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Abstract

Modern architecture research relies heavily on detailed
pipeline simulation. Simulating the full execution of an indus-
try standard benchmark can take weeks to months to complete.
To address this issue we have recently proposed using Simulation
Points (found by only examining basic block execution frequency
profiles) to increase the efficiency and accuracy of simulation.
Simulation points are a small set of execution samples that when
combined represent the complete execution of the program.

In this paper we present a statistically driven algorithm
for forming clusters from which simulation points are chosen,
and examine algorithms for picking simulation points earlier in
a program’s execution - in order to significantly reduce fast-
forwarding time during simulation. In addition, we show that
simulation points can be used independent of the underlying ar-
chitecture. The points are generated once for a program/input
pair by only examining the code executed. We show the points
accurately track hardware metrics (e.g., performance and cache
miss rates) between different architecture configurations. They
can therefore be used across different architecture configura-
tions to allow a designer to make accurate trade-off decisions
between different configurations.

1 Introduction
Understanding the cycle level behavior of a processor running an
application is crucial to modern computer architecture research.
To gain this understanding, detailed cycle level simulators are
typically employed. Unfortunately, this level of detail comes at
the cost of speed, and simulating the full execution of an indus-
try standard benchmark on even the fastest simulator can take
weeks to months to complete. This fact has not gone unnoticed,
and several techniques have been developed aimed at reducing
simulation time.

For architecture research it is necessary to take one instance
of a program with a given input, and simulate its performance
over many different configurations for an architecture feature,
searching the design space for Pareto optimal points in terms of
performance, area and power. The same program binary with
the input may be run hundreds or thousands of times to exam-
ine how, for example, the effectiveness of a given architecture
changes with its cache size. To address these issues, we created
a tool called SimPoint [18, 19]. SimPoint intelligently chooses a
set of samples called Simulation Points to perform targeted pro-
gram analysis. These provide an accurate picture of the complete

execution of the program.

1.1 SimPoint Overview
To use the SimPoint analysis for simulation, the user has to spec-
ify a desired sample size. This represents the number of detailed
instructions the user wants to simulate for each sample. We use
a sample size of 1 million instructions for the majority of the re-
sults in this paper, but larger or smaller sample sizes can be used.
For a program/input pair, the length of the program’s execution
is partitioned into N consecutive intervals, where each interval is
equal to the length of the sample size (in terms of executed in-
structions). A code profile is then gathered for each interval. The
profile measures the frequency of the code being executed dur-
ing each interval. For each interval a Basic Block Vector (BBV)
is created [18]. The BBV keeps track of the number of instruc-
tions executed for each static basic block for that interval. After
it is generated, the BBV is normalized with the total number of
instructions executed in the interval. This allows us to perform a
vector difference between two intervals to see how similar they
are to one another, in terms of the code they executed.

For the basic block vectors, the number of dimensions is the
number of executed basic blocks in the program, which ranges
from 2,756 to 102,038 for the SPEC 2000 programs, and can
grow into the millions for very large programs. Therefore, we
use random linear projection [5] to create new low-dimensional
vectors and use these projected basic block vectors when com-
paring the similarity of two intervals. We found that projecting
the data down to 15 dimensions is sufficient to still differentiate
the different phases of execution [19].

The interval profiles (projected BBVs) are then used to de-
termine the similarity of each interval with other intervals of
execution. Machine learning clustering algorithms are used to
group together (into clusters) intervals of execution that execute
the same code blocks with the same frequency. To cluster, the
difference between two interval BBVs is calculated to determine
this similarity. Each cluster represents a group of potentially dis-
continuous execution intervals that were similar to each other.
Once all the intervals for a program/input pair have been put
into their clusters, we pick a single point (interval) from each
cluster (appropriately weighted) to serve as that cluster’s repre-
sentative. These are called the Simulation Points. The set of rep-
resentative simulation points are where detailed simulation and
program analysis should be performed. Only these points are
simulated, and the overall simulation metrics are calculated by
weighing each simulation point by the percent of execution the

1



cluster it came from represents. These results are then combined
to arrive at overall metrics that represent the complete execution
of the program. Simulating only these points provides an accu-
rate and efficient representation of the complete execution of the
program.

The key to our approach is that for a given binary and input,
the simulation points only need to be chosen once, and they are
chosen by running a fast code profiler without considering any of
the underlying architecture features. In our prior approach, we
select these points using a method that is completely indepen-
dent of any particular architecture configuration. The simulation
points are selected using a metric that is only based on the code
that is executed over time for a program/input pair. Once Sim-
Point has chosen the simulation points, they can be used for the
hundreds or thousands of independent simulations to examine
trade-offs in architecture design space exploration.

An important step in the SimPoint algorithm is clustering.
The goal of clustering is to divide a set of points into groups
such that points within each group are similar to one another (by
some metric, often distance), and points in different groups are
different from one another. To perform the clustering we use the
popular k-means [14] algorithm, since it is a very fast and sim-
ple algorithm that yields good results. SimPoint uses k-means
to group all of the code profile intervals with similar behavior
(based only on the code profiles) into k separate clusters. The
issue is how to choose the value of k (the number of desired
clusters). Since the clustering algorithm is very fast, our ap-
proach is to examine many different clusterings (many different
values of k), and then use a selection criteria for choosing the
best k clustering to use. Since clustering groups points together
into a cluster that are similar to each other, the larger the k, the
more homogeneous the behavior becomes within each cluster.
Taking this to the extreme, if every interval of execution is given
its very own cluster, then every cluster will have perfect homo-
geneous behavior. Our goal is to choose a clustering with the
minimum number of clusters k where each cluster has reached a
certain level of homogeneous behavior.

