generalized

to C∞-manifolds Ω and second order elliptic differential operators L.

 Consider an m-dimensional separable connected orientable C∞-manifold

M(m≧2). A regular subregion N of M is a relatively compact subregion

whose relative boundary ∂N consists of a finite number of disjoint (m-1)-

dimensional closed simple hypersurface of class C3. If in addition M-N

has no compact component, then N will be referred to as a normal

subregion. We always assume that M has a single ideal boundary

component δ, i.e. the directed net N(M)={N} of normal subregions N

of M is nonvoid and M-N is connected for every N in N(M). In

this case Ω=M-N(N∈N(M)) is called an end of M. Then the directed

net ω(M)={Ω} of ends of M forms a base of punctured neighborhood

ofδ. Clearly B can be viewed as an end of a suitable admitted manifold.

Consider an elliptic differential operator L on an end Ω defined by

(1)
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for n∈C2(Ω) Where (aij(x)) and (bi(x)) are contravariant tensors of class

C2 on Ω, c(x) is a function of class C1 onΩ, (aij(x)) is symmetric and

strictly positive definite for each x∈ Ω, and a(x)=det(aij(x))-1 . After

Bouligand we say that the Picard principle is valid for L if the dimension

of the half module of nonnegatiVe solutions of (1) on Ω with vanishing

boundary values on ∂Ω is one. We also say that the Riemann theorem

is valid for L if limx→ δ u(x) exists for every bounded solution of (1) on

Ω with continuous boundary values on ∂Ω.

In the case when L is defined on Ω=Ω ∪ ∂Ω and Ω tolerates the

Green's function GΩ(・,y) with pole at any point y in Ω with respect to

L, we associate an elliptic differential operator L with L defined by

(2)

for u∈C2(Ω). Here the function eΩ(x) is given by

(3)

where ∂/∂n denotes the inner normal derivative and dS the surface element

with respect to the Riemannian metric defined by the tensor (aij(x))=

(aij(x))-1. The primary purpose of this paper is to prove the following

duality relation:

THEoREM. The Picard Principle is valia for an operator L if and

only if the Riemann theorem is valid for the associated openrator L.

This was originally obtained by Heins [3] for the case when Ω is an

end of a parabolic Riemann surface M and L=Δ. Hayashi [2] removed

the parabolicity assumption on the Heills result and generalized Δ to

Δ-P(P≧0).If Ω=B and L=Δ, then L=Δ and the above theorem

assures the equivalence of the classical Picard principle and the classical

Riemann theorem. In this connection we add here the following remark

on the Picard principle. Consider an operator Lλ on the punctured unit

disk 0<|z|<1 on the complex plane defined by

where we take z=0 to be δ. Then the Picard principle is valid for Lλ

if and only if λ ∈[-∞,2] (Nakai[6]). In view of this one might get

the feeling that in order the Picard principle to hold for an operator

Lu=Δu+b・ ▽u+cu on 0<|z|<1 at z=0 the singularities of b and
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c at z=0 must be 'naive'. However this is not the case. For example 

consider the operator

where P(z) is an arbitrary nonnegative C1-funlction on 0<|z|≦1 and

ep(z) is the unique-bounded solution of Δu(z)=P(z)u(z) on O<|z|<1

with the boundary values 1 on |z|=1. We shall see as an application

of the above that the Picard principle is valid for Lp for any P≧0

which may behave as wildly as we wish at z=0.

1. Elliptic dimensions.

1. With respect to the Riemannian metric ds2=aij(x)dxidxj on an

end Ω the Laplace-Beltrami operator Δ takes the form

for u∈C2(Ω). Let b(x)=(b1(x),…,bm(x)) and b(x)=(b1(x1),…,bm(x)) be

covariant tensars on Ω. The inner product b・b with respect to the

metric ds is given by

Using the contravariant tensor (bi(x)) in (1) we form the covariant tensor

we denote by ▽u(x) be covariant tensor (∂u(x)/∂x1,…,∂u(x)/∂xm). With

the aid of these notations (1) can be represented as

(4)

The adjoint operator L* of L then takes the form

(5)

where the function c* is given by

(6)

