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Abstract. Many papers deal with the problem of constructing an ef-
ficient masking scheme for existing block ciphers. We take the reverse
approach: that is, given a proven masking scheme (Rivain and Prouff,
CHES 2010) we design a block cipher that fits well the masking con-
straints. The difficulty of implementing efficient masking for a block ci-
pher comes mainly from the S-boxes. Therefore the choice of an adequate
S-box is the first and most critical step of our work. The S-box we selected
is non-bijective; we discuss the resulting design and security problems.
A complete design of the cipher is given, as well as some implementation
results.

1 Introduction

In a side-channel attack (SCA for short), the attacker observes — at runtime
— the execution environment (timing, power, electromagnetic radiation, etc.) of
a secret-dependent operation. From this observation, the attacker might either
be able to identify (part of) the secret (the attack is then called Simple Side-
Channel Analysis, SSCA) or get noisy information about internal states of the
cryptographic operation. In the latter case, when the accessed internal values are
a simple combination of a known variable and (part of) the secret, the attacker
will recover the secret from a statistical treatment of multiple cryptographic op-
eration execution, the attack is then called Differential Side-Channel Analysis
(DSCA for short). DSCA fits particularly well block ciphers which build their
security from piling-up simple and cryptographically weak operations. By access-
ing internal states, the attack bypasses the cipher strength. Since the seminal
work of Kocher et al. [27], DSCA (and its numerous variants and extensions) are
a constant threat against embedded devices that implement cryptographic prim-
itives. The development of DSCA countermeasures is a dynamic and challenging
research domain where the ultimate goal is to find the good trade-off between
security and performances. Many countermeasures focus on noise addition tech-
niques, which should increase the attack complexity. For instance, inserting ran-
dom delays during the cipher execution is a common practice in order to render
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difficult finding the manipulation of secret-dependent variables inside multiple
side-channel traces. This kind of countermeasures indeed increases the classical
DSCA attack complexity and it can be done with relatively small overhead on
the algorithm complexity (see for instance [14]). However these countermeasures
cannot be proven robust, i.e. an optimal attacker would be able to recognize and
suppress the random delays. This is actually what claim Durvaux et al. in a very
recent paper [17], where Hidden Markov Chain inference techniques are used
to point out dummy operations from real ones, discarding almost perfectly the
countermeasure proposed in [14]. In fact, the only known countermeasure that
possesses security proofs is the so-called Masking Schemes where the cipher’s
secret-dependent internal values are randomized from one execution to another
(e.g. [12,21]). However, such countermeasures usually induce a high performance
overhead, making their implementation difficult if not impracticable in small em-
bedded devices. Many works have been dedicated to building a masking scheme
with low cost that fits the existing block ciphers (mainly DES and AES). In the
present paper we will take the problem the other way around: we will study a
proven masking scheme and propose a new construction of block cipher that fits
well the masking constraints. Hence, we come up with the design of a cipher that
ensures resistance to conventional cryptanalysis methods, with special care for
the S-boxes (that are used to introduce non-linearity in the cipher design, and
are usually the most challenging part to implement when a masking scheme is
used) in order to lower the performance overhead of masking.

The paper is organised as follows: In the next section, the basics about mask-
ing techniques are recalled and Rivain and Prouff’s Boolean masking scheme [43]
is described; our block cipher construction will follow the design criteria derived
from this scheme. In Section 3, we propose a new S-box having a good trade-off
between efficiency, conventional security and masking efficiency. The main limi-
tation of the new S-box is its non-bijectiveness but the use of a Feistel network
allows us to build a full block cipher from the S-box. We exhibit in Section 4
a devastating attack on Feistel schemes if no special care is taken on the diffu-
sion layer of the round function. In connection with this attack, various specific
cryptanalysis techniques of Feistel networks are recalled in Section 5. The full
round function is described in Section 6. Finally, in Section 7, a complete design
specification of a full block cipher is proposed as well as a performance analysis
compared to the AES block cipher.

2 Preliminaries on Higher-Order Masking Schemes

As recalled in introduction, a Differential Side-Channel Attack compiles leaked
information from side-channel observations of internal states of a block cipher
in order to recover some knowledge about the secret key. The strength of DSCA
comes from the statistical treatments of the leaked information that makes the
attack particularly robust to noise (from measurement setup, concurrent oper-
ations, etc. . . ). Many improvements have been proposed on the original Differ-
ential Power Analysis introduced by Kocher et al. in 1999 [27]. Among them
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the Correlation Power Analysis [9] and the Mutual Information Analysis [20]
propose different statistical treatments to enhance the attack complexity with
respect to the noise and leakage model. Another notable extension of DSCA
is the so-called Higher-Order DSCA (HO-DSCA for short), already mentioned
in [27], that upgrades the attacker model: in a dth-order DSCA attack, it is able
to observe d different internal variables in a single cipher execution.

