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Abstract

Photosynthetic picoeukaryotesx in the genus Micromonas show among the widest latitudinal distributions on Earth,

experiencing large thermal gradients from poles to tropics. Micromonas comprises at least four different species often found

in sympatry. While such ubiquity might suggest a wide thermal niche, the temperature response of the different strains is still

unexplored, leaving many questions as for their ecological success over such diverse ecosystems. Using combined

experiments and theory, we characterize the thermal response of eleven Micromonas strains belonging to four species. We

demonstrate that the variety of specific responses to temperature in the Micromonas genus makes this environmental factor

an ideal marker to describe its global distribution and diversity. We then propose a diversity model for the genus

Micromonas, which proves to be representative of the whole phytoplankton diversity. This prominent primary producer is

therefore a sentinel organism of phytoplankton diversity at the global scale. We use the diversity within Micromonas to

anticipate the potential impact of global warming on oceanic phytoplankton. We develop a dynamic, adaptive model and run

forecast simulations, exploring a range of adaptation time scales, to probe the likely responses to climate change. Results

stress how biodiversity erosion depends on the ability of organisms to adapt rapidly to temperature increase.

Introduction

The Intergovernmental Panel for Climate Change (IPCC)

stressed unequivocal warming of the climate system. Their

Fifth Report anticipates rises in the global mean surface

temperature by the end of 21st century ranging from

0.3–1.7 °C (RCP2.6) to 2.6–4.8 °C (RCP8.5) [1]. Oceans

participate in buffering the increasing emissions of green-

house gases, thus modulating the warming; in addition to

the chemical equilibration of gas species between the

atmosphere and dissolved phases, phytoplankton is an

important contributor of carbon remediation through CO2

sequestration in the ocean [2]. Should dramatic shifts occur

in species biodiversity and distribution following tempera-

ture increases [3, 4], the resilience of ecosystems could

severely be impaired. The likely responses of ecosystems to

such rapid temperature changes are at the core of debates,

with worrisome consequent impacts on oceanic biogeo-

chemical cycles and feedbacks on the climate system [5].

Phytoplankton live in a thermally fluctuating environ-

ment that constrains growth capacity [3, 6, 7]. The tem-

perature growth response of phytoplankton varies widely,

both between and within taxa. Phenotypic plasticity
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determines the ability to acclimate to short-term environ-

mental variations while genetic adaptations characterize

evolutionary processes under long-term changes. These

features will provide, or not, each species with the capacity

to survive in a given biotope and to evolve by modifying

their thermal niche. Since temperature depends on latitude

[8–11], it is therefore a probable driver of niche partition in

the oceans, creating large-scale biogeographic patterns [12].

Hence, the structure and diversity of phytoplankton com-

munities could partly reflect observed trends in the global

temperature [6, 7].

Temperature-related interspecific distributions have

been studied for the whole phytoplankton community [3]

but few studies explored intragenus diversity [13, 14].

Micromonas species have emerged as emblematic repre-

sentative of the eukaryotic pico-phytoplankton commu-

nities, thriving in a variety of ecosystems from polar to

tropical waters [15–18]. They often dominate phyto-

plankton in coastal environments [19], where their major

contribution to primary production influences the biogeo-

chemical cycles [20]. In the past decade, phylogenetic

analyses identified several distinct genetic lineages within

Micromonas and have suggested that this genus was

composed of cryptic species [21–24]. Four species have

now been formally described [25]. Micromonas spp. may

co-occur at various latitudes, but were found to occupy

different temporal or depth niches within their sympatric

ranges [23].

As observed for picocyanobacteria [13, 26], the tem-

perature response of such a widely distributed and phylo-

genetically diverse eukaryote is expected to vary between

Micromonas species. The interspecific diversity within the

genus Micromonas, the number of characterized strains,

and abundant omics data make it a relevant model organ-

ism to both explore the impact of temperature on latitu-

dinal distribution and diversity of phytoplankton, and to

shed light on the mechanisms that drive phytoplankton

thermal responses in the ocean. We therefore studied the

thermotolerance and thermal growth response of eleven

Micromonas strains in the laboratory under controlled

conditions (hereafter referred as experimental strains) and

we derived a mathematical model that describes the impact

of temperature on growth rate. With this model, we

uncover the logic that lies behind the observed distribution

of species and their co-occurrence; we also reveal the

existence of thermotypes within the genus. We extra-

polated the thermal response to a set of 46 additional

strains from the Roscoff Culture Collection (hereafter

referred as collection strains), observed in various oceanic

regions, showing that temperature is the main driver of

diversity and distribution in this genus. Then, we devel-

oped a predictive model of niche partition to characterize

Micromonas interspecific diversity, which we successfully

validated against the Tara Oceans dataset [27], making it a

plausible prediction tool. We demonstrated that Micro-

monas distribution is a relevant and accurate proxy of the

whole phytoplankton community distribution. More than a

sentinel of the ocean biogeochemistry as previously sug-

gested by Worden and colleagues [28], Micromonas is a

probe for global warming. To explore how phytoplankton

communities may respond to a future, warmer ocean, we

ran the niche partition model under IPCC Sea Surface

Temperature (SST) projections, adding an evolutionary

model that accounts for the potential adaptation of growth

to temperature changes.

Methods

A graphic abstract of the overall, scientific approach is

provided in Supplementary Fig. 1.

Growth measurements and thermal response model

Culture conditions

Eleven Micromonas spp. strains were selected from

the RCC for the laboratory experiments. We chose

strains representative of all the currently known species

and according to their isolation site, to consider a

range of organisms found along a latitudinal gradient

(Supplementary Table 1). Cells were grown in batch

cultures in ventilated polystyrene flasks (Nalgene,

Rochester, NY, USA) in K-Si medium [29]. Cultures

were maintained in temperature-controlled chambers

(Aqualytic, Dortmund, Germany) at different temperatures

(4, 7.5, 9.5, 12.5, 20, 25, 27.5, 30, and 32.5 °C) for two

months (see Supplementary Table 2 for the number of

generations) under a 12 h:12 h light-dark cycle with 100

μmol photons m−2 s−1 provided by fluorescent tubes

(Mazda 18WJr/865).