In case L is defined on Ω, which we shall assume throughout this paper

unless the contrary is stated, and Ω torelates the Green's functionl for

L, the function eΩ(x) in (3) is a positive solution of L*u=0 on Ω with

boundary values 1 on ∂Ω, and the associated operator L to L is repre-

sented as

(7)
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 2. We denote by G(Ω; L) the half module of nonnegative solutions

of (4) with vanishing boundary values zero on ∂Ω. We also denote by

S(Ω;L) the linear space generated by G(Ω;L), i.e.S(Ω;L)=G(Ω;L)-

G(Ω;L)={u1一u2;ui∈G(Ω;L)(i=1,2)}. Then S(Ω;L) is a metrizable

locally convex linear space with the topology induced by convergence on

every compact subset of Ω. Let

(8)

for u∈S(Ω;L) which defines a continuous linear functional on S(Ω;L),

i.e.σ ∈S(Ω;L)*. Consider the set

which is convex and also compact in S(Ω;L)by the Harnack principle .

Observe that y1(Ω;L) is contained in the closed hyperplane {u∈S(Ω;L);

σ(u)=1} which misses the origin. Since σ(u)=0 for u∈y(Ω;L) implies

that

on ∂Ω,σ(u)=0 is equivalent to u=0 on Ω(cf. e.g. Miranda [5]). There-

fore y1(Ω;L) is the base of the cone y(Ω;L) ,i.e. for any v∈y(Ω;L)

there exist a unique u∈y1(Ω;L) and a unique nonnegative number λ

with v=λu. The cone y(Ω;L) induces an order u≧v on S(Ω;L) by

u-v∈y(Ω;L), which is the usual pointwise function ordering u(x)≧

v(x) on Ω. We maintain that y1(Ω;L) is a simplex, i.e. S(Ω;L) is a

vector lattice, which is equivalent to that y(Ω;L) is a lattice. This is

clear if y(Ω;L)={0} and we suppose that y(Ω;L) contains an h>0.

Let u and v be in y(Ω;L). For each N∈N(M) with N⊃M-Ω,

there exists a unique solution wN of (4) on N∩ Ω with boundary values

zero on ∂Ω and max(u(x), v(x)) on ∂N. The unique existence of wN follows

from the existence of h.ｮbserve that

on N∩ Ω. Therefore wN≦wN' if N⊂N' and w=limN→M wN exists on

Ω which belongs to y(Ω;L). If an s∈y(Ω;L) dominates both u and

v, then wN≦s on N∩ Ω and a fortiori w≦s on Ω. This means that w

is the least upper bound of u and v. Similarly we can see the existence

of the greatest lower bound of u and v and thus y(Ω;L) is a lattice.

3. We denote by Ex. y1(Ω;L) the set of extreme points of y1(Ω;L).

Since y1(Ω;L) is a compact convex subset of S(Ω;L) and is also a
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simplex, the Choquet theorem (cf. e.g. Phelps [8]) assures that there

exists a bijective correspondence u⇔ ν between G(Ω;L) and the set of

regular Borel measures on Ex. G1(Ω;L) such that

(9)

We define the elliptic dimension of (Ω;L), dim(Ω;L) in notation, by

the dimension of the half module J(Ω;L). In view of (9) we thus define

(10)

where # denotes the cardinal number. We say that the Picard principle

is valid for (Ω;L) if dim (Ω;L)=1.

2. Principal functions.

4. In nos. 4-5 we assume that the operator L in (4) is defined only

on an end Ω0 of M, not necessarily on Ω0, and that there exists a strictly

positive solution h of (4) on Ω0 with vanishing boundary values on ∂Ω0.

Observe that v is a solution of (4) on an open subset of Ωo if and only

if u=v/h is a solution of

(11)

Since the Dirichlet problem for (11) is uniquely solvable for any normal

subregion of Ω0, the same is true for the operator (4). Let N∈N(M)

with N⊃M-Ω0. Even if L is deftned on Ω0, Lh need not be defined on

Ω0.Therefore the solvability of the Dirichlet problem for L on N∩ Ω0

may not be assured.