SimPoint allows a user to specify the maximum number of
clusters to be considered. For simulation, a user may want to
set this to the maximum number of intervals the user is willing
to perform detailed simulation on for each program, or some
other criteria. In a prior study [19], we set the max K to be 10,
since we used an interval size of 100 million, and this would
guarantee that SimPoint would search for solutions that resulted
between 100 million to 1 billion instructions for detailed pipeline
simulation. In this paper, when using an interval size of 1 million
we set max K to be 300, so anywhere between 1 million and 300
million detailed instructions will be simulated.

After SimPoint performs a clustering for each k up to the
specified maximum K , a selection criteria needs to be used to
choose the minimum k where each cluster has reached a certain
level of homogeneous behavior. In [19], we used the Bayesian
Information Criterion (BIC) score [9, 17]. This rates each cluster
with a likelihood of producing a spherical Gaussian distribution
along with a penalty based on the number of clusters being used.
Clusterings that are well formed will have higher BIC scores. A

heuristic was then used to choose a small clustering with high
BIC. The heuristic takes the smallest k such that its BIC score is
at least 80% as good as the best BIC score.

After picking a clustering, the final step of the algorithm is to
pick a representative point from each cluster. In order to pick this
representative, we choose for each cluster the actual interval that
is closest to the centroid (or center) of the cluster (as measured
by Euclidean distance). The Centroid of a cluster is analogous to
the center of mass of the cluster in basic block space. Because of
this, the centroid is the point that is closest to all the other points
in the cluster. By choosing the interval closest to the centroid as
a representative for that cluster we ensure that we are picking an
interval of execution whose code usage represents the average
behavior of all the intervals of the cluster.

Choosing a point close to the centroid is important, espe-
cially when the max K is set small when clustering a program.
If a user wants to limit the max K to be small, for example in
order to reduce simulation time, SimPoint can still provide accu-
rate results since a point close to the centroid (the average code
usage of the cluster) is picked to represent the cluster. For exam-
ple, if you limit a clustering of gcc to be at max 300 intervals for
an interval size of 1 million instructions, then we have found the
clusters formed to have very similar IPC. But, if you limit gcc to
have only 10 clusters using an interval size of 100 million, then
some of the clusters will have varying IPC. In this case, since
a point close to the centroid is chosen, this point represents the
average code behavior of the interval, and we have found that
this point also tends have the average performance (e.g., IPC) of
that cluster. This allows SimPoint to still provide accurate results
even when a cluster does not have homogeneous behavior, which
occurs when max K is restricted to reduce simulation time.

1.2 Improvements to SimPoint
In this paper we present an algorithm for choosing the number of
clusters to use by augmenting the BIC with confidence informa-
tion to create a Variance SimPoint algorithm. We use statistical
analysis to guide the picking of a clustering to provide a given
level of confidence and probabilistic error bound. In addition,
this same analysis can be used as a post step if desired to pro-
vide a confidence and error bound for a clustering derived using
the original SimPoint BIC algorithm.

To choose a clustering (k) using our Variance SimPoint al-
gorithm, we run the program/input pair once, sampling the per-
formance over the program’s execution. We then calculate the
BIC as before. This is used to set a lower bound on k. We then
compute the variance of each cluster, and choose the smallest k,
but no smaller than the k chosen by the BIC criteria. This guides
the picking of k through a user specified level of confidence and
probabilistic error bound. The simulation point within each clus-
ter is chosen as before, and this set of simulation points can then
be used to guide architecture simulations across many different
architecture configurations.

Note, this confidence and probabilistic error bound only ap-
plies to the architecture configuration used to perform the sam-
pling. Even so, the particular confidence and probabilistic error
bound are used to only choose a given clustering to augment the
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clusters chosen by the BIC. This ensures that we still are choos-
ing a clustering first by only examining the code being executed
(by using the BIC to set the minimum k). The simulation points
can be generated once for a program/input pair, and then used
across different architecture configurations for accurate architec-
ture research.

The absolute error of a program/input run on one hard-
ware configuration is not as important as tracking the change
in metrics across different architecture configurations. We show
that our simulation points accurately track the relative change
in hardware metrics across different architecture configurations.
This shows that the simulations points can be used across differ-
ent architecture configurations to allow a designer to accurately
trade-off design points. To show this we examine many differ-
ent architecture configurations varying the first and second level
cache sizes, access times, and associativities.

The final contribution of this paper deals with picking ear-
lier simulation points to decrease simulation time. For a given
clustering, our prior algorithms focus on picking the most rep-
resentative point from a cluster, since we assumed a simulation
environment with check-pointing. Check-pointing is the process
of storing the state of a simulator so that simulation can continue
from that point at a later time. If the start of all of the simula-
tion points are check-pointed, then the full program can be sim-
ulated in parallel very quickly simulating each checkpoint inde-
pendently. In practice, not all simulation environments have the
support for check-pointing, and instead the simulator must fast-
forward (perform functional emulation) between the simulation
points. This can take a significant amount of time, especially
if the simulation point is at the end of execution. Therefore,
we created algorithms for picking simulation points that are ear-
lier in the program to significantly reduce the fast-forward time
needed for these simulation environments.

The rest of the paper is laid out as follows. We begin with a
description of prior research on simulation infrastructure in Sec-
tion 2. We then briefly describe the methods used to perform this
research in Section 3. In Section 4, we describe using confidence
and error to guide the picking of k, and we provide a compari-
son to statistical sampling [4, 22]. Section 5 details our modi-
fied algorithm for finding early simulation points that are more
fast-forwarding friendly. Section 6 provides empirical results
showing that the simulation points accurately track performance
changes across different architecture configurations. Section 7
summarizes the paper.

