

Citation for published version:
Kelly, DM, Chen, Q & Zang, J 2015, 'PICIN: a particle-in-cell solver for incompressible free surface flows with
two-way fluid-solid coupling', SIAM Journal on Scientific Computing, vol. 37, no. 3, pp. B403-B424.
https://doi.org/10.1137/140976911

DOI:
10.1137/140976911

Publication date:
2015

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1137/140976911
https://doi.org/10.1137/140976911
https://researchportal.bath.ac.uk/en/publications/230dab97-3771-4159-a5f7-a2f2917b96bc

SIAM J. SCI. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 37, No. 3, pp. B403–B424

PICIN: A PARTICLE-IN-CELL SOLVER FOR INCOMPRESSIBLE

FREE SURFACE FLOWS WITH TWO-WAY FLUID-SOLID

COUPLING∗

D. M. KELLY† , Q. CHEN‡ , AND J. ZANG§

Abstract. This paper details a novel numerical approach for solution of the Navier–Stokes
equations for free surface flows involving two-way fluid-solid interaction in arbitrary domains. The
approach, which is hybrid Eulerian Lagrangian in nature, is based on the full particle particle-in-cell
(PIC) method applied to incompressible flows. An extension of the distributed Lagrange multiplier
(DLM) technique proposed by Patankar et al. [Int. J. Multiphase Flow, 26 (2000), pp. 1509–1524] is
employed for the two-way fluid-solid coupling. The resulting code is called PICIN. Solid bodies can
be mobile, either having prescribed motion or moving as a consequence of interaction with the fluid.
Numerical results for three distinct example applications of the model in two spatial dimensions are
given. A comparison of PICIN predictions with state-of-the-art numerical results of other researchers
is made for each of the test cases presented.

Key words. computational fluid dynamics, Navier–Stokes, particle-in-cell, SPH, VOF, level
set, incompressible fluid, fluid-structure interaction

AMS subject classifications. 35Q30, 65M06

DOI. 10.1137/140976911

1. Introduction. The increase in affordable computing power that has occurred
over the last decade has made possible the numerical solution of the Navier–Stokes
equations in both two and three spatial dimensions for a wide variety of real-world
free-surface flows. While pure Eulerian methods have been used to solve the Navier–
Stokes equations (see, e.g., [18, 16]), a Lagrangian approach is better suited to complex
free surface flows as it handles both wave breaking and wetting drying processes natu-
rally. Pure Lagrangian methods such as the moving-particle semi-implicit (MPS) and
smoothed particle hydrodynamic (SPH) schemes have become increasingly popular
(see, e.g., [17, 23]). Of these, SPH has become the Lagrangian method of choice and
has been used to simulate complex free surface flows with considerable success; see,
e.g., [21]. Both weakly compressible SPH (WCSPH) and incompressible SPH (ISPH)
are computationally extremely demanding in terms of CPU time [15]. The work pre-
sented in this paper was motivated by developing a code for industrial application,
the idea being that the code should have all the flexibility of SPH with the efficiency
of an Eulerian approach.

∗Submitted to the journal’s Computational Methods in Science and Engineering section July 10,
2014; accepted for publication (in revised form) March 31, 2015; published electronically June 2,
2015.

http://www.siam.org/journals/sisc/37-3/97691.html
†Senior Engineer, HR Wallingford, Wallingford, Oxon, OX10 8BA, UK. Current address: Asst.

Prof. of Research, International Hurricane Research Center, Florida International University, Miami,
FL 33199 (dakelly@fiu.edu). This author’s work was supported by HR Wallingford.

‡Research Unit for Water, Environment and Infrastructure Resilience (WEIR), Department of
Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK (qc296@bath.ac.uk).
This author’s work was supported by the University of Bath and HR Wallingford for his Ph.D. study
of which this work forms a part.

§Director of the Research Unit for Water, Environment and Infrastructure Resilience (WEIR),
Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK
(jz235@bath.ac.uk). This author’s work was supported by the University of Bath and HR Walling-
ford.

B403

http://www.siam.org/journals/sisc/37-3/97691.html
mailto:dakelly@fiu.edu
mailto:qc296@bath.ac.uk
mailto:jz235@bath.ac.uk

B404 D. M. KELLY, Q. CHEN, AND J. ZANG

The particle-in-cell (PIC) approach was invented at the Los Alamos National
Laboratory in 1955 by Francis Harlow [12] and was further developed there until it
became the practical methodology described in [13]. The PIC method was originally
intended for compressible fluid flows, and [14] developed the marker and cell (MAC)
method for incompressible fluids. The classical PIC method described in [13] suffers
from severe numerical diffusion. This is due to the two transfers of the velocity
field from the particles to the grid and back to the particles at every time-step. To
reduce this numerical diffusion, [5] suggested incrementing the particle velocity field
based on the change in the grid velocity field once the Eulerian computation has been
conducted. This approach necessitates that the velocity field be stored on the grid at
the end of each Eulerian computation to be used at the next time-step. In practice
the Eulerian grid can be relatively coarse, so memory requirements for storage are not
excessive. Particle velocities are incremented by interpolation of the change in the
fixed-grid velocity field to the particle locations. The real novelty of the (full particle)
PIC method is the fact that the particles are used to track the free surface and advect
the velocity field. This both is computationally efficient and leads to far less artificial
diffusion than an Eulerian advection step. The first published application of (full
particle) PIC to incompressible free surface flow is due to [35]. The full particle
PIC algorithm described here is based on that given in [35] and uses the fractional
step method for time integration, employing the classic projection method of Chorin
[8]. The projection technique enforces incompressibility and allows the velocity and
pressure fields to be computed distinctly. The time-step in full particle PIC is based
solely on the fluid velocity field, and the speed of sound plays no part in determining
the stability criteria in the PICIN code. Moreover, as the pressure Poisson equation
(PPE) is solved on an underlying simple Cartesian Eulerian mesh, its solution can be
optimized.

In PICIN, two-way fluid-structure interaction is handled via the distributed
Lagrange multiplier (DLM) approach suggested by [30]. This approach is both simple
to implement and computationally efficient. The basis of the approach is to solve the
entire fluid-solid domain as if it were a uniform incompressible fluid. Correction for
the density difference between the fluid and solid is then made. Finally, the defor-
mation rate tensor within solid regions is constrained to zero, thus forcing rigid body
motion in solid regions. This is achieved by using the average velocity in these re-
gions, which provides a unique solid velocity which eliminates the translational U and
angular velocity ω of the solid from the governing equations. The approach requires
modification when implemented within the hybrid Eulerian–Lagrangian framework
used by PICIN.

The paper is organized as follows: section 2 gives the equations that govern
the coupled fluid solid motion. Section 3 details the numerical method of solution,
including details of how the free surface boundary, domain boundaries, and two-way
fluid-solid coupling are handled within the hybrid Eulerian–Lagrangian framework
used by PICIN. In section 4 the results of three distinct test cases are presented and
discussed. These test cases have been chosen to illustrate the flexibility of the PICIN
approach. Finally, conclusions are drawn in section 5.