Growth response curves

Cell concentration was determined on fresh samples using

flow cytometry according to [30]. The maximum cell

growth rate (μmax) was calculated as the slope of the linear

regression relating cell concentration logarithm vs. time

observed during the exponential phase of growth. The

Cardinal Temperature Model with Inflection (BR model)

from [31] was used to estimate the optimal temperature of

growth (Topt) at which the growth rate is optimal (μopt),

and the minimal and maximal temperatures of growth

(Tmin and Tmax) at which μ= 0. The growth μ(T) at
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temperature T is described as follows:

μðTÞ ¼

0 forT<Tmin

μopt:ϕðTÞ forTmin<T<Tmax

0 forT>Tmax

:

8

>

<

>

:

ð1Þ

where

ϕ(T)=
T�Tmaxð Þ T�Tminð Þ2

Topt�Tminð Þ Topt�Tminð Þ T�Toptð Þ� Topt�Tmaxð Þ ToptþTmin�2Tð Þ½

Selection of the thermal growth response model

Number of models exist that represent the response of

phytoplankton strains to temperature; we selected the one

we believe to be the most relevant for the purpose of the

present study. We first short-listed the most appropriate

models after the two recent reviews of [32] and [33].

Grimaud and colleagues [32] discussed the strengths and

limitations of several thermal response models in regard to

four criteria: the fit quality, the easiness of calibration, the

biological interpretation of parameters, and the applic-

ability to phytoplankton growth. They convincingly argued

that the BR (Eq. (1), [31]) and Eppley-Norberg (Eq. (2),

[34]) models presented the overall best performances.

Following the analysis from [33], we also considered the

Boatman model (Eq. (3), [35]) and we calibrated all three

models to our growth measurements (Supplementary

Figs. 4 and 5).

μðTÞ¼ 1�
T � Topt

w

� �2
" #

aebTwhere w ¼ Tmax � Tminj j

ð2Þ

μðTÞ ¼ μmax sin π
T � Tmin

Tmax � Tmin

� �a� �b

ð3Þ

We then computed an Akaike Information Criterion and

a Bayesian Information Criterion (BIC) for each model

(Supplementary Table 5) according to the following equa-

tions:

AIC ¼ 2k � 2 ln MSEð Þ ð4Þ

BIC ¼ �2 ln AICð Þ þ k lnðnÞ ð5Þ

Where k is the number of model parameters to be estimated,

MSE the mean square error between measured and

predicted growth rates and n the number of data points.

These two criteria provide with an estimation of the relative

quality of the models tested. Being an increasing function

of MSE and k, the BIC is a selection criterion between

models. The BR model yielded the smallest criteria and,

in this regard, represented the best model tested to represent

the growth response to temperature in Micromonas, in

agreement with the findings of [32] for other phytoplankton

species.

Phylogenetic tree reconstruction and evolutionary
placements

Sequence alignment

18S amplicon sequences fromMicromonas RCC strains were

aligned to a reference Mamiellophyceae sequence alignment.

This reference alignment spans the rDNA operon and was

originally used to describe the phylogenetic relationships

amongst Mamiellophyceae genera (Marin and Melkonian,

2010). The reference alignment was trimmed to represent

only the 18S rDNA region; long Micromonas RCC 18S

amplicons (>1000 nt; n= 35) were added to this alignment

using MAFFT v7 [36]. The resulting alignment was then

edited using the mask from the original alignment annotation

[24] and was composed of a total of 2158 sites.

Phylogenetic tree reconstruction

The edited alignment was used for maximum-likelihood

(ML) tree reconstructions. The best ML tree was identified

from 100 independent tree reconstructions. All ML recon-

structions were run using RAxML v8 [37] with the HKY85

+G+ I model, which was determined as the best-fit model

of nucleotide substitution with jModelTest v2 [38] and by

both the Akaike and Bayesian information criteria. Node

supports of the resulting phylogenetic tree were determined

using 1000 non-parametric bootstrap replicates. Bayesian

inferences were conducted using BEAST v2 [39] using the

HKY85+ I+G with a log-normal, relaxed molecular

clock and default priors. A total of 4 MCMC chains of 106

generations were conducted, and a 25% “burnin” value was

applied on the resulting tree set. The iTol web-server [40]

was used to generate vector scalable graphic rendering.

Evolutionary placements

RCC 18S amplicon sequences shorter than 1000 nt (n= 24)

were placed onto the ML phylogeny using the Evolutionary

Placement Algorithm (EPA) implemented in RAxML v8

[41]. Short RCC sequences were aligned with MAFFT

v7 against the previously generated updated reference

Mamiellophyceae 18S alignment (i.e., composed of refer-

ence Mamiellophyceae and long RCC amplicon sequences).

The aligned short sequences were then placed onto the

reference phylogeny using RAxML in EPA mode with the

HKY85+ I+G model.
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Thermal niche partitioning analysis

Thermal environment dataset

Using SST from the National Oceanic and Atmospheric

Administration’s (NOAA), we built a dataset gathering

the environmental temperatures at the isolation site of the

eleven experimental and 46 Micromonas collection strains

referenced in the RCC. At each strain’s isolation site, we

retrieved the yearly average SST TS

� �

, minimum SST T�
S

� �

,

maximal SST Tþ
S

� �

and thermal amplitude Tþ
S � T�

S

� �

corresponding to a 10-year average (2005 to 2014).

Thermal environment analysis

To identify possible correlation of isolated strains to tem-

perature, a non-metric dimensional scaling (NMDS) was

realized on a Euclidean distance matrix computed on the

thermal environment dataset (T�
S , TS, T

þ
S , T

þ
S � T�

S ) using

the R package vegan [42]. The stress value is the measure

of how well the NMDS configuration represents the dis-

similarities and is referred as the Kruskal stress [43].