2 Related Work
Modern architecture research relies heavily on detailed pipeline
simulation. Simulating the full execution of an industry stan-
dard benchmark can take weeks to months to complete. Sim-
pleScalar [1], one of the faster cycle-level simulators, can sim-
ulate around 400 million instructions per hour. Unfortunately
many of the new SPEC 2000 programs execute for 300 billion
instructions or more. At 400 million instructions per hour this
will take approximately 1 month of CPU time. This problem
has motivated several researchers to develop ways of reducing

simulation time while remaining true to the full simulation. In
this section we provide a short summary of research related to
efficient simulation.

2.1 Fast-forwarding and Checkpointing
Historically, researchers have simulated from the start of the ap-
plication, but this usually does not represent the majority of the
program’s behavior because the code that is executing is often
times performing simple chores like setting up and clearing the
data structures to be used. Recently, researchers have started to
fast-forward to a given point in execution, and then start their
simulation from there, ideally skipping over the initialization
code to an area of code representative of the whole. While fast-
forwarding, the simulator simply acts like an emulator. When
the fast-forward point has been reached, the simulator switches
to full cycle-level simulation.

An alternative to fast-forwarding is to use checkpointing to
start the simulation of a program at a specific point. With check-
pointing, code is executed to a given point in the program and the
state is saved, or checkpointed, so that other simulation runs can
start there. This provides the ability to simulate all of the sam-
ples in parallel obtaining very fast results using distributed com-
puting [13]. Checkpointing, while powerful, does come at a cost.
The checkpoints themselves can be quite large since the contents
of main memory needs to be saved. In addition, a checkpoint
can contain saved architectural state to avoid the need to warm-
up structures. If one requires many samples to guide simulation,
the number of checkpoints can be a prohibitive cost. In this case,
fast-forwarding is a likely alternative.

2.2 Warm-Up
After fast-forwarding, the state of caches, branch predictors, and
other structures that rely on past run-time information will not
be in the state that they would be in if detailed simulation had
been performed. At this time the simulator is said to be cold
or stale. To get accurate results for these structures, there are
several options that have been proposed.

One way to look at warm-up is to try to effectively remove
the cold-start bias that occurs at the start of each sample. Wood
et al. [21] examined estimating the miss ratios for caches at the
start of a sample for unknown (cold) references. They found that
the miss rate of unknown references correlates to the percentage
of time that a block is dead. In [10], they extend this work to
perform a comparison between trace sampling techniques and
examine several techniques to mitigate the cold-start bias. These
range from using half of the trace to initialize the cache, to using
the state of the cache from the prior trace interval (stale-state), to
assuming a fraction of the initial cold-start references hit in the
cache.

Conte et al. [3] examined a single pass approach to warming
up cache structures by using part of the sample to warm-up the
structure before starting to collect the cache statistics. In addi-
tion, they examined using the stale-state from the prior sample as
the starting state for the next sample for architecture structures
like branch prediction [4].

Recently, Haskins and Skadron [6, 8, 7] have examined find-
ing the minimum distance to fast-forward before a simulation
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point based upon the working set size of the structure to be
warmed up. They use their reuse analysis to accurately deter-
mine how far ahead to warm-up different structures (e.g., branch
predictors, and caches) before starting detailed simulation. Their
warm-up reuse analysis fits well with our simulation points.
Once you have a set of simulation points for a program/input
pair, you can perform their reuse analysis to figure out how much
before the simulation point structure simulation needs to start to
reduce warm-up effects.

2.3 Statistical Sampling
Several different techniques have been proposed for sampling to
estimate the behavior of the program as a whole. Laha et al. [12]
introduced the use of random sampling to evaluate cache mem-
ory performance. They compared the accuracy of the sampled
mean and they examined the distribution of random sampling
showing that it matched the distribution of the real trace.

Conte et al. [4], was the first to apply statistical sampling
to processor simulation calculating confidence and probabilistic
error bounds for performance. They show how to calculate these
bounds from a single sampling simulation run. Wunderlich et
al. [22] extends this work using statistical sampling to focus on
how to achieve accurate results for very small sample sizes on
the order of 1000 instructions, and use statistical analysis from
one run to determine how many samples are needed to achieve a
desired error bound for a level of confidence for future runs.

In [22], they use statistical sampling to provide low error
bounds ±3% on average, with a high confidence 99.7% on av-
erage. They report that their approach provides an average 0.6%
error in CPI, and when they used the simulation points from our
website they achieved and average error rate of 3.7%. This in-
crease in accuracy comes at a cost in the time it takes to perform
simulations. On average they showed that it took 5 hours to per-
form a simulation run using SMARTS [22], whereas they found
using our original SimPoint algorithm and the simulation points
from [19] took 2.8 hours on average. Our prior results [19] used
100 million instruction sample sizes and used K = 10 as the
maximum number of clusters. One of the contributions the work
in our paper is to reduce the fast-forward time by 3.6 times over
the original SimPoint algorithm in [19] by focusing on picking
early simulation points, which are still close to the centroid.

The statistical sampling results in [22] requires 1,000s to
10,000s of samples to be taken over the complete execution
of the program. Since this many random and small samples
have to be taken over the whole program, it is harder to bene-
fit from checkpointing or the warmup techniques in [8]. To ad-
dress this, SMARTS keeps the state of certain architecture com-
ponents warm (e.g., caches) during fast-forwarding. To make
this feasible, their infrastructure focuses on providing fast func-
tional simulation and efficient structure simulation during fast-
forwarding. Keeping the cache structures warm will increases
the time it takes to perform fast-forwarding. In comparison, Sim-
Point focuses on a small number of simulation points, so it can
better benefit from checkpointing and pre-calculating warmup
distances. Even so, keeping functional state warm during fast-
forwarding can be an approach for dealing with warm-up for

Early SimPoint, since it significantly reduces the fast-forward
time.