Countermeasures by masking are certainly the most studied countermeasures
against (HO-) DSCA because of their security proofs. However, the performance
overhead due to a masking scheme that thwarts HO-DSCA is such that they
are hardly used in practice. Our goal here is to point out the operations that
make a masking scheme costly and propose a block cipher that avoids as much
as possible such operations. To this end we will focus on a recent (HO-)Masking
scheme introduced by Rivain and Prouff [43].

2.1 Masking Schemes

A dth-order masking scheme is a countermeasure at the algorithmic level that
thwarts dth-order DSCA; the idea is to randomize the data processed by the
symmetric cipher such that there exists no set of d processed data that together
depend on the secret. A proof of security on a masking scheme ensures that this
property holds, in addition, the data complexity of a HO-DSCA attack increases
exponentially with its order, assuming the presence of noise (as showed by Chary
et al. [12]), which always exists in practice. All together, with a high enough
order with respect to the noise level, these properties make the masking approach
the only sound countermeasure against DSCA.

Several 1st-order masking schemes have been proposed (e.g. [8, 34, 37]) and
some specific 2nd-order masking schemes [42, 45] but until recently very few
schemes could be extended to any order d. The first provable dth-order masking
scheme was proposed by Ishai et al. in 2003 [23]; the construction has been
extended in 2010 by Rivain and Prouff [43]. This work was followed by two new
propositions [25, 39] for which our own work would apply just the same as for
Rivain and Prouff’s construction. A third publication by Genelle et al. [19]
was also proposed in 2011; it is dedicated to very specific non-linear functions
(power functions) which would not leave enough room for us in the research of
new S-boxes.

2.2 Rivain-Prouff’s Scheme

Let us consider an intermediate variable V ∈ GF (2n) of the targeted block ci-
pher, the variable V is called sensitive if its value depends on a secret key K and
on a known variable (e.g. the plaintext P ), for instance V = K⊕P . The manip-
ulation of a sensitive variable should be avoided due to DSCA attacks, therefore,
in a dth-order Boolean Masking Scheme (as Rivain and Prouff’s scheme), its ma-
nipulation is replaced by the manipulation of d+ 1 shares (V0, V1, · · · , Vd) such
that

V = V0 ⊕ V1 ⊕ · · · ⊕ Vd . (1)
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A dth-order Masking scheme is an algorithm that modifies the cipher sub-
functions in order to only manipulate such sharing of sensitive variables (ideally
without ever re-constructing the sensitive variables or decreasing the sharing
order).

In [43], the authors propose such an algorithm for each atomic operation:
affine functions (v �→ Af (v)), addition ((v, w) �→ v ⊕ w) and multiplication
((v, w) �→ v × w).

Remark 1. Any function can be decomposed in a sequence of such atomic opera-
tions, which gives a great genericity to the masking scheme (this approach is clas-
sic in Secure Multi-Party Computations, a research area that is very close to our
problem and on which most of the dth-order masking scheme are based [23,39]).
The drawback is that those atomic functions shall be executed explicitly (pre-
computed tables, commonly used to evaluate S-boxes are not an option).

Affine functions and additions over shared variables can be applied straight-
forwardly, the masking overhead will solely correspond to d times the original
operation complexity. In the case of multiplication, when it is not linear over
GF (2n), the masking scheme is more expensive: it costs (d + 1)2 field multipli-
cations, 2d(d+ 1) XORs and the generation of d(d + 1)/2 random n-bit values.
In a block cipher like the AES, each of the 160 S-box computations needs at the
least 4 such multiplications in GF (28), making the cost of the masking scheme
mostly carried by the non-linear multiplications.

This study leads naturally to the following constraints that an S-box should
satisfy in order to be efficiently masked: the S-box should have a simple expres-
sion as a polynomial and minimum number of non-linear field multiplications in
this form.

3 Research of a ”Good” S-Box

S-boxes are non-linear functions from GF(2)n to GF(2)m where n andm are pos-
itive integers. We also use the terminology (n,m)-functions. The vector spaces
GF(2)n and GF(2)m can be endowed with the structure of field. This gives, when
m divides n (and in particular when m = n), the possibility of designing S-boxes
as polynomial functions over finite fields.

