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Generally, nonlinear optics studies investigate optically-induced changes in

refraction or absorption, and their application to spectroscopy or device fabrication.  The

photorefractive effect is a nonlinear optical effect that occurs in solids, where transport of

an optically-induced free-carrier population results in an internal space-charge field,

which produces an index change via the linear electrooptic effect.  The photorefractive

effect has been widely studied for a variety of materials and device applications, mainly

because it allows large index changes to be generated with laser beams having only a few

milliwatts of average power.

Compound semiconductors are important photorefractive materials because they

offer a near-infrared optical response, and because their carrier transport properties allow

the index change to be generated quickly and efficiently.  While many researchers have

attempted to measure the fundamental temporal dynamics of the photorefractive effect in

semiconductors using continuous-wave, nanosecond- and picosecond-pulsed laser beams,

these investigations have been unsuccessful.  However, studies with this goal are of clear

relevance because they provide information about the fundamental physical processes

that produce this effect, as well as the material’s speed and efficiency limitations for

device applications.



In this dissertation, for the first time, we time-resolve the temporal dynamics of

the photorefractive nonlinearities in two zincblende semiconductors, semi-insulating

GaAs and undoped CdTe.  While CdTe offers a lattice-match to the infrared material

HgxCd1-xTe, semi-insulating GaAs has been widely used in optoelectronic and high-speed

electronic applications.  We use a novel transient-grating experimental method that

allows picosecond temporal resolution and high sensitivity.  Our results provide a clear

and detailed picture of the picosecond photorefractive response of both materials,

showing nonlinearities due to hot-carrier transport and the Dember space-charge field,

and a long-lived nonlinearity that is due to the EL2 midgap species in GaAs.  We

numerically model our experimental results using a general set of equations that describe

nonlinear diffraction and carrier transport, and obtain excellent agreement with the

experimental results in both materials, for a wide variety of experimental conditions.
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1.1 Dissertation Objective

Semiconductors are a uniquely important class of materials.  The electronic and

optical properties of these materials form the basis for electronic computing machines

and optoelectronic devices such as diode lasers, light emitting diodes and detectors.  In

recent years, spectroscopic techniques based on nonlinear optics have provided both a

sensitive and non-invasive means of studying the electronic and optical properties of

semiconductors (P.N. Butcher et al., 1990 and A. Miller et al., 1981).  Moreover, these

studies have the potential for providing information relevant to the design of optical

switching or processing devices based on these nonlinear optical properties.

Zincblende semiconductors such as the III-V material Gallium Arsenide (GaAs)

and the II-VI material Cadmium Telluride (CdTe) are excellent materials in which to

study nonlinear optical phenomena.  Several properties of GaAs have made it the material

of choice for electronic and optoelectronic applications.  For example, the high electronic

mobility in GaAs has led to its use in the construction of high-speed integrated circuits

(L.F. Eastman, 1986).  Furthermore, unlike Silicon, GaAs is a direct band-gap material.

This property, together with the fact that GaAs can be lattice matched to ternary

compounds such as Aluminum Gallium Arsenide (AlxGa1-xAs), has led to

CHAPTER I

INTRODUCTION
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extensive use of GaAs in diode lasers (T. Li, 1985).  As a consequence of its use in these

areas, the crystal growth, device processing and materials properties of GaAs have been

thoroughly studied.  Therefore, not only is GaAs available in high quality crystalline

form, but the important physical constants of the material are readily available in the

current literature.  In addition, use of GaAs-based nonlinear optical devices offers the

appealing prospect of integrating diode laser, nonlinear-optical, and electronic computing

technologies into a single optoelectronic micro-circuit.  Though less studied than GaAs,

CdTe has been touted as a sensitive photorefractive material (A. M. Glass and J. Strait,

1988).  In addition, while CdTe has been used in liquid crystal imaging and solar energy

conversion (K. Zanio, 1978), it offers a lattice match to the important infrared detection

material HgxCd1-xTe.

One of the most widely studied optical nonlinearities is what has come to be

known as the photorefractive effect.  The photorefractive effect occurs in solids, and

arises when transport of an optically-induced free-carrier population results in an internal

space-charge field.  If the material lacks inversion symmetry, the internal space-charge

field produces a change in the index of refraction via the linear electrooptic effect.  When

the photorefractive effect was first observed by Ashkin et al. in 1966, it was thought to be

optical damage.  However, as it was further studied, the photorefractive effect was found

to offer some unique and useful properties, while allowing large effective nonlinearities

to be generated with average laser powers of a few milliwatts.  Indeed, as we will see

when we discuss the photorefractive effect in greater detail in the next section, for these
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reasons the photorefractive nonlinearity has been studied in a wide variety of materials

and for a wide variety of applications.

As we will see in the next section, compound semiconductors such as semi-

insulating GaAs and undoped CdTe are important photorefractive materials because their

material properties allow this optical nonlinearity to be generated both quickly and

efficiently (A.M. Glass et al., 1984 and A.L. Smirl et al., 1988).  However, while the

photorefractive effect has been extensively studied in semiconductors for this reason, no

study has yet detailed the fundamental limits of these materials in these areas.  Therefore,

in this dissertation, we seek to time resolve the fundamental dynamics of the

photorefractive nonlinearities in semi-insulating GaAs and undoped CdTe for the first

time.  This study is of clear relevance, since it has the potential for providing information

on the fundamental formation mechanisms for this optical nonlinearity, as well as the

information useful in the design of improved photorefractive devices.

1.2 The Photorefractive Effect – A More Detailed Discussion

As we stated in the previous section, the goal of this dissertation is to study the

picosecond photorefractive effects that occur in semi-insulating GaAs and undoped

CdTe.  As a result, before proceeding, it is necessary to discuss the photorefractive effect

in greater detail.  While this provides insight into the organization of this dissertation, it

also provides occasion to review the literature in this area.