2. Governing equations. PICIN employs the strong form of the governing
equations for two-way coupled fluid-solid motion proposed by [30]. Within this frame-
work, the computational domain is considered to contain both the fluid and any solid
bodies and is denoted by Ω. The fluid and solid domains are subsets of Ω and are
denoted by F and S, respectively. On the boundary of Ω, denoted by Γ, problem-

A SOLVER FOR INCOMPRESSIBLE FREE SURFACE FLOWS B405

specific boundary conditions are enforced. Refer to Figure 1 for an overview of the
solution domain. In vector notation, the system of equations governing the fluid and
solid motion has the following form:

(2.1) ∇·u = 0,

(2.2)
∂u

∂t
+ (u · ∇)u = f −

1

ρ
∇p+ ν∇2u in F,

and

(2.3)
∂u

∂t
+ (u · ∇)u = f −

1

ρS
∇p+∇ ·Π in S,

with the boundary conditions

(2.4) u = uΓ(x, t) on Γ(x, t)

and

(2.5) u = ui and p = 0 on ζ(x, t),

where ζ = ζ(x, t) is the free surface and

(2.6) u = ui and Π · n̂ = T on ∂S(t),

which implies a no-slip condition on the boundary of S, here denoted as ∂S. We note
that when using the DLM approach to handle solids it is not necessary to enforce
(2.6) explicitly; instead, this boundary condition is implicitly satisfied [30]. In this
paper we consider two spatial dimensions only for which u = [u,w]T is the velocity
field (u and w being the horizontal and vertical components, respectively), p is the
pressure, f = [gx, gz]

T represents the vector of body forces acting on the water due to
gravity, ρ is the water density, ρS is the solid density, ν is the kinematic viscosity of
water, and Π is the stress tensor. The traction force of the fluid on the solid, denoted
by T , is the sum of the projected viscous stresses and pressure. In the absence of any
solid deformation, Π can be written as Π = −pI, where I is the identity tensor.

We also consider a fluid signed distance function (SDF) φ, which is used to identify
fluid regions and define the free surface boundary. The SDF is governed by a simple
level set function [33].

The value of the SDF φ is set such that φ < 0 in water, φ > 0 in air, and the
iso-contour φ = 0 denotes the free surface ζ. The same approach is employed for the
solid SDF φS , which is used to identify solid regions φS < 0 and the solid boundaries
for which φS = 0.

While the level set function can be solved directly in an Eulerian sense, the PICIN
solver treats the evolution of the fluid and solid SDFs in a Lagrangian manner using
the fluid or solid particles to find the zero iso-contour for φ and φS (and thus evolve
the level set). We note that, like the pressure, the fluid SDF is computed at cell
centers. The solid SDF is computed at cell vertices (see Appendix A).

B406 D. M. KELLY, Q. CHEN, AND J. ZANG

Fig. 1. Computational grid illustrating cell centers (circles) where pressures, p, and signed
distances, φ, are computed and vertical (white squares) and horizontal faces (black squares) where
the x and z velocity components are computed respectively (left). Computational domain Ω with the
domain boundary Γ and embedded solid S and fluid F regions (right).

3. Full particle PIC numerical method for incompressible flow.

3.1. The PICIN algorithm. The Navier–Stokes equations for the fluid (2.2)
are solved, subject to the incompressibility constraint (2.1), everywhere in Ω. Solution
in PICIN is via the time-operator-splitting (pressure projection) technique [8, 35].
Chorin [8] first proposed the use of time-operator-splitting to the full Navier–Stokes
equations in order to decouple u and p. This approach separates the convection-
diffusion part of the Navier–Stokes equations from the incompressibility part. The
PICIN algorithm comprises four Eulerian steps followed by a Lagrangian step that
both advects the velocity field and tracks the free surface boundary. In PICIN the
purpose of the underlying Eulerian grid is to increase efficiency when accounting
for the body forces, applying the domain and free surface boundary conditions and
ensuring that the fluid remains incompressible. The first stage in the grid calculation
is to interpolate the velocity field from the particles onto the grid. Following [14],
a staggered grid is used, where the pressure is stored at the center of the grid cells
and the u and w components of the velocity are stored on the vertical and horizontal
vertices, respectively (see Figure 1). Such a grid ensures that second-order accurate
central differencing in space can be employed without introducing false local maxima
or minima.

The first Eulerian step is straightforward. Apply body forces:

(3.1)
∂u

∂t
= f .

Equation (3.1) is integrated in time using the first-order accurate explicit Euler
method, i.e.,

(3.2) u1 = un +∆tf .

The next step is to apply the velocity diffusion due to the fluid viscosity to com-
pute the tentative velocity field ũ:

(3.3)
∂u

∂t
= ν∇2u1.

A SOLVER FOR INCOMPRESSIBLE FREE SURFACE FLOWS B407

Currently a simple explicit forward-in-time centered-in-space (FTCS) difference
scheme is employed to integrate (3.3). Thus, diffusion of the x-component of velocity
at point i+ 1

2 , j on the mesh is computed as

ũi+ 1

2
,j = u1

i+ 1

2
,j
+ ν∆t

(

u1
i+ 3

2
,j
+ u1

i− 1

2
,j
− 2u1

i+ 1

2
,j

(∆x)
2(3.4)

+
u1
i+ 1

2
,j+1

+ u1
i+ 1

2
,j−1

− 2u1
i+ 1

2
,j

(∆z)
2

)

.

Diffusion of the z-component of velocity is approximated in a similar manner.
An implicit scheme has also been coded in PICIN to solve (3.3) via Gauss–Seidel
iteration with successive overrelaxation (SOR). Numerical experiments have shown
that, when using relatively small time-steps, the explicit scheme is satisfactory for the
vast majority of problem types, and it is used here. The tentative velocity field, ũ,
is unlikely to be divergence-free; it is therefore necessary to compute the pressure. In
the pressure projection approach the pressure is a Lagrange multiplier used to ensure
that ǔ satisfies (2.1). The PPE is constructed following [9]. Once the body forces
and diffusion have been integrated, the remaining term from (2.2) is

(3.5)
(ǔ − ũ)

∆t
= −ρ−1∇p;

as ρ and ∆t are constant, it is possible to introduce ϕ = −∆tρ−1p to give

(3.6) ǔ = ũ+∇ϕ.

Taking the divergence of both sides of (3.6) and recalling that we require that the
divergence of the new velocity field, ǔ, be zero gives a Poisson equation for ϕ:

(3.7) ∇2ϕ = ∇· ũ.

Discretization of this form of the PPE is effected using a finite difference approach
that incorporates the treatment of the free surface and any domain boundaries. We
note that, due to the modification to the PPE described in section 3.2, the domain
boundaries Γ = Γ(x, t) do not have to be grid-aligned. We note also that if there is no
two-way fluid-solid coupling, then un+1 = ǔ. If fluid-solid coupling is present in the
flow, then additional steps are required to obtain un+1; these are detailed in section
3.2.