3.1 Design Constraints

S-boxes must allow resistance to several logical attacks. The three main attacks
to be withstood are the linear attack [32], the differential attack [3] and the higher
order differential attack [26]. An attack which is not yet efficient but represents
some threat for the design of future block ciphers is the algebraic attack [13].
Designing an S-box, which is fastly implementable, allows high resistance to the
first three attacks and would not be potentially weak against a future efficient
version of the fourth one is a difficult challenge. Historically, the S-boxes of the
DES have been found by clever random computer search. This was possible
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thanks to the relatively small size of these (6, 4)-functions. The S-box of the
AES was too big for that; it has been the result of a theoretical work by K.
Nyberg [36] on the so-called inverse function GF (2n) → GF (2n) : x �→ x−1.
This function has very good properties: it is a permutation (which is necessary
for using it as an S-box in an SPN and is quite useful for a Feistel cipher as we
shall see below), it achieves the highest known nonlinearity when n is even (in
the case of AES n = 8; it is common to choose n as a power of 2 because it makes
software implementation easier), and has very high resistance to the differential
attack and to the higher order differential attack. It happens that, since 1993,
no other function in a number of variables equal to a power of 2 and gathering
these properties could be found (see a survey in [10]). Note however that the
inverse function is almost the worst possible against the algebraic attack.

The criteria listed above are those that an S-box should satisfy in black box
cryptography. We need to add the requirements derived for side-channel resis-
tance (see Section 2) and the practical design constraints:

1. Higher-OrderMasking against HO-SCA attacks implementable without slow-
ing down the cryptosystem too much (reducing the overhead leads to min-
imizing the number of non-linear multiplications, see Section 2, and is also
related to Constraint 2).

2. Efficiency (i.e. reduce the number of instructions and allow the operations
to be performed in small fields).

3. Function in 8 variables (the number of variables must be large enough for
allowing good resistance to the three main known logical attacks; the choice
of 8 helps satisfying Constraint 2 and allows compatibility with standard
block size).

We describe now in more details the function’s criteria. Given an (n, n)-function
in the form:

f : X →
2n−1∑

i=0

aiX
i, ai ∈ GF (2n) (2)

its important parameters are:

– Non-linearity: nl(f) = 2n−1 − 1

2
max
a,b�=0

∣∣∣∣∣
∑

X

(−1)b·f(X)+a·X
∣∣∣∣∣, where a ·X is an

inner product in GF (2n); in practice, a ·X = tr(aX) where tr is the trace

function tr(a) = a+ a2 + a2
2

+ . . .+ a2
n−1

.
To thwart linear cryptanalysis [32], the nonlinearity must be close to the
best known nonlinearity of vectorial functions in even numbers of variables:
2n−1 − 2n/2 (that is 112 for n = 8).

– Differentiality: δ = max
a �=0,b

(#{X | f(a+X) + f(X) = b}).
Because of the differential cryptanalysis [4], it should be 2 (then the function
is called Almost Perfect Nonlinear APN [35]) or 4 (then the function is called
differentially 4-uniform [35]), or at most 6.
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– Algebraic degree: d = maxi (ω2(i) | ai �= 0), where ω2(i) is the Hamming
weight of the binary expansion of i.
Because of the higher differential attack [26], it should be at least 3 and
preferably at least 4.

– Graph algebraic Immunity: equals the minimal algebraic degree of a nonzero
Boolean function vanishing on the graph Gf = {(X, f(X)); X ∈ GF (2n)}
of the function (that is, the minimal algebraic degree of an annihilator of
the graph); this parameter is not related to an efficient attack yet, but 1 is
definitely too small and 2, as in the case of the inverse function, is risky.

– Minimum number of non-linear multiplications.

The evaluation of f : X → ∑2n−1
i=0 aiX

i involves a number, say k, of non-
linear multiplications (by opposition to linear transformations such as, in
characteristic 2, an exponentiation by a power of 2, i.e. a monomial of de-
gree a power of 2). Higher Order masking schemes like the one proposed by
Rivain and Prouff [43] slow down significantly the S-box implementation, the
overhead being directly related to the number of non-linear multiplications.

3.2 Bijective vs Non-Bijective S-Box

Considering two comparable functions (with respect to their execution efficiency
as well as the above mentioned criteria), a bijective S-box is much more in-
teresting than a non bijective one, because in the latter case we have to solve
the problem of making the cipher invertible anyway. Moreover we will see in
Section 4 that a non-bijective S-box induces security flaws.

