
Pico: No more passwords!?

Frank Stajano

University of Cambridge Computer Laboratory

Abstract. From a usability viewpoint, passwords and PINs have reached
the end of their useful life. Even though they are convenient for imple-
menters, for users they are increasingly unmanageable. The demands
placed on users (passwords that are unguessable, all different, regularly
changed and never written down) are no longer reasonable now that each
person has to manage dozens of passwords. Yet we can’t abandon pass-
words until we come up with an alternative method of user authentication
that is both usable and secure.
We present an alternative design based on a hardware token called Pico
that relieves the user from having to remember passwords and PINs.
Unlike most alternatives, Pico doesn’t merely address the case of web
passwords: it also applies to all the other contexts in which users must
at present remember passwords, passphrases and PINs. Besides relieving
the user from memorization efforts, the Pico solution scales to thousands
of credentials, provides “continuous authentication” and is resistant to
brute force guessing, dictionary attacks, phishing and keylogging.

1 Why users are right to be fed up

Remembering an unguessable and un-brute-force-able password was a manage-
able task twenty or thirty years ago, when each of us had to use only one or
two. Since then, though, two trends in computing have made this endeavour
much harder. First, computing power has grown by several orders of magnitude:
once upon a time, eight characters were considered safe from brute force1; nowa-
days, passwords that are truly safe from brute force and from advanced guessing
attacks2 typically exceed the ability of ordinary users to remember them3 4. Sec-
ond, and most important, the number of computer-based services with which
? It’s OK to skip all these gazillions of footnotes.
1 The traditional DES-based crypt(3) didn’t even allow a longer password.
2 Thus, respectively, long&Fullˆ0f_$ymbo£$, or even meaningless: u4Hs9D6GdCVi.
3 Bruce Schneier, 1999: “Password crackers can now break anything that you can
reasonably expect a user to memorize”. http://www.schneier.com/crypto-gram-
9910.html#KeyLengthandSecurity.

4 It is in theory possible to mitigate the brute-forcing threat of ever-increasing at-
tacker power by regularly increasing the number of rounds of hashing applied to the
password before using the verification value. For other uses of passwords, such as
file encryption, a similar countermeasure involves the use of a highly iterated key
derivation function. Online systems could rate-limit the password guessing attempts,
regardless of attacker power, as appropriately argued by Florêncio et al [12]. But ex-

In Proc. Security Protocols Workshop 2011, Springer LNCS.
Author’s preprint, revision 61 of 2011-08-31 19:55:55 +0100 (Wed, 31 Aug 2011).

http://www.schneier.com/crypto-gram-9910.html#KeyLengthandSecurity
http://www.schneier.com/crypto-gram-9910.html#KeyLengthandSecurity

2 Frank Stajano

we interact has grown steadily, while our biological memory capacity has not
increased: we no longer have just a single login password to remember but those
for several computers, email accounts, dozens of web sites, encrypted files and
various other services, not to mention a variety of PINs for our bank cards,
phones, burglar alarms and so on.

Let’s henceforth refer to all such password-requesting applications and ser-
vices as “apps”5. For the implementer of a new app (say a new web site), pass-
words are the easiest and cheapest way of authenticating the user. And, since
the password method is universally understood and used everywhere else, there
is no apparent reason not to continue to use it6.

This approach doesn’t scale to the tens of passwords, passphrases and PINs
each of us must use today. Users frequently complain that they can’t stand
passwords any longer. And they are right: the requests of computer security
people have indeed become unreasonable, as highlighted by Adams and Sasse
back in 1999 [1]. Users are told never to write down their passwords but they
know they will face substantial hassle or embarrassment, if not total loss of their
data or other assets, if they ever forget them: availability is often worth much
more to them than confidentiality [3]. If they comply with the request not to
write down their passwords, they’ll want to choose something memorable. But,
they’re told, it must also be hard to guess7. Once they find a strong, memorable
yet hard to guess password, the annoying computer security people also dictate
that they can’t reuse it anywhere else. It’s hard to find several dozen different
passwords that are all memorable and yet not guessable by someone who knows
a little about the user. To add insult to injury, the next security request is that
the passwords also be changed on a regular basis, to reduce exposure in case of
compromise. Fat chance of ever remembering them all, then! Not to mention the
difficulty of typing a complex password correctly, or of fixing a minor typo in it,
without visual feedback (“****************”).

Users are more than justified in being fed up. If the rules imposed by the
computer security people are mutually incompatible, users cannot possibly follow
them all, even when they are genuinely cooperative and willing to comply8.

perience (cfr. Sklyarov’s brilliant presentation at Passwordsˆ11) shows that many
widely deployed systems are still open to brute-force password cracking attacks that
get more powerful with every new generation of CPUs—and now GPUs. We agree
with Florêncio and Herley [11] that, for online systems, requiring users to adopt
stronger passwords is an arrogant and counterproductive excuse for not adequately
protecting the hashed password file.

5 There is no connection between our “apps” and smartphone applications.
6 As also observed by Bonneau and Preibusch [4], this situation is what economists
call a tragedy of the commons: “What harm could my site cause by requesting a
password, since everyone else’s also does?” And yet, since everyone does, the burden
collectively placed on users becomes unmanageable.

7 Despite the easily retrieved digital footprints we all leave behind online.
8 According to the insightful model of Beautement et al [3], users have a finite “compli-
ance budget”—there’s only so much hassle they’ll take from the rule-makers before
they’ll stop complying. What we are saying here is that our password rules are con-

Pico: No more passwords! 3

Imagine we could afford to start again from scratch, without concerns for
backwards compatibility, and that our primary directive were to invent a user au-
thentication method that no longer relied on users having to remember unguess-
able secrets. At a minimum, the new method would have to do better than
passwords under at least three respects (refer to Table 1 on page 6 for a concise
summary):

Memoryless: Users should not have to memorize any secrets9.
Scalable: The effectiveness of the method should not be degraded even if the

user had to authenticate to dozens or even thousands of different apps.
Secure: The alternative should be at least secure as passwords10.

The design proposed in this paper meets these requirements. It is based on a
token that remembers the user’s authentication credentials. Any token-based
alternative to passwords, however, should also address two additional concerns:

Loss-Resistant: If the token is lost or destroyed, the user must be able to
regain access to the services.

Theft-Resistant: If the token is stolen, the thief must not be able to im-
personate the user—even assuming that the thief can tamper with the token
and access its insides.

The proposed design also meets these additional requirements. Its main dis-
advantage, aside from the obvious fact of having to carry a token11, is that it
requires changes to the verifying apps, which will be a barrier to deployment.
For this reason, after describing the clean-slate design, in section 5 we evalu-
ate possible variations aimed at trading off some security in order to increase
convenience, backwards compatibility or market acceptance.

tradictory and impossible to follow all at once, even for fully cooperating users who
have not yet exhausted their compliance budget. Even the people who issue those
rules cannot possibly come up with fifty different strong passwords, never write them
down anywhere, change them every month and remember them and type them out
without errors whenever needed. These rules are mutually incompatible. Some of
them will be broken. Which ones? Maybe the passwords will be reused. Maybe they
will be written down. Maybe they will be changed and then changed back. By im-
posing an unsatisfiable set of rules, you can’t anticipate which rules will be violated.
But some of them definitely will.

9 Some will argue that this requirement is not strictly a necessity and that it would
be acceptable, for example, to rely on a single master passphrase. I shall call this
inferior alternative Quasi-Memoryless. But the original motivation for my work
on Pico is specifically to relieve users from having to remember any secrets.

10 We actually mean: as secure as passwords would be if users were able to follow all
those implausible and contradictory rules. Too easy otherwise.

11 As Laurie and Singer [22] observe for their Neb: “users already carry [security tokens
such as] keys and credit cards; the open question is how to persuade them that to
view [this gadget] in the same class as the things they already carry”.

4 Frank Stajano

2 Pico: a usable and secure memory prosthesis

This section gives an overview of the proposed system, Pico, and of all the
benefits it claims to provide, besides the ones listed as mandatory in the previous
section. Once again, a concise reference summary is in Table 1 on page 6. Benefits
are typeset in boldface when first introduced. Refer to section 6 for related work.

The user has a trustworthy device called a Pico12 that acts as a memory
prosthesis and takes on the burden of remembering authentication credentials,
transforming them from “something you know” to “something you have”.

This shift addresses the first and fundamental requirement (Memoryless)
of no longer having to remember passwords. We could have trivially addressed
it simply by writing the passwords down on a piece of paper; the solution, how-
ever, would fail the Theft-Resistant requirement. Storing the passwords in
encrypted form in a “password wallet” on a PDA or smart phone comes one step
closer to the idea of the Pico. In section 4.1 we explain how the Pico offers the
Theft-Resistant benefit thanks to its Picosiblings.

The first few additional benefits are usability-related: let’s review them.
A number of ingenious systems have been proposed to solve the problems of

web passwords, from Single Sign-On (SSO, surveyed by Pashalidis and Mitchell
[29]) to in-browser or in-cloud password wallets. However, even if they worked
perfectly, solving the problem only for web passwords would still not satisfy
users: if passwords and PINs are a nuisance, they are a nuisance everywhere,
not just on the web. For the user, a password is a password, and it’s annoying
whether on the web or elsewhere. We must provide a comprehensive solution:
Works-For-All. Pico replaces all passwords, not just web ones, including
screen saver passwords, passphrases to unlock files on your local computer and
the PINs of standalone devices such as your car stereo, burglar alarm, phone or
smart cards.

In-browser and in-OS password wallets alleviate many burdens but are only
available from the local host on which the credentials are kept. Pico, instead,
like SSO and in-cloud wallets, works From-Anywhere.

Even if a system remembers passwords on behalf of the user, like a password
wallet does, if there are many of them (and we promised with the Scalable ben-
efit that there could be thousands) then the user faces the secondary problem13

of selecting the appropriate credential for the circumstance. Pico’s No-Search
benefit means that the appropriate credentials are selected automatically when
the user wishes to interact with an app14.
12 After Giovanni Pico della Mirandola, an Italian 15th century philosopher known for

his prodigious memory. About twenty years ago, at my old workplace ORL, for a
short while we used the abbreviation PiCO (note lowercase “i”) to mean “Personal
interactive Computing Objects” [40]; despite the striking similarities there is no
intended connection between that name and this, and my Pico is an eponym rather
than an abbreviation. Finally, Pico is also totally unrelated to the 10−12 SI prefix—
and to the other thing they use that word for in Chile.

13 With both usability and security implications.
14 But see footnote 34.

Pico: No more passwords! 5

But offering the correct password to the user isn’t enough. If the password
is strong (long, mixed-case and unpronounceable), even if I am no longer forced
to remember that the password was u4Hs9DB66Ab18GIUdCVi, it is still rather
tedious and error-prone to have to transcribe it15. With Pico, therefore, No-
Typing: the user no longer has to type the damn password16.

A rarely discussed problem of traditional password-based authentication is
that, if a session lasts several hours17, the app has no way of telling whether
the prover is still present—it only knows that the prover was there at the start
of the session. Repeatedly requesting the password after every few minutes of
inactivity is hardly acceptable from a usability perspective, so the app must
live with a window of vulnerability during which access is granted even though
the principal interacting with the app may have changed. How much nicer it
would be if the app could sense the presence of the authenticated principal
continuously throughout the session, but without imposing an additional burden
on the user!18 Pico uses short-range radio to offer the Continuous benefit:
the user is authenticated to the app continuously throughout the session, not
just at the beginning. In the course of the session, the app can lock and unlock
itself automatically depending on the presence of the user’s Pico (section 4.2).

Next to these usability benefits, Pico also offers several security benefits over
passwords. Firstly, by letting the Pico, rather than the user, randomly19 choose
strong credentials for each account, we solve two typical problems of passwords:
it is not possible for a careless user to choose a weak (brute-forceable or guess-
able) password (No-Weak); and it is not possible for a user to reuse the same
credential with different apps (No-Reuse). Therefore it is not possible for a
malicious verifier to impersonate the user elsewhere, or for a careless verifier
(whose verification database gets compromised) to cause the user to be imper-
sonated elsewhere.