3.2. Boundary conditions and solution of the PPE. For a projection-based
solution of the Navier–Stokes equations it is sensible to impose boundary conditions
during the pressure solve. In PICIN a signed distance field is utilized to ensure the
correct treatment of both the free surface and any domain boundaries that are not
treated using the grid-aligned approach. The various approaches used in PICIN to
treat different boundary scenarios are detailed below.

Free surface boundary. For the free surface boundary a Dirichlet-type zero
pressure boundary condition is imposed. Tracking of the free surface is performed
using the particles. Following [35] the free surface boundary is identified by employing
a particle-based signed distance function (SDF) φ = φ(x, t) constructed using a fast-
sweeping approach [34]. The SDF with respect to the free surface is computed at

B408 D. M. KELLY, Q. CHEN, AND J. ZANG

cell centers. To avoid nonphysical artifacts at the air-water interface it is important
to apply the zero pressure boundary condition at the actual free surface as opposed
to the center of a surface cell [27]. In PICIN, the zero pressure condition is applied
directly at the free surface through use of φ which is employed to modify coefficients on
the left-hand side of (3.7). Using the method of [11], a second-order accurate scheme
is adopted by defining ghost values of air pressure to apply a Dirichlet boundary
condition on the actual free surface. For completeness we detail the approach here.
Consider, without loss of generality, the solution of a one-dimensional (1D) PPE,
p,x,x = ũ,x, where subscripts denote partial derivatives. The free surface interface is
located at xf with xi < xf < xi+1. To facilitate explanation we define a coefficient

Θ =
(xf−xi)

∆x
. Since the interface xf will be cut by the stencil in a general case, the

standard second-order accurate PPE discretization should be remedied by defining

(3.8) pi+1 =
(Θ − 1)

Θ
pi.

Note that, in practice, in the PICIN code, we modify the denominator of (3.8)
to (Θ + ǫ∆x), where ǫ is a user-defined parameter included so that (3.8) remains
bounded (for the test cases presented in this paper we use ǫ = 0.001). This leads to
a symmetric discretization of

(3.9)
(0−pi

Θ∆x
)− (pi−pi−1

∆x
)

∆x
= (ũ,x)i.

This equation enables the use of a standard PPE solver by simply modifying
the coefficient in the left-hand side of the PPE. All results presented here used the
biconjugate gradient method [31] to solve the PPE.

Grid-aligned solid boundaries. For the staggered Cartesian mesh described
above, free-slip conditions are simple to implement at solid boundaries that are aligned
with the underlying grid. The grid-aligned boundary in PICIN adopts hybrid Neu-
mann and Dirichlet conditions. A zero normal velocity is prescribed on the boundary
cell edges, and the pressure gradient condition is enforced in a way that only the
coefficient in the PPE is changed. For ease of explanation we use a 1D discretization
of the PPE as a basis to explain the method. In one dimension the discrete form of
the PPE is written as

(3.10)
∆t

ρ

pi+1 + pi−1 − 2pi

(∆x)2
=

ũi+ 1

2

− ũi− 1

2

∆x
.

Assuming that ui+ 1

2

is on the boundary cell edge and Γ = Γ(x) only, then the
boundary velocity should be zero at the next, n+ 1, time-step. Thus, we have

(3.11) ǔi+ 1

2

= ũi+ 1

2

−
∆t

ρ

pi+1 − pi
∆x

= 0.

Applying this to (3.10) yields

(3.12)
∆t

ρ

pi−1 − pi

(∆x)2
=

−ũi− 1

2

∆x
.

Thus, in PICIN, only the coefficients in the PPE are altered to account for the
existence of a grid-aligned solid boundary.

A SOLVER FOR INCOMPRESSIBLE FREE SURFACE FLOWS B409

The tentative velocity field ũ is then projected onto the nearest divergence-free
velocity field ǔ using the pressure p as a Lagrange multiplier, via ϕ = −∆tρ−1p, to
give

(3.13) ǔ = ũ+∇ϕ.

Non–grid-aligned solid boundaries. In order to treat stationary solid bound-
aries that are not grid-aligned, the divergence theorem is applied to both sides of the
integral form of the PPE. This leads to the following rewriting of the PPE:

(3.14)

∮

∇ϕ· n̂ dA =

∮

ũ· n̂ dS,

where dA is the area differential of the cut-cell (cell containing a fraction of the
solid boundary) and dS is the length differential. The right-hand side of (3.14) is
approximated as

(3.15)

∮

∇ϕ· n̂ dA ≈ Si− 1

2
,j ·

(ϕi,j − ϕi−1,j)

∆x
+ Si+ 1

2
,j ·

(ϕi,j − ϕi+1,j)

∆x

+ Si,j− 1

2

·
(ϕi,j − ϕi,j−1)

∆y
+ Si,j+ 1

2

·
(ϕi,j − ϕi,j+1)

∆y
,

and the left-hand side is approximated as

(3.16)
∮

ũ· n̂ dS ≈ Si− 1

2
,j · ũi− 1

2
,j − Si+ 1

2
,j · ũi+ 1

2
,j + Si,j− 1

2

· ũi,j− 1

2

− Si,j+ 1

2

· ũi,j+ 1

2

,

where Si± 1

2
,j and Si,j± 1

2

are the length fractions of each cell side that are open to flow.
This procedure is simply an application of the finite volume approach first suggested
by [28] to both sides of the PPE. The approach was formally investigated in terms of
order of convergence by [26]. Computation of the length fractions open to flow S uses
the solid SDF φS . Details of this procedure are given in Appendix A.

Advection. Once the divergence-free velocity field ǔ has been obtained in Ω
using (3.13), it is used to increment the particle velocities ugp. The value of ugp

is incremented using the approach outlined in section 3.4. When there is no two-
way fluid-solid coupling all the particles in Ω are advected in a Lagrangian manner
according to

(3.17)
Dxp

Dt
= ugp,

using a third-order accurate Runge–Kutta method for the time integration [32]. We
note that over time truncation errors can lead to particle distribution errors. For this
reason we regularize the particle distribution after a given number of time-steps. Full
details of this procedure are given in section 3.5.