However, it is a matter of fact that the research of good (meaning efficient
and cryptographically strong) non-linear functions is much harder when only
considering bijective functions, especially in an number of variables that is a
power of two, where the inverse function is considered the only good candidate.

The selected function is a non-bijective function, specially efficient in the
number of operations necessary for evaluating it and involving only operations
in a small Galois Field (of 16 elements), operations that can then be tabulated
on standard platforms.

3.3 S-Box Description

A possible S-box candidate is proposed in [11]. It is not expressed as a polynomial
of the form (2), but as the concatenation of two bivariate polynomials whose
variables live in GF (2n/2):

f : GF(2n/2)2 → GF(2n/2)2 : (x, y) �→ (xy, (x3 + ω)(y3 + ω′)), (3)

where xy is the product of x and y in the field GF (2n/2). This S-box has the
desired properties when n/2 is even and ω, ω′ and ω

ω′ belong to GF (2n/2) \
{x3, x ∈ GF (2n/2)}. In particular, for n = 8, we have:
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– δ = 4.
– nl = 94.
– algebraic degree: 4.
– number of non-linear multiplications: 4 in GF (24).

S-box Instantiation. To represent elements in GF(24) we chose to work in
field representation GF(2)[x]/P (x) with P (X) = X4 + X3 + 1. Moreover we
need to make a choice in the family of S-boxes described above, that is to choose
ω and ω′. We took ω = 02x, ω

′ = 04x (in hexadecimal notation).

3.4 Masked S-Box Cost Evaluation

As explained in Section 2, Rivain and Prouff’s higher order masking scheme [43]
uses a sequence of field multiplications and additions to compute the masked
S-box. It can be easily checked that one needs at most 2 additions, 2 square op-
erations and 4 multiplications in GF (24) to evaluate our S-box. By comparison,

the AES S-box is computed with 3 raisings to some power 2i (i.e. X2i) and 4
multiplications in GF (28) (see [43]).

The cost of the higher order masking scheme is linear in the masking order for
additions and linear operations (like ”X2i” operations in fields of characteristic
2) whereas it is quadratic for non-linear multiplications. Hence the overhead in
the number of operations to evaluate a masked AES S-box and our S-box seems
at first glance quite the same. Table 1 details the number of operations in GF (24)
that are needed to evaluate our S-box.

Table 1. Number of Operations

# additions # squarings # multiplications # random values
(4-bit)

Unmasked 2 2 4 0

dth-order masked (8d+ 2)(d+ 1) 2(d+ 1) 4(d+ 1)2 2d(d+ 1)

In practice, the field size will play an important role in the runtime as a field
operation cost is directly dependent on the field size. Decreasing the field size to
24 allows to tabulate the field multiplication in a lookup table with much less
memory, which makes it possible even when it is very constrained (contrary to the
case of GF (28)). As a matter of fact, using tower field methods, the evaluation of
higher-order masked AES’s S-box in GF (24) by Kim et al. [25] has been shown
to be faster (for masking order 2 and 3) than the original evaluation in GF (28)
(from [43]), even though the number of non-linear multiplications turned to 5 in
GF (24).
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4 From the S-Box to the Cipher

4.1 Using a Feistel Network with SP-Type Round Function

The non-bijectivity of the S-box we selected requires us to use an adequate
structure, in order to make the cipher invertible. A well-known way to use non-
bijective round functions to build a block cipher is to use a Feistel network.
Therefore we could think of embedding our S-box in an SP-Type F -function
as considered in many papers ( [46–48] and several others), and using this F -
function as the round function of a Feistel network.

An SP-type F-function F : GF(2)n ×GF(2)n → GF(2)n is defined as follows.

Definition 1. Let m the number of S-boxes in a round, and t the size of the
S-box, with mt = n. Consider γ, θ : GF(2)n → GF(2)n with

– γ the function generated by concatenating m S-boxes.
– θ a linear diffusion layer.

Then an SP-type F-function F is defined as F (x, k) = θ(γ(x⊕ k)).

One round of a Feistel network with round function F : GF(2)n → GF(2)n is
defined as

Ψ(F ) : GF(2)2n → GF(2)2n : 〈L,R〉 → 〈R,L⊕ F (R)〉 (4)

Then

Definition 2. An SP-type R-round Feistel Network is the composition

©R
i=1Ψ(F (., ki)) (5)

where F is an SP-type F-function and the ki’s are round keys derived from the
master key K by a key schedule algorithm.