Relation between strains and environmental temperatures

Relationships between environmental temperatures (T�
S , TS,

Tþ
S , T

þ
S � T�

S ), latitude of the isolation site (Lat) and the

species cardinal parameters (Tmin, Topt, Tmax, and μmax) were

calculated for the eleven experimental strains that were

grown in the laboratory. We tested simple and multiple

linear regression models and chose the best relationship

according to a high R2
adjusted and p-value < 0.05. Best rela-

tionships were obtained with TS and were used to determine

cardinal parameters of all other 46 collection strains that

were not experimentally tested but referenced in the RCC.

Thermotypes construction

For each thermotype, we computed 100,000 growth vs.

temperature curves through a Monte Carlo procedure with

the BR model [31] and cardinal parameters of the i-th

thermotype randomly taken from the parameter distribu-

tions (assuming a gaussian repartition of the parameters in

the interval [p*− 2σ, p*+ 2σ] where p* are the parameters

value). In order to ensure a biological coherence in the

random samples of the cardinal parameters, the μopt para-

meter is generated slightly differently. An Eppley model

is used to link μopt and Topt [44]:

μopt ¼ a:eb:Topt ð6Þ

Where parameters a and b are obtained from the best fit with

all the strains of the thermotype (Supplementary Table 7).

The values of μopt for a random strain are then directly

deduced from random values of Topt using this model.

Finally, we used the BR model to get the average thermal

response and its standard deviation for each thermotype.

The optimal growth response envelope [45] for the

whole Micromonas genus was calculated with a BR curve

calibrated on a data set consisting in 57 couples (Topt, μopt)

from the eleven experimental strains and the 46 collection

strains. Moreover, the decreasing part of the curve was

constrained with 8 couples (T, μ(T)) simulated from the

M. commoda Warm thermotype model for temperatures

equally distributed in the (Topt, Tmax) interval for this

thermotype. The increasing part of the curve was also

constrained with eleven couples (T, μ(T)) simulated from

the M. polaris model for temperatures equally distributed

in the (Tmin, Topt) interval for this species.

Tara Oceans

Tara Oceans V9 dataset analysis

Molecular and contextual data from the Tara Oceans project

were retrieved from PANGAEA [46]. The Tara Oceans

V9-18S dataset [27] is available both at the barcode level

(non-redundant sequences) and clustered at the Swarm/

operational taxonomic unit level [47]. Micromonas-like

V9-18S barcode sequences were retrieved based on the

original taxonomic classification from the Tara Oceans

consortium, which was conducted with the Protist Riboso-

mal Reference database [48] for the protist barcode subset.

The resulting 1084 non-redundant barcodes classified

as Micromonas-like, and which represented a total of

95755 occurrences across the V9-18S Tara Oceans sam-

pling (334 samples from 47 stations), were then re-classified

using a phylogenetic placement procedure. The non-

redundant Micromonas-like V9-18S barcodes were

aligned against a reference Mamiellophyceae alignment

using the same methodology than for the short 18S ampli-

con sequences from the Micromonas RCC strains, as

aforementioned. The V9-18S barcode sequences were then

placed onto the Mamiellophyceae and RCC reference tree

using RAxML EPA with the HKY85+ I+G model. Based

on the placement of the Tara Oceans barcode onto the

Micromonas reference subtree, the corresponding taxo-

nomic information (thermotype level) was assigned to the

environmental barcode.

Thermotypes inside the Tara Oceans V9 dataset

To explore the impact of temperature on species

occurrence, we computed an NMDS on a Bray-Curtis dis-

tance matrix calculated from a community matrix of

Micromonas species abundance per station (expressed in
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percentage of barcodes) with the R package “vegan” [42].

Results display a cloud of sampling stations from the dif-

ferent oceanic basins, discriminating surface and deep

chlorophyll maximum; the closer proximity of stations, in

terms of Bray-Curtis distances, expresses their similarities

in their 18 S diversity. We then fitted environmental vari-

ables (nutrients, temperature and mixed layer depth) and

total chlorophyll a abundance on the ordination space

with the vegan function envfit in vegan package [42] with

p-value based on 999 permutations was used to assess the

significance of the fit.

The Micromonas distribution for each thermotype was

computed against yearly SST (from NOAA) for each Tara

Oceans station. We then computed Loess regressions with

polynomial fitting to illustrate the temperature patterns with

the R package “ggplot2” [49].

Global temperature response and diversity index

Global SST dataset

We used global SST data from the Copernicus Marine

Environment Monitoring Service (product: GLO-

BAL_REP_PHYS_001_013) to calculate monthly averages

SST in the period 1993–2012 at the global scale.

Species distribution as a function of temperature

Cardinal parameters (Tmin, Topt, Tmax) and optimum growth

rate μopt for each thermotype i were used to calculate the

growth rate μi(T) for each temperature T using the BR

model [31]. Then, normalized distribution Di Tð Þ of each

thermotype was calculated following the equation: Di Tð Þ =
μiðTÞ

Pn

i¼1
μopt;i

for each temperature T of the global ocean surface.

Remark that this normalization removes the effect of other

factors which also influence net growth at the same location

(nutrients, light, predations, etc.).

Diversity index

To get a diversity index, we computed 10,000 thermal

distribution via a Monte Carlo procedure for each species

(Supplementary Fig. 13). We then computed an averaged

and standard deviation of a Shannon-like based interspecific

diversity index within the Micromonas genus according

to Eq. (18) (Supplementary Fig. 14) and compared it

with a Shannon diversity index based on Tara Oceans

V9 dataset thermotypes relative abundance:

HTARAðsÞ ¼
X

n

i¼1

Eðs; iÞ lnðEðs; iÞÞ ð7Þ

Where E(s, i) is the number of barcodes for the Micromonas

thermotype i at the station s. The Tara Oceans dataset

was used along the transect from station 4 to 125 [27].

The spatial distance between stations was calculated as

a distance as the crow flies. In addition, we compare the

Shannon-like base interspecific diversity index (Eq. (18))

calculated for Micromonas (HM) to the diversity index

calculated by Thomas and colleagues for the phytoplankton

(HP) with a linear regression model (R2
adj = 0.95 and

p-value < 0.5):

HP ¼ 83:21HM þ 65:05 ð8Þ

Then, we used Eq. (8) to quantify the diversity in the

same index as the Thomas et al. study [3] (Supplementary

Fig. 15).