Another problem is that a malicious app could masquerade as the genuine
app and trick the user into revealing the password. With web sites this is com-
monly indicated as phishing, but an equivalent attack could also occur locally, for
example with a Trojan application displaying a fake login screen on your com-
puter. To prevent this, Pico authenticates the app before supplying the user’s
credentials, thus offering No-Phishing: it is not possible for a malicious app
to steal the user’s credentials by impersonating the app to which the user wanted
to authenticate. The machinery for such authentication is available to web sites
in the form of Secure Sockets Layer (SSL) but, given our pledge to Works-
For-All, we want No-Phishing to apply in all other cases too.

15 Thus by using passwords we impose at least three distinct usability burdens on the
user: burden of remembering, burden of selecting, burden of typing. Pico avoids
each of them with, respectively, Memoryless, No-Search and No-Typing.

16 In fact the password isn’t even there any more, but that’s an aside.
17 Sometimes even weeks, in the case of persistent login cookies.
18 Section 6 discusses relevant prior art [40,20,21,6,25].
19 Pico will need a good quality source of random numbers.

6 Frank Stajano

My minimum requirements for a password replacement system:
Memoryless Users should not have to memorize any secrets
Scalable Scalable to thousands of apps
Secure At least as secure as passwords
Additional requirements if token-based:
Loss-Resistant If token lost, user can regain access to services
Theft-Resistant If token stolen, thief can’t impersonate user

Benefits promised by Pico in addition to the above:
(Usability-related)

Works-For-All Works for all credentials, not just web passwords
From-Anywhere The user can authenticate from any client
No-Search The user doesn’t have to select the correct credentials
No-Typing The user no longer has to type the damn password
Continuous Authentication is continuous, not just at session start

(Security-related)
No-Weak The user cannot choose a weak password
No-Reuse The user cannot reuse credentials with different apps
No-Phishing Phishing (app impersonation) is impossible
No-Eavesdropping Network eavesdropping is impossible
No-Keylogging Keylogging is impossible
No-Surfing Shoulder surfing is impossible
No-Linkage Different credentials from same user can’t be linked

Additional desirable properties that are not goals for Pico:
No-Cost As cheap to deploy as passwords
No-App-Changes Deployable without changes to existing apps
No-Cli-Changes Deployable without changes to existing clients

Also worth considering for a fair comparison:
Implemented This system was built, rather than just described
Open The code and design are available as open-source
Widely-Used Has been used by over a million individuals
No-Carry Does not require the user to carry anything
No-TTP No reliance on a TTP who knows your credentials

Table 1. Summary of desirable properties of password replacement systems. In
the text, benefits are listed in boldface where first defined.

Pico: No more passwords! 7

SSL also offers an additional protection: an encrypted channel that prevents
network eavesdroppers from overhearing the password to reuse it later. Pico, too,
offers the No-Eavesdropping benefit: it is impossible to extract any usable
credentials by listening in (at any stage) between the Pico and the app.

Even with SSL, though, a keylogger may steal the password before it enters
the encrypted pipe: maybe because the victim’s machine has been compromised
by malware or because it’s not even theirs (cybercafé) and they don’t know
what’s installed on it. With Pico, therefore, we offer No-Keylogging—a
major benefit over passwords, meaning that your credentials cannot be stolen
even if your local endpoint machine is compromised20. The low-tech equivalent
of keylogging is shoulder-surfing, which passwords only partially avoid21 by not
echoing the typed characters, at the expense of usability. Pico, instead, as a
consequence of No-Typing, also fully offers No-Surfing.

For privacy, we design the Pico so that an app (or even several colluding
apps) cannot link the different credentials used by a Pico user: No-Linkage.

We also explicitly list some non-goals: Pico does not attempt to be as cheap to
deploy as passwords (No-Cost), nor to be deployable without modifications—
whether to verifiers (No-App-Changes) or to provers (No-Cli-Changes).

Finally, since we might wish to use the list of benefits in table 1 as column
headings for a matrix comparing competing alternatives22, it is only fair to
list other benefits that Pico currently does not offer, much as it hopes to in
the future—such as having actually been built (Implemented), having its
design blueprint and source code published as open source (Open), having
been used by over a million people (Widely-Used)—as well as other benefits
that passwords themselves already offer but that some of their replacements
don’t, such as the usability benefit of not requiring users to carry anything (No-
Carry, which Pico can’t possibly offer) or the security benefit of not relying
on a Trusted Third Party not controlled by the user (No-TTP, a benefit that
Pico offers but which is violated by some in-cloud SSO password management
schemes that deposit the passwords with an entity that then issues them to apps
on your behalf).

20 So long as the Pico itself isn’t, that is. Conceptually, one might object, we have
only moved the endpoint one level back. But it still makes a major difference in
practice, particularly because the Pico is not a general-purpose computer running
user-installable code, and therefore the task of securing it against malware is not as
hopeless as it would be for the actual machine. Laurie and Singer [22] have a related
discussion about their Neb.

21 The finger movements can still be observed by a skilled operator. Not as scalable as
keylogging, though, as it requires a human attacker.

22 We fully agree with Herley and van Oorschot [16] that, to find suitable replace-
ments for passwords, we need to specify the requirements clearly and then compare
competing alternatives against these requirements. Cfr. footnote 74.

8 Frank Stajano

3 User authentication with the Pico

3.1 Core design of the Pico

The Pico is a small, portable, dedicated device, intended to be carried along all
the time, just like your watch or home keys. It has two important buttons called
“main” and “pairing”23, a small display, a camera suitable for the acquisition
of 2D visual codes and a short-range bidirectional radio interface. It could be
shaped like a smart phone but also like a watch, a key fob, a bracelet or an item
of jewellery.

Internally, the Pico’s permanent memory (which is encrypted) contains thou-
sands of slots, one for each pairing between the Pico and an app. Each slot
contains the Pico’s credential (a private key) for that particular pairing and
whatever else is necessary for mutual authentication.

Each app, whether local or remote across the network, has its own public-
private key pair. The Pico talks to the app over radio (either directly or through
intermediaries) by sending an encrypted message to the app’s public key (No-
Eavesdropping). The Pico’s message contains an ephemeral public key gen-
erated by the Pico, which the app can use to reply over radio24. The Pico re-
members the public key of the app when it first pairs with it (section 3.3), thus
defeating phishers and other men in the middle in subsequent interactions. This
is conceptually similar to the Pico doing some kind of SSL with the app, but
without a PKI to certify the app’s key25.

This arrangement gives us bidirectional encrypted wireless communication
between the Pico and the app, but so far only the app endpoint has been au-
thenticated. To authenticate the Pico to the app, the Pico proves ownership of
the credential established during pairing (section 3.3) (No-Typing).

23 Plus possibly other controls—maybe “soft” buttons based on a touch screen—to scroll
the display etc. If we can get away without them, so much the better. The goal is
for the UI to be minimal but without becoming frustratingly unusable; whether any
given design achieves this goal can only be validated through user studies.

24 The reason for using an ephemeral key rather than the Pico’s long term credential
for that app is to protect the user’s privacy and prevent tracking: the user’s identity
is only revealed to the app after the app’s identity has been verified by the user’s
Pico. When the Pico first talks to the app, by encrypting its message to the public
key whose hash is in the chosen visual code, the app has not yet proved possession
of the corresponding private key, so it could still be an attacker impersonating the
app.

25 But without a PKI, couldn’t a malicious app impersonate the genuine one from
the first time onwards? Yes, in the sense that the attacker could fool the Pico into
believing that her fake app is the genuine one. No, in the sense that if the victim
already has a relationship with the genuine app (e.g. has a deposit account at that
bank) then the middleperson attacker won’t be able to access those assets with the
credentials fraudulently established between the fake app and the victim’s Pico. This
is because the visual code authenticator provided by the app out of band in that
case (see section 3.3) is tied to the real app’s public key (No-Phishing).

Pico: No more passwords! 9

The general model of the app is that it requires a (userid, credential) pair,
which it verifies against its stored validation data in order to authenticate the
user. This suits most cases, including some in which the userid is implicit. There
are, however, cases that this model does not represent well and that we must
treat differently, as discussed at the end of section 3.4.

The opening screen where the app would normally display a “userid/password”
request is now augmented with a 2D visual code (using the technique pioneered
by McCune, Perrig and Reiter [24]) that encodes a hash of the app’s self-signed
certificate, containing among other things the app’s human-readable name26 and
public key. Whenever that screen is visible, the user can initiate one of two ac-
tions by acquiring the 2D visual code by pointing the Pico’s camera at it and
pressing either of the Pico’s buttons: the main button to send pre-established
credentials to the app (as if typing a password), or the pairing button to establish
a new pairing (as if creating a new account).

Transmitting the hash over the visual channel and the rest over radio con-
stitutes a multi-channel security protocol [41]: most of the protocol takes place
over a main bidirectional channel, namely radio, that is convenient to use and
has good capacity and latency; but one message instead goes over an auxiliary
channel that (despite being only unidirectional, requiring manual acquisition and
being of limited capacity and latency) offers data origin authenticity and forces
the user to actively designate the intended app.

3.2 Main button: Offer credentials

Pressing the main button of the Pico is the equivalent of typing the password.
Which one? There is no password as such, but the Pico automatically selects
the appropriate credential based on the visually acquired hash for the app (No-
Search, but see footnote 34). If the app’s public key is not among the ones
stored in any of the Pico’s slots, the process stops27. Assuming the Pico had not
already been fooled during pairing, phishing is impossible (No-Phishing).

If the Pico recognizes the app, it talks to the app’s public key over radio and
sends it an ephemeral public key to reply to. The Pico challenges the app to
prove ownership of the app’s private key. Once the app does, the Pico sends its
long-term public key for that pairing, thus identifying itself to the app, and then,
as challenged by the app, proves ownership of the corresponding private key (for
example by signing a specially-formatted message containing a challenge defined
by the app), thus authenticating itself to the app.

26 To have something to call it by on the Pico when necessary.
27 Possibly with a phishing warning, as the user’s intention suggests a belief that an

account has already been set up with that app. Various heuristics could be used to
assess the likelihood of the current app being a phish, including whether its human-
readable name (or even page layout and colour palette) is similar to the one of any
app registered in the Pico’s slot (as in: did the user click the Main button without
meaning to, or because she genuinely thought this was the banking site for which
she already has a registration?).

10 Frank Stajano

Unlike a password, that can be keylogged when it is typed, here the creden-
tial is a secret key that never leaves the Pico28. The use of challenge-response,
instead of merely exhibiting the raw credential, is how the Pico provides No-
Keylogging.

Now the Pico and the app have mutually authenticated: they can set up a
session key and proceed with continuous authentication (section 4.2).

Note that, despite the use of the visual channel, this authentication procedure
is still vulnerable to a relay attack. Adding a nonce to the visual code, while
useful, does not stop the attack because the “unique” visual code could be relayed
as well29 30. Stajano et al [39] discuss fancier and less practical multichannel
protocols specifically aimed at thwarting relay attacks, but this isn’t one of
them. The quest for a reliable solution against relay attacks must continue31.

3.3 Pairing button: Initial pairing

Pressing the pairing button is the equivalent of creating a new account.
We must distinguish two cases: pairing with an app that has no prior re-

lationship with the user (as when creating a new account with a free webmail

28 The Pico is not a general purpose computer, does not accept external code and could
even include a small hardware security module for its key storage.

29 Norbert Schmitz pointed out to me at Passwordsˆ11, commenting on the case in
which the Pico’s radio talked to the local computer rather than directly to the app,
that an attacker could visit the app’s login page, show the victim the visual code
of that app on a fake page, let the victim acquire it and unsuspectingly perform
the radio part of the protocol with the real app on the attacker’s computer nearby.
At that point the attacker, sitting in front of the app’s real page, would find him-
self logged in with the credentials of the victim. Quite right. As a countermeasure,
Norbert suggested that the app embed a nonce in the visual code. This turns out
to be necessary anyway if we let the Pico talk to the app without going through
the local computer (e.g. via the cellphone network or wifi), if nothing else in order
to distinguish concurrent login sessions from each other (see footnote 37); but it is
insufficient to stop the relay attack, because the attacker could still relay the visual
code with the genuine nonce too.