4.2 Why It Is Not a Good Idea

This approach is actually not applicable as such with our S-box S, as it lends
itself to a little-known but devastating attack.

Consider a, b ∈ GF(28) such that S(a) = S(b) (two such inputs al-
ways exist as S is not injective). Let us denote Δ = a ⊕ b. Consider two
plaintexts P = 〈L,R〉 = 〈(l1, . . . , lm), (r1, . . . , rm)〉 and P ′ = 〈L,R′〉 =
〈(l1, . . . , lm), (r′1, . . . , r′m)〉 (li, ri, r′i ∈ GF(28)) such that

P ⊕ P ′ = 〈(0, . . . , 0), (Δ, 0, . . . , 0)〉. (6)

Assuming the first round key k1 = (k11 , ..., k
1
m) is uniformly distributed, with

probability at least1 2/28 we have

F (R, k1) = F (R′, k1) (7)

1 It is greater than that if ∃c(a �= c �= b) such that S(c) = S(c⊕Δ).
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As a matter of fact, the inputs R ⊕ k1 and R′ ⊕ k1 to the S-box layer differ in
their first byte only. Thus (7) is satisfied when S(r1 ⊕ k11) = S(r′1 ⊕ k11). This
equality is satisfied if r1 ⊕ k11 = a or r1 ⊕ k11 = b.

Attack Complexity. Let us consider a SP-type Feistel Network with R rounds
and a block size of n bits. The round function’s S-Box (S) is non-injective
and we denote by DP0 its maximum 0-output differential probability: DP0 =
maxa �=0(#{x s.t. S(x⊕a)⊕S(x) = 0})/2m, where m is the size of the S-box in-
put (the best case scenario from the security point of view is when DP0 = 2/2m,
this is the case for our S-box). The differential attack we study here assumes that
the attacker chooses pairs of plaintexts P, P ′ such that the input difference at
the beginning of the first round function is null everywhere except on the input
of a single S-box where the difference is equal to Δ = argmaxa �=0(#{x s.t. S(x⊕
a)⊕ S(x) = 0}).

The differential characteristic over R rounds considered in this attack is such
that the round function’s input differential for even rounds (resp. odd rounds) is
equal to 〈(0, . . . , 0), (Δ, 0, . . . , 0)〉 (resp. null). Assuming that the round keys are
independent and uniformly distributed (i.e. the classical Markov Cipher assump-
tion), it is easy to evaluate the probability of such a differential characteristic Ω:

Pr[Ω] = (DP0)
R/2 . (8)

Given the differential characteristic probability it is well known (see for instance
[29]) that the differential cryptanalysis data complexity can be approximated by

C =
2

Pr[Ω]
. (9)

Hence, in order to get an attack complexity higher than exhaustive search, we
would need to assure that Pr[Ω] ≤ 1

2n−1 . Considering the best non-injective S-

box for m = 8 (DP0 = 2−7) and n = 128 this means that (2−7)R/2 ≤ 2−127,
therefore the number of rounds R should be greater than 36.

4.3 Linear Counterpart to the Previous Attack

Several results show that some duality exists between linear and differential
attacks [33]. Therefore it is not surprising that a linear attack exists that is as
powerful as the differential attack we exposed in the previous section.

This attack is based on the following theorem (see for instance [30]).

Theorem 1. A Boolean transformation F is invertible if and only if every out-
put parity (i.e. every component function λ · F ) is a balanced binary Boolean
function of input bits.

Applying this theorem to our S-box S we obtain

Corollary 1. There exists a linear mask λ ∈ GF(2)8 such that, for x random
and uniformly distributed, λ · S(x) = 0 is satisfied with probability p = 1/2 + ε
where the bias, denoted by ε, is not null.
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Let us denote by Li = (li1, . . . , l
i
m) the left part and by Ri = (ri1, . . . , r

i
m) the

right part of the input to round i + 1, and by Y i = (yi1, . . . , y
i
m) the output of

the ith F -function. Then if we use mask λ to approximate the first S-box (only)
of first round, we have a linear characteristic on 2 rounds of the form

λ · l01 = λ · l21 with probability 1/2 + ε (10)

As a matter of fact, we have: λ · y11 = 0 ⇔ λ · l01 ⊕ λ · r11 = 0 ⇔ λ · l01 ⊕ λ · l21 = 0.
This characteristic is iterative. Therefore R rounds can be approximated with

probability 1/2 + 2R/2−1εR/2. It is well known (see for instance [32]) that the
linear cryptanalysis data complexity, given a characteristic of bias ε, is given by
C = 1

2(ε)2 . Assuming that the bias associated to λ is 2−8/2 (the smallest known

non-zero bias for an 8-bit S-box), 42 rounds are required to have an attack
complexity above 2127 for the whole cipher. Moreover, in the case of our S-box,
the maximal bias ε (over all output linear maps λ) is equal to 22

28 which leads to
R ≥ 126

7−log(22) > 49.