The photorefractive effect is a change in the index of refraction that results from a

photogenerated space-charge field.  Typically, the space-charge field is produced by a

charge separation that results from the drift or diffusion of photogenerated charge
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carriers.  Since the photorefractive effect follows from the electrooptic properties of the

material, the induced index change depends on the symmetry of the crystal (through the

electrooptic tensor) and the orientation of the space-charge field relative to the

crystallographic axes.  The photorefractive index change, ∆n, can be expressed by the

following equation:

sceob Ernn 3

2

1
=∆ .                                    (1.1)

Here nb is the background index of refraction and reo is the effective linear electrooptic

coefficient.  The quantity Esc is the space-charge field, and is related through Poisson’s

equation,

∑=⋅∇
i

sc xn
e

E i

r

)(
0εε

                           (1.2)

to the material dielectric constant, ε0εr and the spatially varying densities of

photogenerated charge carriers, n(x).

The photorefractive effect was first attributed to charge migration, the generation

of a space-charge field, and the material’s linear electrooptic response, by Chen (1969).

While Chen considered the drift of photogenerated electrons in the material’s internal

field, later theories for space-charge field formation built on this, considering drift and

diffusion of carriers, the effect of the space-charge field on carrier transport (J. J Amodei,

1971) and the bulk photovoltaic effect (A. M. Glass et al., 1974).  Kukhtarev later

considered all of these processes, along with a sinusoidal illumination pattern and the
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effects of applied electric fields, to produce the most comprehensive steady-state theory

to date (1979).

Initially, the photorefractive effect was studied because it allows long-lived

nonlinearities to be generated on micron (10-6 m) spatial scales, and is therefore useful for

holographic data storage (Chen et al., 1968).  Since that time, the photorefractive effect

has been used to demonstrate a wide variety of applications, ranging from holographic

interferometry, to real-time image processing, to phase locking of multiple lasers (J.P.

Huignard and A. Marrakchi, 1981, J.O. White and A. Yariv, 1980, H. Rajbenbach et al.,

1989, Y.H. Ja, 1985, and J. Feinberg and G.D. Bacher, 1982).

Photorefraction has been studied in three main material types: the ferroelectric

cubic oxides, the sillenites, and the compound semiconductors.  In order to review the

work that has been done in studying photorefractive materials, we consider figures of

merit that have been used to shed light on the suitability of these materials for device

applications (G.C. Valley et al., 1988).  These figures of merit also serve to illustrate the

important properties of the compound semiconductors that we wish to study in the

remainder of this thesis.  Here it is important to note that, for device applications, a

material is considered optimum when it allows a large space-charge field to be generated

quickly and efficiently, and by virtue of a large linear electrooptic coefficient, produces a

large change in the index of refraction.  The four figures of merit that are considered are

summarized in table 1.1 for each of the material types listed above.
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Material ∆∆n/Esc

(nb
3reo)

Sensitivity
(nb

3reo/εr)
Efficiency

(µτ)
Speed

(µ)
Ferroelectrics

LiNbO3 (a) 320 [pm/V] 11 [pm/V] 6.0x10-13 [cm2/V] 0.8 [cm2/V-s]

KNbO3 (b) 690 14 5x10-12 – 2x10-8 0.5

BaTiO3 (c) 11300 5 1x10-9 – 1x10-11 0.5

LiTaO3 (d) 342 8 2.6x10-12 _

Sillenites

Bi12SiO20 82 1.8 1.0x10-7 0.03

Bi12GeO20(e) 55.7 1.4 1.98x10-6 0.09

Compound Semiconductors

GaAs 43 3.3 5.0x10-5 5000

InP 52 4.1 1.5x10-5 1500

CdTe 126 12 1.0x10-5 1000

(a) H. Kurz et al., 1977, considers r33

(b) E. Kratzig and R. Orlowski, 1978 considers r33

(c) P. Günther and F. Micheron, 1978 considers r51

(d) E. Kratzig et al., 1980
(e) electron mobility and recombination data from G. Pauliat and G. Roosen, 1990, electrooptic
coefficient and index of refraction from P. Yeh, 1993
Data for Bi12SiO20 are from P. Günther and J.P. Huignard, 1988
Data for the Compound Semiconductors are from A.M. Glass and J. Strait, 1988 and G.C. Valley
et al., Opt. Lett., 1989

Table 1.1 – Comparison of figures of merit for the three commonly studied
photorefractive material types.  Data for the semiconductors assume a carrier
recombination constant of 10ns.
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The first figure of merit to consider is the photorefractive index change that can

be generated per unit space charge field (∆n/Esc).  This quantity is determined from

equation (1.1) and is, not surprisingly, proportional to the material’s linear electrooptic

coefficient (nb
3reo).  As can be seen from the table, the photorefractive index change per

space charge field is largest in Ferroelectric cubic oxide materials such as BaTiO3,

LiNbO3 and KnbO3.  With the exception of BaTiO3 and the compound semiconductor

CdTe, the index change per unit space-charge field in these materials is roughly one order

of magnitude larger than in the other material types.  This is due mainly to the relatively

large electrooptic coefficients of these materials.  It is for this reason that the

Ferroelectric cubic oxide materials have received the most attention in photorefractive

studies.  Unfortunately, though they have large electrooptic coefficients, these materials

have important draw-backs.

The index change per space charge field takes into account only the electrooptic

response of the material and consequently does not consider the relative ease or difficulty

in generating a space-charge field.  It is therefore important to discuss those figures of

merit which consider this aspect of the photorefractive effect.  The first of these, the

photorefractive sensitivity, is defined as the index change that is generated by a unit

charge density separated by a given distance.  As can be seen from equations (1.1) and

(1.2), this figure of merit is given by nb
3reo/εr and considers both the material dielectric

constant, and electrooptic response.  From Table 1.1, it is immediately obvious that the

photorefractive sensitivity is nearly constant for all the materials listed.  This is due to the

fact that, in these materials and on these time scales, the electrooptic response is tied to
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the ionic polarizability, so that the same material properties that give rise to a large

electrooptic response also give rise to a large permittivity constant (S. M. Silence et al.,

1995).  Thus, approximately the same index change can be generated in all of the

material types for a given carrier density and charge separation.  This illustrates an

important point about the Ferroelectric materials: though these materials have a large

electrooptic response, their high dielectric response limits the magnitude of the space-

charge field that can be generated for a given carrier density and charge separation.