Let Ω be an end of M with Ω ⊂ Ω0. Take N∈N(M) so large that

N⊃M-Ω. Consider a solution Bπ φof (11) on N∩ Ω with boundary

values zero on ∂N and φ ∈C(∂ Ω) on ∂Ω. Set k=max∂ Ω|φ|. Observe that

| BNφ|≦k on N∩ Ω. If φ ≧0, then Bπ φ ≦BN'φ(N⊂N'). Therefore

(12)

exists on Ω. The same is true for general φ by considering φ=φ+-φ-

with φ ±=max(±φ,0). Then B=B(Ω;∂ Ω) definles a positive linear

operator from C(∂ Ω) into C(Ω) such that Bφ is a solution of (11) on Ω and

(13)

Set DNφ=hBN(φ/h) which is a solution of (4) on N∩ Ω with boundary

values zero on ∂N and φ on ∂Ω. As a counter part of (12) we have

(14)
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on Ω. Then D=D(Ω;∂ Ω) defines a positive linear operator from C(∂ Ω)

into C(Ω) such that Dφ is a solution of(4) on Ω and, as a counterpart

of (13),

(15)

Next take an N0∈N(M) such that N0⊃(M-Ω0)U(∂ Ω). Let N∈

N(M) with M-Ω0⊂N⊂N⊂N0 and BNφ be the solution of (11) on

N0-N with boundary values φ ∈C(∂N0) an ∂N0 and zero on ∂N. Similarly

as (12) we have the existence of

(16)

on N0∩ Ω0. Then B=B(N0∩ Ω0;∂N0) is a positive linear operator from

C(∂N0) into C(N0∩ Ω0) such that Bφ is a solution of (11) on Ω and

(17)

Set Dφ=hB(φ)/h). Then D=D(N0∩ Ω0;∂N0) is a positive linear operator

from C(∂N0) into C(N0∩ Ω0) such that Dφ is a solution of (4) in N0∩ Ω0

and, as a consequence of (17),

(18)

5. suppose s∈C(N0∩ Ω0) is a solution of (4) on N0∩ Ω0. According

to Sario (cf. e.g. Rodin-Sario [9]) we say that a function p on Ω0 is a

principal function relative to (s, D(N0∩ Ω0;∂N0), D(Ω;∂ Ω)) if

(19)

On setting σ=s/h, p is a solution to (19) if and only if q=p/h is a

solution to

(20)

We shall show that (20) has a unique solution. For this purpose we

consider an operator T:C(∂ Ω)→C(∂ Ω) defined by

In view of (13),(17), and the Harnack principle, we see that T is a

compact operator. Again by (13),(17), and the maximum principle, we

deduce that Tφ=φ implies φ=0, i.e. 1 is not the proper value of T.

Therefore the Riesz-Schauder theory (cf. Yosida [11]) assures the exist-

ence of φ ∈C(∂ Ω) with

where σ0=σ-B(N0∩ Ω0;∂N0)σ. We define g on Ω0 by
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It is easy to see that q is well defined on Ω0 and satisfies (20). The

uniqueness of q follows from (13), (17), and the maximum principle.

Let N∈N(M) be so large that N⊃N0. By exactly the same method

as above we see that there exists a unique solution p on N∩ Ω0 to

(21)

and g=p/h is a unique solution on N∩ Ω0 to

(22)

6. We now assume that L is defined on Ω0. We assert that the

existence of a solution uN of (4) on N∩ Ω0 with boundary values φ ∈

C(∂ Ω0) on ∂Ω0 and zero on ∂N for every N∈N(M) with N⊃M-Ω0.

Let N0∈N(M) with M-Ω0⊂N0⊂N0⊂N. If the measure of N0∩ Ω0

is sufficiently small, then there exists a unique solution s of (4) on N0∩ Ω0

with boundary values φ on ∂Ω0 and zero on∂N0 (cf. e.g. [5]). Then the

principal function satisfying (21) is the required u. We denote by

D(N∩ Ω0,∂ Ω0)φ the so constructed uN. We also denote by u the principal

function on Ω0 satisfying (19). Suppose φ ≧0 and thus s≧0. We main-

tain that u≧0 and uN≧0, or equivalently v=u/h≧0 and vN=uN/h≧0.