5 Comparison of Specific Attacks on Feistel Ciphers with
Non-bijective Round Function

We have seen that the use of non-bijective functions introduces vulnerabilities in
the design of a Feistel cipher. Some of these vulnerabilities can be found in the
literature. We divide them in three categories: The differential cryptanalysis [3]
and its linear counterpart (this corresponds to the attack described in Section 4),
Rijmen et al. ’s non-surjective attack [41] and the Davies and Murphy attack [2,
16, 28].

5.1 Non-injective Round Functions

The first attack described in Section 4 can be seen as a particular case of dif-
ferential cryptanalysis. We already mentioned that the initial paper of Biham
and Shamir on differential cryptanalysis [3] already proposed a similar differ-
ential characteristic construction for the DES cipher, but is not the best for
the DES because of its expansion function. Another example is the McGuffin
cipher proposed by Schneier and Blaze [7] that did not have a similar expansion
transformation and was then completely exposed against such strong differential
cryptanalysis. Rijmen et al. described the attack in [40].

5.2 Non-surjective and Unbalanced Round Function

Rijmen et al. propose in [41] an attack on Feistel schemes assuming that the
round function is non-surjective and extend their attack when the round function
is simply unbalanced. The linear attack presented in Section 4 is based on the
fact that the S-box is unbalanced (Theorem 1 and then Corollary 1). This attack
corresponds exactly to the Rijmen and Preneel attack where only linear masks
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of the round output bits are considered. Moreover, the SP-Network structure of
the round function allows us (similarly to the differential version) to consider a
single S-box instead of the full round function (as in [41]). This property conceals
the strength of the attack; thus an expansion transformation is needed to ensure
that more than a unique S-box per 2 successive rounds is involved in the linear
characteristic. This will lower the linear (resp. differential) characteristic bias
and then increase the attack’s data complexity (see Section 7.1).

Before that, it is important to note that introducing an expansion step before
the round key mixing step and the S-box evaluation may open a new vulnerability
in the scheme: the Davies and Murphy attack.

5.3 Unbalanced Round Functions with Key Dependent Output
Distribution

Davies and Murphy proposed in [16] an attack on Feistel schemes assuming that
the round functions are unbalanced and the output distribution is dependent on
some key bits. This seminal paper was followed by many others, among them a
first improvement by Biham and Biryukov [2] and then a second improvement
proposed by Kunz-Jacques and Muller [28]. In the latter article, a parallel is
drawn between Davis and Murphy attack and the linear cryptanalysis; more-
over, the initial attack is optimized by the use of a distinguisher that evaluates
divergence between univariate distributions (through linear projections) instead
of divergence between multivariate distributions.

The use of an expansion step induces the S-box output distribution to be
somewhat dependent on the secret key. In [28], Kunz-Jacques and Muller exhibit
the tight relation between Davies and Murphy attack and linear cryptanalysis.
As a matter of fact, in the case of DES, they could show that the classical Davies
and Murphy attack would not be more efficient than a restriction of it where
only linear combinations of the round outputs are considered. This restricted
Davies and Murphy attack falls into linear cryptanalysis and then is naturally
bounded by the linear cryptanalysis complexity bound found for the DES.

6 Expansion and Compression Function

The attacks we described in Section 4 exploit the fact that it is possible to choose
(pairs of) plaintexts such that one S-box only is active in the first round (and
that this property can be propagated to the following odd rounds). If we deny
this possibility to the attacker, we thwart these attacks.

Using linear codes to ensure good diffusion in block ciphers is a well-known
idea (see [15], and many other works). We show how to use them slightly dif-
ferently from what is usually done in order to render impossible the attacks
discussed in Section 4 and Section 5.

– Let (a1, . . . , a8) ∈ GF(28)8 be the input of the round function. We encode
it with a linear code of dimension 8 and length 8 + � over GF(28), before
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performing the key addition and the S-boxes layer. That is, if G is the gen-
erator matrix of such [8 + �, 8] code, we compute

(b1, . . . , b8+�) = (a1, . . . , a8) ·G (11)

We call this computation the expansion layer E. If d is the minimal distance
of the code, it is trivial that the minimal number of active S-boxes is d. In
order to maximize it, we use a MDS code [8 + �, 8, � + 1]. An easy way to
construct such code is to use a shortened Reed-Solomon code.