Cardinal parameters adaptation model

Cardinal parameters evolution

We studied the evolution of diversity in a warmer

ocean with a dynamical model of the thermal growth

response over the period 2001 to 2100. Projections

of future, global temperature regimes were obtained

from the NOAA GFDL CM2.1 [50, 51] driven with the

SRES A2 emissions scenario [52]. This dataset spans

from 2001 to 2100 and was also used by Thomas and

colleagues [3].

First, we computed the evolution of cardinal parameters

Tc,i (Tmin, Topt, and Tmax) for each thermotype i depending

on the temperature T(t, l, L) with t the year, l the latitude and

L the longitude. The evolution of cardinal parameters fol-

lows Eq. (19), which is parameterized by the number of

generations Na required to adapt to a different temperature

(Supplementary Fig. 16):

dTopt;i

dt
¼

NiðTðtÞÞ

Na
T�
opt;iðTðtÞÞ � Topt;iðtÞ

� 	

ð9Þ

dTmax;i

dt
¼

NiðTðtÞÞ

Na
T�
max;iðTðtÞÞ � Tmax;iðtÞ

� 	

ð10Þ

Where T�
opt;i and T�

max;i are computed from the derivative

of the relationships in Table 1 depending on the local

temperature T(t, l, L):

dT�
opt;i

dt
¼ 0:84

dTðt; l; LÞ

dt
ð11Þ

dT�
max;i

dt
¼ 0:77

dTðt; l; LÞ

dt
ð12Þ
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The evolutive minimal temperature of growth was

computed contingent to the evolution hypothesis:

T�
min;i ¼

T ini
min;i þ T�

max;i � T ini
max;i Constant thermalniche

dTmin;i

dt
¼ NiðTðtÞÞ

Na
T�
min;iðTðtÞÞ � Tmin;iðtÞ

� 	

Dynamicalmodel Eq:19ð Þ

8

<

:

ð13Þ

Where T ini
min;i and T ini

max;i are the initial value of

Tmin,i and Tmax,i respectively at time t= 2001 and T�
min;i is

computed from the derivative of the relationships in Table 1

depending on the local temperature T(t, l, L):

dT�
min;i

dt
¼ �0:92

dTðt; l; LÞ

dt
ð14Þ

We constrained T�
min;i and T�

max;i by the envelope curve

[45] of the Micromonas genus (Fig. 2b) that represents

its evolution boundaries.

Second, we calculated μopt,i at Topt,i with the BR model

calibrated with the cardinal parameters of the envelope

curve.

Third, we calculated the related growth rate μi(T)

of each thermotype i depending on its cardinal parameters

Tc,i at temperature T(t, l, L) following the BR model [31].

Third, we calculated the diversity for the present

(2001 to 2010–Hnow) and future (2091 to 2100–Hfuture)

periods following the Eq. (18) averaged on 10 years and

expressed as the diversity index used by Thomas and col-

leagues [3] with the Eq. (8).

Diversity erosion

We performed this cardinal parameter evolution frame-

work for different values of Na, from fast (Na < 100 genera-

tions) as highlighted by [53, 54] to slow (Na= 109)

adaptation kinetics. This slow time scale corresponds

to 2–6 months in the lab, which means a time scale

in the range of years in the natural environment (assuming μ

= 0.2 day−1 as a typical growth rate in the sea). For long-term

evolution, we refer to a time scale slower than climate change.

We call slow evolution an evolution with a typical adaptation

kinetics with a millennium, which means Na= 106

generations for an average growth rate of 0.2 day−1. We then

calculated a diversity erosion index representing the loss of

diversity along the latitude gradient with the equation:

HerosionðlÞ ¼
hL

Lmax

X

Lmax

L¼0

Hnowðl; LÞ � Hfutureðl; LÞ
� �

ð15Þ

With L the longitude and l the latitude, Lmax the maximal

longitude of the dataset (n= 359.7) and h the longitude

resolution (hL= 0.1).

The averaged latitudinal erosion Herosion

� �

per latitude

was calculated as follows:

Herosion ¼
hl

n

X

lmax

l¼lmin

HerosionðlÞð Þ ð16Þ

With l the latitude, lmin and lmax the minimum and maximum

latitude of the dataset (lmin=−82 and lmax= 90), hl the

latitude resolution (hl= 0.1) and n the Herosion vector’s

length. A negative erosion signifies a diversity gain.

The tipping point (p) of the Herosion vs. Na curve was

calculated as the inflection point following the equation:

p ¼ max
dHerosion

dNa

� �

ð17Þ

Results and discussion

Micromonas strains feature distinct physiological
responses to temperature

To estimate the temperature tolerance and growth responses

of the four described Micromonas species, we selected three

strains of M. commoda, M. bravo and M. pusilla as well as

two strains of M. polaris. We measured their exponential

growth rate after being grown for two months between

4 and 35 °C (41.52 ± 30.61 generations on average, Sup-

plementary Table 2) depending on the strain origin. To

increase the accuracy in the temperature response estima-

tion, the experimental protocols followed the recommen-

dations given in [55, 32] (see Methods). The chosen strains,

obtained from the Roscoff Culture Collection (RCC), were

originally isolated from contrasted thermal niches of the

Atlantic, Pacific and Artic basins (Fig. 1a, Supplementary

Fig. 3 and Supplementary Table 1). All showed a typical

[56, 31] asymmetric growth response to temperature, which

we characterized by four cardinal growth parameters:

Tmin and Tmax, respectively the minimum and maximum

temperatures for growth; μopt, the maximum specific growth

rate obtained at the optimum temperature Topt (Fig. 1b).

