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PICARD SET OF A KIND OF DIFFERENTIAL
POLYNOIMIALS

By ZHAN X1A0 PING

Abstract

In the present paper we answer a problem about Picard sets of differential
polynomial F=/"Q(f), which was raised by Anderson, Baker and clunie (cf.

(D.

1. Introduction and result

Let f be a transcendental meromorphic function. We denote by S(r, f), as
usual, any function satisfying

S(r, f)=0(logr) as r—oo
when f has finite order, and
S(r, f)=0QogrT(r, f)) as r—co, rEE, meas E<

when f has infinite order. We call a meromorphic function a(z) “small” func-
tion if a(z) satisfies T(r, a)=S(r, ). We call M(f)=f"(f")"t--- (f*>)*+ a mono-
mial in f, vu=ne+n,+ - +n, its degree and I'y=n,+2n,+ - +1+k)n, its
weight. Further, let M(f), -, M,(f) denote monomials in f and a,, ---, a,
denote small functions, then P(f)=a,M(f)+ --- +a,M(f) is called a differential
polynomial in f of degree upzmax§=luMJ and weight I"p=max}_ "y 4 In paticular
a, (1£4<,) are entire functions when f is an entire function.
J, M. Anderson, I. N. Baker and ]J.G. Clunie proved the following :

THEOREM A. [1] Suppose that f is a transcendental entire function and
>

ln+l

F=f" n=3, neN. Let F={A:}5-1 be an infinite point set in C with ‘—2—

¢>1 (n=1.2, ---). Then F'(z) assumes all values weC, except possibly zero, in-
finitely often in C\9.

The above authors asked the following two questions :
(a) Can the sets be made larger for entire functions at least? In particular,
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can they consist of small disks?

(b) Are there similar results for differential polynomials of the form F(z)=
f"Q(f), where Q(f) is a differential polynomial in f?

Question (a) was solved by Langley [2] for entire functions, but we have
not seen any results about (b) so far.

We proved the following theorem :

THEOREM. Let f be a transcendental entire function, F={A,}5-1 an infinite
>¢>1 (n=1, 2, --), set F=f"Q(f), n€N, where Q(f)

is a differential polynomial in f and Q(f)#0, Then F'(z) assumes all values weC,
except possibly w=0, infinitely often in C\F, provided n=3.

point set in C with }2—1"1

2. Lemmas.

LEMMA 1. Suppose that f is a transcendental entire function and F=[f"Q(f),
neN, n=3, where Q(f) is a differential polynomial in f and Q(f)%£0. Then

T(r, <N (r, g )47, 1) (1)

LEMMA 2. Suppore that [ is a nonconstant meromorphic function and P(f)
is a differential polynomial in f and P(f)Z0, if z, is a pole of f of degree p
(p=1), and z, is not the pole of any small function a,. Then z, is a pole of P(f)
of degree p-vp+(I " p—yp) at most.

Proof. Let t(z, P(f)) be the degree of pole of P(f) at z, then there are
nonnegative integers n,, -+, n, Which satisfy z(z,, P(f))<pn,+(p+Dn,+ --- +
(p+RIne=(p—1)no+n1+ - +n,)+@o+2n,+ - +(o+1Dn) <(p—Dvp+Tp=p-vp
+(p—vp).

LEMMA 3. [3] Let f be a nonconstant meromorphic function. If Q(f) is a
differential polynomial in f with arbitrary meromorphic coefficients q,, 1<;<n,
then

m(r, QU NSvem(r, [)+2Zj<m(r, g,)+S(, f)

LemMA 4. [3] Let f be a nonconstant meromorphic function. And let Q*(f)
and Q(f) denote differential polynomials in f with arbitrary meromorphic coeffi-
cients g%, .-+, gf and q,, -+ q; respectively. Further, let P[f] be a nonconstant
polynomial in f of degree n. Then from P[f]-Q*(f)=Q(f) we can infer the
following :

1) if ve=n then m(r, Q¥(fN=Zj=m(r, ¢)+2Zj=m(r, ¢,)+S(r, f)

2) if I'q=n then N(r, Q¥(f)=Z5=1 N(r, ¢})+ L1 N(r, g,)+0(1)

LEMMA 5. Let f be a nonconstant meromorphic function. And let Q(f) and
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P(f) be differential polynomials in f satisfying P(f)#0, Q(f)=0. Then g,=
—frQ(f) and g,=f"Q(f)+P(f) are independent over C, provided n=Ip-+1.

Proof. Assume that cogo+c¢,8:=0, ¢o, c:€C, that is f*Q(f)c,—co)=—c, P(f).
Obviously, we have ¢,;#0 and ¢,#¢,, we get T(r, Q(f)=S(r, ), N(r, fQ(f))=

S(r, f) from lemma 4, so N(r, f)< N(r, o f))—i—N(r, FOUN=S(r, f), hence we
have

1
nm(r, fy=mir, =P/ QU Xer—=c)=mlr, PUN+m(r, 5ezs)+Str, f)

Svem(r, N+NG, QUOI=N(r, i) +mir, QUN+S(, £)

Zvpm(r, [)+S(r, f)

So we get
T(r, /)=S(, f)

which is impossible.
LEMMA 6. [1] Let G(2) be an entire function, assume that all the zeros of G(z2)

%— >g¢>1. Then r‘l(r, %)ZO(IOgr), N(,,’ %)

lie in the set F={An}5=1 and
=0((log 7)*) as r—oo.