2.4 Reduced Input Set
One approach for reducing the simulation time is to use the train-
ing or test inputs from the SPEC benchmark suite. For many of
the benchmarks, these inputs are either (1) still too long to fully
simulate, or (2) too short and place too much emphasis on the
startup and shutdown parts of the program’s execution, or (3)
inaccurately estimate behavior.

KleinOsowski et al. [11], have developed a technique where
they manually reduce the input sets of programs. The input sets
were developed using a range of approaches from truncation of
the input files to modification of source code to reduce the num-
ber of times frequent loops were traversed. For these input sets
they develop, they make sure that they have similar results in
terms of IPC, cache, and instruction mix.

2.5 Statistical Simulation
Another technique to improve simulation time is to use statisti-
cal simulation [16]. Using statistical simulation, the application
is run once and a synthetic trace is generated that attempts to
capture the whole program behavior. The trace captures such
characteristics as basic block size, typical register dependencies
and cache misses. This trace is then run for sometimes as little
as 50-100,000 cycles on a much faster simulator. Nussbaum and
Smith [15] also examined generating synthetic traces and using
these for simulation and was proposed for fast design space ex-
ploration.

3 Methodology
In performing this research we made use of three different tools,
ATOM [20], SimpleScalar3.0c [1], and SimPoint [19]. These
tools are all designed or configured to work with the Alpha AXP
ISA or are platform agnostic. ATOM, a binary modification tool,
is used to quickly gather profiling information in the form of
basic block vectors which can be fed as input to the SimPoint
tool. The SimPoint tool then takes these vectors and performs
k-means clustering analysis, BIC scoring, and determines the
set of simulation points to use for that program/input pair. For
all the results in this paper we use perfect warm-up. This is
to remove the cold-start bias, and to focus our study on only
the error differences between the simulation points picked by
SimPoint and the samples chosen using statistical sampling.

SimpleScalar is used to collect the full detailed results, col-
lect random samples, and to validate the phase behavior we
found when clustering our basic block profiles. The baseline
microarchitecture model we simulated is detailed in Table 1. We
simulate an aggressive 8-way dynamically scheduled micropro-
cessor with a two level cache design. Simulation is execution-
driven, including execution down any speculative path until the
detection of a fault, TLB miss, or branch misprediction. We
modified SimpleScalar to enable fast-forwarding between an ar-
bitrary number of non-contiguous detailed simulation intervals,
in one serial run. This modification is necessary for random sam-
pling, since it involves hundreds of non-contiguous interval sim-
ulations from each program.
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I Cache 8k 2-way set-associative, 32 byte blocks, 1 cycle latency

D Cache
16k 4-way set-associative, 32 byte blocks, 2 cycle la-
tency

L2 Cache
1Meg 4-way set-associative, 32 byte blocks, 20 cycle la-
tency

Memory 150 cycle round trip access

Branch Pred
hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k bi-
modal predictor

O-O-O Issue
out-of-order issue of up to 8 operations per cycle, 128
entry re-order buffer

Mem Disam load/store queue, loads may execute when all prior store
addresses are known

Registers 32 integer, 32 floating point

Func Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-integer
MULT/DIV, 2-FP MULT/DIV

Virtual Mem
8k byte pages, 30 cycle fixed TLB miss latency after
earlier-issued instructions complete

Table 1: Baseline Simulation Model.

We analyzed and simulated the SPEC 2000 benchmarks
compiled for the Alpha ISA for multiple inputs. We provide re-
sults for 43 program/input combinations. For some of the graphs
we focus in on a subset of 10 program/input combinations that
represent some of the more complex phase behavior found in
the SPEC benchmark suite. In these graphs, the avg-rest
results show the average for all the 33 program/input combina-
tions not individually shown, and then avg-all show the av-
erage for all 43 program/input combinations. The binaries we
used for this study and how they were compiled can be found at
http://www.simplescalar.com/.

4 Picking Simulation Points Using Sta-
tistical Analysis

In this section we first show how to find a probabilistic error
bound for a given level of confidence for a single set of simu-
lation points. This can be used to estimate the confidence and
error for a given clustering. We then show how to use this same
analysis to create a new algorithm for picking k (the number of
clusters to use). We then compare the results of this algorithm
with statistical sampling.

4.1 Statistical Validation of Simulation Points
Given a set of simulation points obtained from SimPoint, a user
may want to know the confidence and error for this set of simu-
lation points. We use the following approach for estimating what
the expected error is for a given level of statistical confidence for
a single set of simulation points. We then show how to use this
technique to guide picking k (the cluster to use) for SimPoint.

To establish the error bounds, we must find the variance of
the estimator. A very simple and intuitive way to do this is to
repeatedly take estimates from the program. This sampling tech-
nique is known as a parametric bootstrap [2, p. 480], where the
parametric form is the clustering structure we have learned.

Recall from Section 1.1 that for the clustering k chosen by
SimPoint, one simulation point (interval) is chosen to represent
the entire cluster. This set of simulation points for all the clusters
is then used to represent the complete execution of the program.
To find the error bound for this one set of simulation points, we
do the following:

1. Find a clustering using the BIC heuristic

2. Do the following N times:

(a) Choose one interval (sample) at random from each clus-
ter/phase.

(b) Compute an estimated CPI by combining the CPIs from
each chosen interval, weighted by the size of each cluster.

