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PICH promotes sister chromatid disjunction and
co-operates with topoisomerase II in mitosis
Christian F. Nielsen1, Diana Huttner1,2,w, Anna H. Bizard1, Seiki Hirano3,w, Tian-Neng Li4, Timea Palmai-Pallag3,w,

Victoria A. Bjerregaard1, Ying Liu1, Erich A. Nigg5, Lily Hui-Ching Wang4,5 & Ian D. Hickson1,3

PICH is a SNF2 family DNA translocase that binds to ultra-fine DNA bridges (UFBs) in

mitosis. Numerous roles for PICH have been proposed from protein depletion experiments,

but a consensus has failed to emerge. Here, we report that deletion of PICH in avian cells

causes chromosome structural abnormalities, and hypersensitivity to an inhibitor of

Topoisomerase II (Topo II), ICRF-193. ICRF-193-treated PICH� /� cells undergo sister

chromatid non-disjunction in anaphase, and frequently abort cytokinesis. PICH co-localizes

with Topo IIa on UFBs and at the ribosomal DNA locus, and the timely resolution of both

structures depends on the ATPase activity of PICH. Purified PICH protein strongly stimulates

the catalytic activity of Topo II in vitro. Consistent with this, a human PICH� /� cell line

exhibits chromosome instability and chromosome condensation and decatenation defects

similar to those of ICRF-193-treated cells. We propose that PICH and Topo II cooperate to

prevent chromosome missegregation events in mitosis.
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T
he accurate replication of the genome in S-phase and the
faithful segregation of sister chromatids in mitosis are
key events required for the maintenance of chromosome

stability. During DNA replication, the sister chromatids
become topologically connected because of the combined effect
of protein-mediated cohesion1 and the catenation of the newly
replicated sister DNA duplexes2. Cohesion is removed from
chromosome arms in the mitotic prophase via the action
of WAPL protein and mitotic kinases3. However, centromeric
cohesion is preserved at this stage because of the inhibitory
action of shugoshin 1 and protein phosphatase 2A on the cohesin
protein complex4. This leads to the characteristic appearance
of X-shaped metaphase chromosomes held together only at
their centromeric region. Persistence of centromeric cohesion
is crucial for the development of a stable bipolar attachment of
the kinetochores to spindle microtubules5. This persistent
centromeric cohesion in metaphase has consequences for the
structure of the centromeric DNA in that it leads to preservation
of DNA catenanes at this specific location. These catenanes can
seemingly only be accessed by the mitotic DNA decatenase,
topoisomerase II (Topo II), at the metaphase-to-anaphase
transition when the centromeric cohesin ring complex is
cleaved by separase6. Topo II is a double-stranded DNA
(dsDNA)-specific decatenase, implying that the majority of the
catenanes that persist from S-phase into mitosis at centromeres
define fully replicated DNA (reviewed in ref. 7).

A failure to resolve catenanes in a timely fashion can lead to the
formation of anaphase DNA bridges. These can be either ‘bulky’
chromatinized bridges that can be stained with 4,6-diamidino-2-
phenylindole (DAPI) or ultra-fine anaphase bridges (UFBs) that
are nucleosome-free and DAPI-negative8,9. The vast majority of
UFBs that arise spontaneously originate from centromeres
(denoted as C-UFBs)8,9. The frequency of C-UFBs is greatly
enhanced following exposure of cells to the Topo II inhibitor,
ICRF-193, consistent with a role for Topo II in resolving DNA
catenations that underlie UFB formation9–11. C-UFBs can be
distinguished from the fragile site-associated UFBs (FS-UFBs)
that form on chromosome arms in response to DNA replication
stress, in that FS-UFBs are revealed by the presence of twin
FANCD2 protein foci in early mitosis10. FS-UFBs most likely
represent regions of the genome that are not fully replicated at
the time of mitotic entry. Once formed, FS-UFBs and C-UFBs
can be visualized by immunofluorescence using antibodies
specific for the PICH protein8,9. PICH is an SNF2 family
member that possesses dsDNA translocase activity. PICH also has
the unusual property of acting as a form of DNA ‘tension sensor’,
in that it binds more efficiently in vitro to dsDNA that is
exposed to stretching forces12. This has been proposed to explain
why PICH decorates UFBs along their entire length irrespective
of the stage of anaphase, as UFBs tethered at each end to the
separating sister chromatids would be expected to be under
tension because of forces exerted by the mitotic spindle12.

A number of studies have sought to identify the effects of
disrupting PICH function on chromosome structure and stability.
Using RNA interference in human cells, several groups
have reported phenotypic abnormalities including mitotic
checkpoint failure8, disruption of chromosomal architecture in
prometaphase13–15 and increased chromosome missegregation in
anaphase13,14,16,17. However, the mitotic checkpoint phenotype
has been demonstrated to reflect an off-target effect of the short
interfering RNAs used18, whereas other phenotypes were found
in some, but not in other, studies. Moreover, it is not clear
whether the nature and frequency of UFBs are affected in any way
by the abrogation of PICH function, because depletion of PICH
causes loss of most protein markers that normally allow UFBs to
be visualized using immunofluorescence, such as the Bloom’s

syndrome protein, BLM9. However, recent data19,20 indicate that
TOPBP1 localization defines a subset of UFBs that can be
visualized in the absence of PICH.

To circumvent these problems, in this study we have generated
a vertebrate cell line with complete loss of PICH function via
targeted inactivation of the PICH gene in avian DT40 cells.
We show that these PICH� /� cells exhibit a number of mitotic
defects that are exacerbated by the inhibition of Topo II. In
addition, we show that PICH and Topo II co-localize on
UFBs and at the rDNA locus in mitosis. To complement these
studies, we have also generated a PICH� /� human cell line,
which displays defects in sister chromatid disjunction. These
data, coupled with the finding that PICH strongly stimulates
the catalytic activity of Topo II in vitro, lead us to propose a
model in which PICH and Topo II functionally cooperate in
mitosis to ensure faithful chromosome segregation, and to
prevent chromosome non-disjunction and polyploidization.

Results
Generation of chicken DT40 PICH

� /� cell lines. We identified
the Gallus gallus PICH gene through database searches as an open
reading frame located on chicken chromosome 4. The PICH
gene encodes a protein of 1,280 amino acids with a calculated
molecular mass of 144 kDa. Alignment of the predicted chicken
and human PICH (hPICH) protein sequences revealed strong
similarity (58.2% overall), including the conservation of the
ATPase domain, the so-called PICH family domain8 and the
two tetratricopeptide repeat motifs (Fig. 1a). We generated two
independent PICH� /� DT40 cell lines by targeted inactivation
of both PICH alleles, as described in the Methods section and
Fig. 1b. We verified that gene targeting was successful by a
combination of Southern blotting, PCR analysis and western
blotting using an anti-PICH antibody that recognizes both
human and avian PICH (Figs 1c,e and 2a,b).