Suppose min∂N0 v<0. Then

Therefore min∂ Ωv<0 and minΩv=min∂ Ωv≧min∂N0 v. These mean. that

v considered on Ω0 takes its minimum on∂N0 which contradicts the min-

imum principle. Thus v≧0 on Ω0 and similarly vN≧0 on N∩ Ω0. A

fortiori uN≦uN'≦u for N⊂N' and we conclude the existence of

(23)

on Ω0. This is also true for general φ since we only have to consider

φ=φ+-φ-. Therefore D=D(Ω0;∂ Ω0) is a positive linear operator from

C(∂ Ω0) into C(Ω0) such that Dφ is a solution of (4) on Ω0 and

(24)

The operator D(Ω0;∂ Ω0) will play an important role in our discussions.

 7. We shall prove that the Picard principle as well as the elliptic

dimension is the property of ideal boundary δ. Let Ω0 be an end of M

such that L is defined on Ω0. We maintain (cf. Ozawa [7]):
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PROPOSITION. If dim(Ω0;L)>0, then dim(Ω;L)=dim (Ω0;L) for

every end Ω of M with Ω ⊂ Ω0.

Since dim (Ω0;L)>0, we fix an h∈G(Ω0;L) with h>0 on Ω0. Con-

sider a mapping π:G(Ω0;L)→G(Ω;L) defined byπu=n-D(Ω;∂ Ω)u.

To see that π is injective, let πu1=πu2 for uj∈G(Ω0;L)(j=1,2). On

setting v=(u1-u2)/h , we see that B(Ω; ∂Ω)v=v and clearly B(Ω0-Ω;

∂Ω)v=v. Therefore v considered on Ω0 takes its maximum on ∂Ω and

a fortiori v is a constant. Thus

where N0∈N(M) with M-Ω ⊂N0⊂N0⊂M-Ω. This means that h

is a principal function with respect to (0, D(N0∩ Ω0;∂N0), D(Ω;∂ Ω)), and

by the uniqueness of a principal function, h=0, which is a contradiction.

To prove that π is surjective, let s∈G(Ω;L). We wish to show the

existence of a p on Ω0 with

(25)

where this time we take N0∈N(M) so large that M-Ω ⊂N0. Then

we can conclude that p∈G(Ω0;L) as in (6) and πp=s. The principal

function problem (25) is equivalent to find q=p/h with

(26)

with σ=s/h. As in 5, (26) is equivalent to finding φ ∈C(∂N0) such that

where Tψ=B(Ω;∂ Ω)(B(N0∩ Ω0);∂N0)φ). By the same method as in 5

the above Fredholm equation is solved.

3. Green's functiｮns and Martin kernel.

8. Fix an end Ω of M and take an N∈N(M) with M-Ω ⊂N.

The Green's function GN∩ Ω (x, y) on N∩ Ω for L with pole y∈N∩ Ω is a

solution of L on N∩G-{y}, i.e. LxGN∩G(x, y)=0, with vanishing boundary

values on ∂(N∩ Ω) such that the unique solution u of the Dirichlet pro-

blem for Lu=f, f being Holder continuous on N∩ Ω, with u|∂(N∩ Ω)=

φ ∈C(∂(N∩ Ω)) is given by

(27)

(cf. e.g. Miranda [5]). The funlction GN∩ Ω(x,・) is also the Green's function
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on N∩ Ω for L* with pole x∈N∩ Ω. If dim(Ω;L)>0, then the Green's

function GN∩ Ω (x,y) exists far any N and

(28)

for φ ∈C(∂ Ω). If GN∩ Ω(x, y) exists for every N, then {GN∩ Ω(x,21)}N is an

increasing net. In case it is convergent we call

(29)

the Green's function on Ω for L with pole y∈Ω. If dim (Ω;L)>0,

then (23) and (28) imply the existence of (29) and

(30)

for φ ∈C(∂ Ω). Actually the converse is also true:

PROPOSITION. The Green's function GΩ(x,y) exists on Ω for L if

and only if dim(Ω;L)>0, which is equivalent to dim (Ω;L*)>0.