3. The probabilistic error bound on one set of simulation points
is zσ/µ.

Here µ is the average of the N estimated CPIs, and σ is the
standard deviation of the computed estimate CPIs. The value z is
the “confidence multiplier” that comes from a table of the normal
distribution; α = F (z), where F is the cumulative distribution
function of the normal distribution, so that z = F −1(α). Thus,
z is the value such that the area under the Gaussian curve to the
left of z is α, the desired confidence. Then e = zσ/µ is the
probabilistic error bound for a given level of confidence α. For
a choice of one set of simulation points, we expect the true CPI
to be within zσ/µ of the estimate µ.

The value of N is the number of times to compute estimates.
Larger N gives a more accurate and tighter measurements of the
standard deviation; N = 10 or larger is reasonable; for our mea-
surements we have used N = 100. Note that gathering all the
simulation points for the N CPI estimates only requires one run
through the program. We first choose N random samples from
every cluster, and then run the program once fast-forwarding be-
tween the samples to gather all of the results. Then, the above
analysis can be used to determine for a given confidence level a
probabilistic error bound for any SimPoint clustering.

4.2 Picking K using Variance Analysis
We now describe a new SimPoint algorithm where the user en-
ters a desired confidence and a probabilistic error bound, and
then the smallest clustering k is picked that matches these con-
straints. The first priority of the algorithm is to ensure that can-
didate clusterings are chosen first according to the homogeneity
of their clusters based on code usage, and then second based
upon a confidence and probabilistic error bound. This is because
the confidence and error are calculated with respect to CPI and
sampling a particular architecture configuration. If we did not
choose a clustering based first upon code usage and instead only
on confidence and error, then the clustering may not be repre-
sentative across different hardware configurations.

In this algorithm, as before, we cluster the data for all pos-
sible values of K from 1 to max K that is specified by the user.
To ensure that a clustering is picked that would be representative
and independent of the underlying architecture we first apply the
BIC heuristic to all of the clusterings. The new algorithm starts
to differ here. We trim down the possible set of clusterings from
K down to B. These B clusterings have a BIC score greater
than a specified threshold (80% for the results in this paper). We
then search this candidate set of B clusterings for the smallest
k that meets the desired confidence and error. Picking a subset
of clusterings based on BIC and then a final clustering based on
Variance in this manner ensures that the given set of simulation
points chosen will be representative of the complete execution
regardless of the underlying architecture.
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Our Variance SimPoint algorithm allows the user to set a de-
sired error (e.g., 5%) within which the estimate should come to
the true value, and a confidence level on that desired error (e.g.,
95%). The algorithm uses sampling to determine an appropriate
number of clusters for that desired error.

1. Choose a desired error e and confidence level α.

2. For each k = {1, . . . , K}, find a clustering of the Basic Block
Vectors with k clusters using the k-means algorithm. Here K
is the maximum number of clusters to consider, also specified
by the user.

3. Trim K down to B candidate clusterings. Candidate cluster-
ings are those with a BIC score that is at least 80% as good
as the best BIC score. This insures that we only examine
clusterings that are well formed, by first only considering the
similarities in the code executed between intervals. This re-
sults in a set B of candidate clusters and only these clusters
will be considered in the rest of the algorithm.

4. From each candidate clustering, choose N samples randomly
from each cluster. This results in a total of S samples to
gather.

5. Run the program/input pair gathering architecture results for
each of the S samples.

6. For each candidate clustering k, calculate the estimated CPI
µk the standard deviation σk, and error as described above in
Section 4.1. For the desired confidence level α, the proba-
bilistic error e is calculated to be e = zσk/µk.

7. Select the smallest k, from the set of candidate clusterings B
such that zσk/µk ≤ e. This picks the smallest k that has a
small enough standard deviation to satisfy the desired error
bound at the given confidence level.

The above algorithm determines a set of candidate cluster-
ings B that satisfy the above BIC heuristic. This ensures that we
are only considering clusterings that are well formed. To per-
form the Variance analysis, we need to gather samples from the
candidate clusterings. For each clustering in B, we randomly
select N points from each cluster to sample. For example, as-
sume we start with a max K = 20, then after applying the BIC
score we are left with only three candidate clusterings, which
are k = 18, 19, 20 (remember that k = 18 has 18 clusters,
k = 19 has 19 clusters, and so on). We then have to gather
S = (18 + 19 + 20) ∗ N samples to calculate the confidence
and error analysis for each of these three clusterings. Once the
sample locations are chosen, the program/input pair is then run
once to gather all of the samples. Once this is done, we can then
calculate the probabilistic error bound for the given input con-
fidence level for each clustering k. We then chose the smallest
candidate k such that zσk/µk ≤ e, using the statistical analysis
described above in Section 4.1.

Now for some programs, it may be that for the max K used
(limit on the number of clusters) that σk never reaches a small
enough value to allow any clusterings to be acceptable at the
desired error and confidence. In this case, several options can be
followed. One option is to increase the maximum K to consider,

and repeat the above process, which will cause the σk to decrease
for the new, larger possible values of k. Another option is to
use the clustering k with the lowest σk , understanding that the
desired error will not be achieved; rather, the expected error will
be within cσk/µk percent of the true value.

4.3 Variance SimPoint Results
Figure 1 shows the results for the Variance SimPoint algorithm
using an interval (sample) size of 1 million instructions, and a
max K of 300 clusters, so at most 300 million instructions would
be detailed simulated when using the simulation points. The de-
sired confidence level used for these results is for α = 0.95, or
95% confidence with an error less than 5%. For this paper, we
gathered results for 43 SPEC program/input combinations. Fig-
ure 1 shows the results for all of these for the Variance SimPoint
algorithm. The percent error is shown when compared to the
complete execution of the program/input, and top of the stem
shows the probabilistic error bound.