Chromosomal instability of PICH� /� cells. The PICH� /� cell
lines exhibited a mild, but consistent, proliferation defect with an
average doubling time B25% longer than that of parental cells
(Fig. 2c). This phenotype was associated with a modest
extension of cell cycle transit time (Fig. 2d/e), combined with an
approximately two-fold increase in the frequency of cell death
(Fig. 2f/g). The colony-forming ability of the PICH� /� cells was
also reduced, as compared with that of the parental cells (Fig. 2h).

Because PICH knockdown in human cells increases the
occurrence of chromosomal abnormalities, such as chromatin
bridges and micronuclei13,14,16,17, we analysed whether PICH-
deficient DT40 cells displayed an altered frequency of spontaneous
chromosomal abnormalities. For this, we analysed four widely
studied markers of chromosomal instability (Fig. 3a–d and
Supplementary Fig. 1a/b). We observed that the PICH� /� cells
had a significantly elevated frequency of (i) micronucleus
formation, (ii) chromatin bridging (bridges that are both
histone- and DAPI-positive in anaphase), (iii) binucleation (cells
with two decondensed daughter nuclei in the same plasma
membrane21) and (iv) polyploidy. In all cases, the PICH� /�

phenotypes were completely or partially corrected by ectopic
expression of hPICH.

Treatment of human cells with ICRF-193, a catalytic inhibitor
of Topo II, increases the number of PICH-positive UFBs10,11.
However, the survival of PICH-deficient cells in response to
cytotoxic agents has not been directly analysed previously. Hence,
we compared the sensitivity of parental versus PICH� /� chicken
DT40 cells to a variety of cytotoxic agents using clonogenic
survival assays. The PICH� /� cells showed the same level of
sensitivity as parental cells to the DNA-damaging agents cisplatin,
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methyl methane-sulfonate and mitomycin C (Supplementary
Fig. 1c,e). However, the PICH� /� cells showed mild sensitivity
to camptothecin and aphidicolin (o1.5-fold in each case, based
on the dose required to kill 90% of cells; Fig. 3e/f), and a more
striking sensitivity to ICRF-193 (4.7-fold; Fig. 3g and
Supplementary Fig. 1f). The increased sensitivity of PICH� /�

cells to these agents was confirmed to be due to the absence of
PICH, as these phenotypes were corrected by ectopic expression
of hPICH (Fig. 3e/g). Although ICRF-193 predominantly exerts
its cytotoxic effects in mitosis, the sensitivity of PICH� /� cells to
this agent does not appear to reflect a general mitotic defect. In
support of this proposal, the PICH� /� cells did not show
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Figure 1 | Generation and validation of PICH� /� cells. (a) Conservation of the chicken and human PICH proteins. The defined domains, designated
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hypersensitivity to microtubule-disrupting agents such as
nocodazole and paclitaxel (Supplementary Fig. 1g/h), indicating
that the spindle assembly checkpoint is not compromized by loss
of PICH.

ICRF-193 causes mitotic defects in PICH
� /� cells. To further

examine the causes of ICRF-193-induced lethality in PICH� /�

cells, we examined the consequences of treating PICH� /� cells
with ICRF-193 specifically during mitosis. To achieve this, we
synchronized cells with nocodazole in prometaphase and then
released them from this arrest into medium containing a low
dose (0.1 mM) of ICRF-193. We then followed the progression of
the cells through the remainder of mitosis and into the next
interphase over a period of 6 h. DAPI staining of mitotic nuclei
and immunofluorescent staining for b-tubulin revealed that both

the PICH� /� and the hPICH-complemented cells progressed
normally into metaphase, but then the PICH� /� cells exhibited
an abnormal anaphase DNA morphology suggestive of
defective sister chromatid segregation (Supplementary Fig. 2a).
For example, after 2 h, when 490% of the hPICH-complemented
cells had progressed into G1-phase of the next cell cycle, B25%
of the PICH� /� cells exhibited a binucleated morphology
(Supplementary Fig. 2a and Fig. 4a). Live-cell imaging of
PICH� /� cells stably expressing green fluorescent protein
(GFP)-tagged histone H2B revealed that some, but not all, of the
PICH� /� anaphase cells contained a bulky chromatin bridge
before becoming binucleated (Fig. 4b and Supplementary
Movie 1). The remaining cells that were destined to become
binucleated appeared to undergo a normal anaphase. However,
as discussed further below, these cells harbour unresolved UFBs
that are undetectable under these experimental conditions.
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Figure 2 | Characterization of PICH knockout and rescue cells. (a) Western blot of whole-cell extracts from wild type, PICHþ /� and two PICH� /�

clones probed with a PICH-specific antibody. Purified recombinant human PICH (rPICH) is shown as control. b-Tubulin was used as a loading control.

(b) Western blot of whole-cell extracts from PICH� /� cells stably transfected with human PICH fused to mCherry (hPICH-mCherry), or a catalytically

dead human PICH (hPICH-K128A-Cherry). b-Tubulin was used as a loading control. (c) Doubling time of the indicated cell lines during exponential growth.

(d) Cell cycle distribution of asynchronously growing cells of the indicated genotypes analysed by PI-FACS/DNA content. (e) FACS distribution of

asynchronously growing cells in mitosis and late S/G2, determined by immunofluorescent staining of cells with the MPM-2 antibody (a mitotic marker)

combined with PI staining of DNA. (f) Spontaneous cell death of cells of the indicated genotypes was analysed by quantifying the PI FACS/DNA sub-G1

content. (g) Examples of scored FACS profiles in d and f. (h) Colony survival of the indicated cell lines in methylcellulose media. (c–f and h) Each data point

is an average of at least three independent experiments±s.d. Significance levels were determined using the Student’s t-test for parametric observations

and are indicated as *Po0.05, **Po0.01 and ***Po0.001.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9962