The nearly-constant photorefractive sensitivity of the ferroelectrics, sillenites and

compound semiconductors has prompted the study of photorefractive effects in organic

crystals (K. Sutter and P. Günter, 1990) and polymers (S. Ducharme et al., 1991), where

the electrooptic response is not tied to the ionic polarizability (S. M. Silence et al., 1995).

However, since photogeneration and charge transport in organic materials does not

follow the model that has been developed for inorganic crystals, these materials can not

be compared with the inorganic materials using the figures of merit shown in Table 1.1.

Moreover, though organic crystals and polymers have shown promise as photorefractive

materials, they have some important limitations.  For example, these materials offer a

slow response, and they are most easily generated in thin optical films, which leads to a

small overall effect.

While the photorefractive sensitivity considers the dielectric and electrooptic

responses, the photorefractive efficiency, which is the product of the carrier mobility, µ,

and lifetime, τ, considers the efficiency of the material in producing a space-charge field.

That is, the photorefractive efficiency considers the charge separation that can be
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generated on a per-carrier basis.  This is one of the important aspects of the material that

we wish to consider.  When the µτ product is large, the photogenerated carriers travel a

large distance before recombining and thus generate a large space-charge field.

As the table indicates, although large index changes can be generated in the

ferroelectric materials, these materials typically have small mobility-lifetime products

and thus are inefficient at producing a space-charge field.  Because they offer improved

efficiency, photorefractive effects have been extensively studied in sillenite materials

such as Bi12SiO20.  From the table, these materials can be seen to have mobility-lifetime

products that are an order of magnitude larger than the most efficient ferroelectrics.  It

must be noted that in reviewing the literature on the sillenite materials, the reader will

find these materials touted as “sensitive” photorefractive materials, which would appear

to be in disagreement with the results summarized in Table 1.1 and described above.

However, the sensitivity that is spoken of in the literature is the photographic sensitivity,

which is related to the photorefractive efficiency (J. P. Huignard, et al., 1980).  While the

sillenites offer improved efficiency over the ferroelectrics, these materials have some

important draw-backs.  For example, while these materials are optically-active, they have

low carrier mobilities and are therefore slow in producing a space charge field.

Table 1.1 shows that the optimum materials for speed and sensitivity are the

compound semiconductors.  As shown in the table, GaAs, as well as CdTe and InP have

carrier mobilities on the order of 103 cm2/V-s, allowing space-charge field formation to

occur quickly (on picosecond or faster time scales (A.M. Glass et al., 1988 and A.L.

Smirl et al., 1988)).  In addition, high quality semiconducting materials can have carrier
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lifetimes as long as 10ns.  This, with the high mobilities shown in Table 1.1 make their

efficiencies roughly two orders of magnitude larger than those of the sillenite materials.

Photorefraction was first studied in semiconductors by Glass et al. (1984).  Using

a CW laser operating in the near infrared wavelength range, these authors showed that

GaAs:Cr and InP:Fe offered a greater “speed” and efficiency than the more widely

studied Ferroelectric materials.  Later, experiments with CW laser beams in semi-

insulating GaAs (M. B. Klein, 1984) and CdTe:V (R.B. Blysma et al., 1987) produced

similar conclusions.  However, while these experiments showed that semiconductors

have increased “speed” and efficiency over the other material types, they failed to detail

the fundamental dynamics of space-charge field formation in these materials.  This is

because the photorefractive ”speed” that is observed in experiments with CW and

nanosecond pulsed laser beams is the time for the photorefractive nonlinearity to rise to

steady-state.  This is not the fundamental formation time of the space-charge field, which

is the time required for a single charge carrier to reach its equilibrium separation in the

absence of recombination.

In addition to the studies described above, “photorefractive” effects have also

been studied at excitation energies slightly lower than the bandgap energy in bulk

semiconducting materials (A. Partovi et al., 1990), as well as in semiconductor quantum

well structures (A. M. Glass, et al., 1990).  These studies relied on an applied electric

field, as well as the transport of photogenerated charge carriers to produce a space-charge

field.  However, these studies are not summarized in table 1.1 because they rely on the

Franz-Keldysh (V. W. Franz, 1958, L.V. Keldysh, 1958) and Quantum Confined Stark
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effects (D.A.B. Miller et al., 1985), instead of the linear electrooptic effect.  The Franz-

Keldysh and Quantum Confined Stark effects are quadratic in the electric field strength,

and are field-induced changes in the absorption and refraction near the band edge.

In an effort to understand the fundamental speed and efficiency limitations of

semiconducting materials, as well as the fundamental mechanisms responsible for the

formation of the photorefractive nonlinearity, a collaborative research effort between the

University of Iowa and Hughes Research Laboratories was established.  The objective of

this research effort has been to use ultrashort optical pulses to temporally resolve the

formation and decay of the photorefractive nonlinearity, and to investigate carrier

dynamics and space-charge field formation on small spatial dimensions.  This work

began in 1986, with the first demonstration of a picosecond photorefractive effect in

semiconductors (G.C. Valley, et al., 1986).  Using GaAs, this group showed that

photorefractive beam coupling could be observed with 43ps duration pulses at a

wavelength of 1.06µm.  Since that time, this research has identified new sources for the

photorefractive nonlinearity in GaAs and demonstrated the complexity of measuring

photorefractive effects on picosecond time scales (A.L. Smirl et al., 1988 and G.C.

Valley and A.L. Smirl, 1988).  Furthermore, as part of this effort, picosecond

photorefractive effects have been demonstrated in CdTe:V and InP:Fe (G.C. Valley, et

al., 1989) and used to demonstrate fast, sensitive switching in GaAs (A.L. Smirl et al.,

1989).  However, these initial studies had notable limitations.  Most importantly, the

measurement techniques that were employed throughout their work did not allow the

photorefractive nonlinearity to be time-resolved.
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1.3 Organization

In this dissertation, a transient-grating measurement technique will be presented

that allows the free-carrier and photorefractive nonlinearities in GaAs and CdTe to be

separated and time-resolved for the first time.  This technique was conceived and

developed by Prof. A.L. Smirl and Dr. W.A. Schroeder (W.A. Schroeder et al., 1991,

A.L. Smirl et al., 1990).  The use of this measurement technique allows the Dember

contribution to the photorefractive response to be unambiguously observed for the first

time.  The Dember space-charge field is only observable on picosecond time scales, and

is responsible for producing ambipolar diffusion of electrons and holes.  In addition, the

data presented in this thesis show for the first time an ultrafast contribution to the

photorefractive response in both materials that is an order of magnitude larger than the

photorefractive response on picosecond (10-12 s) time scales.  This contribution is

postulated to arise from the diffusion of “hot carriers”, which are free carriers whose

characteristic temperature is larger than that of the lattice.