Suppose dim (Ω;L)>0 and let h∈G(Ω;L) with h>0 on Ω. For

an arbitrary point y∈N∩ Ω we take punctured parametric balls U:0<

|x-y|<a and V:0<|x-y|<b(0<a<b) such that V⊂N∩ Ω. If

V is sufficiently small, then s(x)=Gv(x,y), the Green's funlction on V

for L, exists. The principal function p on N∩ Ω-{y} with

is seen to exists as in 5, and clearly p(x) is the required GN∩ Ω(x,y). From

this as above the existence of GΩ(x,y) follows. Conversely suppose the

existence of GΩ(x,y) on Ω for L, fix a point x0∈ Ω and consider uy(x)=

GΩ(x,y)/GΩ(x0, y). Since uy≧0 and uy(x0)=1, the Harnack principle

assures that {uy(x);y→ δ} forms a normal family and thus we can find

a sequence {ym} converging to δ such that u(x)=limn→ ∞ uy
n(x) exists on

Ω. Then u>0 and u∈G(Ω;L), i.e. dim (Ω;L)>0. Similarly GΩ(x,y)

exists if and only if dim (Ω;L*)>0. A fortiori dim (Ω;L)>0 is equi-

valent to dim(Ω;L*)>0.

9. If dim (Ω;L)>0, then dim (Ω;L*)>0, and as in 6 we can define

D*(Ω ∩N;∂ Ω) and D*(Ω;∂ Ω), i.e. D*(Ω ∩N;∂ Ω)φ is a solution of L*u=0

on Ω ∩N with boundary values φ ∈C(∂ Ω) on ∂Ω and zero on ∂N, and

(31)

exists on Ω. Then
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(32)

and similarly as in (30) we deduce

(33)

10. We assume that dim (Ω;L)>0 or equivalently there exists the

Green's function GΩ(x,y) on Ω for L. The function

(34)

is a positive solution of L*u=0 on Ω with boundary values 1 on ∂Ω.

Using the function eΩ we define the Marten kernel KΩ(x, y) on Ω by

(35)

for (x,y)∈ Ω × Ω with x≠y and KΩ(x,x)=+∞ for x∈ Ω. Define a

metric ρ(y1, y2) on Ω given by

(36)

where εn>0 with Σ∞n=1εn=1,{xn}n≧1 a countable dense subset of Ω, and

|α|*=|α|(1+|α|)-1 for real numbers α and |+∞|*=1. The metric

space (Ω,ρ) is homeomorphic to the original topological space Ω. Let Ω'

be an end of M with Ω'⊂ Ω. By (29) and (31), infy∈ Ω'K(x, y)>0 for

every x∈ Ω-Ω'. In view of this, ρ-Cauchy sequences {yn} in Ω are

divided into three categories: {yn}→ ∂Ω, {yn}→y∈ Ω, and {yn}→ δ. Let

Ω*=Ω*L be the space obtained from Ω=(∂ Ω)∪ Ω by adding all ρ-Cauchy

sequences {yn}→ δ. By virtue of the Harnack principle, Ω* is compact,

and for this reason, Ω*=Ω*L is referred to as the Martin compactifccation

of Ω with respect to L. We call β=βL=Ω*-Ω the Martin ideal

boundary of Ω. The identity of Ω onto Ω is extended to a continuous

map of Ω ∪ β onto Ω ∪ δ.

The Martin kernel K=Ω(x, y) can be extended continuously to Ω ×

(Ω ∪ β). Let y∈ Ω. From (34) it follows that

Therefore if y*∈ β, then
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and thus (cf. no. 2)

(37)

 11. We denote by co {K(Ω;L)} the closed conVex hull of the

set K(Ω;L) in S(Ω;L). We shall show that

(38)

For this purpose it is sufficient to show the existence of a unit regular

Borel yneasure ν on β for any fixed u∈y1(Ω;L) such that

(39)

Let N and N1 be in N(M) with M-Ω ⊂N⊂N⊂N1 and consider v1=

D(N1-N;∂N)u and v=D(Ω-N;∂N)u. By the Green formula

(40)

for x∈N∩Ω, where ∂/∂n denotes the outer normal derivative with respect

to the region N∩ Ω. Again by the Green formula

On letting N1→M we obtain

(41)