4 NATURE COMMUNICATIONS | 6:8962 |DOI: 10.1038/ncomms9962 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Flow cytometry traces for the ICRF-193-treated PICH� /�

cells (Fig. 4c and Supplementary Fig. 2b) revealed a pronounced
peak of cells with a 4N DNA content after 2–3 h of treatment,
suggestive of an apparent failure of the PICH� /� cells to
properly exit mitosis in the presence of ICRF-193. However,
microscopic analysis revealed that this 4N population largely
consisted of cells that had progressed into a subsequent G1 phase
in a binucleated state (Fig. 4a). ICRF-193-treated PICH� /� cells
also exhibited a striking increase in the frequency of polyploid
cells after 6 h of treatment (34%, as compared with 3% for

parental cells and 9% for hPICH-complemented cells; Fig. 4c)
suggesting that many of the binucleated cells entered the next
S-phase and underwent re-replication. Consistent with this
interpretation, when the ICRF-193-treated PICH� /� cells were
followed through a second S phase, a G2/M peak indicative of a
tetraploid population (with an 8n DNA content) was observed
(Supplementary Fig. 2c). Quantification of the frequency of ICRF-
193-induced binucleation and polyploidization revealed that the
PICH� /� cells exhibited an approximately five-fold elevated
frequency of both binucleated and polyploid progeny (Fig. 4d/e).
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These data define a hypersensitivity of PICH� /� cells to
ICRF-193-induced mitotic defects. The concentration of
ICRF-193 had to be increased ten-fold (to 1mM; Supplementary
Fig. 2d) in order to generate levels of polyploidization above
background in parental cells. Moreover, PICH� /� cells released
from nocodazole arrest into drug-free medium did not show
evidence of a significant level of binucleation/polyploidization
(Supplementary Fig. 2e and Fig. 4d,e), indicating that ICRF-193
treatment strongly induces these phenotypes. Taken together,
we propose that PICH-deficient cells are highly sensitive to
inhibition of Topo II in mitosis, and that Topo II function is
crucial for the prevention of binucleation and polyploidization in
DT40 cells. Exposure of PICH-deficient cells to aphidicolin or

camptothecin in interphase to induce replication stress and DNA
damage did not increase the frequency of polyploidization above
that of untreated controls (Supplementary Fig. 3a,b), suggesting
that the induction of polyploidization in ICRF-193-treated
PICH� /� cells specifically arises as a consequence of defective
DNA decatenation in mitosis.

The PICH ATPase is required for efficient UFB resolution.
Previous studies have indicated that ectopic expression of
ATPase-dead PICH is unable to prevent the excessive
chromatin bridge formation associated with depletion of PICH
from human cells17. To investigate further the functional role of
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Figure 4 | Mild Topo II inhibition causes PICH� /� cells to abort mitosis. (a–e) Cells of the indicated genotypes were released from a nocodazole-

induced prometaphase arrest into the latter stages of mitosis in medium containing 0.1 mM ICRF-193. (a) Quantification of mitotic progression into

interphase or binucleation determined by immunofluorescent staining of b-tubulin combined with DAPI staining of DNA. (b) PICH� /� cells stably

expressing H2B-GFP were followed by time-lapse live cell microscopy. Representative images of cells becoming binucleated are shown. Red arrows denote

chromatin bridges in mitosis and white arrows binucleated cells. Scale bars, 5 mm. The corresponding time-lapse movie is supplied as Supplementary

Movie 1. (c) PI-FACS profiles of the indicated cell lines at different time points after release from a nocodazole arrest into medium containing ICRF-193.

(d) Quantification of binucleation by fluorescence and phase contrast microscopy of the indicated cell lines stained with DAPI 6 h after release from

nocodazole arrest. (e) Quantification of polyploidy by PI-FACS in the indicated cell lines 6 h after release from a nocodazole arrest. Polyploidy was

quantified as shown in Supplementary Fig. 1a,b. (d–e) Each data point is an average of at least three independent experiments ±s.d. Significance levels

were determined using the Student’s t-test for parametric observations, and are indicated as *Po0.05, **Po0.01 and ***Po0.001.
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the PICH ATPase activity, we compared the phenotypes of
PICH� /� cells stably expressing either mCherry-tagged
hPICH or hPICH-K128A, which contains a mutation in the
Walker A box that is known to abolish ATP-hydrolysis12.
Consistent with an important role for PICH ATPase activity in
mitosis, we observed that the hypersensitivity of the PICH� /�

cells to ICRF-193 was rescued by expression of hPICH, but
not hPICH-K128A (Fig. 5a). We therefore investigated the

localization of the hPICH and hPICH-K128A proteins in
mitosis using live-cell imaging. We observed that both hPICH
and hPICH-K128A localized to UFBs in DT40 cells, indicating
that PICH ATPase activity is not required to establish the
presence of PICH on UFBs (Fig. 5b). These data also indicate
that UFBs cannot be generated from chromatin bridges via
the removal of histones by the ATP-driven translocase activity
of PICH.

H2BPICH Merge

PICH–/–

+hPICH-K128A

-Cherry

+H2B-GFP

PICH–/–

+hPICH-Cherry

+H2B-GFP

P = 0.05
chPICH –/– +hPICH

chPICH –/– 1 +hPICH-K128A

**

**

c

ba

% cells with spontaneous UFBs

d
PICH–/–+H2B-GFP +hPICH-K128A-mCherry

Cells +0.1 μM ICRF-193

0 Min 5 Min 10 Min

15 Min 25 Min 35 Min

**

**

P =0.09

Spontaneous UFBs per cell

PICH–/–

+hPICH-K128A

–Cherry

+H2B-GFP

Binucleated PICH–/–+H2B-GFP +hPICH-

K128A-mCherry cells +0.1μM ICRF-193

e

**

ICRF-193

100

2.00

1.50

1.00

0.50

0.00

75

50

25

0

100

0.1

1.0

10.0

100.0

0.25

ICRF-193 (μM)

0.500.00

75

50

25

0

Late UFBs

%
 B

in
u
c
le

a
te

d
 c

e
lls

U
F

B
s
 p

e
r 

c
e
ll

C
e
ll 

(%
)

R
e

la
ti
v
e

 c
o

lo
n

y
 s

u
rv

iv
a

l

(%
 o

f 
u

n
tr

e
a

te
d

)

Chromatin

bridges

Telophase

UFBs

Telophase

UFBs
Late anaphase

UFBs

Late anaphase

UFBs
Early anaphase

UFBs

Anaphase

UFBs

chPICH –/– +hPICH

chPICH –/– 1 +hPICH-K128A

chPICH –/– 1 +hPICH

chPICH –/– 1

chPICH –/– 1 +hPICH K128A 1

chPICH –/– 1 +hPICH K128A 2

Figure 5 | PICH� /� cells expressing ATPase-dead PICH have defective UFB resolution. (a) Clonogenic survival assay. Cells of the indicated genotypes

were treated with ICRF-193. Each data point is the average of at least three independent experiments performed in triplicate±s.d. (b) Cells were arrested

in prometaphase with nocodazole and released. Arrows denote UFBs. Scale bars, 5 mm UFBs were visualized by Z-stacked, time-lapse live cell microscopy

of PICH� /�
þH2B-GFP (green) cells stably expressing either hPICH-mCherry (red) or hPICH-K128A-mCherry (red). (c) Quantification of the percentage

of cells harbouring UFBs (left) and the number of UFBs per cell (right) in early anaphase, late anaphase and telophase cells. An example of a telophase UFB

is shown (far right). Each data point is an average of at least three independent experiments±s.d. Significance levels were determined using the Student’s

t-test for parametric observations, and are indicated as *Po0.05, **Po0.01 and ***Po0.001. (d) PICH� /� cells stably expressing H2B-GFP (green) and

hPICH-K128-mCherry (red) were followed by time-lapse live cell microscopy after release from nocodazole arrest into medium containing 0.1 mM ICRF-193.