30 Dirk Balfanz also pointed out the same attack at Usenix Security 2011 and showed
me how Google addresses the same problem in their similar (experimental) system:
the cellphone acting as the Pico shows an interstitial page asking the user to confirm
that they really meant to log into Google. This solution works, but suffers from
the well-known security-usability problem whereby a proportion of users will just
become accustomed to clicking OK without really checking.

31 In this context, distance bounding protocols based on timing of a speed-of-light
message exchange (such as the Hancke-Kuhn [13] that we envisage using for the
Picosiblings in section 4.1) cannot be used on the end-to-end link between Pico and
app (which may go across the Internet and/or the cellphone network). Conversely,
bounding the distance between the Pico and the terminal, rather than between the
Pico and the app, would be hard, because the terminal is untrusted and shares no
secrets with either the Pico or the app; but more importantly it would be pointless,
as the terminal itself could be one half of a relaying attacker.

Pico: No more passwords! 11

provider) or pairing with an app whose back-end already has some relationship
with the user (as when signing up for online banking with a bank where you
have already deposited some money).

In the first case, since we work without a PKI, a malicious app could in theory
masquerade as the app that the user intends to pair with32. In the second case, at
the time the “prior relationship” is established between app and user before the
Pico first sees the app’s “userid/password” screen, the app’s back-end must give
the user some special codes that will allow the user’s Pico to recognize the app
when it first sees that screen. One code will be the normal visual code of the app,
encoding the hash of the certificate that contains the app’s public key; another
code will be a nonce, signed by the app, that identifies the user to the app,
so that any resources (e.g. the money deposited by the user) can be associated
with the user’s Pico once that Pico presents that signed nonce during initial
pairing. The Pico must thus have a procedure33 for acquiring the signed nonce
in conjunction with the app’s visual code, with the semantics that the nonce
must be sent only to that app, only during the initial pairing with that app. In
either the first or the second case, once the initial pairing has taken place, the
Pico will only ever send its credentials for that pairing to the app it originally
paired with. This is how the Pico bootstraps its No-Phishing property.

Back to what happens when the Pico acquires the visual code of the app
when the user presses the pairing button. If the Pico already knows that app
(i.e. it has that app’s public key in a slot), it may issue a warning: “you already
have a pairing with this app, do you really want to establish another one?” But
it would only be a warning, not a veto, because the user is still free to, say, open
several webmail accounts under different names34. Assuming the user does wish

32 But philosophically, even if we had a PKI, all the PKI could do would be to ensure
that the public key of the app matched its human-readable name. It could still
not guarantee that the user is really pairing with the intended app, as opposed
to being fooled into pairing with an app with a similar-sounding name. From a
theoretical viewpoint, the user needs some relationship with the app (even just
knowing its correct name); otherwise she can’t be fooled into pairing with the wrong
app because there can be no right or wrong app by definition—no way to tell them
apart. Reversing the argument, if we accept that the user needs initially to acquire
an identifier for the app through some other trustworthy means, we might as well
say she ought to use that unspecified trustworthy means to acquire the app’s visual
code (or the public key itself) with her Pico that first time—and thus we fall into
the second case, which is safe.

33 Possibly involving a third button. This is preferable over relying on tagging infor-
mation in the visual code for the signed nonce, because otherwise an attacker could
perhaps social-engineer the user into feeding a signed nonce to her Pico without
realizing it, thinking she is just pairing with a new app.

34 If the user maintains several distinct pairings with the same app, though, when
pressing the Main button the Pico will not fully be able to honour No-Search and
will have to ask the user, with some appropriate UI, to select the intended persona for
that app. This is unavoidable, whatever the design, and not a failure of the Pico—it
is not possible to select the userid and credential automatically and yet give the user
the freedom to maintain several independent pairings with the same app. Note also

12 Frank Stajano

to proceed with pairing, the Pico gets the full public key of the app via radio,
checks that the key matches the acquired visual code, possibly caches it in the
Pico and, if all is well, responds with an ephemeral public key. As before, the
Pico first requests proof that the app knows the private key matching the public
key in the visual code before telling the app the Pico’s own long-term public key
for that account35.

If the user had a “prior relationship” with the app then, now that a bidi-
rectional encrypted channel has been established, the Pico sends the app the
signed nonce, so that the app can associate the newly received credential with
the already-existing back-end account. If appropriate, a userid is also defined on
the app using the traditional procedure (on the host computer, not on the Pico)
and sent back from the app to the Pico to be stored in the relevant slot36.

3.4 Replacing all passwords

Web apps The case that has received the most attention, both in the literature
and in actual implementations, is that of authenticating a user to a web app.
Partly because it’s web apps that are primarily responsible for today’s prolifer-
ation of passwords and partly because the uniform interface offered by the web
makes this case easier to address, for example by augmenting the browser or
by using a proxy. However, as we said, our aim with Pico is to get rid of all
passwords, not just web ones, so we should be more general in our design. The
app requires the ability to talk to the Pico over the two channels (radio and
visual) of our multi-channel protocol, but these channels don’t necessarily have
to go through the browser. While it is easy for the visual channel to go through
the browser (it’s just a matter of rendering a bitmap as part of the web page),
the other channel could be implemented as radio only from the Pico to a piece
of middleware on the local computer, and from there turn into IP packets and
reach the relevant app across the Internet without even touching the browser37.
It would even be conceivable for the Pico to talk to the app via an external
radio access point rather than via the computer on which the app’s visual code
is displayed.

that the Pico’s design, without PKI and with independent user credentials for each
pairing (as opposed to, say, using a global key pair for the Pico), protects the user’s
privacy with respect to the app. Even several userids of the same Pico with the same
app will appear to the app as totally independent, offering No-Linkage.

35 Which may have been precomputed, to save time during pairing.
36 This userid is presented by the Pico to the user when, for example, on pressing the

Main button, the Pico asks the user which of several accounts with this app should
be used to log in.

37 If the web app added a nonce to each rendering of the visual code and asked the
Pico to sign and return it in the rest of the protocol, it would know which “page
impression” triggered which instance of the radio subprotocol, even if it didn’t arrive
from within the browser.

Pico: No more passwords! 13

Other remote apps—perhaps non-graphical Having factored out the browser,
there are no major architectural differences between the case of web apps and
that of other remote apps (mail and various forms of network login). The only
notable point is that some apps (e.g. ssh) are text-based and it might be difficult
or impossible for them to display a visual code38 at the time of requesting the
“password”. In such cases, so long as an alternative pairing procedure can be set
up (for example using a web client) in which the app’s back-end can securely
communicate the app’s public key to the Pico, then subsequent authentications
will still be protected from phishing. The user interaction flow will have to be
designed carefully, though, because there will be no visual code to acquire when
pressing the Main button. The app’s public key will be available over the ra-
dio channel, but so would several others, potentially. In absence of the visual
channel, the Pico will have to ask its user to confirm which of the recognized
public keys (if any) it wishes to send credentials to, thus partially reneging on
No-Search.

Local apps—and protection of app secrets As far as Pico-based authen-
tication is concerned, there are also no major differences between remote apps
and those running locally, such as logging into a local account on your computer,
running an application that requires administrator privileges, switching to an-
other user, unlocking the screen saver or entering the restricted section of the
BIOS configuration utility39. The main difference is that the app’s secret must
be stored on the local computer.

On the back-end side, whether local or remote, apps using passwords can be
attacked, depending on the strategy they use to store the verification credentials.
If passwords are stored in cleartext40 then a breach into the back-end exposes
them wholesale, regardless of their strength. If they are stored in hashed form41,
a breach into the back-end exposes them to brute-force and dictionary attacks,
which can be mitigated by increasing the number of rounds of hashing (to counter
Moore’s Law) and by salting (to thwart precomputation). But stolen passwords
are only valuable if they were common to several accounts and thus can be
reused elsewhere, or if the site owners don’t notice the breach and revoke them42.
With Pico, credentials are never reused across accounts (No-Reuse) and stealing
the verification data (the Pico’s public key for that account) only allows the
38 In theory we might try to provide an alternative implementation of the visual channel

by creating an ASCII marker (with suitable redundancy) and performing OCR on
it. In practice such a solution is unlikely to match the robustness and capacity of
regular 2D visual codes.

39 Note that the last two typically don’t require a userid.
40 Irresponsibly careless but not unheard of—cfr. RockYou, December 2009.
41 But perhaps unsalted, as still happens in Microsoft’s NT LAN Manager (NTLM,

still widely deployed in 2011, even on new systems, for compatibility reasons), thus
opening the door to precomputed brute-force attacks such as Rainbow tables.

42 And, in the latter case, the attackers have already broken into the back-end to steal
the passwords, so how plausible is it to assume that they cannot also directly steal
the assets that these credentials are meant to protect?

14 Frank Stajano

attacker to talk to the Pico and verify signatures made by the Pico, not to
impersonate the Pico—not even to the app from which the verification data was
stolen43. What could be stolen is the secret keys of the app (rather than of the
various Pico clients who authenticated to the app), which could then be used
to mount phishing attacks against any users of the app, indirectly defeating the
No-Phishing claim. One possible defense against that threat, if warranted by
the value of what the credentials protect, is to store the app’s secret key in a
Hardware Security Module (HSM) on the verifying host44. This countermeasure
can be applied to both local and remote hosts.

Non-computer apps Authenticating to a non-computer app covers such cases
as having to type an unlocking PIN into a car stereo, a burglar alarm, a cash
dispenser, an electronic safe and so forth.

Under the assumption that some form of bidirectional channel is available
between the app and the Pico45, this case is not substantially different from
the one already seen for non-graphical apps. An alternative pairing procedure
is needed whereby the public key of the app can be securely transferred to the
Pico. Of course, if the device has a graphical display, as more and more will, it
can instead show its visual code just like a computer-based app.

The case of the cash dispenser is interesting: if the PIN is used to authenticate
to the bank, as in the case of magstripe cards, the app is either the ATM (if the
PIN check is local) or the issuing bank (if the PIN check is done at that bank).
But if the PIN authenticates the user to a chip in the smart card, it’s that chip
itself that is the app, and the ATM is only its display46 and radio interface. In
any case, since the Pico system architecture is end-to-end between the Pico and
app, we don’t really care that much about how many intermediaries we have.

Passwords not used for authentication Consider the case of a program that
performs symmetric encryption and decryption on files. For sure it requests you
to remember and type a password (potentially a different one for every file) and
as such it must be catered for by the Pico, otherwise we’d be failing to offer the
Works-For-All benefit.

But it is difficult to model it as a login-style app requesting userid/password,
as we have done so far. Would every file be a different app? Or would the
encryption program be the app, and every file a different userid? What if I
wanted to encrypt the same file under five different keys, to give it to five different

43 If the attackers who can steal the credentials can also rewrite them, they might be
able to substitute their own public key to that of the victim in order to access the
victim’s account; but the comment in footnote 42 applies.

44 And, once its secret key is safe, the app can sign the public keys of all the Pico
clients it pairs with before storing them, to preserve their integrity.

45 Via local short-range radio or perhaps a radio-to-IP access point if the app already
has IP connectivity.

46 But note how the visual code for the card’s chip could even be printed on the card.

Pico: No more passwords! 15

recipients—should the userid be my own annotation, such as “file X that I’m
sending to recipient Y ”?

And a more fundamental problem: even if my Pico successfully proved own-
ership of the correct credential for the chosen file, how would the app decrypt
the file for me? Would it authorize use of a decryption key stored next to the
verification data for my credential? This additional indirection is architecturally
wrong because then the app holds the key to my file. My file is no longer pro-
tected by encryption but by the (probably much weaker) mechanism through
which the app protects that key. If the app is compromised, my file is no longer
secure. That’s not how things should work.

There is indeed a crucial conceptual difference between this case and the
previous ones: the file encryption application, even though it asks for a password
like all the others, is not authenticating the user, nor is it verifying any credentials
whatsoever: it is just accepting a passphrase from the user and deriving from it
a cryptographic key with which to decrypt the selected file. This app, unlike the
others, shouldn’t even know how to unlock the user’s assets (i.e. the encrypted
file) without the user-supplied string—it’s not the case that the app has access
to the data but won’t grant it to others until they prove they’re worth it. And
it’s crucial that the app not be able to decrypt—the information necessary from
decryption must be supplied by the user, not remembered by the app. It’s a
subtle but significant distinction47.