Figures 2 and 3 show the number of clusters used and the
number of instructions the program had to fast-forward through
to get to the last simulation point chosen for the Variance Sim-
Point results in Figure 1. In these two figures, detailed results
are shown for a subset of 10 programs, avg-rest shows the
average for all the 33 programs not shown in detail, and then an
avg-all shows the overall average for all 43 programs. The
results show that on average 100 million instructions are sim-
ulated in detail, and there is usually a simulation point chosen
somewhere near the end of the program, so the fast-forward dis-
tance is almost equal to the full execution of the program.

The second and third bars in Figure 1 show results for ran-
dom sampling with (1) the same number of intervals chosen as
for the Variance SimPoint algorithm, and (2) when using 1000
samples. The sample size used is also 1 million instructions. For
these results, we use a form of random sampling instead of sys-
tematic sampling. To perform our random sampling, we divide
the program up into N consecutive sections, where N is the num-
ber of samples we are going to take. We then randomly choose
one point from each of the N sections. This guarantees that we
get a random distribution of samples across the complete execu-
tion of the program/input. For the program/inputs examined, we
found this to provide tighter probabilistic error bounds and lower
errors than pure random sampling or systematic sampling.

The results show that Variance SimPoint is able to achieve
tighter probabilistic error bounds than Sampling, when using the
same number of samples. Variance SimPoint ensures that at least
one sample is being used from each cluster, and the purpose
of clustering is to group program behavior such that each clus-
ter potentially represents different program behavior. Therefore,
obtaining a sample of all of the different behaviors in a program
allows Variance SimPoint to achieve tight error bounds when us-
ing a small number of samples (on average 100 as shown in Fig-
ure 2). In comparison, when using the same number of samples
for each program, random sampling has a worse probabilistic
error bound. This is because random sampling can oversam-
ple some of the program’s behavior while under-sampling other
parts of the program. When using 1000 samples, less than a 2%
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average error is seen with under a 3% probabilistic error bound.

5 Early Simulation Points
In the original multiple SimPoint algorithm [19], the goal was to
pick a single simulation point from each cluster that best repre-
sents all of the intervals in that cluster. This may pick simulation
points that are at the very end of a program’s execution. If the
simulator supports checkpointing, then simulation can be started
very quickly at a point at the end of the program. But, for sim-
ulation environments that do not support checkpointing, it can
require up to several days to fast-forward to the latter part of
execution to reach a late simulation point.

The goal in this section is to find simulation points that are
earlier in the program’s execution that still accurately represent
the overall execution of the program. These early simulation
points can then be used to significantly reduce the time spent
fast-forwarding to reach all of the simulation points for a pro-
gram.

5.1 Early SimPoint Algorithm
This section focuses on a simulation environment that relies
upon using fast-forwarding to simulate a program. In this en-
vironment, the program is simulated once interleaving fast-
forwarding with detailed simulation. The last simulation point in
a program’s execution determines how much of the program the
simulator will have to fast-forward through, and this greatly de-
termines the total simulation time. Therefore, to reduce the time
required for fast-forwarding, we only care about the location of
the last simulation point. If we pick the earliest point from each
cluster, then the earliest the last simulation point in the program
will occur is the location of the latest starting cluster.

Our Early SimPoint algorithm focuses on choosing a clus-
tering that is both representative of the program’s execution and
has some feasible simulation points early in the program for all
clusters. This might not be achievable for all programs, since an
important phase of execution may only appear at the end of exe-
cution. We therefore still give priority in our algorithm to ensure
that the clustering groups together intervals of execution that are
similar to one another. Once the early clustering is chosen, we
pick representative simulation points early in the execution from
all the clusters.

5.1.1 Picking a Clustering
As described in Section 1.1, the original SimPoint algorithm
uses k-means to perform several clusterings for different val-
ues of k. It then uses the BIC score to choose a clustering, and
then from each cluster the centroid is picked to represent that
cluster. For the Early SimPoint algorithm, we perform the exact
same k-means clustering algorithm as in the original SimPoint
algorithm. The Early algorithm differs in how it chooses which
clustering to use, and then how it chooses which points to use
from each cluster.

In picking a cluster (k), the Early SimPoint algorithm takes
into consideration where the intervals for a given cluster are lo-
cated over time (the execution of the program). The goal is to
pick a clustering, where all clusters have some intervals early in

the program’s execution, while still clustering together similar
intervals of execution.

To guide this we introduce a new metric, EarlySP, which is
the BIC score weighted by the first encounter of the last clus-
ter: EarlySP = BIC × (1 − (StartLastCluster/w)). The
intuition behind EarlySP is that we reward the clusterings that
have representatives from every cluster near the start of the pro-
gram. StartLastCluster is the percent into execution of the
program that the last cluster is first encountered. For example,
if for a clustering we have a StartLastCluster of 40%, this
means that one of the clusters has its first interval of execution
occurring 40% into execution, and all of the rest of the clus-
ters have at least one interval earlier in the execution than this.
The StartLastCluster is critical for picking early simulation
points, since it will be the minimum distance required to fast-
forward.

The variable w is a weight to influence the impact of how
early the last cluster is on the BIC. Since we prioritize ac-
curate program representation over early simulation, the vari-
able w limits how much the BIC can be influenced by the
StartLastCluster term. Setting w to 10 guarantees that we re-
main within 10% of the true BIC, ensuring representative scor-
ing is maintained for the clusterings.