White arrows denote UFBs during mitosis or binucleation. Scale bar, 5 mm. Representative images of a cell becoming binucleated are shown. The

corresponding time-lapse movie is supplied as Supplementary Movie 2. (e) Quantification of chromatin bridges and UFBs in the mitosis of cells that

become binucleated. Each data point is an average of at least three independent experiments±s.d. Significance levels were determined using the Student’s

t-test for parametric observations, and are indicated as *Po0.05, **Po0.01 and ***Po0.001.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9962 ARTICLE

NATURE COMMUNICATIONS | 6:8962 | DOI: 10.1038/ncomms9962 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


Next, we quantified the frequency of spontaneous UFBs in the
PICH� /� cells expressing either hPICH or ATPase-dead hPICH.
In early anaphase, the percentage of cells displaying UFBs was
only marginally higher in those PICH� /� cells expressing
hPICH-K128A (79%), as compared with those expressing hPICH
(63%). However, a more pronounced difference was apparent in
late anaphase and telophase cells, as cells expressing ATPase-dead
hPICH exhibited a strikingly higher overall frequency of UFBs
(Fig. 5c). Based on these data, we propose that the ATPase activity
of PICH is not required to suppress UFB formation, but it is
required for the efficient resolution of UFBs during anaphase and
telophase. This observation clarifies some of the uncertainty in
previous reports regarding the roles of the PICH ATPase
activity11. We confirmed that the persistent UFBs present in
cells expressing hPICH-K128A protein displayed foci for the
kinetochore-associated CENPA protein at their termini
(Supplementary Fig. 3c). Interestingly, the persistence of UFBs
in cells expressing ATPase-dead hPICH did not affect the overall
timing of progression from prometaphase to telophase, as cells
expressing either hPICH or hPICH-K128A showed similar rates
of mitotic progression (Supplementary Fig. 3d). Expression of
hPICH-K128A in the PICH� /� cells also did not rescue the
extended doubling time (Supplementary Fig. 3e), increased
chromatin bridges (Supplementary Fig. 3f) or binucleation
phenotypes of PICH� /� cells (Supplementary Fig. 3g),
suggesting that the ATPase activity of PICH is important for
promoting chromatid disjunction in mitosis.

UFBs can cause cytokinesis failure and polyploidization. Next,
we sought to investigate the effects of unresolved UFBs on the
latter stages of mitosis. Using live imaging of PICH� /� cells
expressing hPICH-K128A-mCherry, we investigated whether
unresolved UFBs in telophase might lead to binucleation and/or
cytokinesis failure. This was undertaken because, as discussed
above, only a proportion of the PICH� /� cells that became
binucleated contained a bulky chromatin bridge in anaphase
(Fig. 4). To analyse this, we followed the progression of cells from
the point of release from a nocodazole arrest into medium
containing 0.1 mM ICRF-193 (Fig. 5d and Supplementary
Movie 2). We observed that B60% of the anaphases that
subsequently generated binucleated cells contained a chromatin
bridge (Fig. 5e). In contrast, the vast majority (490%) of these
cells displayed at least one UFB that persisted into telophase,
before cytokinesis was aborted and the cells became binucleated.
This observation, in conjunction with the data shown in Fig. 4,
argue that unresolved UFBs can also trigger cytokinesis failure,
binucleation and polyploidy. This is the first demonstration
of a pathological consequence of a failure to specifically resolve
UFBs in late mitosis, as all previous studies have been unable to
distinguish between the effects of an elevated number of UFBs
versus a delay in their resolution.

PICH bodies form at decondensed rDNA in mitosis. Consistent
with previous findings in human cells8,9, PICH and PICH-K128A
were retained in the cytoplasm during interphase in chicken cells
and only gained access to chromatin in mitosis (Fig. 6a). During
immunofluorescence and live-cell imaging analysis of these
mitotic cells, we observed that, in addition to its expected
localization to UFBs, PICH was also detectable on another
prominent sub-nuclear structure (Fig. 6a and Supplementary
Figs 3d and 4a,b). This pattern was detected consistently in
wild-type cells (Supplementary Fig. 4a), as well as in cells
expressing hPICH-mCherry protein (Fig. 6a). This suggested that
these large foci, which we have termed ‘PICH bodies’, comprise
bona fide physiological structures. The PICH bodies were always

detected within non-condensed regions of DNA, and did not
co-localize with H2B-GFP, DAPI, Hoechst 33342 or CENPA
staining (Figs 6a and 7a and Supplementary Fig. 4a,b). Therefore,
PICH bodies do not appear to define any form of condensed
DNA, despite being associated with the DNA masses in mitosis.
Time-lapse live-cell microscopy of PICH� /� cells expressing
H2B-GFP together with either hPICH-mCherry or hPICH-
K128A-mCherry revealed that hPICH bodies gradually disappear
during progression through mitosis (Fig. 6b). The ATPase-dead
PICH similarly formed PICH bodies, but in this case they
persisted for a longer period, often until the early G1 phase of the
next cell cycle (Fig. 6b/c). Moreover, the frequency of
PICH bodies was increased in cells expressing ATPase-dead
PICH (Fig. 6b). We also observed that the number of PICH
bodies increased during the period from metaphase through
anaphase, as expected of a structure associated with the nuclear
genome, and then segregated evenly in anaphase to the two
daughter masses (Fig. 6b and Supplementary Fig. 4c).

Because the PICH bodies containing hPICH-K128A often
persisted until the cells entered the next G1 phase
(Supplementary Movie 3), and localized to regions in the nucleus
that were noticeably less histone H2B-dense (Fig. 6c), it seemed
likely that these hPICH-K128A bodies would define the location
of newly formed nucleoli22. To test this hypothesis, we analysed
whether PICH co-localizes with the rDNA transcription factor,
UBF, which has been demonstrated previously to localize to the
rDNA promoters in mitosis and interphase10,23. We observed
that PICH bodies always co-localized with UBF in mitotic cells
(Fig. 6d). Moreover, the persistent hPICH-K128A bodies evident
in early G1 cells co-localize with UBF, indicating that they
were coincident with nucleoli and rDNA (Fig. 6e). Next, we
investigated whether PICH bodies are also observed in human
cells. We observed that PICH and UBF proteins co-localized on
human metaphase chromosomes spreads (Fig. 6f). In this case, we
could also distinguish the rDNA-associated UBF/PICH foci from
the centromeric PICH foci detectable on the same chromosomes,
eliminating the possibility that the PICH-UBF co-localization
could be due simply to the close proximity of centromeres and
rDNA loci on acrocentric human chromosomes. Moreover, we
observed that UBF foci did not generally co-localize with
DAPI-stained DNA, unlike centromeric PICH foci (Fig. 6d/f,
Supplementary Fig. 4d8,10). We note, however, that PICH did not
co-localize with all UBF foci, suggesting that PICH may associate
with rDNA loci in a transient manner. This proposal is consistent
with the finding that PICH bodies observed in DT40 cells
expressing hPICH gradually disappeared during or soon after
anaphase (Fig. 6b).