For this kind of application, the proper thing for the Pico to do is to use the
previously-described machinery just to establish a secure channel with the app
(to ensure No-Eavesdropping and especially No-Keylogging), but to then
transmit a strong encryption key to the app over that channel. Some additional
user interface elements on the Pico beyond the Main and Pairing buttons will
have to be involved, and some careful thought will have to go into the design
of the user interaction flow. As a first sketch: the user starts by authenticating
to the encryption app using the Pico; then the UI of the app is used to select
a file and the operation (encryption or decryption) to be performed on it. For
encryption, the Pico creates a random bit string of the appropriate length and
sends it to the app as the key to be used. For decryption, the user selects the
file using the app’s UI and the Pico provides the correct decryption key for it48.

The case of passwords not used for authentication is somewhat annoying
because it requires special treatment, but it is also the most intellectually stim-

47 Especially if you think about the one-time pad where different decryption keys yield
different plaintexts for the same ciphertext, all equally valid a priori

48 This problem is not trivial, and as yet unsolved, if we are also to provide the No-
Search benefit of not requiring the user to pick the appropriate credential on the
Pico itself. Using the file name to identify the password is ambiguous—the user
might have several files by that name, in different places or at different times, to be
encrypted with different keys. Using the hash of the encrypted file is only appropriate
if the file is immutable once encrypted; otherwise, if the file is updated and re-
encrypted, its key would change, causing trouble if we ever had to access previous
versions (e.g. when restoring from a backup).

16 Frank Stajano

ulating. The open question is whether there are any further uses of passwords
that are not yet captured by any of the interaction models described above.

4 Details of Pico operation

4.1 Locking and unlocking the Pico with the Picosiblings

In any token-based authentication system, all the verifier can do is to check for
the presence of the token; from that, it is a leap of faith to infer the presence
and consent of the actual user.

Many token-based systems quickly dismiss this problem, either by equating
it to that of your physical home keys (i.e. by doing nothing and just hoping you
won’t lose the token) or by simply protecting the token with a short PIN. A
PIN with an HSM-enforced rate limit after three wrong guesses might appear to
offer reasonable security; but that’s before taking several factors into account:
people’s tendency for choosing easily guessed PINs (violating No-Weak) and/or
the same PIN as for other apps (violating No-Reuse), the cost of providing a
PIN pad on the token49, the burden and security risk of having to type the
PIN into the token (violating No-Typing and No-Surfing) and of course the
burden of having to remember a PIN in the first place (violating Memoryless).

Then there is the window of vulnerability from time of check to time of use,
now shifted one level from authentication of the token to the app to authentica-
tion of the user to the token: user types PIN in the morning, unlocking token for
the day, then loses token at lunchtime, allowing finder to use it in the afternoon.
Requesting the PIN more frequently has a high usability cost.

For all these reasons, the Pico uses its own method (the Picosiblings, de-
scribed next) for locking and unlocking. The rest of this section (4.1) can be
considered conceptually separate from the core design of the Pico described in
section 3.1 but the discussion above shows how many of the benefits promised
by the Pico (Memoryless, No-Typing, Continuous, No-Weak, No-Reuse,
No-Phishing, No-Eavesdropping, No-Keylogging, No-Surfing) also cru-
cially depend on the way in which the token itself is locked.

As already mentioned, the secrets of the Pico are themselves encrypted50.
They are unlocked by the Pico Master Key, which is reconstructed using k-
out-of-n secret sharing [35]. The shares are held by other entities known as the
Picosiblings. The idea, which we first mentioned in 2000 as “family feelings for
the Resurrecting Duckling” [36] and that was also independently suggested in
2001 by Desmedt et al [7], is that the Pico will “feel safe” and unlock itself when
in the company of its Picosiblings; and defensively lock itself up otherwise.

The shares, except for the two special ones described next, are held by the Pi-
cosiblings, which are small objects chosen for the property that the user will wear
49 Or, if the PIN pad is provided externally, as in EMV payment cards, the possibility

that an attacker might intercept the traffic from the keypad to the token, or insert
malware on the keypad itself (violating combinations of No-Eavesdropping, No-
Keylogging, No-Phishing) [9,2,5].

50 With the equivalent of “full disk encryption” or perhaps even with an internal HSM.

Pico: No more passwords! 17

them practically all the time: glasses, belt, wallet, various items of jewellery—
even piercings, wigs, dentures and subcutaneous implants. In daily usage, the
user interacts with them in no other way than by wearing them: they talk to the
Pico with short-range radio and they don’t require much of a user interface.

With an appropriate initialization protocol based on the Resurrecting Duck-
ling [38], each Picosibling is securely paired to the Pico. From then on it responds
to the radio enquiries of its master Pico using a “Picosibling ping” protocol with
the following properties:

– The Pico can ascertain the presence of any of its Picosiblings in the vicinity.
– The Picosibling responds to its master Pico but not to any other Pico.
– At each ping, the Picosibling sends its k-out-of-n share to the Pico, in a way

that does not reveal it to eavesdroppers.
– An eavesdropper can detect the bidirectional communications between Pico

and Picosiblings but not infer identities or long-term pseudonyms.
– The Pico can detect and ignore old replayed messages.
– The Pico can detect and ignore relay attacks (e.g. with Hancke-Kuhn [13]).

Internally, the Pico keeps an array with a slot for each paired Picosibling.
Each slot contains, among other things, a decay (countdown) timer and some
space for the key share contributed by the Picosibling. At each valid ping re-
sponse from a Picosibling, the corresponding decay timer is refilled with the
starting value (e.g. 1 min) and starts counting down immediately; the Picosib-
ling’s share is refreshed and, if appropriate, the k-out-of-n secret is reconstructed.
Whenever a decay timer expires, the corresponding share is wiped; the k-out-of-n
secret is also wiped and, if possible, reconstructed from the other shares.

When the shared secret is not available, the Pico’s credentials are inaccessible
and so the Pico doesn’t work. If the Pico fails to reacquire k shares within a set
timeout (e.g. 5 min), it switches itself off, thus forgetting all shares, and must
be explicitly turned on and unlocked before it will work again51.

Two of the shares are special52 and have a much longer timeout (e.g. a day).
One of the special shares is derived from a biometric measurement53, with suit-
able error correction [14]. The purpose of this share is to ensure that, even if an
attacker gains control of enough Picosiblings (for example by raiding the user’s

51 The user may of course also switch off the Pico intentionally even while all the
Picosiblings are in range.

52 Depending on the chosen policy, they might even weigh more than “1” in the k-out-
of-n budget. Their presence might be required regardless of that of any others.

53 The biometric as an additional authentication factor has the advantage of usability
(and few of the privacy concerns normally associated with biometric authentication,
because the verifier is your own Pico rather than Big Brother) but won’t be as strong
as the published statistics on biometric authentication reliability might suggest be-
cause here the verification is not supervised by a human verifier suspicious of the
prover. The verification process thus isn’t resistant to an adversary who has control
of the Pico and feeds it iris photographs or gummy fingers [23]. The process should
still make at least a basic attempt at verifying that the biometric is live.

18 Frank Stajano

swimming pool locker), a lost Pico will eventually switch itself off if it is away
from its owner.

The other special share is obtained from a remote server (conceptually be-
longing to the user) through a network connection. It has a dual purpose: au-
diting the reactivations (the server keeps a log of where and to which address it
sent out its share) and allowing remote disabling of the Pico (the user who loses
control of the Pico can tell the server not to send out the share any more54).

How does the user manage her Picosiblings? Aside from the two special
shares, handled separately, let’s say that the security policy of our user requires
proximity of three other Picosiblings to unlock the Pico, for example two earrings
and a pair of glasses. Even though only three items are necessary, the user ought
to register several pairs of earrings and several pairs of glasses55 and perhaps also
other items for good measure, such as a bracelet, a belt, a medal, a smart card
and so on56. The n in k-out-of-n secret sharing says how many Picosiblings are
registered with this Pico; it can be much greater than k, which says how many
Picosiblings the Pico must sense to unlock. All the unworn n − k Picosiblings
must be kept in a safe place. Defining a new set of n Picosiblings, as well as
changing n and k, is conceptually an atomic operation (see section 4.3).

4.2 Continuous authentication

A major advantage of Pico is its Continuous benefit: once you have “logged
in” by acquiring the app’s visual code and letting the Pico do its stuff over
the radio, the app can continue to ping the Pico over their confidentiality- and
integrity-protected channel and use that to confirm that you and your Pico are
still around. As soon as you are not, the app can block access57; and, what’s
even better, if your Pico reappears before a set timeout expires, the app can
grant access again without even asking you to reacquire the visual code.

One potential threat in this situation is the relay attack, which an adversary
could use to make it look as if you were still close to the computer even after
you left. Guarding against relay attacks at the level between Pico and app is
harder than at the level between Pico and Picosiblings because the link may
have unpredictable latency, possibly even going through the Internet, and thus
distance-bounding methods won’t work reliably.

Further engineering details to be addressed include state preservation (things
must work like an automatic suspend/resume where you still find everything just
54 Ironically, the user will need a way to issue this order without her Pico. One solution,

inspired by the work of Schechter et al. [34], might be to control the remote server
with the secret-sharing-based consent of a few trusted friends.

55 So that she can still use her Pico whatever earrings she chooses to wear today.
56 So that she can use other items on days when she wants to wear no earrings, or

non-Picosibling earrings. And also so that she has enough extras that, even after
losing today’s earrings and glasses or having them stolen, she can still unlock her
Pico, or her backups (see section 4.3) if she also lost her Pico.

57 Like a locked screen saver that came on only when you left, not merely when you
stopped typing for a while; and as soon as you left, not merely half an hour later.

Pico: No more passwords! 19

as you left it, not like an automatic logout/login where all open programs get
closed) and the nesting of app sessions (one of the apps may be your actual
login session on the local computer and another might be your webmail session
within your web browser; each with its own key pairs and so on; the suspend
and resume pairs must nest in the correct order).

4.3 Backup

To protect the user from permanent loss of access if the Pico is destroyed or
lost (Loss-Resistant), regular backups must be taken—but actual users never
do backups. We therefore introduce what Norman [26] calls a forcing function:
the Pico’s docking station recharges your Pico (as you do with your phone) and
automatically takes a backup every time you dock. Since the storage of the Pico
is encrypted, the backup is too, automatically. The docking station works as
a standalone device, writing the backup to a memory card (and possibly also
storing the last few internally)58 but it can also be connected to a computer
to provide a user interface. An encrypted backup can be restored onto a virgin
Pico, but it only becomes accessible by unlocking the Pico as usual through its
Picosiblings (section 4.1).

IMPRINTABLE UNLOCKED LOCKED

seppuku

Main Pairing

unlock with

restore a backup

make a

timeout

switch off
change set of

buy new

define set of
Picosiblings

Pico Picosiblings

backup

Picosiblings

button button

Fig. 1. State diagram of Pico, based on Resurrecting Duckling.

More formally, the model for the Pico is derived from the Resurrecting Duck-
ling [37,38]. With reference to the state diagram in figure 1, a brand new Pico
58 The docking station contains no secrets and is not paired with the Pico or Picosi-

blings. Even so, since it contains the backups, it is prudent to leave one’s docking
station at home (“safe place”) and use a different one for trips, not for confidentiality
but for availability, i.e. so as not to lose the only copy of the backups. It would
in theory be possible to use the same docking station everywhere if one religiously
extracted the backups and stored them elsewhere, but Murphy says it’s unwise to
rely on this happening.

20 Frank Stajano

is in the “imprintable” state and contains no credentials. The other two states,
“unlocked” and “locked”, both count as imprinted. From “imprintable” you can
either restore an existing backup, thus taking the Pico to the “locked” state, or
define a new set of Picosiblings and pair them with the Pico59, taking the Pico
to the “unlocked” state.