Overall, the Micromonas genus was able to grow over the

Table 1 Linear relationship between cardinal parameters and

environmental parameters (average temperature at the surface of

isolation site, TS, and the latitude, Lat) for the eleven Micromonas

experimental strains tested in this study

Cardinal

parameter

Model R2 adjusted p-value

μ

opt
μ

opt= 0.03TS + 0.47 0.90 5.68 10−6

T
max

T
max= 0.77TS + 17.73 0.79 0.00014

T
opt

T
opt= 0.84TS + 10.24 0.79 0.00015

T
min

T
min=−0.76Lat−

0.92TS + 49.33

0.47 0.03
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thermal range tested, but with diverse and specific responses

for each strain, depicted by distinct cardinal parameters

(Supplementary Table 6). Temperature stimulates enzy-

matic processes and metabolic rates, but also accelerates

cell mortality [57]. In the suboptimal range (T < Topt),

enzymatic activity increases more than mortality in

response to increasing temperatures. At Topt this balance

between metabolic activity and mortality is optimized and

yields the highest observed net growth rate. At supra opti-

mal temperatures (T > Topt), the denaturation of key meta-

bolic enzymes, like rubisco [58] and the thermolability of

Photosystem II [59] are exacerbated, along with an increase

of the membrane damages [60]; as a consequence, the

net growth rate sharply decreases with temperature up to

the maximal growth temperature the strain can withstand

(Tmax at which μ is null).

Several patterns appeared when comparing the growth

response to the annual average SST TS

� �

at the site where

each strain was isolated. Strains isolated in locations where

TS was above 19.7 °C (RCC 299 and RCC 829) were able

to grow up to high temperatures (Tmax= 32.6 ± 0.02 and

37.0 ± 0.12 °C, respectively); they showed a high μopt (1.1 ±

0.05 to 1.3 ± 0.07d−1, respectively) at an elevated optimum

Topt temperature (26.3 ± 1.01 to 29.3 ± 1.2 °C, respectively).

Strains isolated in regions where the average SST fluctuates

between 16.0 and 18.0 °C presented a lower optimal growth

rate (0.9 ± 0.03d−1) at Topt= 22.6 ± 3.08 °C) and maintained

positive growth from 4.2 ± 5.6 to 28.7 ± 4.63 °C. In strains

isolated at sites with an average temperature between 10.1

and 13.6°, μopt still reached 0.87 ± 0.08d−1 at Topt= 23.8 ±

0.62 °C and cells demonstrated an ability to grow over a

very wide temperature range (from −0.7 ± 7.46 to 29.4 ±

1.55 °C). Last, Arctic strains (RCC2306 and RCC2257)

revealed both the narrowest growth temperature range

(−7.0 ± 0° to 15.1 ± 0 °C) and lowest growth rates (0.45 ±

0.03 d−1) at 7.5 ± 0 °C.

In Summary, the four formerly described Micromonas

species exhibited specific temperature tolerance and growth

optima in vitro and their according response parameters were

related to the thermal environment from which the strains

were isolated. Model parameters Tmin, and to a lesser extent

Tmax, are difficult to accurately estimate [31]. Since mea-

surements for temperatures close to Tmin (but slightly higher)

and close to Tmax (but slightly lower) are generally rare, they

must be extrapolated from a mathematical model. These

parameters also bracket the thermal niche, i.e., the breadth of

the thermal response. For instance, it appears that Arctic

strains showed a much narrower niche: they were more ste-

notherm compared to the other strains.

The Micromonas genus includes six thermotypes:
evidence from the most recent phylogeny

The phylogenetic analysis of the 57 Micromonas 18S DNA

sequences from the eleven experimental and 46 collection

strains highlighted the existence of six distinct phylogenetic

groups (see Methods and Supplementary Fig. 2). To iden-

tify whether they were associated with specific thermal

conditions in the ocean, we analyzed available data of

average SST in areas where Micromonas spp. were sam-

pled. We computed a non-metric dimensional scaling

(NMDS) of the thermal environment dataset (see Methods).

The significant ordination (stress= 0.004) identified six

different distributions in the thermal environment, from
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warmer, low latitudes to colder, high latitudes, that showed

a good match with the phylogenetic tree (Fig. 2a and

Supplementary Fig. 3), demonstrating that the thermal niche

of Micromonas was related to its phylogenetic affiliation.

M. polaris and M. pusilla strains occupied respectively a

narrow and wide thermal niche while M. bravo and

M. commoda each included two distinct groups. One iso-

lated from a warmer (lower latitude; warm group) and one

isolated in a colder (higher latitudes; cold group) environ-

ment (Fig. 2a and Supplementary Fig. 3).

There are few examples in the literature of latitudinal

segregation within eukaryotic phytoplankton genera [61, 62].

For example, the global distribution of Ostreococus clades, a

picoeukaryote close to Micromonas is related to temperature

but first seems to discriminate rather coastal, high-light

adapted clades from more oceanic, low-light adapted clades

[63]. In agreement with the hypothesis of Foulon et al. [23],

our experimental and phylogenetic results showed that a niche

segregation within Micromonas did occur that is consequent

to thermal, group-specificities and which compels with the

recently identified, four known species. The present analysis

further revealed the existence of two thermotypes within both

M. commoda and M. bravo species, making a total of six

distinct Micromonas thermotypes.

Establishing a thermal response model for
Micromonas thermotypes

To obtain a better appraisal of the thermal response of

strains, we looked for possible correlations between cardinal

growth parameters and environmental features where strains

had been isolated. Among the tested descriptors of the

SST dynamics, the average surface temperature at the iso-

lation site TS

� �

best correlated with the cardinal temperature.

For Tmin, the latitude was also included in the regression

(Table 1 and Supplementary Fig. 6a). The optimal growth

rate (μopt) increased with TS, following the Eppley’s

hypothesis of a faster growth rate at warmer temperatures

[44]. The maximal growth temperature (Tmax) and the opti-

mal growth temperature (Topt) were also both positively

correlated with TS, suggesting that environmental tempera-

ture featured the upper tolerance window of strains. The

minimal temperature of growth (Tmin) had the lowest cor-

relation with the environmental temperature (Supplementary

Fig. 6b), as also reported by [64] for different phytoplankton

species. We found that the minimal growth temperature

Tminbest correlated (negatively) with a combination of the

yearly average temperature TS and latitude (Lat, Supple-

mentary Fig. 7). In the end, the growth response (μopt, Tmin,

Topt, and Tmax) of cultured strains can thus accurately be

predicted from the thermal environments TS

� �

and latitude

from which they were isolated, using the relations defined in

Table 1. Last, statistically significant correlations were also

found between cardinal parameters (Supplementary Fig. 8).