PICH and Topo IIa co-localize at PICH bodies and UFBs.
Given that the phenotype of PICH-deficient cells resembles that
of cells defective in Topo II function, we examined if PICH might
modulate Topo II-mediated sister chromatid decatenation. To
achieve this, we first integrated sequences encoding a GFP tag at
the endogenous TOP2A locus in the different PICH� /� cell
lines. The expression of GFP-tagged Topo IIa was confirmed by
immunoblotting for GFP and Topo IIa (Supplementary Fig. 5a).
As expected, Topo IIa-GFP was distributed widely on chromatin,
but was enriched in PICH bodies (marking rDNA; as defined by
UBF staining) from prometaphase to telophase (Fig. 7a,b and
Supplementary Fig. 5b). Topo IIa also co-localized with PICH on
UFBs, although its distribution along the bridges was often less
homogeneous (Fig. 7c). To extend this observation, we performed
time-lapse microscopy in the absence of DNA staining.
We observed that Topo IIa was detectable on PICH-positive
DNA bridges, and that both proteins disappeared simultaneously
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from these bridges during anaphase (Supplementary Fig. 5c).
A similar association on DNA bridges was also observed in cells
expressing ATPase-dead PICH (Supplementary Fig. 5c), although
in this case dissociation of Topo IIa was often seen to precede
that of PICH.

Abnormal chromosome structure in PICH-deficient human cells.
To strengthen and extend the proposal that PICH co-operates
with Topo IIa in effecting sister chromatid decatenation, we

generated a PICH-deficient human cell line (derived from HeLa
cells) using CRISPR-Cas9-mediated gene disruption (Methods).
We observed that the PICH-deficient human cells showed a
similar spectrum of chromosome instability in mitosis as is seen
in PICH� /� DT40 cells, including micro- and bi-nucleation
(Supplementary Fig. 6). However, the primary reason for
generating a PICH� /� human cell was to permit a more robust
analysis of metaphase chromosome structure, which is technically
easier with human than with chicken chromosomes. An
established consequence of Topo IIa inhibition by ICRF-193 is
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the failure of the chromosomes in metaphase to adopt the normal
hyper-condensed, X-shaped morphology. Instead, metaphases
from ICRF-193-treated cells show an excess of under-condensed
chromosomes that do not appear to have undergone complete
arm decatenation (giving a ‘closed-arm’ appearance; Fig. 8). We
observed that metaphases from the PICH knockout human cells
contained a significantly higher frequency of chromosomes with
an undercondensed, closed-arm appearance than did the control
metaphases (Fig. 8). This abnormality was partially suppressed by
ectopic expression of the wild-type PICH protein, but not the
PICH-K128A protein (Fig. 8). We conclude, therefore, that
PICH-deficient human cells generate metaphase chromosomes
with an appearance similar to that of ICRF-193-treated normal
cells, consistent with a defect in sister chromatid condensation
and decatenation before anaphase.

PICH stimulates Topo IIa catalytic activity in vitro. Thus far,
our data indicate that PICH deficiency partially ‘phenocopies’

inhibition of Topo II decatenation activity, suggesting that PICH
might regulate Topo II activity in vivo. A trivial explanation for
the effects reported here could be that the PICH� /� cells express
lower levels of Topo IIa. However, western blotting of mitotic cell
extracts revealed that all of the cell lines examined in this study
expressed similar levels of Topo IIa (Fig. 9a and Supplementary
Fig 7a). We therefore investigated whether PICH might function
as a co-factor for Topo IIa. To do this, we analysed whether
recombinant PICH protein could influence the decatenation
activity of Topo IIa in vitro. Topo IIa activity is generally assayed
using kinetoplast DNA as a substrate, but this assay is only semi-
quantitative because the kinetoplast DNA comprises multiple
interlocked monomer rings that are retained in the wells of the
gels, and cannot be released as free monomers until several
independent decatenation steps have been undertaken. To
develop a more quantitative assay for Topo II, we used the Tn3
site-specific recombinase to generate a single catenane substrate
that comprises two interlocked plasmids that can be distinguished
from each other by their size (Supplementary Fig. 7b,c and
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Methods). Using this substrate, we observed that PICH was able
to strongly stimulate Topo IIa-mediated decatenation in both a
Topo IIa concentration gradient (Fig. 9b/c) and a time course
(Fig. 9d/e). Surprisingly, ATPase-dead PICH also stimulated
Topo IIa activity to the same extent as PICH (Fig. 9f). This was
seen with multiple preparations of PICH/PICH-K128A proteins
that were purified with or without a GFP tag. The stimulation by
PICH was particularly striking in assays where low concentration
of Topo IIa was utilized, but was significant at all Topo IIa
concentrations analysed (Fig. 9c). Importantly, heat inactivation
of any of the PICH preparations resulted in a failure to stimulate
Topo IIa. To analyse whether this stimulation was specific for the
decatenation activity of Topo IIa, or rather was a reflection of a
general stimulation of catalytic activity, we assessed whether
PICH could stimulate the relaxation of negatively supercoiled
plasmid DNA by Topo IIa. We observed that both PICH and
PICH-K128A were also able to stimulate the plasmid relaxation
activity of Topo IIa (Supplementary Fig. 7d). When this assay
was performed in the presence of an excess of either Topo IIa or
Wheat Germ Topoisomerase I, the degree of supercoiling reached
at the end of the reaction was not affected by the presence of
PICH, indicating that PICH binding to DNA per se does not

influence substrate topology (Supplementary Fig. 7e). We
conclude, therefore, that PICH can directly stimulate Topo IIa
catalytic activity.