Proof of Lemma 1. Suppose that P(f) is a differential polynomial in f and
Trsn—1 let gr=—f"QUf), £:=F*QU)+P(S), we know £ £
5. So, from g,+g:=P(f) and go+gi=P’(f), we have

P(f)gi/g.—P'(f)/P(f)) (2)
(81/81—80/80)Q(S)

%0 from lemma

—fr=
we get
m(r, fMY=m(r, P(f)+mr, gi/g.—P'(f)/ P(f)+mlr, 1/(gi/8:—8:/8.)Q(S))
Svpm(r, f)+N(r, (81/8:—&¢/8)Q(F))—N(r, 1/(81/81—84/8)Q(f))
+m(r, gi/g0)+m(r, P'(f)/P(f)+mr, (g1/81—2:/8)Qf N+S(r, f)

from lemma 3. From T(r, g.)=0(T(r, f)) (=0, 1) and T(r, P(f))=0(T(r, 1)), we
have S(r, g,)<S(r, f) (/=0, 1) and S(r, P(f))<S(r, f). Thus

(n—yp)m(r, SN, (81/81—80/80)Q(f))—N(r, 1/(81/8:—8¢/80)Q(S))
+m(r, (81/8:—86/80)QN+S(r, f)
We rewrite (2) as follows

—f™(81/81—80/80)Q(f)=(g1/8:—P'(f)/ P(FNP(f)
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It is easy to know that m(r, (gi/g.—gt/g,)Q(f)=S(r, f) from lemma 4. Thus

(n—yvp)m(r, f)
=N(r, (81/8:—81/80)Q(f)—N(r, 1/(81/81—80/8)Q N+S(r, f) (3)

Assume that z, is a pole of f of order p, and z, is not a zero or pole of
coefficients of P(f). Suppose that

QU Ng1/8:1—gi/80)=c(z—2)*  (c=c(2)%#0; p is an integer)
we know that np< pyp+I p—vp+1+p from (2) and lemma 2, thus

u=pn—yvp)— p—yp+1) (4)
So, we have

N(r, 1/(gi/8:1—85/8)QU NZ(n—vp)N(r, /)= p—vp+DN(r, )+S(r, f) (4

from (4). Obviously, the poles of Q(f)g{/g:—gi/g,) occur only at poles of f,
zeros of g, (except the zeros of Q(f)), zeros of g,, zeros or poles of coefficients
of Q(f) and P(f). If n=I"p+1 and p=1, it is easy to see that #=0. Thus z
is not a pole of Q(f)gi/g.—gt/g,) provided z, is a pole of f. From the above
anlyses, we have

N(r, Q(f)gi/g:—84/SNEN(r, 1/g)+N(r, 1/f)+S(r, f) (5)
Thus

(n—vp)T(r, IEN(r, 1/g)+N(r, 1/ )HT p—vp+DN(r, /)+5(r, f) (6)

combining (3), (4)’ and (5).

Let F=f"Q(f), so F'=f""nf'Q(f)+fQ'(/N=F""'Q:(f), where Q.(f) is still
a differential polynomial in f. Assume that P(f)=—1, go=—f""'Q:(f) (=—F"),
g=f"1"Q.,(f)—1=f""'Q.(f)+P(f) (=F'—1) such that g, and g, satisfy the con-

ditions of lemma 5. Finally, we get (n—2)T(r, f)gﬁ(n F%)-{—S(r, f) by ap-

plying equation (6) to g, and g, and noting /' p=yp=0. Hence lemma 1 is proved.

3. Proof of theorem.

Without loss of geneaality we suppose that w=1. Obviously, F’—1 has in-
finitely many zeros from (1). If F’—1 has only finitely many zeros in C\T,
then F’—1 has infinitely many zeros in §. We suppose that F'=1 at every
point of F by deleting some of the points 2, of & and adjusting notation if
necessary. From lemma 6 and (1), we know that T(r, f)=0((log r)?) as r—oo,
r€E, meas E<co. So f has order zero (see [3, lemma 3]). Hence f has in-
finitely many zeros since f is transcendental. And we have S(r, f)=0(logr) as
r—oco since f has finite order, so we get
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T(r, /)=0((logr?) as r—oo (7)

For the convenience of presentation we set f(z)=kII(1—f—). It is easy to
=1 »

know that each p, is a zero of F’(z) of order at least 2. And we have T(r, F'—1)
=0((log r)?) as r—co from (7). Given ¢>0, for some &,(0<e,<e) and large k
we know [F'—1|>2 (see [1, lemma 4]) and hence |F’|>1 on the boundary of
or outside these discs 4,={z: |z—2;|<e:|4:|}, s0 p, lie in one of these discs,
say 4,. If ¢ is chosen sufficiently small then the disc 4, contains no other
An(m= k) from the condition |4,4+1/4,|>¢>1, and so no other z with F/(z)=1.
Now, suppose that the equation F’(z)=1 has an m-fold root at 4, and consider
the level curves |F’(z)|=1 passing through A,, These lie in 4, and consist of m
distinct loops with only the point 4, in common. By the maximum and mini-
mum modulus priciples, each loop contains at least one zero of F'(z). So, F’
has the same number of l-points as zeros inside the 4, by Rouché theorem.
Hence F' has only m simple zeros in the 4,. But that contradicts the presence
of g, in the 4, which implies that F’ has a zero of multiplicity at least 2 in
the 4,. Hence the theorem is proved.
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