In particular, the optimal temperature of growth (Topt) line-

arly correlated with the maximal temperature of growth

(Tmax) by a factor close to 1, as previously highlighted for a

wide range of bacterial species [65].

The relationships between cardinal growth parameters

and environmental temperatures deduced from the culture

experiments (Table 1) were used to extrapolate the cardinal

parameters of 46 additional Micromonas collection strains,

using the latitude and average annual temperature of their

isolation site (Table 1 and Supplementary Table 8). This

data set confirmed a segregation of the four species into six

different thermotypes. To deduce a representative thermal

response for each thermotype, we randomly chose 100,000

values within the confidence interval of the cardinal para-

meters of each group and ran Monte Carlo simulations of
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(goodness-of-fit of the NMDS) is inferior to 0.05, indicating high
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response to temperature for each phylogenetic group computed from

100,000 possible response curves simulated within the ranges

observed in each phylogenetic group. The black line represents the

overall, optimal growth response envelope [45] of Micromonas

computed as μopt vs. Topt, where μopt and Topt are given by the

average response of each thermotype. The grey shaded area is the

standard deviation around μopt
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the related thermal responses (see Methods). The Bernard

and Rémond (BR) model was then fitted to each bundle

of simulated responses [31] to obtain the average thermal

response curve representative of each thermotype (Fig. 2b

and Supplementary Figs. 9–11). Last, we calibrated the

envelope curve, inspired from [45], on the Micromonas

genus, by fitting the BR model [31] to the set of (Topt, μopt)

obtained for each thermotype (see Methods and Fig. 2b).

With the narrowest thermal niche (23.04 ± 2.42 °C),

M. polaris was the most stenotherm species. M. commoda

cold and M. bravo cold showed very similar responses

at colder temperatures but discriminated in regard to the

optimum growth rate and maximum temperature. Their

thermal niche of 25.42 ± 3.75 and 27.10 ± 0.91 °C, respec-

tively, was representative of cold-temperate environments.

Contrary to the cold species, and although they both live in

warmer biotopes, the warm thermotype of species

M. commoda and M. bravo showed very distinct thermal

niches (34.00 ± 1.19 and 26.02 ± 5.11 °C, respectively).

Last, M. pusilla was found in both cold-and warm-tempe-

rate areas and showed an intermediate thermal response

compared to the other Micromonas species, with a thermal

niche of 28.85 ± 5.32 °C. With the most variable response

to temperature, M. pusilla did not seem to speciate into

different thermotypes; yet it clearly differentiated from

other groups and would be the most eurytherm.

Tara Oceans dataset validates the global
segregation of thermotypes

To validate our hypothesis that temperature is a key factor

that greatly influences Micromonas biogeography over

a yearly period, we retrieved the 18S V9 metabarcodes

dataset obtained in the frame of Tara Oceans [27] (Fig. 3).
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Fig. 3 Micromonas thermotypes relative abundance patterns as estimated

from the 18S rRNA V9 region during the Tara Oceans cruise. a Map of

the Tara Oceans transect (dashed black line)showing station for which 18S

rRNA V9 region data were available from Vargas et al. [27]: Mediterra-

nean Sea (Med S), Red Sea (Red S), Indian Ocean (Ind O), South Pacific

Ocean (S Pac O), Southern Ocean (S O) and South Atlantic Ocean (S Atl

O). b Two-dimensional ordination space derived from an NMDS analysis

displaying Bray-Curtis distance between the Micromonas species

assemblages of the Tara Oceans stations, fitted by significant environ-

mental variable (p-value < 0.05). The stress value (goodness-of-fit of the

NMDS) is 0.15, indicating fair dimensional relationships among samples.

c Relative abundance of the 6 thermotypes per station, plotted according to
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(solid line) fitted with the 95% confidence interval (shaded area). Number

of observations for the six thermotypes are represented in histograms,

plotted according to yearly SST at station coordinates
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Read abundance data assigned to each of the Micromonas

thermotypes were identified across 47 stations, spanning 6

marine regions with different thermal environments: Medi-

terranean Sea, Red Sea, Indian Ocean, South Atlantic Ocean,

Southern Ocean and South Pacific Ocean (Fig. 3a). Using an

NMDS ordination method, we first compared the relative

abundance of each Micromonas thermotype at sampling

stations (see Methods and Fig. 3b) to the physicochemical

environmental conditions observed along the Tara Oceans

circumnavigation. The presence of Micromonas species was

better explained by temperature (R2
= 0.48, p-value < 0.001)

than by nutrient availability, mixing, or geographical loca-

tion. To a lower extent, nutrients (NO2+NO3, PO4 and

NO2; R
2 < 0.23, p-value< 0.032), Chla concentration (R2

=

0.1710, p-value= 0.003) and mixed layer depth (MLD;

R2
= 0.13, p-value= 0.03) also explained significantly the

Micromonas assemblages along the transect. Temperature is

thus the strongest descriptor of the change in diversity

between Tara Oceans stations.

We then compared the relative abundance of thermo-

types at all stations in relation to yearly SST (Fig. 3c). A

very clear thermal separation appeared between the two

M. commoda thermotypes, further supporting our identifi-

cation of two distinct thermotypes. M. commoda cold was

most abundant in waters with temperature below 20 °C and

rarely found beyond 25 °C, while M. commoda warm

mostly occurred between 25 and 30 °C and was completely

absent at stations where temperatures were below 15 °C.