The “unlocked” state is the one in which the Main and Pairing buttons work.
From there, you move into the “locked” state by timeout or by explicitly switching
off the Pico. From the “unlocked” state you can change the set of Picosiblings60.
You may also order seppuku (suicide), thus wiping all stored credentials and
returning both the Pico and all its paired Picosiblings to the “imprintable” state.

The “locked” state is the one in which the Pico remembers credentials but
won’t let anyone use them. From this state you can take a backup (remaining in
this state) and you can get back to “unlocked” with the cooperation of enough
Picosiblings.

This model allows the possibility of having different Pico instances containing
the same credentials—if they were all restored from a common backup. They
might then go out of sync if credentials are added to one and not the other.
Additional protocols might be defined to keep such instances in sync or to kill
off all but one of them, relying on a hardware serial number and on the fact that
all these Pico instances talk back to the network server that holds one of the
special Picosibling shares (section 4.1).

It is also in theory possible to extend this model by allowing users to select
and export individual credentials from one Pico to another. So long as this is
done securely and the interaction is designed without excessively complicating
the management interface, this feature might be useful to implement selective
delegation (“I give you a copy of the key to my filing cabinet, but not a copy of
my front door key”). It is architecturally cleaner to support this function at the
verifier’s end instead (“henceforth, Bob’s key too will open Alice’s filing cabinet”),
but transferring the credential provides plausible deniability (now nobody can
tell whether the filing cabinet was opened by Alice or by Bob)—which, depending
on circumstances, might be a bug or a feature.

To recover after losing the Pico, the user obtains a new imprintable Pico61,
restores the backup onto it (bringing it to the “locked” state), then unlocks it
with the Picosiblings. In the unlucky case that the user also lost the Picosiblings,
she must unlock the backup using the spare Picosibling she wisely stored in her

59 This is a complex subprotocol in which a random master key for the Pico is generated
and then split into shares, and the shares distributed to the imprintable Picosiblings.

60 This is another complex subprotocol in which existing Picosiblings are returned to
the imprintable state, a new Pico master key is generated and the Pico is reencrypted
under it, then the new master key is split among a new set of imprintable Picosiblings
and the shares distributed to them; all somehow atomically, so that you can’t lock
yourself out of your Pico if something goes wrong halfway through.

61 We can buy pay-as-you-go cellphones for less than $10 nowadays, so imagine that
to be the price of the Pico once everybody has one. People might even keep a blank
imprintable Pico at home, and another at work, “just in case”.

Pico: No more passwords! 21

safe deposit box62 when she defined the original set of Picosiblings. Once her
restored Pico is unlocked, it would be a good idea for her to define a new set of
Picosiblings, including some new ones to replace63 the ones she lost, and then
take a new backup.

4.4 Escrow

The Pico model is quite flexible and covers a wide spectrum of requirements,
from those of the individual to those of the corporate user. It is possible, though
by no means mandatory, to register additional Picosiblings and leave them in
escrow with the company to allow access to the resources protected by the Pico
if the employee is run over by a bus. Similarly, it is possible for an individual
to register additional Picosiblings and leave them in escrow with a spouse, a
trusted friend or a notary as a kind of “digital will”.

It is also possible for a single user to operate more than one Pico64, for
example one for corporate secrets and one for private ones, so as not to have to
place one’s private secrets in escrow with the company.

4.5 Coercion resistance

The paranoid threat model for passwords is that you may be kidnapped by the
mafia or the secret police and tortured in a dark basement until you reveal them.
If you succeed in destroying your Pico before capture, then all your credentials
become inaccessible and Pico removes the rational incentive65 for torturing you.

If you are James Bond on a special mission and suspect that you might be
captured66, you might wish to trade off some availability in exchange for security
and disable the remote server, after setting the timeout of the remote share to
the duration of your trip. You won’t be able to reactivate your Pico until you
get back home if it ever goes off, but neither will your captors. Now all you need
to do while being captured is to switch off the Pico, not even to destroy it.

The assumption is that your backups (and spare Picosiblings, and network
server) are in the proverbial “safe place” and that if the bad guys allow you to
go back to your safe place to get them, then they can’t force you to come out of
it. The bad guys could however force you to ask someone else to get the backups
out of the safe place in your stead while you are still in their hands.

62 Or gave to non-colluding friends, since Picosiblings naturally support secret sharing.
63 And thereby implicitly revoke.
64 Though they might each require their own cloud of Picosiblings. Since each Picosi-

bling can only be paired to one Pico at a time, this puts a practical limit on the
number of Pico per person, which is just as well to avoid the “I won’t have the right
Pico when I need it” problem.

65 Of course they might still torture you out of revenge, or just because they like doing
it—no guarantee they’ll be rational about it.

66 Or, more mundanely, if you are on a trip away from home and think there’s a higher
than usual risk that you might lose your Pico.

22 Frank Stajano

Nothing in this subsection is to be taken as much more than poor cryptogeek
humour67, but the semi-serious point is that it is possible to make the Pico a
coercion-resistant system if you are prepared not to be able to recover its secrets
yourself. If there is a way for you to recover from the destruction of your Pico,
they might be able to force you to use it. But if you destroy the Pico and have
no backups, they can torture you all they want but won’t be able to recover your
secrets68, even with your full cooperation. You can’t claim that for passwords.

Another practical strategy for protecting especially precious credentials (and
for being able to deny that they even exist) is to dedicate a separate Pico just to
them. Your ordinary Pico would hold your day-to-day credentials; then another
special Pico (that nobody would know about, kept in a safe place and less likely
to be misplaced or stolen) would hold the more serious and rarely accessed
stuff. The caveat in footnote 64 against Pico proliferation applies, but having a
separate “travel” Pico still sounds like a sensible precaution.

4.6 Revocation

To complete the Pico design we need appropriate facilities for revoking key pairs,
both on the Pico side and on the app side since the authentication is mutual.
We may well adopt the standard technique (used, among others, by PGP) of
keeping in a safe place a revocation request signed with the private key to be
revoked; but we’ll have to address the standard problem of the intended party not
hearing about this revocation in a timely fashion, especially in our decentralized
non-PKI-based environment.

5 Optimizations (as Roger Needham would call them)

“Optimization”, Roger Needham famously remarked, “is the process of taking
something that works and replacing it with something that almost works, but
costs less”. There are various ways in which we could “optimize” the design of
the Pico in an attempt to bootstrap its acceptance and market penetration69.

67 The Akevitt Attack, suggested by Erlend Dyrnes, is more effective and less violent:
generously offer victim twenty shots of said Norwegian liquor; then, once victim
under table, grab and use their still-unlocked Pico and Picosiblings. Perhaps one of
the Picosiblings should include a mercury switch and stop working when the user is
horizontal—but this would not suit Cory Doctorow who wants to websurf in bed.

68 The main difficulty will be convincing them that that’s the case before they start.
“Read this before torturing me” might not work—especially with a paper this long.

69 Once a critical mass of users is reached, these “optimizations” should be rolled back.
The next concern will then be our ability to use Pico in absolutely all situations,
including by users with disabilities (at this stage Pico seems to be doing fine, but
this would have to be assessed more carefully) and in locations that disallow the use
of a camera, such as certain military or industrial facilities (it’s debatable whether
we should change the Pico or choose not to support these cases).

Pico: No more passwords! 23

5.1 Using a smart phone as the Pico

One of the “costs” of the Pico for the user, besides the price tag, is the burden of
having to carry yet another gadget. To counter that and offer Quasi-No-Carry,
some will want to implement the Pico as software for a smartphone, which al-
ready has a good display, a visual-code-compatible camera, a radio interface and,
above all, is a device that users already carry spontaneously. But the smartphone
is a general-purpose networked device and thus a great ecosystem for viruses,
worms, trojans and other malware. I, for one, would not feel comfortable holding
all my password replacements there. I also doubt that a smartphone program
would be granted enough low level control of the machine by the OS to be able
to encrypt all of its data without inadvertently leaving parts of it in places that
an attacker with physical control of the device could re-read.

A halfway-house between an insecure smartphone and a secure piece of dedi-
cated hardware and software might be to use your old smartphone as your Pico70

and your new one as your regular phone. Not as secure as a purpose-made Pico,
and it would fail to offer No-Carry, but it would be a cheaper way to prototype
and field-test the Pico without building custom hardware.

5.2 Typing passwords

The most significant “cost” of the Pico is undoubtedly the fact that it requires
changes to the apps; next to that is the cost of the changes (hardware and
software) on the local computer. A way of eliminating these costs and thus
achieving No-App-Changes and No-Cli-Changes is to drop public keys and
visual codes and to make the Pico just remember straightforward passwords.
With a USB connector the Pico could emulate a keyboard and type the password
for you, honouring the No-Typing benefit71.

The ways in which this optimization works only “almost” are unfortunately
many. Giving up the SSL-like operation opens the door to app impersonation,
losing No-Phishing. Because the app no longer has a visual code or public key,
the Pico can’t select the appropriate credentials, losing No-Search. Because the
app can no longer ping the Pico, we lose Continuous. Passwords typed by the
Pico can be intercepted, losing No-Keylogging. All we retain, provided that
we manage the passwords sensibly, are Memoryless, No-Weak, No-Reuse,
No-Typing and Quasi-Works-For-All72.

An even more radical cost saving measure would drop the USB connector,
forcing the user to transcribe the passwords manually and essentially bringing us
back to the PDA with password wallet software. Neither option is recommended.

70 Wiping it of any other apps and restricting network functionality to getting the
special share from the remote server as described in section 4.1.

71 Some commercial devices already do that—see footnote 83.
72 If we claim No-Cli-Changes we must exclude the situations, like ATMs and burglar

alarms, that don’t already support external USB keyboards.

24 Frank Stajano

5.3 Removing fancy features

Further savings could be obtained by dispensing with some of the Pico’s special
features: by not bothering with the Picosiblings (section 4.1), perhaps replacing
them with a master PIN; by dropping proper mass storage encryption (section
4.1); or by not implementing the automatic backup from the docking station
(section 4.3). We noted at the start of section 4.1 the disadvantages of securing
the Pico with a master PIN; and not performing backups automatically would
be a really bad idea. On the other hand, future user studies might tell us that
managing the Picosiblings is found to be as complicated as having to remember
and juggle dozens of strong passwords. We need prototypes and impartial user
studies to understand whether this is so. Picosiblings are just one possible way of
locking and unlocking the Pico and as such they are the feature subset that one
could most easily remove. Perhaps the first simplification might be to remove the
special Picosibling share of the network server, which carries its own management
burden; and then to remove the other special share (biometric). A more drastic
alternative might be to omit the Picosiblings altogether.

5.4 Gradual adoption

Some users might welcome the convenience of the Pico but not trust it for abso-
lutely everything: they might feel safer remembering one or two strong passwords
for their highest security accounts and using the Pico for everything else. This is
fine: until the Theft-Resistant and Loss-Resistant claims of the Pico have
been validated beyond reasonable doubt by hostile review, we would consider
this trade-off73 a prudent diversification strategy.

6 Related work

Replacing passwords is an extremely crowded research area and any survey,
however long, will necessarily be incomplete; for more references than we discuss
here, start with the extensive bibliography in Bonneau and Preibusch [4]. We
mentioned in the introduction Adams and Sasse’s classic study on password
usability problems [1], but in this section we focus instead on alternatives and
solutions, highlighting how they score against the criteria set out in Table 174.

How do ordinary people cope with password overload? Following a long-
established tradition many of them, having exhausted what Beautement et al. [3]
would call their compliance budget, achieve benefits Memoryless and Works-
For-All simply by writing their passwords down; some even keep them in
73 The price to pay for not putting all the eggs in one basket is not just the downgrade

from Memoryless to Quasi-Memoryless but also the loss of all the Pico’s usabil-
ity and security benefits over passwords for those high security accounts, including
protection against keylogging and phishing.

74 For reasons of space we only present significant highlights, rather than a complete
(products × benefits) matrix, as some cells would require extensive discussion. But
we might one day extend this section into a full stand-alone comparative survey.