Discussion
The process of mitosis is probably the most vulnerable stage of
the cell division cycle because chromosomes can be damaged, lost
or unevenly segregated between the two daughter cells. Through
analysis of chicken cells lacking the PICH protein, we have
provided evidence that PICH and Topo IIa functionally
cooperate in order to preserve chromosomal integrity during
mitosis. Through the complementation of PICH� /� DT40 cells
with fluorescently tagged hPICH proteins, we were also able to
visualize the behaviour of PICH and PICH-K128A during mitosis
in vivo. As reported previously in human cells, we observed that
PICH is excluded from the nucleus during interphase in DT40
cells and associates with centromeres in prometaphase, and DNA
bridges connecting the separating sister chromatids in ana-
phase8,9. Interestingly, during our analyses, we also observed a
novel type of sub-nuclear structure that we called PICH bodies. In
cells expressing ATPase-dead PICH, these PICH bodies persisted
through mitosis, and appeared inside newly formed nucleoli in
G1 cells. Although these large PICH bodies are not so evidently
detectable in human cells, we demonstrated that PICH co-
localizes with a subset of UBF foci that mark rDNA loci in
mitosis10,23 in human lymphocytes. We propose, therefore, that
PICH has a hitherto unreported association with the rDNA loci
in both chicken and human cells, suggesting an evolutionarily
conserved role for PICH in the maintenance of rDNA stability.
The difference in specific PICH-rDNA localization patterns
between species can most likely be reconciled by the fact that the
multiple rDNA units are dispersed on the short arm of the five
acrocentric chromosomes in humans24, whereas the rDNA is
present in a single gene cluster on chromosome 16 in chickens25.
This also explains the larger size of the PICH bodies in chicken
cells. The rDNA localization of PICH in human cells may also
have been overlooked previously due to the close proximity of the
rDNA and centromeres on the acrocentric chromosomes.
Importantly, however, we could distinguish between PICH-UBF
rDNA foci and centromeric PICH foci on the same chromosome,
verifying that these are two distinct classes of PICH-associated
loci. Furthermore, unlike centromeres, the PICH bodies in DT40
cells, and the PICH-UBF foci in human lymphocytes, are DAPI
negative. Our observations are consistent therefore with previous
observations that rDNA units are organized into decondensed
nucleolar organizer regions during mitosis26.

Consistent with a functional interaction between PICH and
Topo II, we also observed that Topo IIa co-localizes with PICH
on UFBs and in PICH bodies. Based on the co-localization to
PICH bodies, it is possible that PICH assists Topo IIa in the
resolution of rDNA catenanes during anaphase. Indeed, in
budding yeast, the rDNA array is decondensed and remains
catenated until activation of the Cdc14 phosphatase by Separase
at the metaphase-to-anaphase transition27. Top2 is also present
on anaphase bridges in yeast19. Because UFBs have been
proposed to contain catenated DNA, we consider it plausible
that PICH stimulates Topo II to promote UFB resolution during
mitosis.

We observed that PICH ATPase activity was required for
normal UFB resolution and for the timely disappearance of PICH
from PICH bodies. In PICH� /� cells expressing ATPase-dead
PICH, co-localization of the PICH-K128A and Topo II proteins
to UFBs and PICH bodies was still detectable. However, unlike
PICH-K128A, Topo II was not retained on unresolved UFBs that
were detectable in telophase cells. Therefore, one possible role of
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PICH ATPase activity is to promote the retention of Topo II on
those UFBs that persist into the later stages of mitosis.
Interestingly, when PICH-K128A-expressing cells were treated
in mitosis with ICRF-193, 35–40% of the cells abandoned
cytokinesis to become binucleated. In 490% of these cells, a
persistent UFB was present. These findings suggest that UFBs,
like chromatin bridges and chromatin persisting in the mid-
zone28, can trigger cleavage furrow regression, leading to
binucleation and subsequent aneuploidy (reviewed in ref. 29).
This observation argues that a defect in UFB resolution per se can
directly cause chromosome segregation defects, and that these
defects are unlikely to require any specific functions of histones
on bridge DNA because UFBs are nucleosome free.

One unexpected finding, given that the ATPase activity of
PICH is crucial for enzyme function in vivo, was the
demonstration that ATPase-dead PICH effectively stimulated
Topo II activity in vitro. There are several potential explanations
for this. First, catenanes in vivo are likely to be far more complex
topologically than the model single catenane substrate that we
analysed in vitro. Second, the precursor DNA for UFBs is
associated with nucleosomes in vivo, and it is possible that the
ATPase function of PICH facilitates DNA decatenation prior to
anaphase in the context of chromatin. Third, the substrate used
in vitro can never fully recapitulate a catenated DNA structure
that would be present in mitosis, in that it is not subjected to
stretching forces. It will, therefore, be interesting to determine
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whether PICH ATPase activity is required for Topo II to
efficiently decatenate stretched DNA molecules. In this regard,
each step in the elaborate catalytic cycle of Topo II (DNA strand
capture, cleavage, passage and re-ligation) could be influenced by
the presence of tension on the catenanes. Finally, as discussed
above, the PICH ATPase activity might be required to retain
Topo II on those UFBs that persist into late anaphase or
telophase.

In summary, we propose that PICH serves at least four
important roles in promoting faithful chromosome segregation:
(i) A sensor of stretched bridge DNA for rapid detection of UFBs
as soon as anaphase is initiated. (ii) A stimulatory factor for the
decatenation of UFBs by Topo IIa. (iii) A recruitment platform
for other DNA repair factors, such as BLM and Topoisomerase
III, which are perhaps able to process UFBs that are refractory to
Topo IIa action. (iv) A stimulatory factor for the decatenation of
rDNA by Topo IIa. A model depicting the cellular roles of PICH
in eukaryotic cells is shown in Fig. 10. Future studies should aim
to investigate the specific role of the PICH ATPase activity, and
the consequences of PICH deficiency on rDNA stability and
ribosomal biogenesis.

Methods
Cell culture and colony formation assays. Chicken DT-40 Cre1 B cell lymphoma
cells were kindly supplied by Dr Minoru Takata (Kyoto, Japan) and were grown at
39.5 �C in RPMI-1640 GlutaMAX medium supplied with 10% fetal bovine serum,
2% chicken serum, penicillin/streptomycin (all from Gibco/Life sciences) and
50mM 2-mercaptoethanol (Sigma). Human lymphocytes transformed with
Epstein–Barr virus (GM06865, Cornell Institute) were grown in RPMI-1640
GlutaMAX medium supplemented with 15% fetal bovine serum and penicillin/
streptomycin. Cytotoxic drugs used in the colony formation assays were from

Sigma. Synchrony in prometaphase was achieved by treating cells with
0.05 mgml� 1 Nocodazole (Sigma) for 6.5 h. For live-cell imaging, cells were treated
with 0.05 mgml� 1 Nocodazole for 5 h before release. For colony formation assays,
single cells were seeded in DMEM F12 with L-glutamine (Gibco) supplemented
with 10% FBS, 2% CS, 50mM 2-mercaptoethanol, penicillin/streptomycin and 1.1%
methylcellulose (Sigma), together with the indicated concentrations of the various
drugs. Cells were grown for 8–10 days before colonies were counted.