Two-way fluid-solid coupling. If there are solid bodies present in Ω, then ad-
ditional computations, comprising a tentative advection step and a density correction
step, must be performed before the main advection step (3.17) is executed. Tentative
advection is only carried out on particles that are inside the solid and in the domain
immediately surrounding the solid; this is shown schematically in Figure 2. These

B410 D. M. KELLY, Q. CHEN, AND J. ZANG

o o
o o
o o

o o
o o
o o
o o
o o
o o
o o

o o
oo

o o

oo

o o

oo
o o

oo

o o
oo
o o
oo

o o

oo

o o

oo

o o

oo

o o

oo
o o
oo

o o

oo

o o

oo

o o
oo
o o
oo
o o
o o
o o
oo

o o

oo
o o
oo

o o
oo

o o
oo

o o
oo

o o

o o

o o
oo

o o

oo
o o
oo

o o
oo
o o
oo
oo
oo
o o
oo
o o

oo
o o
oo

o o

oo

o o
oo
o o

oo

o

o
o
o
o o

oo
o

o

o
o
o

o o
o o
o o
oo
o o
o

o o
oo

o o

oo

x x
x x
x x
xx

x x
xxxx

x x

x x

x x

x x

x x

x
x x
x

x x

x xx x
xxx x

x
x x

x x

x x
x x

x x
x x
x x
x x xx

x x
x x

x x
x x

xxx x
xx

x x

xx

x

x

xx
x x

x

x x

x

x x

x x

x
x x
x
x x

x x x x

x x

x x
xx
x x
x x

x x

x x

x x
x x

x x
x x

x x
x x
x x
x x

x x

x x

x x
x x

x x
x x

x x
x x

x x

x x

x x
x x

x x
x x

x x
x xxx

x x

x x

x x
x x

x

x

x x

x xx x

x x

x x

x x
x x

x x
x x

x x x x

xx
x

xx

x

x

xx

xx x

xx
x x

xx x x

x
x

x x

x x

x

xx

x

x

x x

x
x x

x x

x x

x x

x x

x x x x

x xx x

x xx x

x x

x xx x

x x
x x
x x

x x
x x

x xx x

x x x x
x x

x x

x x

x x
x x

x x

x

x x
x

x x

x

x

x

x x
x

x

x

x

x x

x x

x x

x x

x x
x x

x x

x x

x x
x x
x x
x x

x x
x x

x x

x x

x x
x xx x

x x

xx

x x
xx

x x
xx x x

xx x

x x

x x

x x
x

x x
x x

x x

x x
x x
x x

x x
x x

x x
xx

x x

x x
x x
x x

x x
xx
x x

xx
x x

xx x x
xx x x

xx

x x
x x
x x
x x

x x

x x
x x
x x

x x
x x

x x

x x x x

x x

x x
xx

x x
xx

x x
x x

x x

x x
x x

xx
x x

xx

x x

xx

Fig. 2. Schematic close-up of mesh and particles around a solid body. The × particles are used
in the tentative advection step to compute ǔ; the o particles are not.

particles are used to advect the velocity field and transfer the advected velocity field
to the grid. The particles are then moved back to their original positions. This tenta-
tive advection step is used to update ǔ. The next step is to account for the effect of
relative density and any momentum transfer due to solid-solid interaction in S. This
is achieved following [30] by correcting ǔ so it accounts for these effects according to

(3.18) û = ǔ+ θ
∆t

ρS
S,

where the source term S is given by

(3.19) S = ρSAc + ri × ρSαc − (ρS − ρ)

{

Dǔ

Dt
− g

}

;

here Ac and αc are the translational and angular accelerations, respectively, due
to any solid-solid collisions that occur. These accelerations are computed using a
summation of all the forces acting on that body over a time-step divided through by
the mass of the solid body. The vector ri is the position vector of the point with
respect to the center of mass of the solid. Cells that are only partially filled by the
solid body are handled using a solid volume weighting term 0 ≤ θ ≤ 1. This term
defines the fraction of a cell that is occupied by a solid. Calculation of the solid
volume weighting term is somewhat involved, and the procedure used to determine θ

in PICIN is given in Appendix B.
The material derivative in (3.19) is currently approximated in a purely Eulerian

manner.
In PICIN we rewrite the x- and z-components of the advection term in the ma-

terial derivative, using the chain rule and (2.1), as

(3.20) u
∂u

∂x
+ w

∂u

∂z
=

∂(u2)

∂x
+

∂(uw)

∂z

and

(3.21) u
∂w

∂x
+ w

∂w

∂z
=

∂(uw)

∂x
+

∂(w2)

∂z
,

which gives us the advection terms in conservation form. We solve this form of the
advection term using first-order accurate Euler integration in time and second-order
accurate centered differencing in space.

A SOLVER FOR INCOMPRESSIBLE FREE SURFACE FLOWS B411

Once (3.18) has been evaluated in S, the total momentum in the solid region is
correct. A force is required to correct the velocities in S so that they maintain the
rigidity of the solid. Patankar [29] noted that because the momentum in the rigid
body must be conserved, the unique constant velocity in S is simply the average of
the translational velocities computed using

(3.22) MÛ =

∫

S

ρSû dx,

whereM is the mass of the solid. The average of the angular velocities is also required.
For a solid r

(3.23) Ipω̂ =

∫

S

r × ρSû dx,

where Ip is the moment of inertia of the solid. Following [29], the rigid velocity ûR is
simply

(3.24) ûR = Û + r × ω̂.

Note that (3.22), (3.23), and (3.24) must be evaluated for each distinct solid
region. The final velocity update in S is achieved via

(3.25) un+1 = (1− θ)û+ θûR.

Once un+1 has been found using (3.25), the change in velocity on the grid is
used to increment the particle velocities ugp. All the particles in Ω are advected in a
Lagrangian manner according to (3.17). While the fluid particles are advected using a
third-order Runge–Kutta method, the solid particles are advected using a first-order
accurate Euler integration of (3.17). As the fluid particles have a velocity field defined
on the grid (which varies in space for the given time-step) a high-order integration
scheme is used to move these particles through the grid velocity field. For each solid,
the solid particles all move with a single unique velocity at each time-step. Moving the
solid using a time integration that is only first-order accurate is therefore appropriate.
It is possible to use a high-order method that further couples the fluid-solid motion
(such as a predictor-corrector scheme). Such an approach is computationally very
costly, and our numerical experiments have shown that in the majority of cases it is
unnecessary.

It is noted that all solid velocities are computed on the mesh at cell centers.
The value of ǔ is obtained at cell centers in a componentwise manner via linear
interpolation from the relevant cell edges. The new solid velocities obtained using
(3.25) are then transferred back to the cell sides in a consistent manner.

As the rigidity constraint is only applied within S, the velocity field in the band
of fluid cells immediately surrounding a solid will not necessarily be divergence-free.
This is important as the particles will be advected in, and will advect, this velocity
field. It is possible to re-solve the PPE in Ω after rigidity has been enforced in S

and iterate until the solution converges. This approach is obviously computationally
expensive. Another option is to use the divergence-free extrapolation described in
section 3.3 to extrapolate velocities from the main body of the fluid to overwrite
velocities in these cells. In practice we have found that it is not necessary to correct
the velocities explicitly in these cells as they will be forced to be divergence-free at
the next time-step.