Pico: No more passwords! 25

a file on their computer, to allow cut and paste and thus enjoy No-Typing.
A negligible minority of crypto-geeks do the same but also encrypt the file,
thus degrading to Quasi-Memoryless but additionally achieving Secure and
Theft-Resistant75. This rather sensible approach was at some point embod-
ied into stand-alone “password wallet” applications, of which one of the earliest
was Schneier’s Password Safe (1999). Password wallets running on PDAs rather
than on the user’s main computer were less at risk from malware, especially if
the PDA wasn’t network-capable, but gave up on No-Typing. Some of these
programs also offered No-Weak and No-Reuse, to the extent that the program
could, on request, generate a random password. A significant advance in this di-
rection became the integration of the encrypted password wallet within the web
browser—one of the first examples being the Netscape/Mozilla family (1999?).
This solution added No-Search to No-Typing, with a marked improvement
in usability, but obviously gave up on Works-For-All because it only worked
with web apps. The latest versions of such browser-based password wallets offer
the option of storing the passwords in the cloud76 and of synchronizing them
among different browsers, to offer From-Anywhere; but some of these imple-
mentations are less convincing than others with respect to the trust that the
user must place in the wallet provider. There exist also versions of password
wallets integrated in the operating system rather than in the browser, such as
OS X’s Keychain. While they still fail to provide Works-For-All, they handle
additional passwords not managed by the in-browser wallet, such as the ones for
WiFi. Note how most of these systems only provide Quasi-Memoryless rather
than Memoryless, because they require a (keyloggable) master password.

A conceptually related approach (having a single password that unlocks your
other passwords that are then supplied automatically to the relevant apps) is
the Widely-Used Single Sign-On (SSO). The useful taxonomy of Pashalidis
and Mitchell [29] classifies SSO systems along two dimensions: local vs proxy
(does the entity to which the user authenticates, known as the Authentication
Service Provider or ASP, reside on the local computer or in the network?) and
true vs pseudo (is SSO supported by design or just by transparent simulation
of pre-existing authentication methods?). According to this taxonomy we might
describe password wallets as local77 pseudo-SSO systems. SSO systems may
offer No-Phishing, No-Eavesdropping and even, depending on the mech-
anism chosen for authenticating to the ASP, No-Keylogging (cfr. the Im-
plemented, Open “Impostor” [30], which uses a primitive challenge-response;

75 Plus Loss-Resistant if they back up the file.
76 An interesting twist is a wallet that generates your passwords rather than storing

them: www.passwordsitter.de derives your passwords by encrypting the app’s name
and other details with your master password, therefore weak and reused passwords
are replaced by app-dependent hashes. It can work as an in-cloud wallet or as an
offline one. However, while it’s true that “your passwords are not stored”, you aren’t
much better off than if they had been stored encrypted because, for your convenience,
their server stores a file with your app names and the other relevant details—so your
only protection is still the (keyloggable and potentially guessable) master password.

77 Or proxy for in-cloud ones.

www.passwordsitter.de

26 Frank Stajano

its Implemented successor “KYPS” [28] and the independently Implemented
“URRSA” [10], which use one-time passwords). Pseudo SSO systems even of-
fer No-App-Changes: the apps don’t even know that the user is logging in
through an ASP rather than directly. True SSO systems effectively get rid of
passwords with respect to the downstream apps, thus offering No-Weak and
No-Reuse and, with a proper protocol, No-Phishing, No-Eavesdropping,
No-Keylogging and No-Surfing over the connection from ASP to app; but
they might offer only “quasi” versions of these benefits if the user still authenti-
cates to the ASP with a password. One further dimension that could be added
to the Pashalidis-Mitchell taxonomy would distinguish between an ASP under
the control of the user (“privacy-protecting”), which would also offer No-TTP,
and one run by a third party (“privacy-invading”, because the ASP would get
to know about every app you visit)78. Both Pico (seen, at a stretch, as a kind
of “local, true” SSO) and Impostor [30] (a “proxy, pseudo” SSO) would count
as “privacy-protecting”, whereas systems such as Facebook Connect or OpenID
would be “privacy-invading”. In this sense KYPS is “privacy-invading” but, in
a strange combination, offers No-TTP because even physically capturing the
server does not yield the stored credentials, which are reconstructed on access
by XORing them with the OTPs.

One advantage of the Pico over SSO systems is Continuous, of which the
Active Badge Implemented by Want and Hopper [40] offered an early glimpse
as far back as 1992: it would lock the workstation’s screen as soon as the user left.
A more security-conscious approach to the problem came in 1997 when Landwehr
[20] proposed, patented (with Latham [21]) and Implemented a system that
would continuously monitor the presence of an RFID token worn by the user
and, in its absence, disconnect the keyboard and monitor from the computer. To
address the fact that a physical attacker could still access the raw disk, in 2002
Corner and Noble [6] presented (and later refined with Nicholson [25]) “Zero-
Interaction Authentication”, a well-engineered Implemented system in which
proximity of the token would unlock the keys of the laptop’s cryptographic file
system79. Absence of the token would flush the decrypted files from the cache
and wipe their decryption keys.

An in-browser system designed to offer No-App-Changes, No-Reuse and
No-Phishing is the Implemented, Open and deployed PwdHash [33]: when
the user enters a web password, PwdHash replaces it with a hash of the original
password and domain name. Even if the same password is used at several sites,
each site sees a different version; in particular, the passwords seen by the phishing
and phished site are different. Weak passwords are still vulnerable to dictionary
attacks but the benefits above are provided at Quasi-No-Cost.

78 LPWA [19], an early (1997) Implemented “proxy, pseudo” SSO, despite being
“privacy-invading” by our definition because the server was under the control of
Lucent, offered an insightful discussion of web privacy and introduced a variety of
useful mechanisms to protect it (auto-generated aliases, per-site email addresses etc).

79 Though note that the token itself had to be activated once a day with a PIN.

Pico: No more passwords! 27

An important precursor of the Pico is the “Phoolproof Phishing Protection”
system by Parno, Cuo and Perrig [27]. Their objective is not to eliminate pass-
words (which they still use) but to prevent phishing. Yet their system, whose
archetypal function is to protect online banking accounts, introduces many ar-
chitectural features that Pico also adopts: it involves a cellphone interacting via
Bluetooth with the local computer, a web browser plugin to talk to the radio
and a full SSL interaction, with mutual authentication, with the remote web
server. This Implemented system offers No-Phishing, No-Eavesdropping,
No-Keylogging and From-Anywhere. Contrary to Pico, Phoolproof is much
closer to a drop-in replacement: it requires only minor modifications to web apps,
which already have SSL, and users already have suitable cellphones; it thus
arguably offers Quasi-No-Cost, Quasi-No-App-Changes, Quasi-No-Cli-
Changes. By design, it does not offer No-Search, because the authors want
the user to select the app from a “secure bookmark” on the trusted device80. Pico
takes a different approach (thus providing Scalable and No-Search) because
the “secure bookmark” strategy only works when the request to supply the cre-
dentials can be initiated from the token; this would not usually be the case for
non-web apps (e.g. a desktop application requests the root password because it
needs system privileges to run the function you invoked).

The specific problem of online banking authentication has attracted anti-
phishing solutions from industry and academia. The system Implemented and
sold by Cronto81 to banks to protect online transactions is not intended as a
password replacement but it is perhaps the first commercial system to use a
visual code and a multi-channel protocol to protect against phishing. Johnson
and Moore [18] Implemented an anti-phishing device based on a USB dongle
with display and buttons, robust against malware having compromised the local
computer. The device was also designed to provide audit logs suitable for hostile
cross-examination in case of dispute.

The Yubico82 Yubikey (Implemented) is a very low-cost USB token without
moving parts, with one capacitive “button” and no display83; at every button
press it “types” a one-time password which, in conjunction with a password
typed by the user, implements a two-factor authentication system. No changes
are required at the prover side (No-Cli-Changes), since the Yubikey just looks
like a keyboard, but the verifier side needs to know the next OTP to expect.
In order not to require the user to carry one Yubikey per app, the apps may
outsource their verification procedure to a common authentication server run by
one of them or by a third party (possibly Yubico), thus implementing a kind of
80 One might argue—we do, and so do Laurie and Singer [22] cited further down—

about the wisdom of rating the smartphone a trustworthy device; but, in fairness,
Parno et al. have Implemented a working prototype before publishing their paper,
which can’t be said of the Pico or the Neb. The first prototype of the Pico might one
day be implemented on a smartphone too, before moving to more secure hardware.

81 http://www.cronto.com.
82 http://www.yubico.com.
83 The sCrib (http://www.smartarchitects.co.uk/) is similar: it types out passwords

while offering No-Cli-Changes and No-App-Changes.

http://www.cronto.com
http://www.yubico.com
http://www.smartarchitects.co.uk/

28 Frank Stajano

“proxy, true, privacy-invading” SSO. This easy to use and Quasi-Memoryless
system offers Quasi-Works-For-All84, From-Anywhere, No-Search, No-
Reuse, No-Surfing and No-Keylogging85 but is still vulnerable to phishing.

The market-leading RSA SecurID86 (Implemented, Widely-Used), a small
device whose display offers a new “pseudo one-time” password every minute or
so, is meant to strengthen authentication using two factors, rather than replacing
passwords or improving usability. The two factors together, though they cannot
prevent phishing, offer at least No-Weak, No-Reuse and No-Keylogging.
But the devastating March 2011 compromise of RSA’s database, which forced
the recall and reissue of 40 million tokens87, highlights the dangers of a system
without No-TTP.

In an entertaining position paper, Laurie and Singer [22] describe yet another
security token. Since a general-purpose OS cannot be secured, they offer a trusted
path to the user via a stripped-down, single-purpose device (the Neb) that can be
made sufficiently simple as to be trustworthy. The Neb is not merely a password
replacement: details are sketchy but a crucial part of the proposal appears to
be trusted-path validation of the operations performed on the general purpose
system (e.g. don’t just authenticate user Neo to the blogging site, but display
his edits on the Neb to get him to approve them). The Neb would certainly
provide at least From-Anywhere, No-Phishing and No-Keylogging, but
it is unclear how user Neo authenticates himself to his Neb, casting doubts over
it being Loss-Resistant and Theft-Resistant. Indeed, no solution is offered
for loss of the device other than “centralized revocation and reissue”.

On a different note we cannot fail to mention biometrics, which are certainly
Memoryless and (beating Pico) No-Carry; they are also potentially Scal-
able but perhaps not entirely Secure, Loss-Resistant or Theft-Resistant.
They offer all the usability benefits of Pico except Continuous88 but, as for se-
curity, they fail to offer No-Phishing, No-Reuse and especially No-Linkage.
For privacy, this last point is quite serious: if apps collude, all your authenti-
cation acts can be tracked across them, without plausible deniability; and you
can’t revoke your biometrics and get new ones to regain some privacy.

Concerning Picosiblings, as we mentioned in section 4.1, we first wrote up
the idea in 2000 as “family feelings for the Resurrecting Duckling” [36], based
on a suggestion from Markus Kuhn. In 2001, Desmedt, Burmester, Safavi-Naini
and Wang [7] independently proposed a similar system that featured a threshold
scheme. The issue of resharing a shared secret (e.g., for Pico, to change the set of
Picosiblings) had been discussed by various authors in other contexts [8,42] but,
with specific reference to a quorum of ubicomp devices, Peeters, Kohlweiss and
84 Like any “true” SSO, it can work with any app whose back-end can be connected to

the ASP, and thus it is not limited to web apps.
85 The password typed by the user can be keylogged but the OTP ensures that, without

the token, this captured password is insufficient on its own.
86 http://www.rsa.com/node.aspx?id=1156.
87 http://arstechnica.com/security/news/2011/06/rsa-finally-comes-clean-

securid-is-compromised.ars.
88 Though you might imagine a camera that. . .

http://www.rsa.com/node.aspx?id=1156
http://arstechnica.com/security/news/2011/06/rsa-finally-comes-clean-securid-is-compromised.ars
http://arstechnica.com/security/news/2011/06/rsa-finally-comes-clean-securid-is-compromised.ars

Pico: No more passwords! 29

Preneel [31] devised a protocol to authorize resharing (in order to prevent an
attacker from breaking the scheme by altering the set of devices holding shares)
and, with Sulmon [32], also investigated its usability.