As part of this dissertation we present a numerical model that describes the

picosecond dynamics of the free carrier populations and space-charge fields in these

materials.  Whereas other models of the photorefractive process consider as initial

conditions a weakly modulated optical intensity pattern, our model is unique in that it

considers the picosecond evolution of the carriers and field resulting from a strongly

modulated optical intensity pattern.  In producing predictions that are in excellent

agreement with the experimental results for a wide range of conditions, our model and

the experimental results together illustrate some interesting effects that are characteristic
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of the photorefractive nonlinearity.  Moreover, in providing simultaneous pictures of the

evolution of the free carrier populations (through the free-carrier nonlinearity) and space-

charge fields (through the photorefractive nonlinearities), our experimental and numerical

results provide a comprehensive picture of the picosecond carrier transport processes in

these materials.

This dissertation contains a total of nine chapters.  Chapter II considers carrier

generation, recombination and the related optical nonlinearities in GaAs and CdTe for

our experimental conditions.  Chapter III considers carrier transport, space-charge field

formation and the photorefractive nonlinearities in these materials.  The use of

picosecond optical pulses introduces some important differences between our

experiments and the more traditional experiments conducted with CW laser beams, and

we point out these differences in Chapters II and III where they are relevant.  In order to

review the “traditional” method for measuring picosecond photorefractive effects in

semiconductors, but also to introduce the reader to the complexities involved in making

measurements of this type, we discuss two-beam coupling and transient-energy transfer

in Chapter IV.  The most important result of Chapter IV is that the goals of this thesis can

not be met with the two-beam coupling measurement technique.  The measurement

method that is used in these experiments, the Photorefractive Polarization-Rotation

Transient-Grating (PPRTG) measurement technique, is discussed in Chapter V.  This is

followed in Chapter VI by a discussion of our numerical modeling method.  Chapters VII

and VIII present the experimental results obtained for undoped CdTe and semi-insulating

GaAs.  Finally, the important conclusions of this thesis are summarized in Chapter IX.
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This thesis also contains three appendices.  In Appendix A, we discuss photorefractive

polarization rotation in our undoped CdTe crystal.  In Appendix B, we give a source

listing of the computer codes that are used in modeling our experimental results.  In

Appendix C, we derive the equations that are used in Chapter III, which describe the

carrier and field dynamics in the low modulation limit.
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2.1 Introduction

In Chapter I we described the photorefractive effect and noted that the initial step

in generating this optical nonlinearity is the photogeneration of free carriers.  It is

therefore fitting, as we investigate picosecond photorefractive effects in semi-insulating

GaAs and undoped CdTe, to begin by discussing optical carrier generation in these

materials.  We begin by considering optical carrier generation and carrier recombination in

semi-insulating GaAs, and then extend the discussion to consider these processes in

undoped CdTe.  As we will see along the way, excitation with our 1ps duration 960nm

optical pulses results in a variety of absorptive and refractive optical nonlinearities, apart

from the photorefractive effect.  In later parts of this thesis, we will show that the

measurement of picosecond photorefractive effects is complicated by the presence of these

and other competing optical nonlinearities.  Unless otherwise stated, throughout this and

the other chapters, the GaAs and undoped CdTe crystals should be assumed to be at

CHAPTER II

OPTICAL CARRIER GENERATION, RECOMBINATION AND ASSOCIATED

NONLINEAR ABSORPTION AND REFRACTION IN GaAs AND CdTe

AT WAVELENGTHS NEAR 1.0µm
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room temperature.

2.2 Semi-insulating Gallium Arsenide (GaAs)

2.2.1 Single-Photon Transitions at 960nm

Light absorption in semi-insulating GaAs, and the subsequent generation of free carriers, is

dictated by the material band structure, which is shown in figure 2.1 for values of k near 0

(J.S. Blakemore, 1982).  Included in the figure are the light hole (LH), heavy-hole (HH)

and split-off (SO) valence bands, and the Γ, L and X conduction band valleys.

Figure 2.1 – Schematic diagram of the band structure of semi-insulating GaAs near
k=0 illustrating the EL2 light absorption and carrier generation processes.
Included in the figure are negatively-charged acceptors (A-), the Γ, L and X
conduction band valleys and the heavy-hole (HH), light hole (LH) and split off
(SO) valence bands.  Transitions between the split-off and light-hole valence bands
and ionized EL2 are possible, although not shown for clarity of presentation.

XL

Γ

Eg=1.42eV

A- A-A- A-

E

k

HHLHSO

hν960=1.3eV

N,N++ +++

-

+

+

EL2CB

VBEL2+



17

It is clear from this figure that semi-insulating GaAs is a direct-gap semiconductor;

that is, both the valence band maximum and the conduction band minimum are at k=0.

Since the valence-to-conduction band energy difference of 1.42eV is greater than the

1.3eV photon energy of the 960nm radiation, single-photon band-to-band transitions are

not allowed in these experiments.

However, semi-insulating GaAs also possesses EL2 antisite defects (G. M. Martin

and S. Makram-Ebeid, 1986).  Shown in figure 2.1, these species act as donors, and are

present in both neutral and ionized form (A. Mircea et al., 1976).  Since the EL2 defect

centers are optically active and have been shown to lie 0.8eV below the conduction band

edge, single photon transitions between the valence band and ionized EL2, and between

the neutral EL2 and conduction band are energetically possible with the 960nm radiation

used in these experiments.

Also shown in figure 2.1, the material also contains a population density of

negatively charged acceptors (A-).  The “dark” (before illumination) density of ionized

EL2 is exactly equal to the density of acceptors, so that the material is semi-insulating.