B412 D. M. KELLY, Q. CHEN, AND J. ZANG

3.3. Extrapolating the velocity field to air cells. Although the divergence-
free velocity field is computed within the water (i.e., where φ < 0), values of velocity
may also be required in air cells adjacent to the free surface for the Lagrangian ad-
vection step. Note that the CFL condition described below (section 3.6) prohibits
particles from moving more than one cell away from the free surface per time-step.
In PICIN, velocity extrapolation is conducted around the free surface explicitly by
an averaging procedure. Initially, all air cell velocities are zeroed. Next, all air cells
which have at least one neighboring cell with a nonzero velocity are identified, and
these cells are then assigned a velocity which is the average of their nearest cells with
nonzero velocities. The averaging procedure takes advantage of the fluid SDF and is
repeated to extend the velocities to an N cell band around the free surface. More
details about this technique can be found in [1].

3.4. Transferring information to and from the grid. Finally, after they
have been advected, velocities must be transferred from the particles to the Eulerian
grid. Also, once the velocity field has been updated on the grid, du

dt
must be computed

and interpolated to the particle positions in order to increment the particle velocities.
To transfer velocities from the particles to the grid, a weighted sum of the particle
velocity components is used:

(3.26) ug =
∑

p
σ−1upSn(xp − xg),

where Sn is an assignment function with bounded support and σ is a weighting func-
tion (see [5] for further details). The subscripts p and g represent values on particles
and at the correct (in relation to the velocity component) cell edges, respectively.
For this work a cubic spline assignment function [24] was used to transfer particle
velocities to the grid. Particle velocity is incremented by interpolating the velocity
change from the grid to the particle position using bilinear interpolation [31].

3.5. Particle redistribution. One problem of the PIC method is that the par-
ticle distribution in space tends to become uneven over time due to truncation er-
ror. This can ultimately lead to “holes” appearing in fluid cells, particles gathering
together, and inaccurate velocity transfer. The problem is shared by other particle-
based techniques such as SPH; see, e.g., [22]. To prevent this problem, following the
idea of [2], an anisotropic particle resampling algorithm is used in PICIN. The parti-
cles are offset slightly in a manner that considers all surrounding particle positions.
Thus, with h being the smoothing length associated with the assignment function, xp

is updated as

(3.27) ∆xpi = −∆tγsh
∑

j

xpj − xpi
∥

∥xpj − xpi

∥

∥

Sn(xpj − xpi, h),

where γs is a constant stiffness coefficient. Simulation results are not unduly sensitive
to the value of this coefficient; however, the coefficient should not be too large or
too small as it may cause a large increase in CPU time or cause the model to fail
to converge. In particular, fluid particles may cross solid wall boundaries if too large
a value is used for γs. We note that the value of γs is problem-specific, and we use
γs = 10 for all the simulations presented here.

The particle velocity is first transferred onto the grid and is then interpolated
back after the particles are updated to their final new positions by

(3.28) xpnew = xp +∆xp.

A SOLVER FOR INCOMPRESSIBLE FREE SURFACE FLOWS B413

A carefully chosen criterion is required to terminate resampling. In PICIN, the
average covariance of particles computed by

(3.29) Ci =

∑

j (xpj − x̄pi)(xpj − x̄pi)
T
Sn(xpj − x̄pi, h)

∑

j Sn(xpj − x̄pi, h)
,

where

(3.30) xpi =

∑

j xpjSn(xpj − xpi, h)
∑

j Sn(xpj − xpi, h)
,

is used. We stop resampling the particles when the sum of particle covariance con-
verges to within a tolerance of 1 × 10−4. We note that particles that belong to free
surface interfaces are fixed while redistribution is undertaken. Similar approaches
have also been employed in the SPH community; see, e.g., [19, 10]. However, these
approaches shift the particle position based on the particle concentration gradient
rather than the particle position gradient. It is noted that the resampling algorithm
introduces additional numerical diffusion. Thus, in order to reduce this unwanted dif-
fusion, the resampling algorithm is only applied every Nr time-steps. For the PICIN
simulations presented in this paper, Nr = 30 unless stated otherwise.

3.6. Numerical stability. In the context of their MAC solver Markham and
Proctor [20] suggested a simple stability criterion to determine ∆t. In summary
their scheme is to limit ∆t such that any particle cannot traverse more than one cell
boundary in either direction in one time-step. Thus, in the context of the full particle
PIC method, we require that

(3.31) ∆t � min

(

∆xmin

|umax|

)

.

The authors of [20] point out that determining umax is not as trivial as it first seems.
This is because the inequality |un+1

max| > |un
max| could hold as a consequence of the

effect of body forces. A conservative approach is to consider that

(3.32) |umax| = |un
max|+∆t|f |.

Combined with the upper bound of (3.31), this gives

(3.33) |umax| = |un
max|+ (∆xmin|f |)

1

2 ,

and thus

(3.34) ∆t = min

(

∆xmin
(

|un
max|+ (∆xmin|f |)

1

2

)

)

CFL,

where CFL ≤ 1 is the Courant number. We thank one of the reviewers for pointing
out that (3.34) may not be restrictive enough to ensure stability in all cases. Indeed,
for problems involving fluid-solid interactions, the forces due to pressure gradients
could lead to very large values of un+1

max. Moreover, the time constraint due to viscous
diffusion can become dominant for flows with high viscosity and/or flows that require
a very fine mesh. Thus, it may be necessary to satisfy several time-step criteria to
ensure model stability in all cases. The criteria given in [25] would appear appropriate.

B414 D. M. KELLY, Q. CHEN, AND J. ZANG

4. Test cases. In this section simulation results for the PICIN solver are pre-
sented for three distinct free surface flow problems. The test cases illustrate the
wide range of problems to which the PICIN solver can be applied. Moreover, the
problems presented here require the implementation of a variety of different bound-
ary conditions. The implementation of these boundary conditions within a hybrid
Eulerian–Lagrangian framework is described. For each test case we provide the CPU
time. Unless otherwise stated, results were obtained on an Intel CoreTMi7–4500U
(CPU@1.80Ghz) laptop with 8Gb RAM employing a Windows OS. It is noted that
the FORTRAN code used for this work is not optimized. We believe that the use of
an optimized code will significantly reduce the CPU times presented here. A compan-
ion paper [7] will present comparisons of PICIN results with benchmark experimental
data for a selection of two-dimensional (2D) flow problems.

Test 1: Dam break flow. Here we present results for the classical wet-dry dam
break test as described in [15] and [21], the authors of which used the test to validate
their respective SPH solvers. A column of water is contained within a tank, and the
dam containing the water column is instantaneously released, resulting in the collapse
of the water column due to gravity. The water flows across the horizontal bed and
eventually impacts a vertical wall. The initial conditions are shown in Figure 3.

Fig. 3. Problem set-up for Test 1.