In closing we note that several other approaches to the problems of passwords
we highlighted in the introduction still ask users to remember something. We
won’t discuss the many proposals that involve remembering secrets other than
passwords (images, gestures, paths . . .), as they still all go against what we
initially listed as our primary requirement, namely a Memoryless solution89;
but there are still a few papers we wish to mention.

Jakobsson and Akavipat [17] Implemented Fastwords, which are passphrases
with special properties, made of several dictionary words. The authors argue
that Fastwords are easier to remember, easier to type (especially on smart-
phones, thanks to auto-completion) and yet of higher entropy than the average
password. Like all solutions that involve memorizing and then retyping secrets,
Fastwords can’t offer Memoryless, Scalable, No-Phishing, No-Typing or
No-Keylogging. They do, however, work with existing smartphones (No-Cli-
Changes) and thus, in the context of web apps, can be deployed unilaterally
by upgrading only the servers: a major advantage that breaks the vicious circle
faced instead by Pico.

A different viewpoint is that passwords are still OK and that it’s just the pass-
word rules that are unreasonable. In a provocative and stimulating paper, Herley
and van Oorschot [16] observe that no other technology offers a comparable com-
bination of cost, immediacy and convenience and that the often-repeated state-
ment that passwords are dead has proved “spectacularly incorrect”. The well-
argued thesis that Herley, Florêncio et al. develop over several papers [12,15,11]
is that we should alleviate the users’ memory burden by allowing them to use
simpler passwords—because policies requiring stronger passwords impose a def-
inite usability cost without returning a matching security improvement. While
we agree that password policies are unreasonably complex, we are not convinced
that allowing users to adopt less complex passwords will be sufficient to solve,
rather than just temporarily mitigate, the usability problems of passwords, espe-
cially if the number of necessary passwords continues to grow. We’d much prefer
a Memoryless solution potentially Scalable to thousands of credentials. Be-
sides, remembering the passwords is not the only usability problem—that’s why
we also sought No-Typing. And, besides usability, as these authors are first to
acknowledge, passwords still suffer from phishing and keylogging.

89 We do not believe that any of the “remember this other thing instead of a password”
methods can possibly offer a long term solution to the fact that users must now
remember many secrets, all different, all unguessable, and change them every so
often. Systems based on human memory can’t scale to hundreds of accounts unless
they turn into SSO variants where the user effectively only remembers one secret
(and then it’s the SSO that’s really solving the problem, not the “remember a non-
password” method). And that’s before considering their sometimes dubious claims
about usability and memorability, and their susceptibility to smart guessing attacks
that anticipate the way in which users choose their memorable secrets.

30 Frank Stajano

7 Conclusions

It is no longer reasonable for computer security people to impose on users such a
self-contradictory and unsatisfiable set of password management requirements.
Besides, there are too many passwords per user, and it’s only going to get worse.

Pico is perhaps the first proposal of an alternative that would eliminate pass-
words altogether, not just for web sites. It is presented as a clean-slate solution,
without regard for backwards compatibility, to explore not the relatively crowded
design space of “what can we do to ease today’s password pain a little?” but the
more speculative one of “what’s the best we could do if we didn’t have the excuse
that we have to support existing systems?”. You may use Pico as a springboard
to explore the question: “if this isn’t the best alternative, why isn’t it, and how
could we do better?”.

There is no expectation that Pico will replace passwords overnight. Even after
Pico is debugged security-wise and is ready for prime time usability-wise90, the
success of its deployment will crucially depend on its ability to reach a critical
mass of users, capable of self-sustaining a chain reaction of growth91.

Many password replacement solutions trade off some security to offer greater
usability—or vice versa. With Pico, instead, we move to a different curve: more
usability and more security at the same time. It’s not a trade-off, it’s a trade-up!
It will be hard to break the compatibility shackles, but non-geek users deserve
a better deal than we have been offering them until now with passwords92.

To encourage and facilitate widespread adoption, I have decided not to patent
any aspect of the Pico design. If you wish to improve it, build it, sell it, get rich
and so forth, be my guest. No royalties due. Just give credit by citing this paper.

Acknowledgements

I am indebted and grateful to Virgil Gligor and Adrian Perrig for their generous
and intellectually stimulating hospitality, as the first draft of this paper (re-
peatedly rewritten since then) originated while I was on sabbatical at Carnegie
Mellon’s Cylab in 2010. I am grateful to Markus Jakobsson, Joe Bonneau, At-
tilio Stajano, Omar Choudary, Angela Sasse, Ben Laurie, Matt Blaze, Alf Zu-
genmaier, “Handslive”, “Richard”, Paul van Oorschot, Norbert Schmitz, Eirik
Schwenke, James Nobis, Per Thorsheim, Erlend Dyrnes, Kirsi Helkala, Cormac

90 One of the most interesting questions, to be answered through user studies with
real prototypes, will be whether managing a family of Picosiblings is felt to be less
complicated than managing a collection of passwords.

91 As Per Thorsheim commented at Passwordsˆ11: “Just get Facebook to adopt it!”.
92 We reiterate what we said in the introduction: passwords may be seen as cheap,

easy and convenient for those who deploy them, but they are not for those who
have to use them (subject to mutually incompatible constraints) and who have no
way of pushing back. App providers may just think “Why should my password be a
problem if users are already managing passwords for every other app?”, but that’s
just a tragedy of the commons.

Pico: No more passwords! 31

Herley, Virgil Gligor, Adrian Perrig, Paul Syverson, Sid Stamm, Andreas Pasha-
lidis, Mark Corner, Bart Preneel, Dirk Balfanz and Carl Landwehr for insightful
comments and additional references, as well as to all the other attendees of the
Security Protocols Workshop 2011 in Cambridge, UK (whose comments appear
in the proceedings), those of the ISSA conference 2011 in Dublin, Ireland, of
the Passwordsˆ11 conference in Bergen, Norway, of the Security and Human
Behaviour 2011 workshop in Pittsburgh, PA, USA, of the Usenix Security 2011
conference in San Francisco, CA, USA and of the IEEE RTCSA 2011 conference
in Toyama, Japan for providing stimulating feedback and probing questions as
I presented an evolving version of this work.

References

1. Anne Adams and M. Angela Sasse. “Users are not the enemy”. Communications of
the ACM, 42(12):40–46, December 1999. http://hornbeam.cs.ucl.ac.uk/hcs/
people/documents/Angela%20Publications/1999/p40-adams.pdf.

2. Ross J. Anderson and Mike Bond. “The Man-in-the-Middle Defence”. In B. Chris-
tianson et al. (ed.), “Proc. Security Protocols Workshop 2006”, vol. 5087 of LNCS,
pp. 153–156. Springer, 2009. http://www.cl.cam.ac.uk/~mkb23/research/Man-
in-the-Middle-Defence.pdf.

3. Adam Beautement, M. Angela Sasse and Mike Wonham. “The compli-
ance budget: managing security behaviour in organisations”. In “Proc.
New Security Paradigms Workshop 2008”, pp. 47–58. ACM, 2008. http:
//hornbeam.cs.ucl.ac.uk/hcs/people/documents/Adam%27s%20Publications/
Compliance%20Budget%20final.pdf.

4. Joseph Bonneau and Sören Preibusch. “The password thicket: technical and market
failures in human authentication on the web”. In “Proc. 9th Workshop on the Eco-
nomics of Information Security”, Jun 2010. http://preibusch.de/publications/
Bonneau_Preibusch__password_thicket.pdf.

5. Omar Choudary. The Smart Card Detective: a hand-held EMV interceptor. Mas-
ter’s thesis, University of Cambridge, 2010. http://www.cl.cam.ac.uk/~osc22/
docs/mphil_acs_osc22.pdf.

6. Mark D. Corner and Brian D. Noble. “Zero-interaction authentication”. In
“Proc. ACM MobiCom 2002”, pp. 1–11. 2002. http://www.sigmobile.org/
awards/mobicom2002-student.pdf.

7. Y. Desmedt, M. Burmester, R. Safavi-Naini and H. Wang. “Threshold Things That
Think (T4): Security Requirements to Cope with Theft of Handheld/Handless In-
ternet Devices”. In “Proc. Symposium on Requirements Engineering for Informa-
tion Security”, 2001.

8. Yvo Desmedt and Sushil Jajodia. “Redistributing Secret Shares to New Access
Structures and Its Applications”. Tech. Rep. ISSE-TR-97-01, George Mason Uni-
versity, Jul 1997. ftp://isse.gmu.edu/pub/techrep/9701jajodia.ps.gz.

9. Saar Drimer and Steven J. Murdoch. “Keep your enemies close: distance bounding
against smartcard relay attacks”. In “Proc. USENIX Security Symposium”, pp.
87–102. Aug 2007. http://www.cl.cam.ac.uk/~sd410/papers/sc_relay.pdf.

10. Dinei Florêncio and Cormac Herley. “One-Time Password Access to Any Server
without Changing the Server”. In “Proc. 11th Information Security Conference”, pp.
401–420. Springer-Verlag, Berlin, Heidelberg, 2008. http://research.microsoft.
com/~cormac/Papers/otpaccessanyserver.pdf.

http://hornbeam.cs.ucl.ac.uk/hcs/people/documents/Angela%20Publications/1999/p40-adams.pdf
http://hornbeam.cs.ucl.ac.uk/hcs/people/documents/Angela%20Publications/1999/p40-adams.pdf
http://www.cl.cam.ac.uk/~mkb23/research/Man-in-the-Middle-Defence.pdf
http://www.cl.cam.ac.uk/~mkb23/research/Man-in-the-Middle-Defence.pdf
http://hornbeam.cs.ucl.ac.uk/hcs/people/documents/Adam%27s%20Publications/Compliance%20Budget%20final.pdf
http://hornbeam.cs.ucl.ac.uk/hcs/people/documents/Adam%27s%20Publications/Compliance%20Budget%20final.pdf
http://hornbeam.cs.ucl.ac.uk/hcs/people/documents/Adam%27s%20Publications/Compliance%20Budget%20final.pdf
http://preibusch.de/publications/Bonneau_Preibusch__password_thicket.pdf
http://preibusch.de/publications/Bonneau_Preibusch__password_thicket.pdf
http://www.cl.cam.ac.uk/~osc22/docs/mphil_acs_osc22.pdf
http://www.cl.cam.ac.uk/~osc22/docs/mphil_acs_osc22.pdf
http://www.sigmobile.org/awards/mobicom2002-student.pdf
http://www.sigmobile.org/awards/mobicom2002-student.pdf
ftp://isse.gmu.edu/pub/techrep/97 01 jajodia.ps.gz
http://www.cl.cam.ac.uk/~sd410/papers/sc_relay.pdf
http://research.microsoft.com/~cormac/Papers/otpaccessanyserver.pdf
http://research.microsoft.com/~cormac/Papers/otpaccessanyserver.pdf

32 Frank Stajano

11. Dinei Florêncio and Cormac Herley. “Where do security policies come from?” In
“Proc. SOUPS 2010”, pp. 10:1–10:14. ACM, 2010. http://research.microsoft.
com/pubs/132623/WhereDoSecurityPoliciesComeFrom.pdf.

12. Dinei Florêncio, Cormac Herley and Baris Coskun. “Do strong web passwords
accomplish anything?” In “Proc. USENIX HOTSEC 2007”, pp. 10:1–10:6. 2007.
http://research.microsoft.com/pubs/74162/hotsec07.pdf.

13. Gerhard P. Hancke and Markus G. Kuhn. “An RFID Distance Bounding Protocol”.
In “Proc. IEEE SECURECOMM 2005”, pp. 67–73. 2005. http://www.cl.cam.ac.
uk/~mgk25/sc2005-distance.pdf.

14. Feng Hao, Ross Anderson and John Daugman. “Combining Crypto with Biometrics
Effectively”. IEEE Transactions on Computers, 55(9):1081–1088, September 2006.
http://sites.google.com/site/haofeng662/biocrypt_TC.pdf.

15. Cormac Herley. “So Long, and No Thanks for the Externalities: the Ratio-
nal Rejection of Security Advice by Users”. In “Proc. New Security Paradigms
Workshop 2009”, ACM, 2009. http://research.microsoft.com/users/cormac/
papers/2009/SoLongAndNoThanks.pdf.