Species M. bravo was less often observed thanM. commoda

and showed overlapping distributions of its two warm and

cold thermotypes, which we believe was due to the large

thermal niche of the warm thermotype spreading over that

of the more restrained, cold thermotype (Fig. 2). A non-

distinct distribution (Fig. 3c) in the Tara Oceans data could

also suggest that the evolution of the two M. bravo ther-

motypes was more recent. Species M. polaris was observed

only at stations with T< 10 °C with highest abundances

near 0 °C, validating the psychrophilic characteristics of this

thermotype. Species M. pusilla was only found at a few

stations compared to M. commoda and M. bravo; it was

observed from 12 to 30 °C with a maximum abundance

above 25 °C. This distribution may well be related to the

fact that its thermal response is close to the barycenter of the

whole Micromonas thermal response (average parameters:

Topt = 21.26, μopt = 0.84 and Tmax � Tminð Þ= 28.34). The

reported occurrences of this species at low concentrations

all around the globe [23, 66] could support the idea that it

plays a “seed bank” role, acting as a dormancy stage of

Micromonas compared to other species [67]. Interestingly,

Foulon et al. [23] also suggested a possible niche partition

over depth, along a light gradient that may explain the low

concentration of M. pusilla in the Tara Oceans dataset. In

the end, temperature is a sufficient parameter to describe the

latitudinal segregation ofMicromonas between Tara Oceans

stations. The current typology of Tara Oceans (they mainly

are open ocean areas), does not allow to fully assess a

possible effect of nutrients [68].

Influence of temperature on the intragenus
diversity of Micromonas assemblages

To further understand the thermal niche partition of Micro-

monas at the global scale, we proposed a simple index to

relate Micromonas intragenus diversity to the global average

SST (Fig. 4 and Supplementary Fig. 12). We computed an

interspecific Micromonas diversity index (Shannon derived/

based) from the growth response of a given thermotype i to a

considered local temperature T according to the equation:

HðTÞ ¼
X

n

i¼1

Di ln Dið ÞwithDi ¼
μiðTÞ

Pn
i¼1 μopt;i

ð18Þ

Where Di is the distribution index, μi(T) is the growth rate

at the temperature T, and μopt,i is the optimal growth for the

thermotype i. We compared H(T) to a Shannon-like index

for the Micromonas genus at each Tara Oceans sampling

station using the proportion of each Micromonas thermo-

type OTU in the total counted Micromonas OTU and the

local SST annual average (Fig. 4a, b). Based on the

calculated diversity index H(T), we were able to qualita-

tively predict the Micromonas intragenus diversity esti-

mated from the Tara Oceans V9-18S dataset (Spearman

test: ρ= 0.417, p-value= 0.0035), thereby validating our

theoretical developments. The diversity index followed a

fluctuating trend through the cruise path characterized by

different thermal environments (Fig. 3a).

When running the Micromonas diversity model at the

global scale (Fig. 4c and Supplementary Fig. 13), the pre-

dicted diversity was minimal at the poles (Lat > 60°N and

>50°S) and at the equator (between 20°N and 20°S),

especially in the Indian Ocean and the Pacific Ocean

(Fig. 4c). Maximum diversity levels were found from 20

to 60°N and from 20 to 40°S. We used the relationship

between the phytoplankton diversity as calculated by

Thomas and colleagues [3] and our Micromonas diversity

to normalize our diversity index within Thomas’s scale

(see Methods). Our simulated global Micromonas diversity

was point by point compared to the whole phytoplankton

potential diversity calculated by Thomas and collaborators

[3] (Fig. 4d). We found a very strong relationship between

the two diversity patterns (R2
adj = 0.97, p-value < 0.05; see

Methods and Supplementary Fig. 15). This result strongly

suggests that the diversity between Micromonas thermo-

types, at mesoscale and on a yearly basis, is representative

of the whole phytoplankton community. It likely explains

the overall success of the genus to colonize very contrasted
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biotopes [19, 23]. Micromonas could thus serve as a

relevant marker of the biodiversity of phytoplankton com-

munities. The term “sentinel”, originally proposed by [28]

to depict the role of Micromonas on ocean biogeochemistry

is all the more relevant considering this genus reflects the

pattern of the whole phytoplanktonic community and can

help to better anticipate the impact of ocean warming.

Diversity evolution in a warmer ocean: a matter
of the adaptation time scale

To explore the impact of future temperature changes on

phytoplankton diversity, we investigated its evolution

using SST projections over the period 2001–2100. To

account for the adaptation capability [4, 69], we proposed

a very simple adaptive model. This model assumes that

the evolution time scale is related to the local doubling

time
lnð2Þ
μiðTÞ

of each thermotype i. Adaptation is thus faster

for the warm thermotypes in warm environments. The

adaptation dynamics describes the evolution of the

cardinal temperatures (Tmin, Topt, and Tmax) from their

present value to their value at the end of the century.

The evolution rate is estimated according to the character-

istic number of generations Na required to adapt to a dif-

ferent temperature, i.e., to shift each cardinal (i.e.

represented by the character “c”) temperature Tc to its

asymptotic value T�
c , defined as the evolutionary equili-

brium given the changes of the surface temperature T at

each time step (Supplementary Fig. 16). The evolution

dynamics of each cardinal parameter Tc,i is described by a

simple first order equation:

dTc;i

dt
¼

NiðTðtÞÞ

Na
T�
c;iðTðtÞÞ � Tc;iðtÞ

� 	

ð19Þ
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Micromonas genus in the global ocean. a Estimated and predicted

interspecific diversity within the Micromonas genus along the Tara

Oceans transect as estimated from the Micromonas OTUs read abun-

dances (blue circles) and as predicted from our diversity model (red

circles), fitted by a polynomial regression with a 95% confidence

interval. b Thermotypes proportions (%) from Tara Oceans dataset for
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Ocean (S O) and South Atlantic Ocean (S Atl O). c Predicted Shannon

diversity index (H) calculated with the Eq. (18) using annual averages

SST (Copernicus Marine Environment Monitoring Service, 1993 to

2012 satellite data). d Comparison of the latitudinal average diversity

for all phytoplankton (from Thomas et al. [3]. black line) with that
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Where Ni(T(t))=
μi TðtÞ;Tc;ið Þ

lnð2Þ , with μi(T(t), Tc,i(t)) the growth

rate at the temperature T, calculated using the set of cardinal

parameters Tc,i for the thermotype i.