For the results presented here we used two different mesh resolutions, ∆x = ∆z =
H/40 and ∆x = ∆z = H/80. Four particles were seeded randomly in each water cell.
The Courant number was set to 0.5. The first four panels of Figure 4 show snapshots
of the pressure field interpolated at particle locations for the same dimensionless times
as those presented in Figure 3 of [21]. The final two snapshots show the results at
later times following the collapse of the internal cavity. For this case W = 2H and
D = 5.366H . Similar snapshots of pressure are provided in [15], where the authors
used both WCSPH and ISPH SPH models. The results of the δ-SPH model [21]
are superior to those of the WCSPH and ISPH simulations presented in [15], which
exhibit large amounts of nonphysical fragmentation.

It is clear from Figure 4 that the dimensionless pressures produced using PICIN
are very similar to those obtained using the δ-SPH model (cf. Figure 3 of [21]). More-
over, the free surface evolution is also in very close agreement with [21] and exhibits
none of the fragmentation of the WCSPH and ISPH results. In Figure 5 the left panel
shows a comparison with the experimental data of [6] for the pressure load at a point
on the wall that is 73H/75 above the bed. Also shown in the figure for comparison
are the δ-SPH results. As noted in [21], the disparity between the numerical and

experimental results that occurs when t(gH−1)
1

2 > 5.7 is due to the formation of the

A SOLVER FOR INCOMPRESSIBLE FREE SURFACE FLOWS B415

Fig. 4. Snapshots of dimensionless pressure p∗ = p(ρgH)−1 interpolated at particle locations
for the dam-break Test 1. The values of p∗ range between 0 (blue) and 1 (red). Snapshots are at

dimensionless times t∗ = t(gH−1)
1

2 = 1.50, 3.00, 5.70, 6.45, 8.42, and 12.00.

internal cavity which requires two-phase modeling in order to simulate the cushioning
effect of the air.

(

(

������

(

������

Fig. 5. Left: Comparison of experimental, δ-SPH, and PICIN pressure loads for the dam-break
test at a point 73H/75 up the vertical wall. Right: Nondimensional mechanical energy evolution

Emech = (Ek + Ep − E
(1)
p)/(E

(1)
p − E

(2)
p) for different levels of spatial resolution. The nondimen-

sionalization is based on the potential energy imbalance following [21].

Nevertheless, for this demanding test the PICIN results are in good agreement

B416 D. M. KELLY, Q. CHEN, AND J. ZANG

with the δ-SPH results. The right panel of Figure 5 shows the dimensionless mechan-

ical energy Emech = (Ek +Ep −E
(1)
p)/(E

(1)
p −E

(2)
p) of the flow computed using both

the PICIN model and the δ-SPH model of [21]. Here Ek and Ep denote the total
kinetic and potential energies, respectively, of the (closed) system. The mechanical
energy is made dimensionless using the difference between the start and finish poten-

tial energies, i.e., E
(1)
p − E

(2)
p . It can be seen that the PICIN and δ-SPH results are

very similar, with both models exhibiting a large amount of dissipation following the
first splash-up. Figure 6 shows the PICIN prediction for the leading edge (tip) of the
dam-break wave compared with the experimental data and the WCSPH predictions
presented in Figure 5 of [15].

Fig. 6. Comparison of dam-break tip position between PICIN, weakly compressible SPH (WC-
SPH), and experimental data (EXP).

Figure 6 illustrates that the PICIN results compare reasonably well with the
experimental data and are very similar to those obtained using a state-of-the-art
SPH solver. For this case W = H/2 and D = 2H . We note that, as with SPH,
when using particles alone the exact location of the free surface is hard to identify
precisely. PICIN, however, has the advantage that the location of the free surface has
been tracked on the mesh using the fluid SDF and can be identified by the φ = 0
iso-contour.

This test used an Intel CoreTMi7–4600U (CPU@2.10Ghz ∼ 2.70GHz) laptop with
8Gb RAM employing a Windows OS. The CPU time for 6s of simulation time was
400s with ∆x = H/40 and 4680s with ∆x = H/80.

Test 2: Viscous free surface flow around a circular cylinder. This test
considers low Reynolds number, high Froude number, open channel flow past a circular
cylinder close to a free surface. The same test was recently simulated by [4] using
the δ-SPH model of [21]. The problem set-up is given in Figure 7. As the cylinder
is fixed, it is considered part of the domain boundary Γ = Γ(x) and treated via the

A SOLVER FOR INCOMPRESSIBLE FREE SURFACE FLOWS B417

approach detailed in section 3.2.

Fig. 7. Problem set-up for Test 2.

Fig. 8. Snapshots of dimensionless vorticity ∇ × u(dg−1)
1

2 for Test 2. Snapshots are at

dimensionless times t∗ = (gd−1)
1

2 t = 26.64, 27.58, 37.91.

Boundary conditions at the upstream and downstream boundary are implemented
using a ghost-cell (zeroth-order extrapolation) type approach on the grid. Particles
that leave the domain at the downstream boundary are reintroduced at the upstream
boundary with a random offset, following a regular distribution within the initial water

B418 D. M. KELLY, Q. CHEN, AND J. ZANG

depth, and newly prescribed velocity. Following [4], the water depth Ĥ = (H+h) is set
equal to 6dc, with dc being the cylinder diameter. The distance h between the cylinder
top and the undisturbed free surface is used to denote the cylinder submergence.
Uniform inflow velocity u = [U, 0]T is imposed on the upstream boundary. Here we
present numerical simulations for a case where the cylinder is fully submerged such
that hdc

−1 = 1.5 with dc = 1.0. The cylinder is placed at x = 6dc = 6m, and the
overall length of the channel is 32dc = 32m. To enable comparison with the numerical
results presented in [4], we use Fr = U(gĤ)−

1

2 = 1.0, where Fr is the characteristic
Froude number. The Reynolds number Re = 200.

For the PICIN results presented here we used ∆x = ∆z = Ĥ/60, giving 322 cells
in the x-direction and 75 cells in the z-direction and a total of 76,960 fluid particles.
The Courant number was set to 0.5.

Figure 8 shows snapshots of the dimensionless vorticity for three times that illus-
trate the development of the flow. Figure 9 shows snapshots of the extent of vertical
mixing at the same times as in Figure 8. We note that both figures were produced
employing a triangulation and an associated linear interpolation of the particle data.
The results shown in Figure 8 are very similar to those presented in [4], with complex
vorticity interaction between that induced by wave breaking and the cylinder wake.
The consequence of this on the intensity of the vertical mixing is illustrated in Figure

Fig. 9. Snapshots of vertical mixing extents for Test 2. Snapshots are at the dimensionless
times given in Figure 8.

A SOLVER FOR INCOMPRESSIBLE FREE SURFACE FLOWS B419

9. We note that the bottom panel of Figure 9 is remarkably similar to Figure 7 of
[4], which shows the δ-SPH predictions of vertical mixing at approximately the same
time.

Fig. 10. Snapshots of vertical velocity contours at t = 1.5, 3.0, and 5s for Test 3. The snapshots
are chosen to show the three stages of drafting, kissing, and tumbling of the particles.