Since u-u1≧0 on N1-N and u-v1=0 on ∂N,v1→v implies that

u-v∈y(Ω-N;L). A fortiori

(42)

on ∂N. Therefore the subtraction of (41) from (40) gives

(43)

whexe dνN(y)=νN(y)dSy on ∂N. Observe that

Hence there exists a subset {Nm}⊂N(M) such that dνm=dνNm converges

vaguely to a unit regular Borel measure dν on Ω*. Clearly dν is a

measure on β and (43) implies (39).
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12. Since β ⊂ Ω* is homeomorphic to K(Ω;L)⊂S(Ω;L) by the

natural correspondence y*→KΩ(・, y*), K(Ω;L) is compact and hence

closed. By the Milman theorem (cf. e.g. Dunford-Schwartz [1]), (38) as-

sures that Ex.y1(Ω;L) is contained in the closure of K(Ω;L) which is

K(Ω;L). Therefore if we set

then we conclude that

(44)

Since ψ:KΩ(・,y*)→y* is a homeomorphism from Ex. y1(Ω;L) onto β1,

is a regular Borel measure on β1 if dν is on Ex. y1(Ω;L). Therefore

by (9) in no. 3 we deduce the fundamental theorem of Martin: there

exists a bijective correspondence u→ μ between y(Ω;L) and the set of

regular Borel measures on β1 such that

(45)

for x∈ Ω (cf. Itδ[4], Sur [10], etc.). In particular we have

(46)

Suppose dim (Ω;L)=1. By (37) and (46) we see that #β=1. Conversely

#β=1 implies that #β1=1 which in turn implies dim (Ω;L)=1. Thus

PROPOSITION. If dim (Ω;L)>0, then the Picard principle is valid

if and only if the Martin ideat boundary βL consists of a single point.

4. Riemann theorem; Proof of the main theorem.

13. We denote by R(Ω;L) the vector space of bounded solutions

of (4) on Ω with continuous boundary values on ∂Ω. We say that the

Riemann theorem is valid for (Ω;L) if

exists for every u∈R(Ω;L). It is clear that if the Riemann theorem

is valid for (Ω0;L), then it is also valid for (Ω,L) with Ω ⊃ Ω0. We

shall discuss the Riemann theorem for (Ω, L). So far as we can consider

L we have to assume dim (Ω,L)>0 or equivalently dim (Ω, L*)>0.

Using the operator D*=D*(Ω;∂ Ω) in (33) we maintain

(47)
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To prove this first observe that u is a solution of L*u=0 on an open

subset of Ω if and only if v=u/eΩ is a solution of Lv==0. Therefore

v=D*φ/eΩ is a solution of Lv=0. If φ ≧0, then D*(N∩ Ω;∂ Ω)φ ≦keΩ

with k=max∂ Ωφ(cf. no.9) and a fortiori D*～φ/eΩ ≦k, i.e. D*φ/eΩ∈

R(Ω;L). The same is true for general φ by considering φ=φ+-φ-

with φ ±=max(±φ,0). Conversely, let v∈R(Ω;L). Take an N∈N(M)

with M-Ω ⊂N and let wN be a solution of (7) on N∩ Ω with boundary

values 1 on ∂Ω and 0 on ∂N. Then eΩwn=D*(N∩ Ω;∂ Ω)1. Thus

i.e. limN→MwN=1. If v|∂ Ω=0 and k=supΩ|v|, then

on N∩ Ω. On letting N→M we conclude that v≡0. For general v, let

Then v0∈R(Ω;L) and v0|∂ Ω=0. Therefore v0≡0 on Ω, i.e.v=D*v/eΩ

and we deduce (47).

14. Take any v∈R(Ω,L). By (47) we have eΩv=D*(Ω;∂ Ω)v. In

view of (33) we have

A fortiori, using the Martin kernel (35), we deduce the following repre-

sentation

(48)

Clearly the right hand side of the albove is continuous on Ω ∪ βL and so

is v. Since v is continuous on Ω, we conclude that v is continuous on Ω*L:

(49)

In particular, R(Ω;L)|βL⊂C(βL). We maintain

PROPOSITION. The family R(Ω;L)|βL separates points in βL, i.e.

for any pair(y*1, y*2) of distinct points in βL there exists a v∈R(Ω;L)

such that v(y*1)≠v(y*2).