Since the photon energy of the 960nm radiation is not sufficient to cause transitions from

the negatively charged acceptors to the conduction band, optically-induced transitions

involving these species will not be considered in this thesis.

The transitions from the neutral EL2 to the conduction band (EL2CB), and from

the valence band to the ionized EL2 (VBEL2+) are shown in figure 2.1.  In the EL2CB

transition, electrons are promoted to the conduction band by photoionization of the

neutral EL2.  In the VBEL2+ transition, electrons are excited from the valence band to
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neutralize the ionized EL2, a process that produces free holes in the valence band.  The

change in the electron, hole and ionized EL2 populations due to these processes is

expressed by the following set of rate equations:
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where I is the intensity of the incident radiation, hν is the excitation photon energy, N, N+

and (N-N+) are the total, ionized and neutral EL2 densities, and σe and σh are the

wavelength-dependent EL2CB and VBEL2+ transition cross-sections.  (Note: in this

thesis, indirect transitions involving the neutral EL2 and X and L conduction band valleys

will not be considered.  This is because these transitions are indirect and, therefore less

probable than transitions involving the Γ conduction band valley.)

Absorption at the EL2 sites also attenuates the incident light.  The depletion of the

incident beam intensity due to the processes discussed above can be described by the

phenomenological beam propagation equation:

ININN
dz
dI

he
++ −−−= σσ )(  .                   (2.4)

At low beam intensities, where photoexcitation does not change the ionized EL2 density

from its dark value (N+
o), an effective EL2 linear absorption coefficient,
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++ +−= 00 )( NNN heeff σσα ,                          (2.5)

can be defined.

EL2 absorption has been well characterized in the crystal used in our experiments.

The dark concentration of ionized EL2 (N+
o) has been measured by conductivity as a

function of temperature to be 1.4x1015 cm-3 (M. B. Klein, 1984).  In addition, CW

photorefractive measurements have been used to determine the effective trap density in

our crystal (M. B. Klein, 1984), which together with the dark density of ionized EL2,

implies a dark density of 1.2x1016 cm-3 neutral EL2 (N-N+
o) (G.C. Valley et al., 1989). The

ratio of the VBEL2+ and EL2CB cross-sections (σh/σe) has been determined by

differential transmission to be 0.76 at a wavelength of 1.06 µm (G.C. Valley et al., 1989).

The value of the EL2CB and VBEL2+ cross sections are determined by measuring

the small signal absorption for our crystal, and then using the values given above for N-

N+
o, N

+
o, and σh/σe to evaluate equation (2.5).  At a wavelength of 1.06µm, Valley et al.

(1989) inferred a value of 1.0x10-16cm2 for the EL2CB cross section for our crystal.

However, since we expect the value of this cross section to be somewhat larger for photon

energies approaching the GaAs bandgap energy, it is necessary to independently measure

this constant for the wavelength used in our experiments (960nm).  In our crystal, we

measure a small signal linear absorption coefficient of 2.2cm-1.  Assuming that the values

given above for N-N+
o, N

+
o, are correct, and that the value for σh/σe does not change with

the increase in photon energy, we find an EL2CB cross section of 1.7x10-16cm2 for our

crystal (and a VBEL2+ cross section of 1.3x10-16cm2).  In Chapter VII, where we discuss
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our results for semi-insulating GaAs, we will see that a knowledge of this constant is

critical in accurately predicting the diffraction efficiency that is produced by the excess

electron-ionized EL2 photorefractive nonlinearity.

2.2.2 Carrier Dephasing, Thermalization and Cooling

The results of Chapter III show that the photorefractive response that we observe

in our experiments is dictated primarily by the mobilities of the photogenerated free carrier

distributions.  The carrier mobilities that are observe are average quantities over the free

carrier distributions, which quantify the friction that the carriers experience during

transport as a result of carrier scattering processes.  As a result, the carrier mobilities (and

the observed photorefractive response) are influenced by many factors, including the form

of the carrier distributions and the characteristic temperature of the distributions.  As we

will see below, photogenerated free carriers can not initially be described by a Maxwell-

Boltzmann or Fermi-Dirac distribution at the lattice temperature. Since we seek to

understand the picosecond photorefractive response of semi-insulating GaAs and undoped

CdTe, we must understand the carrier relaxation processes that are important for our

experimental conditions, and compare the time scales for these processes with those of our

experiments.

In general, a population of photogenerated free carriers is not initially in

equilibrium with itself, or with the lattice.  Instead, the carriers are initially localized in

momentum space, having a fixed phase relationship among themselves and with the optical

field that created them.  Furthermore, the set of conduction and valence band states that
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the carriers initially occupy is not initially dictated by a Maxwell-Boltzmann or Fermi-

Dirac distribution, but by the material band structure and the frequency spectrum of the

optical field.  In addition, when the incident photon energy is larger than the transition

energy, the free carriers are produced with excess energy.  The free carriers relax, or come

to equilibrium among themselves and with the lattice, via carrier scattering process.  In the

following paragraphs we describe carrier relaxation for our experimental conditions in

terms of three simultaneous macroscopic processes.  First we consider carrier depahsing

and carrier thermalization, which are the processes by which the carrier momenta and

energy are randomized (J. Shah, 1996).  Finally, we consider carrier cooling, which is the

process by which the carriers dissipate their excess energy to the lattice (J. Shah, 1996).

In our experiments, we propagate intense (~2.5 GW/cm2) picosecond duration

optical pulses through thick (~1-3 mm) GaAs and CdTe crystals.  As we will see in section

2.2.6, intensity dependent nonlinear absorption limits the optical intensities that are

transmitted through our crystals.  As a result, averaged over the length of each crystal, we

produce low to moderate carrier densities (1x1014 cm-3 – 1x1016 cm-3) at the center of our

optical pulses.  Carrier dephasing has been studied in GaAs at room temperature using

photon echo measurements, and time-resolved pump probe spectroscopy (P.C. Becker et

al.,1988, M.T. Portella et al., 1992).  Both studies showed that, at the highest carrier

densities generated in our experiments, carrier dephasing can be assumed to occur in times

less than 100fs.  While carrier dephasing has not been directly studied at the lowest carrier

densities generated in our experiments, the work of P.C. Becker et al. suggests that, for

low carrier densities, the carrier dephasing time is constant and is the LO phonon emission
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time.  This follows from the fact that, while carrier-carrier scattering is the dominant

scattering process at high carrier densities, the dominant carrier scattering process at low

carrier densities (in room temperature semi-insulating GaAs) is carrier-LO phonon

scattering (F. Rossi et al., 1994, P.C. Becker et al., 1988, M.T. Portella et al., 1992).