The PICIN results also exhibit the cyclical (plunging) wave breaking events down-
stream of the cylinder observed in the δ-SPH simulation of [4]. The predicted drag
coefficient CD is relatively stable throughout the duration of the run with a mean
value of 1.6. This is in reasonable agreement with the mean value of around 1.45
obtained by [4]. PICIN predictions for the lift coefficient CL oscillations have an
amplitude of around 0.5, which is 33% higher than the amplitude of around 0.375 in
Figure 3 of [4]. Both CD and CL were computed following the methodology given in
[3]. For this test the predicted Strouhal number is St = fSdcu∞

−1 = 0.23, where fS
is the vortex shedding frequency and u∞ is the free stream velocity. We note that the
value of St predicted by the PICIN model using < 80, 000 fluid particles is identical
to the value predicted by the δ-SPH model used by [4], the authors of which used 2
million particles.

The CPU time for 12s of simulation time was 68400s with ∆x = ∆z = Ĥ/60.

Test 3: Sedimentation of two circular particles. This final test case is
chosen to illustrate the ability of PICIN to handle problems that involve full two-way
fluid-solid coupling. Following [30] and [29], we consider the sedimentation of two
perfectly circular particles in water. The domain boundary Γ = Γ(x) comprises a
tank 2cm wide (x-direction) and 8cm tall (z-direction). To enable comparison with
[29] the kinematic viscosity of water is set at 1 × 10−06m2/s, and the water density
is 1000Kgm−3. The particle density is 1010Kgm−3, and the radius is 0.1cm for both
particles. Gravity acts in the negative z-direction. The simulation is started at t = 0s

B420 D. M. KELLY, Q. CHEN, AND J. ZANG

by dropping the two particles at the center of the channel at a height of 7.2cm and
6.8cm. For the results presented here ∆x = ∆z = 0.02cm, and a total of 160, 006
particles were seeded. A fixed time-step of t = 0.0025s was used, and the particle
resampling algorithm was employed every 15 time-steps in order to get a smoother
fluid particle distribution around the circular particles. Figure 10 shows that the
particles follow the expected regime of drafting, kissing, and tumbling.

After tumbling, both particles continue to fall at an approximately constant ve-
locity of just under 1cms−1. Based on this terminal velocity Uc the Reynolds number
is approximated, making use of the particle diameter d as Re = Ucdν

−1 ≈ 18 . The
results obtained using PICIN are in good agreement with those presented in [29]. De-
tail of the flow field around the circular particles is shown in Figure 11. Time series
of the vertical velocities for both particles are given in Figure 12.

The vertical-velocity time series is quantitatively similar to that presented in [29];
however, it is not identical, with differences appearing once the kissing phase begins.
We note, as did the author of [29], that tumbling is the manifestation of an instability
and is affected by both the accuracy of the solution procedure and the modeling of
the collision. Thus, the predictions of different numerical solvers are highly unlikely
to be identical.

The CPU time for 6s of simulation time was 4320s with ∆x = ∆z = 0.02cm.

5. Conclusion. For incompressible free surface flows the full particle PIC model
described here (PICIN) is an attractive alternative to both modern Eulerian schemes,
which typically employ a volume of fluid (VOF) or level set free surface treatment, and
fully Lagrangian schemes such as MPS and SPH. The PICIN model is able to simulate
complex free surface flows in arbitrary domains with both one-way and two-way fluid-
structure interaction. The three test cases presented have been chosen to illustrate
this capability as well as show the range of problems that the PICIN methodology can
successfully simulate. As discussed, the PICIN results are quantitatively in line with
the numerical results presented by other researchers for all three test cases shown. We
believe that the use of the full particle PIC methodology represents a promising avenue
of research for incompressible free surface flows. In particular, the approach seems
very promising for flows that involve violent wave impacts with (moving) structures.
We stress that we believe the CPU times presented here could be reduced significantly
with some optimization of the PICIN source code. Extensive validation of the PICIN
solver against experimental data will be presented in a forthcoming companion paper
[7].

Appendix A. Computing length fractions for fixed solid boundaries.

This appendix explains how the length fractions open to flow (required when using
the cut-cell approach to represent static solid boundaries) are approximated in the
PICIN model. Referring to Figure 13, the length of the cell open to flow, i.e., the value
of S1,...,4, can be determined directly from the solid signed distance function (SDF).
The solid SDF denoted φS = φS(x, t) is assumed to be known at all cell vertices,
allowing the values of S1,...,4 to be computed via linear interpolation. An expression
for the value of S1 computed in this manner is

(A.1) S1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

δ φs4

(φs4−φs1)
if φs1 < 0 and φs4 > 0,

δ φs1

(φs1−φs4)
if φs1 > 0 and φs4 < 0,

0 if φs1 < 0 and φs4 < 0,
δ if φs1 > 0 and φs4 > 0;

A SOLVER FOR INCOMPRESSIBLE FREE SURFACE FLOWS B421

Fig. 11. Detail of the fluid velocity field in the particle vicinity for Test 3. The contours are
of vertical velocity, and the snapshots are at the same times as in Figure 10.

the values of S2, S3, and S4 can be determined in a similar fashion. Note that δ = ∆x
for S2 and S4 and δ = ∆z for S1 and S3.

Appendix B. Computing the solid fraction θ for nonfixed solid bound-

aries. This appendix explains how the solid weighting fraction θ (required when us-
ing the DLM approach to represent solid boundaries) is approximated in the PICIN
model. For cells that are fully occupied by solids or fluids, the coefficient θ is simply
taken as 1.0 or 0.0. When a cell is partially cut by the solid boundary, it is assumed
that the solid boundary is a straight line and can cut one, two, or three sides of a cell,
as shown in Figure 14.

B422 D. M. KELLY, Q. CHEN, AND J. ZANG

i

����i���

i

����i���

Fig. 12. Time-series of PICIN predictions (left) and those of [29] (right) of vertical velocity
for the two circular particles in Test 3. The solid line represents the velocity of the lagging particle,
and the dashed line with circles represents the velocity of the leading particle.

Fig. 13. A typical solid boundary cut-cell illustrating the length fractions of faces open to flow
S1,...,4 and the location of the solid SDF φs1,...,s4 used to compute them.

(a) (b) (c) (d)

Fig. 14. Schematic showing various solid configurations in partially solid cells.

Fig. 15. Schematic showing the subdivision of a cell partially occupied by a solid. The subcells
that contribute to the value of θ are shaded.

The value of θ in cases (c) and (d) can be computed using a simple trapezoidal
area rule. Computation of θ in cases (a) and (b) requires more careful consideration.

A SOLVER FOR INCOMPRESSIBLE FREE SURFACE FLOWS B423

The technique employed here first divides the partially occupied cell into 64 subcells
and then detects whether the subcell center is inside the solid or not. The subcell is
considered to be occupied by a solid if its center is inside the solid region, as shown in
Figure 15. The final value for θ is taken to be the ratio of the total area of occupied
subcells to the area of the full-sized containing cell.