16. Cormac Herley and Paul C. van Oorschot. “A Research Agenda Acknowledging
the Persistence of Passwords”, 2011. In submission.

17. Markus Jakobsson and Ruj Akavipat. “Rethinking Passwords to Adapt to Con-
strained Keyboards”, 2011. http://www.markus-jakobsson.com/fastwords.pdf.
In submission.

18. Matthew Johnson and Simon Moore. “A New Approach to E-Banking”. In Ú. Er-
lingsson et al. (ed.), “Proc. 12th Nordic Workshop on Secure IT Systems (NORD-
SEC 2007)”, pp. 127–138. Oct 2007. http://www.matthew.ath.cx/publications/
2007-Johnson-ebanking.pdf.

19. David M. Kristol, Eran Gabber, Phillip B. Gibbons, Yossi Matias and Alain Mayer.
“Design and implementation of the Lucent Personalized Web Assistant (LPWA)”.
Tech. rep., Bell Labs, 1998.

20. C. E. Landwehr. “Protecting unattended computers without software”. In “Pro-
ceedings of the 13th Annual Computer Security Applications Conference”, pp. 274–
283. IEEE Computer Society, Washington, DC, USA, Dec 1997. ISBN O-8186-
8274-4. http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.
pdf&AD=ADA465472.

21. Carl E. Landwehr and Daniel L. Latham. “Secure Identification System”, 1999. US
Patent 5,892,901, filed 1997-06-10, granted 1999-04-06.

22. Ben Laurie and Abe Singer. “Choose the red pill and the blue pill: a position
paper”. In “Proc. New Security Paradigms Workshop 2008”, pp. 127–133. ACM,
2008. http://www.links.org/files/nspw36.pdf.

23. Tsutomu Matsumoto, Hiroyuki Matsumoto, Koji Yamada and Satoshi Hoshino.
“Impact of Artificial Gummy Fingers on Fingerprint Systems”. In “Proc. SPIE,
Optical Security and Counterfeit Deterrence Techniques IV”, vol. 4677. 2002. http:
//cryptome.org/gummy.htm.

24. Jonathan M. McCune, Adrian Perrig and Michael K. Reiter. “Seeing-Is-Believing:
Using Camera Phones for Human-Verifiable Authentication”. In “Proc. IEEE
Symposium on Security and Privacy 2005”, pp. 110–124. http://sparrow.ece.
cmu.edu/group/pub/mccunej_believing.pdf. Updated version in Int. J. Security
and Networks 4(1–2):43–56 (2009) at http://sparrow.ece.cmu.edu/group/pub/
mccunej_ijsn4_1-2_2009.pdf.

25. Anthony Nicholson, Mark D. Corner and Brian D. Noble. “Mobile Device Secu-
rity using Transient Authentication”. IEEE Transactions on Mobile Computing,

http://research.microsoft.com/pubs/132623/WhereDoSecurityPoliciesComeFrom.pdf
http://research.microsoft.com/pubs/132623/WhereDoSecurityPoliciesComeFrom.pdf
http://research.microsoft.com/pubs/74162/hotsec07.pdf
http://www.cl.cam.ac.uk/~mgk25/sc2005-distance.pdf
http://www.cl.cam.ac.uk/~mgk25/sc2005-distance.pdf
http://sites.google.com/site/haofeng662/biocrypt_TC.pdf
http://research.microsoft.com/users/cormac/papers/2009/SoLongAndNoThanks.pdf
http://research.microsoft.com/users/cormac/papers/2009/SoLongAndNoThanks.pdf
http://www.markus-jakobsson.com/fastwords.pdf
http://www.matthew.ath.cx/publications/2007-Johnson-ebanking.pdf
http://www.matthew.ath.cx/publications/2007-Johnson-ebanking.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA465472
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA465472
http://www.links.org/files/nspw36.pdf
http://cryptome.org/gummy.htm
http://cryptome.org/gummy.htm
http://sparrow.ece.cmu.edu/group/pub/mccunej_believing.pdf
http://sparrow.ece.cmu.edu/group/pub/mccunej_believing.pdf
http://sparrow.ece.cmu.edu/group/pub/mccunej_ijsn4_1-2_2009.pdf
http://sparrow.ece.cmu.edu/group/pub/mccunej_ijsn4_1-2_2009.pdf

Pico: No more passwords! 33

5(11):1489–1502, Nov 2006. http://prisms.cs.umass.edu/mcorner/papers/tmc_
2005.pdf.

26. Donald A. Norman. The Psychology of Everyday Things. Basic Books, 1988. ISBN
0-385-26774-6. Also published as The Design of Everyday Things (paperback).

27. Bryan Parno, Cynthia Kuo and Adrian Perrig. “Phoolproof Phishing Prevention”.
In G. Di Crescenzo et al. (ed.), “Proc. Financial Cryptography 2006”, vol. 4107
of LNCS, pp. 1–19. Springer, 2006. http://sparrow.ece.cmu.edu/group/pub/
parno_kuo_perrig_phoolproof.pdf.

28. Andreas Pashalidis. “Accessing Password-Protected Resources without the Pass-
word”. In M. Burgin et al. (ed.), “Proc. CSIE 2009”, pp. 66–70. IEEE Computer
Society, 2009. http://kyps.net/xrtc/cv/kyps.pdf.

29. Andreas Pashalidis and Chris J. Mitchell. “A taxonomy of single sign-on systems”.
In R. Safavi-Naini et al. (ed.), “Proc. 8th Australasian conference on Information
security and privacy”, vol. 2727 of LNCS, pp. 249–264. Springer, 2003. http:
//www.isg.rhul.ac.uk/cjm/atosso.pdf.

30. Andreas Pashalidis and Chris J. Mitchell. “Impostor: a single sign-on system for
use from untrusted devices”. In “Proc. IEEE GLOBECOM 2004”, vol. 4, pp. 2191–
2195. 2004. http://www.isg.rhul.ac.uk/cjm/iassos2.pdf.

31. Roel Peeters, Markulf Kohlweiss and Bart Preneel. “Threshold Things That
Think: Authorisation for Resharing”. In Jan Camenisch and D. Kesdogan (eds.),
“Proceedings of iNetSec 2009 – Open Research Problems in Network Security”,
vol. 309 of IFIP Advances in Information and Communication Technology, pp.
111–124. Zurich,CH, 2009. http://www.cosic.esat.kuleuven.be/publications/
article-1223.pdf.

32. Roel Peeters, Markulf Kohlweiss, Bart Preneel and Nicky Sulmon. “Threshold
things that think: usable authorization for resharing”. In “Proceedings of the 5th
Symposium on Usable Privacy and Security”, SOUPS ’09, pp. 18:1–18:1. ACM,
New York, NY, USA, 2009. ISBN 978-1-60558-736-3. http://cups.cs.cmu.edu/
soups/2009/posters/p1-peeters.pdf.

33. Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh and John C. Mitchell.
“Stronger Password Authentication Using Browser Extensions.” In “Proc. Usenix
Security”, pp. 17–32. 2005. http://crypto.stanford.edu/PwdHash/pwdhash.pdf.

34. Stuart Schechter, Serge Egelman and Robert W. Reeder. “It’s not what you know,
but who you know: a social approach to last-resort authentication”. In “Proc. CHI
2009”, pp. 1983–1992. http://research.microsoft.com/pubs/79349/paper1459-
schechter.pdf.

35. Adi Shamir. “How to Share a Secret”. Communications of the ACM, 22(11):612–
613, Nov 1979. http://securespeech.cs.cmu.edu/reports/shamirturing.pdf.

36. Frank Stajano. “The Resurrecting Duckling—What Next?” In B. Christianson
et al. (ed.), “Proc. Security Protocols Workshop 2000”, vol. 2133 of LNCS, pp. 204–
214. Springer, 2001. http://www.cl.cam.ac.uk/~fms27/papers/2000-Stajano-
duckling.pdf.

37. Frank Stajano. Security for Ubiquitous Computing. Wiley, 2002. ISBN 0-470-
84493-0. Contains the most complete treatment of the Resurrecting Duckling [38].

38. Frank Stajano and Ross Anderson. “The Resurrecting Duckling: Security Issues
in Ad-Hoc Wireless Networks”. In B. Christianson et al. (ed.), “Proc. Security
Protocols Workshop 1999”, vol. 1796 of LNCS, pp. 172–182. Springer, 2000. http:
//www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf.

39. Frank Stajano, Ford-Long Wong and Bruce Christianson. “Multichannel protocols
to prevent relay attacks”. In R. Sion (ed.), “Proc. Financial Cryptography 2010”,

http://prisms.cs.umass.edu/mcorner/papers/tmc_2005.pdf
http://prisms.cs.umass.edu/mcorner/papers/tmc_2005.pdf
http://sparrow.ece.cmu.edu/group/pub/parno_kuo_perrig_phoolproof.pdf
http://sparrow.ece.cmu.edu/group/pub/parno_kuo_perrig_phoolproof.pdf
http://kyps.net/xrtc/cv/kyps.pdf
http://www.isg.rhul.ac.uk/cjm/atosso.pdf
http://www.isg.rhul.ac.uk/cjm/atosso.pdf
http://www.isg.rhul.ac.uk/cjm/iassos2.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1223.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1223.pdf
http://cups.cs.cmu.edu/soups/2009/posters/p1-peeters.pdf
http://cups.cs.cmu.edu/soups/2009/posters/p1-peeters.pdf
http://crypto.stanford.edu/PwdHash/pwdhash.pdf
http://research.microsoft.com/pubs/79349/paper1459-schechter.pdf
http://research.microsoft.com/pubs/79349/paper1459-schechter.pdf
http://securespeech.cs.cmu.edu/reports/shamirturing.pdf
http://www.cl.cam.ac.uk/~fms27/papers/2000-Stajano-duckling.pdf
http://www.cl.cam.ac.uk/~fms27/papers/2000-Stajano-duckling.pdf
http://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf
http://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf

34 Frank Stajano

vol. 6052 of LNCS, pp. 4–9. Springer, 2010. http://www.cl.cam.ac.uk/~fms27/
papers/2009-StajanoWonChr-relay.pdf.

40. Roy Want and Andy Hopper. “Active Badges and Personal Interactive Computing
Objects”. IEEE Transactions on Consumer Electronics, 38(1):10–20, Feb 1992.
http://nano.xerox.com/want/papers/pico-itce92.pdf.

41. Ford-Long Wong and Frank Stajano. “Multi-channel Protocols”. In Christian-
son et al. (ed.), “Proc. Security Protocols Workshop 2005”, vol. 4631 of LNCS,
pp. 112–127. Springer-Verlag. http://www.cl.cam.ac.uk/~fms27/papers/2005-
WongSta-multichannel.pdf. Updated version in IEEE Pervasive Computing
6(4):31–39 (2007) at http://www.cl.cam.ac.uk/~fms27/papers/2007-WongSta-
multichannel.pdf.

42. Theodore M. Wong, Chenxi Wang and Jeannette M. Wing. “Verifiable Secret
Redistribution for Archive System.” In “IEEE Security in Storage Workshop’02”,
pp. 94–105. 2002. http://www.cs.cmu.edu/~wing/publications/Wong-Winga02.
pdf.

http://www.cl.cam.ac.uk/~fms27/papers/2009-StajanoWonChr-relay.pdf
http://www.cl.cam.ac.uk/~fms27/papers/2009-StajanoWonChr-relay.pdf
http://nano.xerox.com/want/papers/pico-itce92.pdf
http://www.cl.cam.ac.uk/~fms27/papers/2005-WongSta-multichannel.pdf
http://www.cl.cam.ac.uk/~fms27/papers/2005-WongSta-multichannel.pdf
http://www.cl.cam.ac.uk/~fms27/papers/2007-WongSta-multichannel.pdf
http://www.cl.cam.ac.uk/~fms27/papers/2007-WongSta-multichannel.pdf
http://www.cs.cmu.edu/~wing/publications/Wong-Winga02.pdf
http://www.cs.cmu.edu/~wing/publications/Wong-Winga02.pdf

	Frank Stajano