Since the LO phonon emission time is ~165fs (J.A. Kash, 1985), carrier dephasing can be

assumed to occur instantaneously for our experimental conditions, so that the free carrier

distributions can be considered isotropic in momentum space.

While carrier thermalization has been studied extensively in GaAs, nearly all of the

studies that have been performed have been at high carrier densities (1x1017cm-3 –

1x1018cm-3).  For photogenerated carrier densities greater than or equal to 1x1016cm-3,

experimental results have shown that carrier-carrier scattering produces a thermal

distribution of free carriers in times of less than 100fs (T. Elsaesser et al., 1991).  Thus,

for the highest carrier densities generated in our experiments, we can assume that the

carriers thermalize instantaneously.  Though carrier thermalization has not been studied at

the lowest carrier densities that are generated in our experiments (1x1014cm-3), we can

estimate the corresponding carrier thermalization time using a knowledge of the carrier

scattering process that are dominant for our experimental conditions.  As we noted above,

for low carrier densities, carrier-LO phonon scattering is the dominant carrier scattering

mechanism for our experimental conditions.  For semi-insulating GaAs, the LO phonon

emission time is roughly 165fs.  If we assume that the energy and momenta of the free

carriers are randomized after ~10 LO phonon collisions, this leads to a carrier

thermalization time of roughly ~1.7ps.  This time is consistent with the results of Monte
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Carlo simulations of the carrier scattering processes in GaAs that have been reported in

the literature (F. Rossi et al., 1994).  Thus, at the lowest carrier densities that are

generated in our experiments, carrier thermalization can not be considered instantaneous

with respect to our 1ps pulses.

For our experimental conditions, the primary means of carrier cooling is polar

optical phonon scattering (C. V. Shank, et al., 1979 and K. Seeger, 1985).  Here the free

carriers lose energy to the lattice by inducing LO lattice vibrations via the Fröhlich

interaction.  Under these circumstances, we can estimate the carrier cooling time (τce)

using the simple relationship:

LOLOce N ττ ≈ ,

which states that the carrier cooling time is approximately equal to the product of the

number of LO phonons which must be emitted to cool each carrier (NLO), and the LO

phonon emission time (τLO).  The GaAs LO phonon energy is ~35meV (J. A. Kash, 1985),

and the LO phonon emission time has been measured at 165fs.  Since free electrons are

generated in these experiments by EL2 single-photon absorption with excess energies of

~0.5eV, and by two-photon absorption (to be discussed in sub-section 2.2.6) with excess

energies of ~1.0eV, between 14 and 28 LO phonons must be emitted to cool the electrons.

Using the equation given above, this implies carrier cooling times of 2ps - 5ps.  Therefore,

like carrier thermalization, carrier cooling can not be considered instantaneous with

respect to our 1ps duration optical pulses.
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In this thesis, the experimental results are compared with the results of a

(relatively) simple carrier transport model in which the carriers are assumed to thermalize

and cool instantaneously (see Chapter III).  While the assumption of instantaneous carrier

cooling and thermalization on 5ps time scales is not completely valid for our experimental

conditions, it allows the experimental results to be compared with our model at times

where carrier thermalization and cooling are complete.  While the agreement between our

model and the experimental results are good for times greater than ~10ps, the

photorefractive experimental results for both materials show an enhancement to the space-

charge field that is in poor agreement with the results of our model.  In Chapter VI, where

the CdTe experimental results are discussed, this transient feature is shown to be

consistent with diffraction from a hot carrier photorefractive grating.  This result is

consistent with non-instantaneous carrier cooling on 1ps – 5ps time scales.

2.2.3 Carrier Recombination

Whereas optical carrier generation results in populations of free carriers, carrier

recombination destroys the free electron and hole populations, restoring the neutral and

ionized EL2 densities to their dark (before illumination) values.  In this sub-section we

discuss the dominant carrier recombination processes in semi-insulating GaAs for our

experimental conditions.  Since carrier recombination has been studied extensively in semi-

insulating GaAs, the important carrier recombination constants have been measured and

are readily available in the literature.  In this section we use these constants, along with
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our experimental conditions, to estimate the carrier recombination time for our

experiments, and compare the carrier generation and recombination rates.

The three main carrier recombination processes prevalent in GaAs for our

experimental conditions are shown in figure 2.2.  In the first of these processes (I), free

electrons recombine with free holes.  Called electron-hole bimolecular recombination, this

process destroys both the free electron and hole populations.  The free electron population

can also be destroyed through bimolecular recombination with ionized EL2 (II).  As a

result of this process, the ionized EL2 are neutralized.  Finally, bimolecular recombination

involving the free holes and neutral EL2 is also possible (III).  This process destroys the

free hole population and ionizes the neutral EL2.  With recombination due to these three

processes taken into account, the electron, hole and ionized EL2 rate equations (equations

(2.1), (2.2) and (2.3)) become:
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In the above equations, γeh, γet and γhd are electron-hole, electron-ionized EL2 and hole-

neutral EL2 recombination coefficients, respectively.

Since carrier recombination has been studied extensively in semi-insulating GaAs,

the important constants are easily obtained from the literature.  Von
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Figure 2.2 – Schematic diagram of the band structure of semi-insulating GaAs near
k=0 illustrating the prevalent carrier recombination processes for our experimental
conditions.  As discussed in the text, these processes are electron-hole
recombination (I), electron-ionized EL2 recombination (II) and hole-neutral EL2
recombination (III).