Acknowledgments. The authors are grateful to Dr. A. Dimakopoulos (HR
Wallingford) and the two anonymous reviewers, whose suggestions have served to
greatly improve the final paper. Use of the MATLAB based Mermaid software devel-
oped by Dr. T. Benson (HR Wallingford) to plot model results is also acknowledged.

REFERENCES

[1] D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in level
set methods, J. Comput. Phys, 148 (1999), p. 2–22.

[2] R. Ando, N. Thurey, and R. Tsuruno, Preserving fluid sheets with adaptively sampled
anisotropic particles, IEEE Trans. Visualization Comput. Graphics, 18 (2012), pp. 1202–
1214.

[3] E. Balaras, Modeling complex boundaries using an external force field on fixed Cartesian
grids in large-eddy simulations, Comput. & Fluids, 33 (2004), pp. 375–404.

[4] B. Bouscasse, A. Colagrossi, S. Marrone, and A. Souto-Iglesias, Viscous flow past a
circular cylinder below a free surface, in Proceedings of the 33rd ASME International Con-
ference on Ocean, Offshore and Arctic Engineering, San Fransisco, CA, 2014, OMAE2014-
24488.

[5] J. U. Brackbill and H. M Ruppel, FLIP: A method for adaptively zoned, particle-in-cell
calculations of fluid flows in two dimensions, J. Comput. Phys., 65 (1986), pp. 314–343.

[6] B. Buchner, Green Water on Ship-Type Offshore Structures, Ph.D. thesis, Delft University of
Technology, Delft, The Netherlands, 2002.

[7] Q. Chen, D. M. Kelly, J. Zang, and A. Dimakopoulos, PICIN: A Particle-In-Cell Solver
for Incompressible Free Surface Flows with Two-Way Fluid-Solid Coupling. Part 2: Vali-
dation, in preparation.

[8] A. J. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comput., 22 (1968),
pp. 745–762.

[9] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-
Verlag, New York, 1979.

[10] A. Colagrossi, B. Bouscasse, M. Antuono, and S. Marrone, Particle packing algorithm
for SPH schemes, Comput. Phys. Comm., 183 (2012), pp. 1641–1653.

[11] F. Gibou, R. P. Fedkiw, L.-T. Cheng, and M. Kang, A second-order-accurate symmetric
discretization of the Poisson equation on irregular domains, J. Comput. Phys., 176 (2002),
pp. 205–227.

[12] F. H. Harlow, A Machine Calculation Method for Hydrodynamic Problems, Technical report
LAMS-1956, Los Alamos Scientific Laboratory, Los Alamos, NM, 1955.

[13] F. H. Harlow, The particle-in-cell computing method for fluid dynamics, in Methods in Com-
putational Physics, B. Alder, ed., Academic Press, New York, 1964, pp. 319–343.

[14] F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incom-
pressible flow of fluid with free surface, Phys. Fluids, 8 (1965), pp. 2182–2189.

[15] J. P. Hughes and D. I. Graham, Comparison of incompressible and weakly-compressible SPH
models for free-surface water flows, J. Hydraulic Res., 48 (2010), pp. 105–117.

[16] C. B. Jiang, J. Chen, H. S. Tang, and Y. Z. Cheng, Hydrodynamic processes on a beach:
Wave breaking, up-rush and backwash, Commun. Nonlinear Sci. Numer. Simul., 16 (2011),
pp. 3126–3139.

[17] S. Koshizuka, A. Nobe, and Y. Oka, Numerical analysis of breaking waves using the moving
particle semi-implicit method, Internat. J. Numer. Methods Fluids, 26 (1998), pp. 751–769.

[18] P. Lin and P. L. F. Liu, A numerical study of breaking waves in the surf zone, J. Fluid Mech.,
359 (1998), pp. 239–264.

[19] S. J. Lind, R. Xu, P. K. Stansby, and B. D. Rogers, Incompressible smoothed particle
hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability
and validations for impulsive flows and propagating waves, J. Comput. Phys., 231 (2012),
pp. 1499–1523.

B424 D. M. KELLY, Q. CHEN, AND J. ZANG

[20] G. Markham and M. V. Proctor, C.E.G.B. report, Tech. report TRPD/L/0063/M82, CEGB,
London, 1983.

[21] S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touze, and G. Graziani,
δ-SPH model for simulating violent impact flows, Comput. Methods Appl. Mech. Engrg.,
200 (2011), pp. 1526–1542.

[22] J. J. Monaghan, SPH without a tensile instability, J. Comput. Phys., 159 (2000), pp. 290–311.
[23] J. J. Monaghan, Smoothed particle hydrodynamics and its diverse applications, Annu. Rev.

Fluid Mech., 44 (2012), pp. 323–346.
[24] J. J. Monaghan and J. C. Lattanzio, A refined method for astrophysical problems, Astronomy

Astrophys., 149 (1985), pp. 135–143.
[25] J. P. Morris, P. J. Fox, and Y. Zhu, Modeling low Reynolds number incompressible flows

using SPH, J. Comput. Phys., 136 (1997), pp. 214–226.
[26] Y. Ng, C. Min, and F. Gibou, An efficient fluid-solid coupling algorithm for single-phase

flows, J. Comput. Phys., 228 (2009), pp. 8807–8829.
[27] B. D. Nichols and C. W. Hirt, Improved free surface boundary conditions for numerical

incompressible-flow simulations, J. Comput. Phys., 8 (1971), pp. 434–448.
[28] W. F. Noh, CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code,

in Methods in Computational Physics, B. Alder, ed., Academic Press, New York, 1964,
pp. 117–179.

[29] N. A. Patankar, A formulation for fast computations of rigid particulate flows, in Center
for Turbulence Research Annual Research Briefs 2001, Stanford University, Stanford, CA,
2001, pp. 185–196.

[30] N. A. Patankar, P. Singh, D. D. Joseph, R. Glowinski, and T.-W. Pan, A new formulation
of the distributed Lagrange multiplier/ fictitious domain method for particulate flows, Int.
J. Multiphase Flow, 26 (2000), pp. 1509–1524.

[31] W. H. Press, S. A. Teulowsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in FORTRAN, The Art of Scientific Computing, 2nd ed., Cambridge University Press,
Cambridge, UK, 1994.

[32] A. Ralston, Runge–Kutta methods with minimum error bound, Math. Comp., 16 (1962),
pp. 431–437.

[33] J. A. Sethian, Level Set Methods and Fast Marching Methods, 9th ed., Cambridge University
Press, Cambridge, UK, 2008.

[34] H. Zhao, A fast sweeping method for Eikonal equations, Math. Comp., 74 (2004), pp. 603–627.
[35] Y Zhu and R Bridson, Animating sand as a fluid, in Proceedings of ACM SIGGRAPH 2005,

ACM, New York, 2005, pp. 965–972.