The EarlySP score provides us with a goodness of fit of the
clustering weighted by how early the last cluster starts. We
score each clustering generated and then pick the smallest k
that achieves at least 80% of the spread between the largest
and smallest EarlySP scores. We can set the threshold higher
if we want tighter clusters, at the cost of having more simulation
points. This tradeoff is illustrated in the following Section 5.2.

5.1.2 Picking Simulation Points
After Early SimPoint picks a clustering, we determine a cutoff
point in the program’s execution and we consider picking sim-
ulation points only from the start of the program to this cutoff
point. No intervals of execution after this cutoff point will be
considered for simulation points. This bounds the amount of
overhead due to fast-forwarding.

The cutoff point for a program/input is determined by first
picking an early simulation point for the cluster that starts the
latest in execution. The cutoff simulation point is then picked
for the last cluster. To pick this cutoff point, we first sorted all
of the simulation points for the latest starting cluster using each
point’s Euclidean distance from the centroid. Then the 1% clos-
est points are candidates for being the cutoff simulation point.
The earliest of these in the program’s execution is then chosen
to be the cutoff simulation point. Once this cutoff simulation
point has been determined, the simulation points for the remain-
ing clusters are selected from all the potential intervals from the
start of the program up to the cutoff interval. For a given cluster,
a simulation point is chosen from these candidate intervals that
is closest to the original centroid of the cluster.

5.2 Early SimPoint Results
To examine the performance of Early SimPoint we compare the
results from five different algorithms. To evaluate these different
algorithms, Figure 2 shows the number of clusters (the value
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chosen for k) that was picked for each algorithm, and this equals
the number of simulation points. Figure 3 shows the number
of instructions (in billions) it will take from the beginning of
execution to reach the last simulation point. This number, minus
the number of detailed instructions simulated, is the number of
instructions fast-forwarded to simulate each program. Finally,
Figure 4 shows the error rates for the different algorithms.

Different algorithms have results shown using an interval
size of 1 million (1M), 10 million (10M), and 100 million
(100M) instructions. Recall from Section 1.1, that this inter-
val size is the granularity in which the basic block vector (code)
profile is collected and the clustering is performed. It is also the
length of the simulation point when performing detailed simula-
tion. Due to space, we only show a variety of different combina-
tions of algorithm and interval size.

The 100 million interval size results show the performance
when using the original BIC SimPoint algorithm from [19] and
the Early SimPoint algorithm described in this section. For both
results max K is set to be 10 intervals to put a limit on simula-
tion time. We provide results for the original SimPoint algorithm
using a BIC threshold of 80%. For Early SimPoint results, we
use an EarlySP threshold of 100%. Setting EarlySP to have a
threshold of 100% picks the clustering that achieves the highest
EarlySP score. We use this for the 100M interval results, since
only a small number of clusterings (max K = 10) are exam-
ined. With having at max 10 clusters, complex programs will
be noisier within a cluster, so picking the best scoring cluster-
ing ensures that the clusters are as well formed as possible with
early simulation points. The results show that the number of in-
structions required for fast-forwarding for Early SimPoint is 3.6
times smaller than using the original SimPoint algorithm. This
comes at the cost of increasing the average error from 2.6% to
3.1%.

We also provide results for Early SimPoint using an inter-
val size of 10 million and 1 million. For both of these results, a
EarlySP threshold of 80% was used. The results for 1 million in-
tervals shows that it has a fast-forward length 5 times longer than
the 10 million interval size. This is because there are more clus-
ters, which creates a greater chance of a cluster showing up only
late in the execution. The 10 million interval size results show
that they require the least amount of fast-forward time, with the
fast-forward length being only 13% into the program/input run’s
execution on average. These results show a delicate trade-off
between speed and accuracy, as well as choosing an appropriate
interval size.

All of the results we have talked about to this point (Origi-
nal SimPoint and Early SimPoint algorithms) in this section are
based only on the BIC, and do not use any confidence or prob-
abilistic error bounds to guide the choosing of a clustering. We
now look at using the Early SimPoint approach with the Variance
SimPoint algorithm. When using EarlySP with the Variance al-
gorithm in Section 4, we use the Variance algorithm for picking
k just as before, and then use the approach described in Sec-
tion 5.1.2 to pick the simulation points. The Variance SimPoint
is performed, and then simulation points are only chosen from
intervals that occur from the start of execution to the simulation

point of the latest starting cluster.
Figure 4 shows that picking early simulation points in the

Variance SimPoint algorithm achieves an error rate of 3.4%,
which is close to the non-early Variance SimPoint algorithm er-
ror of 2.1%. We also found that it had a very similar error bound
(not shown on the figure) of 3.9% on average for 95% confi-
dence. Figure 3 shows that the non-early Variance SimPoint al-
gorithm has a fast-forward length 1.5 times longer than when
picking early points for the Variance SimPoint algorithm. With
100 simulation points chosen on average for these results, the
likelihood of clusters appearing only in the latter portion of exe-
cution is significant. Even with 40 samples, as is the case for the
early BIC approach at 1M interval size, the ability to find all the
clusters early in the execution is low.

6 Tracking Metrics Across Architecture
Configurations

The absolute error of a program/input run on one hardware con-
figuration is not as important as tracking the change in metrics
across different architecture configurations. In this section we
show that SimPoint accurately tracks the relative change in hard-
ware metrics across several different architecture configurations.
We show that using the same set of simulation points from Sim-
Point results in a bias error that is consistent (not random) across
the different configurations.

We show that our simulation points, which are independent
from the underlying architecture, are representative of the full
program’s execution when varying the architecture parameters.
The key insight for why this works is that the BIC SimPoint al-
gorithm for clustering, choosing a cluster, and picking the simu-
lation points is based only on the code usage over the program’s
execution not on any architecture metrics.