Construction of PICH targeting vectors. The sequence of the chicken PICH gene
was obtained from the NCBI website. Genomic DNA from DT40 cells was isolated
using extraction buffer (100mM Tris-HCl, pH 7.5, 20mM EDTA, 150mM NaCl,
1% SDS and 200 mgml� 1 proteinase K) followed by Phenol–Chloroform extrac-
tion. The 50 arm of the targeting vectors was amplified with SH-chPICH-10 and
SH-chPICH-33 from DT-40 genomic DNA using a LA-PCR set (Takara). The 30

arm was amplified with SH-chPICH-7 and SH-chPICH-8 using PrimeStarTM
(Takara). PCR fragments were cloned into pBluescriptKS(þ ) and digested with
NotI and EcoRI for the 50 arm, and with BamHI and SacI for the 30 arm. Bsr- or
Puro-resistant cassettes were excised with EcoRI and BamHI from cloning vectors.
Homology arm fragments and either Bsr or Puro fragments were ligated with T4
DNA ligase (NEB) and cloned into the pBluescript vector.

Establishment of PICH knockout cell lines. Thirty micrograms of the targeting
vectors were linearized with AhdI, precipitated with ethanol and then dissolved in
50 ml of PBS. The vectors were then electroporated into 1� 106 DT40Cre1 cells
using a Bio-Rad electroporator set at 25 mF and 550V. After overnight incubation
in growth medium, cells were plated on 96-well plates and transfectants were
selected using 25mgml� 1 Blasticidin (first allele; Sigma) or 0.5 mgml� 1

Puromycin (second allele; Sigma) at 37 �C for 10–14 days. Selected clones were
further incubated in six-well plates. Genomic DNA was extracted with DNA
extraction buffer and phenol–chloroform extraction. DNAs were digested with
BamHI or SpeI at 37 �C overnight, precipitated with ethanol and then dissolved
with 20ml of TE. 50 and 30 flanking probes were used to detect correctly targeted
clones. Knockout clones were also confirmed by PCR using the primer sets ‘1–4’
(see Supplementary Table 1 for details) and AmpliTaq Gold (Applied Biosystems).
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Western blot analysis. Cells were snap frozen and lysed with cold RIPA buffer
(50mM Tris-HCl, 150mM NaCl, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS
(Sigma)) supplemented with Complete EDTA free (Roche) on ice. Lysates were
cleared by centrifugation and total protein measured using the BCA assay (Pierce).
Equal amounts of protein was loaded and fractionated in SDS–PAGE Tris-Acetate
4–12% gels (Bio-Rad). Proteins were transferred onto Hybond ECL nitrocellulose
membranes (Amersham) using wet transfer at 4 �C in wet transfer buffer (25mM
Tris base, 189mM glycine, 20% methanol). Membranes were washed in PBS-T and
blocked with 5% milk in PBS-T (Sigma). Primary and secondary antibody incu-
bations were in 5% milk in PBS-T and membranes were washed in PBS-T. Signals
were visualized using ECL (Pierce).

Flow cytometry. Analysis of DNA content with flow cytometry was done using
propidium iodide (PI, Sigma) staining and standard procedures. Samples were
analysed on a FACSCalibur (BD Biosciences) flow cytometer. Determination of
M-phase content using the MPM-2 antibody (05-368, Millipore) was done
according to the manufacturer’s protocol using Alexa Fluor (Life technologies) 488
anti-mouse secondary antibody. Polyploidy analysis of HeLa cells was done using a
C6 Accuri flow cytometer (BD Biosciences). Cells were fixed, stained with PI and
passed through a 40-mm filter to remove cell aggregates and gated using the
forward scatter and side scatter filters.

Antibodies. Primary antibodies used for western blotting were as follows: mouse
anti-b-tubulin (T4026, Sigma, 1:6,000), mouse anti-PICH (Ab57434, Abcam,
1:500), goat anti-TopoIIa (sc5347, Santa Cruz, 1:1,000), mouse anti-Actin (A3853,
Sigma, 1:6,000), mouse anti-GFP (11814460001, Roche, 1:1,000). Primary anti-
bodies used for indirect immunofluorescence microscopy were as follows: mouse
anti-PICH (04-1540, Millipore, 1:100), rabbit anti-PICH (8886S, Cell Signaling,
1:100), guinea pig anti-PICH (in-house, 1:400) mouse anti-b-tubulin (T4026,
Sigma, 1:600), rabbit anti-CENPA (a kind gift from Professor Tatsuo Fukagawa
published in ref. 30, 1:100), mouse anti-UBF (sc-13125, Santa Cruz, 1:250).

Indirect immunofluorescence and chromosome spreads from human

lymphocytes. DT40 cells were fixed (4% paraformaldehyde in PBS), permeabilized
(0.25% Triton-X 100, 1% BSA in PBS), washed and incubated with antibodies on
Polysine-coated slides. Slides were mounted in Vectashield with DAPI (Vector
laboratories). For immunofluorescence on chromosome spreads, human lympho-
cytes were treated with 0.1mgml� 1 Karyomax Colcemid (Gibco) for 4 h before
being harvested and centrifuged onto glass slides using a Cytospin 4 (Thermo
Scientific). The spreads were fixed, incubated with antibodies and mounted in
Vectashield with DAPI (Vector laboratories). Alexa Fluor (Life technologies)
fluorophore-conjugated secondary antibodies were used to visualize the primary
antibodies. Images were captured on either a Nikon Ellipse microscope, an auto-
mated upright Olympus BX63 fluorescence microscope or an upright point scanning
confocal Axioimager Z2 microscope (Zeiss). Images from confocal microscopy were
analysed with ZEN 2010 (Zeiss) otherwise ImageJ was used for image analysis31.

Fluorescently tagged cell lines. Clone PICH� /� 1 was grown with 4-Tamoxifen
to activate the Cre recombinase and to promote excision of the Bsr and Puro
resistance genes. This ‘Loxed’ clone was used for all subsequent manipulations.
HPICH cDNA was PCR amplified with the following primer pair: attB1-PICH and
PICH-attB2 (Supplementary Table 1), using pGFP-PICH8, pGFP-PICH-T1063A-
and pGFP-PICH-K128A as templates. The K128A mutant was generated by
QuickChange site-directed mutagenesis (Stratagene). The resulting PCR product was
inserted into the pENTR201 Gateway vector (Invitrogen, Life Technologies) via the
BP Gateway reaction, and its correct sequence was verified. The PICH cDNA insert
was subcloned into pDESTzeo-mCherry-C0 via the Gateway LR reaction, to generate
fusion constructs tagged with mCherry on the N-terminus. These constructs were
linearized then transfected into the PICH� /� 1 clone by electroporation (Bio-Rad).
The cells expressing H2B-GFP were generated by non-targeted transfection
transfecting the vector pH2B-GFP-Bsrr by electroporation (Bio-Rad) at 950mF and
250V and stable clones were selected with 20mgml� 1 Blasticidin (Sigma). The
construct used for endogenous tagging of Topo IIa with GFP was a kind gift of
Professor William Earnshaw, University of Edinburgh. The construct is a modified
version of the pTOP2A-Flag construct published previously32. The pTOP2A-GFP
plasmid was linearized with NotI and transfected into DT40 cells by electroporation
at 25mF and 550V and clones were selected with 0.5mgml� 1 Puromycin (Sigma).