– After E comes a key addition layer, which will use 8(8+ �) key bits, and the
non-linear layer that consists in 8 + � S-boxes in parallel.

– Finally the state must be compressed from 8 + � to 8 bytes. Note that the
expansion layer only defeats the differential attack we exposed in Section 4.2,
not the linear one described in Section 4.3. Therefore the linear compression
layer C must ensure that every non-zero linear mask approximating the
output of the S-box layer has as many active S-boxes as possible. If we denote
by H the compression matrix and we write (d1, . . . , d8) = (c1, . . . , c8+�) ·
H , a linear approximation of the output of the round can be written as
(β1, . . . , β8) · (d1, . . . , d8)T = (β1, . . . , β8) · HT · (c1, . . . , c8+�)

T . We define
(β′

1, . . . , β
′
8+�) as the linear mask at the output of the S-boxes corresponding

to (β1, . . . , β8). Thus we have (β′
1, . . . , β

′
8+�) = (β1, . . . , β8) ·HT . In order to

maximize the number of active S-boxes, we must choose HT such as to lower
bound the byte Hamming weight of (β′

1, . . . , β
′
8+�). The best choice HT for

this purpose is again to choose HT as the generator matrix of an MDS code.
We decide to take HT = G.

We choose � = 6, which offers a good compromise between the number of rounds
and the computational cost of one round. We built the matrix G such as to make
its implementation efficient. More precisely, we tried to minimize the number of
non-zero coefficients, to use a small number of different coefficients, and to use
coefficients with a small Hamming weight

The resulting matrix G is as follows. Its elements belong to the Galois field
GF(28) defined as GF(2)[X ]/(1 +X2 +X3 +X4 +X8).

G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01 00 00 00 00 00 00 00 01 01 0A 01 09 0C
00 01 00 00 00 00 00 00 05 01 01 0A 01 09
00 00 01 00 00 00 00 00 06 05 01 01 0A 01
00 00 00 01 00 00 00 00 0C 06 05 01 01 0A
00 00 00 00 01 00 00 00 09 0C 06 05 01 01
00 00 00 00 00 01 00 00 01 09 0C 06 05 01
00 00 00 00 00 00 01 00 0A 01 09 0C 06 05
00 00 00 00 00 00 00 01 01 0A 01 09 0C 06

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

7 Full Description of the Block Cipher

One round of the block cipher is pictured in Figure 1. In the next section we
analyze the number of rounds required to achieve good security.
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Fig. 1. One round of the cipher

7.1 Evaluation of the Number of Rounds

Differential Cryptanalysis As our S-box is differentially 4-uniform, the proba-
bility of any non-trivial 1-round characteristic is at most (4/28)7. Therefore a
differential characteristic over 2t rounds has probability at most (4/28)7t. In or-
der to upper bound the probability of any differential characteristic by 2−127, at
least 2t = 127

3·7  6 rounds are necessary.

Linear Cryptanalysis Our S-box has non-linearity nl = 94; hence, the bias of
its best linear approximation is 128−94

256 . Over one round the bias of any non-
trivial linear characteristic is at most 1/2 · (34/128)7, and over 2t rounds it is
1/2 · (34/128)7t. As the data complexity of linear cryptanalysis is C = 1

2ε2 , we
must have

1

2 · (1/2 · ( 34
128 )

7t)2
≥ 2128 (13)

which gives a lower bound of 2t = 127
7(7−log2(34))

= 9.5 rounds in order to ensure

an attack complexity at least 2128.
A security margin must be added to take linear hull effects into account, and

to deal with nR- (i.e. key guess) attacks. It is why we decided to use 12 rounds.

7.2 The Key Schedule

We have to derive 12 round keys k1, . . . , k12 of 112 bits each2 from one 128-bit
master key K. We want our scheme to resist known attacks on a key schedule
algorithm, in particular related-key attacks [1, 24] and slide attacks [5, 6]. A
detailed security analysis of the key schedule will be published in an extended
version of this paper, available on the ePrint (http://eprint.iacr.org/).