Observe that, by (48),v(y*j)=∫
∂Ω(∂KΩ(x,y*j)/∂nx)v(x)dSx(j=1,2) for

every v∈R(Ω;L). If the assertion were not true, then
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for every φ ∈c(∂ Ω), where k(x)=KΩ(x, y*1)-KΩ(x, y*2). Therefore

∂k(x)/∂nx=0 on ∂Ω. We thus have

This innplies that k(x)≡0 on Ω, i.e. y*1=y*2, a contradiction .

15. PROOF OF THE THEOREM IN INTRODUCTION . We are ready to

prove the theorem stated in the introduction. Since the identity of Ω

can be continuously extended to a map of Ω ∪ β onto Ω ∪ δ with β lying

over δ,

(50)

for every u∈R(Ω, L). In view of Proposition 14, limx→ δu(x) exists for

every u∈R(Ω,L) if and only if βL consists of a single point, which is,

by Proposition 12, equivalent to dim(Ω,L)=1. This completes the proof.

16. Suppose that the Riemann theorem is valid for (Ω0,LΩ
0). LetΩ b

e any end of M with Ω ⊂ Ω0. By Proposition 7 and the main theorem,

the Riemann theorem is valid for (Ω, LΩ). Since eΩ0/eΩ ∈R(Ω, LΩ),

exists. If v is a bounded Solution of LΩ0v=0 on a subend of Ω0 con-

taining Ω, then u=eΩ0v is a bounded solution of L*u=0 on Ω. Since

u/eΩ=(eΩ0/eΩ)v,w=u/eΩ ∈R(Ω, LΩ) and

Thus we see that the Riemann theorem for (Ω, L) is the property of

ideal boundary δ in the following sense:

PROPOSITION. The Riemann theorem is valid for(Ω, L) if and only

if limx→ δ u(x) exists for every bounded solution u of Lu=0 on any

subend of Ω.

5. An example.

16. We take B:0<|z|<1(z=x+iy) as Ω with δ:z=0 and consider

on B:0<|z|≦1 with the plane metric. First we remark that the
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mapping L→L is not injective. For the purpose consider

(51)

where P(z)≧0 is of class C1 on B and eP(z) is a bounded solution of

(52)

on B with boundary values 1 on ∂B:|z|=1. The existence and the

uniqueness of such an eP can be seen as follows. Let un be a solution

of (52) on 1/n<|z|<1 with boundary values 1 on |z|=1 and 0 on

|z|=1/n(n≧2). Since un is increasing and 0<un<1, u=limn→ ∞ un

exists on B and is a required. If v is another such solution, then w=

(u-v)2 satisfies Δw=2P2+2(▽w)2≧0 and a fortiori w is subharmonic

on B with w=0 on ∂B. By the minimum principle applied to the super-

harmonic function-εlog|z|-w(z)(ε>0), we conclude that w≡0. The

adjoint L*P of Lp is given by

By a direct calculation we see that L*PeP(z)=0 on B. we wish to show
that

(53)

since D*(Bn;∂B)1≦ep with Bn:1/n<|z|<1, we see that u=eB/ep=

limn→ ∞ D*(Bn;∂B)1/EP≦1. Since L*P(wep)=L*PeB=0 and L*Pep=0, a direct

calculation shows that Δw=0. Therefore w is a bounded harmonic

function on B with boundary values 1 on ∂B. By the classical Riemann

theorem, w≡1 on B, i.e. (53) is valid.

   17. In view of (53), we can rewrite LP as

Therefore the associated operator LP to LP on B is, by (7)

(54)

Clearly Δ on B is Δ. Thus we see that L→L is not injective. Since

the Riemann theorem is valid for (B,Δ), by our main theorem we con-

clude that the Picard principle is valid for (B, Lp), i.e.

(55)

for every P(z)≧0 on B:0<|z|≦1 of class C1. Since we have a feeling

that dim (B,L)=1 can occur if L is, in a sense, close to Δ, (55) is a

rather unexpected phenomenon because Lp may be viewed far distant

from Δ if the singularity of P at z=0 is 'wild'. This pathology pro-
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vably cannot occur if we require L to be self-adjoint.
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