To examine the independence of our simulation points from
the underlying architecture, we used the simulation points for the
BIC SimPoint algorithm with 1 million intervals and max K set
to 300. For the program/input runs we examine, we performed
full program simulations varying the memory hierarchy, and for
every run we used the same set of simulation points when calcu-
lated the SimPoint estimates. We varied the configurations and
the latencies of the L1 and L2 caches. As we increased the size
and the associativity of the caches we increased their latency to
model the effect of architecture scaling. We chose L1 instruction
and data cache sizes between 4 KBytes and 64 KBytes, varied
the associativity between direct mapped and 4-way associative,
and varied their latency from 1 to 3 cycles. At the same time
we varied the size of the unified L2 cache from 500 KBytes to 2
MBytes, its associativity from 4-way to 8-way associative, and
varied the latency from 10 to 40 cycles.

Figure 5 shows the results across the 19 different archi-
tecture configurations we examined for three programs from
the SPEC benchmark suite gcc-166, gzip-graphic and
art-110. The left y-axis represents the performance in
InstructionsPerCycle and the x-axis represents different
memory configurations from the baseline architecture. The right
y-axis shows the miss rates for the data cache and unified L2
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Figure 5: This plot shows on the left y-axis the true and esti-
mated IPC for gcc, gzip, and art for 19 different architec-
ture configurations. The right y-axis shows each configurations
corresponding miss rates for the L1 data cache and unified L2
cache. Results are shown for the complete execution of the con-
figuration, and when using SimPoint.

cache, and the L2 miss rate is a local miss rate. For each met-
ric, two lines are shown, one for the true metric from the com-
plete detailed simulation for every configuration, and the second
for the estimated metric using our simulation points. For each
graph, the configurations on the x-axis are sorted by the IPC of
the full run.

Figure 5 shows that the simulation points from using Sim-
Point creates a bias in the metrics, and this bias is consistent and
always in the same direction across the different configurations
for a given program/input run. This is true for IPC and the cache
miss rates. This shows that simulation points, which are cho-
sen by only looking at code usage, can be used across different
architecture configurations to make accurate architecture design
trade-off decisions and comparisons.

The absolute error of one configuration is not as important
as tracking the change in a metric across different architecture
configurations. Our results show that simulation points track the
relative change in metrics between configurations. When there
is a change between two configurations, that change is clearly
seen using SimPoint in Figure 5, and even small changes are
accurately tracked.

One way to evaluate this is to rank the configurations using
the metrics from the full execution and then rank the configura-
tions using the SimPoint estimates of the metrics and see if the
rankings are the same. We separately performed the configura-
tion ranking for all of the hardware metrics we examined IPC,
L1 and L2 cache miss rates, and in every case the ranking of
the hardware configurations were in the exact same order when
using the full metric and the SimPoint estimates. This is easily
seen in Figure 5, where the configurations in the x-axis is sorted
by the IPC of the full simulation. Overall, these results show
that SimPoint can be used to accurately prune the choices when
searching the architecture design space.

7 Summary
In [18, 19], we presented the idea of profiling the code usage
over the execution of a program and using this to cluster inter-
vals of execution together that had similar behavior. A single
point was then picked to represent each cluster, and these sim-
ulation points were used to guide accurate and efficient simula-
tion. The research in this paper addresses three open issues from
our original algorithm. These are to (1) provide statistical valida-
tion with confidence and error for a given clustering, and to use
this analysis to help choose which clustering to use, (2) create a
method for generating simulation points earlier in execution, and
(3) showing that the points generated from SimPoint accurately
track metrics between different architecture configurations.

In this paper, we first present the Variance SimPoint algo-
rithm that uses a user defined confidence and probabilistic error
bound to guide the picking of k. This algorithm first gives prior-
ity to choosing a clustering that has well formed (based upon
the code frequencies) clusters. This is to make sure that the
clustering is representative across different architecture config-
urations. The Variance SimPoint clustering for picking samples
shows that tighter probabilistic error bounds are seen when com-
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pared to random sampling when using the same amount of sam-
ples as there are simulation points. This is due to Variance Sim-
Point always choosing a representative sample from each cluster
to make sure all the unique/different behavior in the program is
captured. In comparison, for a small number of samples, random
sampling tends to over/under sample some of the program’s be-
havior resulting in looser probabilistic error bounds.

The second contribution of the paper is the Early SimPoint
algorithm whose goal is to find representative simulation points
early in a program’s execution to reduce fast-forward simulation
time. The amount of fast-forward time required for a simulation
is the number of instructions it takes to reach the last simulation
point for a program/input run. When using an execution interval
size of 100 million instructions, we found that Early SimPoint
had a 3.6 times shorter fast-forwarded length on average than
the original SimPoint algorithm. When using an interval size of
10 million, we found the fast-forward length to be only 12% of
the full execution on average, with an average CPI error of 4%.
These results show that these early simulation points can be used
to significantly reduce the time spent fast-forwarding to reach
all of the simulation points for a program, while still providing
accurate results.

The final contribution was to examine the ability of simu-
lation points to track metrics across architecture changes. The
absolute error of a program/input run on one hardware configu-
ration is not as important as tracking the change in metrics across
different architecture configurations. We showed that SimPoint
accurately tracks the relative change in hardware metrics (CPI
and cache miss rates) across several different architecture con-
figurations. Using the same set of simulation points results in
a bias error that is consistent (not random) across the different
configurations. These results show that the SimPoint simulation
points, which are chosen by only looking at code usage, can be
used across different architecture configurations to make accu-
rate architecture design trade-off decisions and comparisons.
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