We ran this model for different Na, from fast adaptation

scales (Na < 100 generations) to slow adaptation scales (Na=

106 generations) and calculated the evolution of thermotypes

diversity between the present period (2001–2010) and future

period (2091–2100, Fig. 5). We considered two realistic

evolution hypotheses to describe the dichotomy between

specialist and generalist species: the Specialist-generalist

hypothesis with constant thermal niche width (Fig. 5a, b)

and the Specialist-generalist hypothesis with dynamical ther-

mal niche [70] (Fig. 5c, d—see Methods). Over the 21st

century, SST will globally increase by 2–3 °C over the whole

ocean surface and up to 5 °C around 45°N, with the exception

of the highest latitudes, which may see a slight decrease in

their average temperature (Supplementary Fig. 17).

Similar erosion patterns were found for both specialist-

generalist hypotheses that showed diversity losses between

40°S to 40°N. At latitudes higher than 40°, we found pos-

sible gains in biodiversity, regardless of the adaptation

scenario and the evolution hypothesis. At these latitudes, for

most phytoplankton species, the optimum temperature (Topt)

is higher than the average environmental temperature TS

� �

.

With a fast adaptation scenario, thermal traits follow the

thermal environment and Topt remains above TS, each

thermotype keeps its thermal niche and diversity is not

affected. In contrast, thermal traits will not change fast

enough in a slow adaptation scenario; TS gets closer to

Topt, and each thermotype ends up with a fitness that is out

of phase with the thermal environment (Supplementary

Fig. 18). While these conditions are still favorable for

growth, they typically increase the diversity. Finally, for the

adaptation scenario where the thermal niche can increase, it

gives more chance for a species to adapt faster even for a
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evolution hypotheses: a–b Specialist-generalist with constant thermal

niche and c–d Specialist-generalist with dynamical thermal niche. a–b

Latitudinal averaged diversity erosion calculated as the difference

between diversity in present period (2001–2010) and future

(2091–2100). Black line represents the diversity erosion from Thomas

et al. [3], red and blue line are the diversity erosion for the fast

adaptation scenario (Na= 100) and slow adaptation scenario (Na=

106) respectively. Filled area represent the standard deviation to the

mean along latitude. c, d Averaged diversity erosion per latitude cal-

culated for different adaptation kinetic (from Na= 1 to Na= 106

generations): model results (black circles) and polynomial regression

(blue line) fitted. The Tipping point is calculated as the inflexion point

for the derivative of blue curve. The 20% loss point is calculated as

20% evolution from the lowest erosion scenario (Na= 1)
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higher change in the thermal environment (Supplementary

Fig. 19). At latitudes lower than 40°, ocean warming will

drive a decrease in phytoplankton diversity, with a mitiga-

tion of diversity losses tightly dependent on the adaptation

time scale and similar for both hypotheses (Fig. 5a, c). Slow

adaptation scenarios lead to an important diversity erosion

compared to fast adaptation scenarios, suggesting that the

adaptation time scale is a key parameter in the mitigation of

diversity loss and matters far more than the strategy of

adaptation itself. In areas most vulnerable to diversity ero-

sion (Supplementary Fig. 20 and 21), faster adaptation

reduces the average diversity erosion from 4.5 species lost

per latitude degree (slow adaptation) to one species lost or

even 2 species gained per latitude (fast adaptation, Fig.s 5b,

d). Thermal adaptation performed within 200–300 genera-

tions might be sufficient to mitigate the impacts of climate

change on phytoplankton diversity. In contrast, an adapta-

tion scale beyond 104 generations will not counteract the

deep impacts of climate change on phytoplankton diversity.

The adaptation time scale of the thermal tolerance of

different phytoplankton taxa has been closely related to

their respective thermal environments (measured with Topt
or the Net Primary Production) [53, 54, 71, 72]. Phyto-

plankton taxa that ought to efficiently adapt to temperature

are encountered in highly variable thermal environments

[71], typically found at latitudes beyond 40°, where we

found positive change in future diversity. These regions are

also the main areas of CO2 mitigation and carbon export in

the ocean [2, 73]. The deeper alteration of phytoplankton

diversity in the tropics might prove less critical for the

efficiency of the biological pump at the global scale. Future

research should be addressed to understand the impact of

microbial diversity on carbon export [74].

Conclusion

This study describes niche partitioning in the marine pico-

phytoplankton Micromonas. We showed that this genus

evolved into different thermotypes that discriminate

according to their sensitivity to temperature. Our model

predictions were validated by in situ data from the Tara

Oceans scientific expedition and suggest that temperature is

a robust descriptor of Micromonas distribution at mesoscale

and on a yearly basis. The diversity within this genus is

highly correlated to the diversity pattern of the whole

phytoplankton community. It is crucial to dedicate specific

efforts to monitor the evolution of this sentinel genus in

order to keep a real-time high fidelity picture of the phy-

toplankton diversity across the oceans. It is likely that

Micromonas genus comprises even more thermotypes.

More refined laboratory assessments including more

thermotypes, should they exist, would enhance the

representation of the global phytoplankton distribution. In

particular, new experiments with smaller temperature

increments and including more points at low and high

temperatures would provide with a much higher resolution

in the predicted capabilities and better assessment of Tmin

and Tmax.

Although decisive, the ability of phytoplankton to adapt in

a warming ocean is the yet uncertain parameter. Adaptation is

directly or indirectly affected by a variety of factors such as

local nutrient availability, predation, virus lysis, mixing

regime, etc. All of them are affected by the local physical

dynamics and will also be impacted by global warming. More

research is thus required to understand the adaptation

mechanisms of this sentinel organism, and especially the

adaptive dynamics of the different thermotypes. Such an

approach will progressively refine the picture of phyto-

plankton evolution in a changing ocean with the possibility to

more rapidly detect tipping points.
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