Lehmen and Ballantyne reported a value of 2x10-10cm3/s for the electron-hole bimolecular

recombination coefficient (γeh).  The electron-ionized EL2 and hole-neutral EL2

recombination coefficients (γet and γhd) must be calculated from the respective

recombination cross-sections of 4.3x10-16cm2 and 2x10-18cm2 reported by G. M Martin

and S. Makram-Ebeid (1986).  The electron-ionized EL2 and hole-neutral EL2

recombination coefficients are given by the product of the respective carrier thermal
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velocities of 4.4x107cm/s and 1.7x107cm/s, and electron-ionized EL2 (γet) and hole-neutral

EL2 (γhd) recombination coefficients of 2x10-8cm3/s and 3.5x10-11cm3/s, respectively.

To determine the dominant electron recombination process for our experimental

conditions, we compare recombination processes I and II from figure 2.2 using our

experimental conditions and the constants reported in the previous paragraph.  As we have

stated, in our experiments we generate average hole densities between 1x1014cm-3 and

1x1016cm-3 at the center of the optical beams.  With the electron-hole bimolecular

recombination constant (γeh) of 2x10-10 cm3/s, these densities yield a maximum

recombination rate of 2x106s-1.  The maximum ionized EL2 density that can be generated

is the "saturation" concentration of ~7x1015cm-3 (EL2 absorption saturation will be

discussed in the following sub-section).  With the electron-ionized EL2 recombination

constant (γet) of 2x10-8cm-3/s, this density yields a maximum electron-ionized EL2

recombination rate of 1.5x108s-1.  Thus, in our experiments, electron-ionized EL2

recombination is the dominant electron recombination process. (Note: the discrepancy in

the electron-hole and electron-ionized EL2 recombination rates is even larger when the

material is excited with CW laser beams, and this allows electron-hole recombination to be

ignored relative to electron-ionized EL2 recombination when considering steady-state

excitation of the EL2.)  Together, the maximum recombination rates given above imply a

minimum electron recombination time of ~7ns.

To determine the dominant hole recombination process for our experimental

conditions, we compare recombination processes I and III from figure 2.2 in the same way

that we compared the electron recombination processes.  Since the average electron
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densities generated in our experiments are the same as the average hole densities

(1x1014cm-3 and 1x1016cm-3), electron-hole bimolecular recombination destroys the free

hole population at the same maximum rate as it destroys the electron population (2x106s-

1).  In order to correctly compare hole-neutral EL2 recombination with the other carrier

recombination processes, we must calculate the hole-neutral EL2 recombination rates for

the minimum and maximum optical fluences used in our experiments.  We perform this

calculation at low fluences because that is where hole-neutral EL2 recombination is

maximum, while we perform this calculation at high fluences in order to facilitate

comparison with the electron-hole recombination constant and the electron-ionized EL2

constant.   At low excitation fluences, where the hole population is at its minimum value,

the neutral EL2 density is at its maximum value of 1.2x1016cm-3.  With the hole-neutral

EL2 recombination constant (γhd) of 3.5x10-11cm3/s, this density yields a maximum hole-

neutral EL2 recombination rate of 5x105s-1.  At high fluences, where the ionized EL2

density is at the saturated value (see section 2.2.4) of 6.8x1015cm-3, the neutral EL2

density is at its minimum value of 6.6x1015cm-3.  This with the hole-neutral EL2

recombination constant give a minimum hole recombination rate of 2.5x105s-1. Comparison

of these constants with the electron recombination constant given above shows that

electron-hole recombination is the dominant hole recombination process at high fluences,

while hole-neutral EL2 recombination is the dominant hole recombination process at low

fluences. (This discrepancy is even larger when the material is excited with CW beams, so

that electron-hole recombination can be ignored relative to hole-neutral EL2
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recombination when considering steady-state excitation of the EL2.)  Along with this, the

minimum hole recombination time is 0.45µs at high fluences, and 4.5µs at low fluences.

The electron and hole populations can also be destroyed by Auger recombination.

Under these circumstances, the electron and hole recombination rates are proportional to

the square of the carrier density.  Nather and Quagliano (1985) measured an Auger

recombination constant of 1x10-27cm6/s in GaAs.  With the range of electron and hole

densities given above, this constant gives minimum and maximum Auger recombination

rates of 10s-1 and 1x105s-1.  Since the Auger recombination rate is negligible compared to

the other recombination rates at all but the largest carrier densities, this process has been

ignored in the description given above.

We can use the results of the above analyses to compare the carrier generation and

recombination rates for our experiments.  As we stated above, we generate free carrier

densities between (1x1014cm-3–1x1016cm-3) in our experiments with 1.0ps duration FWHM

optical pulses.  When we assume that the electron density decays exponentially with the

minimum recombination time of 7ns estimated above, approximately 33ns is required to

reduce the electron density from 1x1016cm-3 to 1x1014cm-3.  Thus, in our experiments, the

carrier generation rates greatly exceed the carrier recombination rates.

The large discrepancy between the carrier generation and recombination rates is a

fundamental difference between the experiments described in this thesis, and experiments

conducted with CW laser beams.  As we will see in the following sections, this

discrepancy produces some important results.  First, picosecond photoexcitation of our

semi-insulating GaAs crystal leads to saturation of the EL2 single-photon absorption.
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Second, photoexcitation leads to carrier accumulation and the free carrier refractive

nonlinearity that is discussed in section 2.2.5.  Separating the photorefractive nonlinearity

from these and other competing optical nonlinearities poses the greatest experimental

challenge in measuring picosecond photorefractive effects.

The above analyses lead to another important result: that carrier recombination can

be neglected in modeling carrier transport and space-charge field formation.  This can be

seen by noting that the maximum field formation time in semi-insulating GaAs is 5ps for

our 1.7µm grating period.  Assuming the same 7ns minimum carrier recombination

constant, the free electron population decays by only 0.1% during this time.  As we will

see in Chapter III, this reflects an important difference between picosecond

photorefractive effects and CW photorefractive effects.  Whereas recombination is

necessary in generating the photorefractive nonlinearity that is measured with CW laser

beams, it is not required to generate the picosecond photorefractive nonlinearities that are

generated in these experiments.