Scoring of chromosomal instability in DT40 cells. For the quantification of
micronuclei, cells were treated with 2 mgml� 1 Cytochalasin B on poly-L-lysine-
coated coverslips (BD Bioscience) for 12 h before being fixed and mounted with
Vectashield mounting medium with DAPI (Vector laboratories). Micronuclei in
binucleated cells were scored using the micronucleus assay21. For the quantification
of chromatin bridges and binucleation, cells were harvested following
asynchronous growth incubated on Polysine (Thermo Scientific) slides, fixed and
mounted with Vectashield mounting medium with DAPI. Slides were scored using
a Nikon Ellipse Microscope. Binucleation was defined and scored as in the
micronucleus assay.

Live cell microscopy. Cells were grown in chambered m-slides (Ibidi) for 15min in
Leibowitz CO2-independent media (Gibco), before microscopy at 37 �C using a
DeltaVision Elite (Applied Precision) equipped with a � 100B objective lens
(U-PLAN S-APO, NA 1.4; Olympus), a cooled EMCCD camera (Evolve 512;
Photometrics) and a solid-state illumination source (Insight; Applied Precision,
Inc). In the experiments with Hoechst staining, 1 mgml� 1 Hoechst 33342 (Sigma)
was added to the cell suspension 10min before imaging.

Establishment of a human PICH knockout cell line. A PICH knockout cell line
was generated by the double nicking strategy, which introduces double strand
breaks near the start codon of PICH using the D10A mutant Cas9 nickase33.
Guide RNA sequences (50-CCGAAGGTTTCCGGAAGCCG-30 and 50-
GCCTCCATGACCCTCGGATT-30) were cloned into pSpCas9n(BB)-2A-GFP
(PX461) and pSpCas9n(BB)-2A-Puro (PX462) (gifts from Feng Zhang, Addgene
plasmid 48140 and 48141), respectively, as suggested by Addgene. These vectors
were co-transfected into HeLa cells (obtained from the ATCC) expressing
mCherry-H2B for 48 h, followed by collecting GFP-positive cells with a cell sorter.
GFP-positive cells were plated on 96-well plates and selected using 0.25 mgml� 1

Puromycin at 37 �C for 14–21 days. Viable clones were further cultured in six-well
plates. Successful knockout clones were confirmed by western blotting.

Chromosome spreads from human cells. Mitotic cells were enriched by releasing
thymidine-arrested cells into medium containing 0.1 mgml� 1 nocodazole for 14 h.
ICRF-193 (0.1 mM) was treated together with nocodazole as indicated. Mitotic cells
were shaken-off, treated with hypotonic buffer (70mM KCl) for 15min, resus-
pended in Carnoy’s fixative (methanol/acetic acid¼ 3:1) and spread onto glass
slides. The spreads were mounted in DAPI-containing mounting medium (Vec-
tashield, Vector Labs) and imaged with a Leica DMI6000 inverted microscope and
a HCX PLFL � 100/numerical aperture¼ 1.4 oil-immersion objective. Images were
acquired and analysed with the MetaMorph software.

Scoring chromosomal instability in human cells. For the quantification of
binucleation and micronucleation in HeLa cells, asynchronous growing cells on
coverslips were transiently treated with PKH67 green fluorescent dye for 15min,
fixed and mounted with Vectashield mounting medium with DAPI. Nuclei with
diameter smaller than 5 mm were counted as micronuclei. For scoring the per-
centage of mitotic cells with chromatin bridges, asynchronous growing cells on
coverslips were fixed and mounted with Vectashield mounting medium with DAPI.
Slides were imaged using a Leica DMI6000 microscope and analysed using the
MetaMorph software (Molecular Devices).

Scoring polyploid cell population in human cells. Asynchronous growing cells
were fixed with 70% ethanol, stained with PI, passed through 40 mm filter to
remove aggregated cells. Filtered cells were subjected to flow cytometry using the
Accuri C6 flow cytometer (BD Biosciences) and analysed using the BD Accuri C6
software.

Generation of the single catenane substrate. The pSA1101 plasmid for the
expression of Tn3 resolvase in BL21(DE3)pLysS bacterial cells was a kind gift from
Prof Marshall Stark, University of Glasgow. Purification of Tn3 resolvase was
performed under denaturing conditions followed by refolding and renaturation
steps of the enzyme, essentially as described previously34 with protocol
modifications provided by the Stark laboratory. The single catenane substrate was
generated by subjecting the pMM5 plasmid to a Tn3 resolvase reaction (25 ng ml� 1

pMM5, 50 nM Tris-HCl, pH 9.4, 10mM MgCl2, 0.1mM EDTA, 1/200 Tn3
resolvase prep.) for 3 h. The reaction was stop by addition of 1M Tris-acetate, pH
7. The pMM5 single catenane was purified first by isopropanol precipitation and
then by gel extraction and electro-elution followed by ammonium acetate
precipitation The protocol for generating the single catenane substrate was
published previously35. The pMM5 plasmid was a gift from Professor Stark.
Purified PICH protein was a kind gift from Dr Jacqueline H. Enzlin, University of
Copenhagen. Pure human Topo IIa was purchased from Inspiralis.

Decatenation and relaxation assays. For the decatenation assays, the enzymes
were pre-incubated on ice for 10min in a 10-ml reaction mixture containing 20 ng
single catenane substrate, 50mM HEPES, pH 7.4, 100mM NaCl, 10mM MgCl2,
2mM dithiothreitol and 50 ng ml� 1 BSA. ATP was then added to 5mM final
concentration and reactions were incubated at 37 �C for the indicated amount of
time. Reactions were stopped by cooling on ice followed by the addition of 0.2%
SDS, 100 mgml� 1 Proteinase K, 15% sucrose and 25mgml� 1 bromophenol blue
and incubated for another 30min at 37 �C. Reaction products were separated on a
1% agarose gel in the presence of ethidium bromide. Relaxation assays were per-
formed as per the decatenation assays, but in the presence of 100 ng of negatively
supercoiled pUC19 as the substrate. Relaxation products were separated on a 1%
agarose gel in the absence of ethidium bromide. hTopo IIa and wheat germ Topo I
were purchased from Inspiralis and Promega, respectively.
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