The key schedule must also be easy to implement; one very desirable property
is the ability to derive round keys on-the-fly in both encryption and decryption

2 112 bits are required because of the use of the expansion layer.

http://eprint.iacr.org/
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mode (which is possible for DES, but not for AES). It is our belief that design-
ing highly complicated non-linear key schedules is not mandatory to have good
security. It is why we restrict ourselves to rotations, bitwise additions and bit
selection in the design of the key schedule.

Round Key Derivation in Encryption Mode. The round keys are extracted
from an extended key (κ1, κ2, ..., κ12) by a simple bit selection. The κi’s are 128-
bit long and computed as follows:

⎧
⎪⎨

⎪⎩

κ1 = K

κi = T (K) ≫ Θ(i) for i = 2, 4, 6, 8, 10, 12

κi = K ≫ Θ(i) for i = 3, 5, 7, 9, 11

(14)

where ≫ j is the right-rotation of j bits, and Θ is given by the following table:

i 2 3 4 5 6 7 8 9 10 11 12
Θ(i) 1 16 17 32 33 85 86 101 102 117 118

Regarding T , it is defined as follows. Let us writeK = (K(1),K(2),K(3),K(4)),
where K(i) ∈ GF(2)32. Then

⎛

⎜⎜⎝

T (K)(1)

T (K)(2)

T (K)(3)

T (K)(4)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝

K(1)

K(2)

K(3)

K(4)

⎞

⎟⎟⎠ (15)

We note that T is involutive. Therefore it is easy to derive κi+1 from κi by
applying T followed by a rotation of a given number of bits. We describe such
iterative computation as

{
κ1 = K

κi = T (κi−1) ≫ θ(i) pour i = 2...12
(16)

where θ is

i 2 3 4 5 6 7 8 9 10 11 12
θ(i) 1 15 1 15 1 52 1 15 1 15 1

The round key ki is obtained from κi by extracting the 112 leftmost bits of
κi: if κi = (κi

1, . . . , κ
i
16) (κ

i
j ∈ GF(28)), then ki = (κi

1, . . . , κ
i
14).

Round Key Derivation in Decryption Mode. Given K, the extended key
for decryption κ′1 . . . κ′12 is computed as

{
κ′1 = T (K) ≪ 10

κ′i = T (κ′i−1) ≪ θ′(i) for i = 2...12
(17)

where ≪ j is the left-rotation of j bits, and θ′ is given by the following table:
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i 2 3 4 5 6 7 8 9 10 11 12
θ′(i) 1 15 1 15 1 52 1 15 1 15 1

We remark that once k′1 = T (K) ≪ 10 is computed, the sequences of round
keys in encryption and decryption mode, respectively, only differ by the di-
rection of the rotations (right for encryption, left for decryption). Again, k′i

(i ∈ {1, . . . , 12}) is computed from κ′i (i ∈ {1, . . . , 12}) by considering the 112
leftmost bits.

7.3 Performance Analysis

Our block cipher3 has been implemented (not by the authors, see acknowledg-
ments) on a smart card based on an 8-bit micro-controller, with 4 different mask-
ing levels: without masking, and with maskings of order 1, 2, and 3. This imple-
mentation has been compared with state-to-the-art implementations of (masked)
AES on the same platform. The results are given in Table 2.

Table 2. Implementation results of AES and our algorithm using different masking
orders

Number of Kcycles: ciphering

Version AES Our algorithm

Unprotected 2 26

Masked order 1 129 94

Masked order 2 271 160

Masked order 3 470 253

We remark that AES in its non-masked version is definitely much faster than
the non-masked version of our algorithm. However once we consider masked ver-
sions, our algorithm takes the lead, and the difference between both algorithms
increases with the order of the masking.

8 Conclusion

This article illustrates how pertinent it is to have side-channel resistance in
mind when building a block cipher. To thwart higher order side-channel attacks
we focus on the use of masking schemes, of which the complexity is mainly
impacted by the cost of S-box implementation. We emphasize on a new criteria
for the design of S-boxes and present a construction that shows a good trade-off

3 To be precise, we need to mention that the block cipher implemented is a preliminary
version, which differs from the cipher we described in the compression layer (which
was also a [14, 8]-MDS code but different from the one used in the expansion step).
We believe that this difference in the block cipher design will not significantly change
the performance results given here.
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between efficiency and security. The non-bijectivity of the S-box requires us to
use a Feistel Network. We point out a weakness in the straightforward use of
Feistel Networks when the S-boxes are non-bijective. We propose to circumvent
it by the use of MDS codes to build optimal expansion and compression layers.
As an achievement of our work, a new block cipher is fully specified.
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