2.2.4 Contrast: EL2 Related Light Absorption and Carrier Generation Under Steady-State

and Transient Excitation Conditions

The use of picosecond optical pulses introduces some important differences

between the experiments described in this thesis, and the more traditional photorefractive

experiments, which are conducted with CW laser beams.  Therefore, while we wish to

acquaint the reader with the carrier generation processes that occur for our experimental

conditions, we take the opportunity to compare and contrast these processes with those



31

that occur in experiments conducted with CW laser beams.  In this section, we contrast

EL2 absorption under steady-state (excitation with CW laser beams) and transient

(excitation with picosecond optical pulses) excitation conditions.  Since many of the

differences between the steady-state and transient space-charge fields arise from the

differences between CW and short-pulsed excitation, this discussion provides important

background information for comparisons/contrasts that are made between them in Chapter

III.

When CW and long pulsed laser beams are present, photoexcitation occurs over a

period that is much longer than the carrier recombination time.  Under these

circumstances, the ionized EL2 and free electron and hole densities that are produced

reflect an equilibrium that is established between the carrier generation and recombination

processes.  For these conditions, equations (2.6) and (2.7) can be used to obtain simple

equations for the steady-state electron and hole densities:
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Here we have postulated that the free electron and hole densities are much smaller than

the ionized EL2 density, so that electron-hole bimolecular recombination is negligible in

equations (2.6) and (2.7).
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In order to evaluate equations (2.9) and (2.10), we must know the steady-state

ionized EL2 density (N+
ss).  The steady-state ionized EL2 density can not be determined in

the same way that the steady-state electron and hole densities were determined, because

equation (2.8) only combines the information in equations (2.6) and (2.7).  Instead, we

must use the condition of charge neutrality, along with the steady-state electron and hole

densities to determine the steady-state ionized EL2 density.  This procedure produces a

cubic equation in N+
ss:
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When factored, the above equation yields expressions for the steady-state ionized EL2

density that are neither compact nor intuitive.  However, if we estimate the magnitude of

the different terms in equation (2.11), we can simplify the equation while making an

important point about exciting our crystal with CW laser beams.  Using the constants

reported in the previous discussions, equation (2.11) becomes:

[ ] [ ] 0103.4)104.6(109.1103.1)109.9( 422631216123 =+−++− +++ xNxIxNxxIN ssssss ,     (2.12)

where we have neglected the units so that the equation can be more easily displayed.  For

the range of beam intensities normally employed in CW photorefractive experiments (5

mW/cm2 – 1 W/cm2), the terms in equation (2.12) involving the beam intensity are much

smaller than the terms involving the EL2 and acceptor densities.  Thus, for typical CW

excitation conditions, the ionized EL2 density should not be expected to change from its

dark value.  Neglecting the terms involving the beam intensity, equation (2.11) becomes:
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This equation can be easily factored, yielding roots equal to 0, the total EL2 density (N)

and the acceptor density (A-).  Of these roots, the acceptor density is the one with physical

significance, since the acceptor density is equal to the dark density of ionized EL2 (N+
o).

Thus, for typical CW excitation conditions, the ionized EL2 departs little from the dark

value of 1.4x1015 cm-3.  Under these circumstances the maximum electron and hole

densities, which are respectively 2.1x1011 cm-3 and 1.2x1012 cm-3, are much smaller than

the neutral and ionized EL2 densities.

By contrast, when the material is excited with picosecond duration optical pulses,

the photoexcitation rates are much larger than the carrier recombination rates, so that

there is never a steady-state established between these processes.  To determine the

ionized EL2 and carrier densities for transient photoexcitation, we solve equations (2.6) –

(2.8) while neglecting the carrier recombination terms.  When the dark densities of

electrons and holes are assumed to be zero, and the dark densities of neutral and ionized

EL2 are assumed to be (N-A-) and A-, this procedure produces the following set of

equations:
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and
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In these equations, F is the incident pulse fluence,

∫
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Fsat is the EL2 saturation fluence,
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is the saturation density of ionized EL2.

The above equations describe the following set of circumstances.  The electron

generation rates are initially larger than the hole generation rates, owing to the fact that

the EL2CB cross section is larger than the VBEL2+ cross section, and the dark density of

neutral EL2 is larger than the dark density of ionized EL2.  However, since the electron

generation rate is initially larger than the hole generation rate, the density of ionized EL2 is

increased significantly, while the density of neutral EL2 is decreased significantly.  The

change in the neutral and ionized EL2 densities is accompanied by an increase in the hole

generation rate, and a decrease in the electron generation rate.  In fact, as the pulse fluence

is increased, the ionized EL2 density is driven to a saturation value (N+
sat) at which the

electron and hole generation rates are equal.  After the saturation density of ionized EL2 is



35

reached, photoexcitation can not change the density of ionized EL2, but instead results in

the generation of electron-hole pairs in a step-wise two-photon absorption process in

which the EL2 are the intermediary.  This is in contrast to instantaneous two-photon

absorption, where the excitation occurs instantaneously without the aid of the EL2

(discussed in sub-section 2.2.6).

Evaluation of equations (2.12)-(2.17) for our experimental conditions allows us to

determine the importance of EL2 absorption saturation for our experimental conditions.

From the values given previously for the photon energy and EL2 electron and hole cross-

sections, the EL2 saturation fluence is approximately 0.7mJ/cm2.  Since fluences ranging

from 50µJ/cm2 to 2.5mJ/cm2 are used in these experiments, we expect EL2 absorption

saturation and EL2 step-wise two photon absorption to be visible in the experimental

results at the middle and high end of the fluence range used in our experiments.

An important result of the above discussion is that, as photoexcitation drives the

concentration of ionized EL2 to the saturation value, the effective EL2 absorption is

changed.  We can estimate the change in the EL2 linear absorption using equation (2.5)

and the dark and saturated values of the ionized EL2 concentration.  As we stated above,

the small-signal linear absorption coefficient was determined to be 2.2cm-1.  Using the EL2

absorption cross sections and total density of EL2, we find a saturation density of ionized

EL2 (N+
sat) of 7.6x1015 cm-3.  When we use this value in equation (2.5) with the EL2

absorption cross sections, we find an effective absorption coefficient of 1.6cm-1.  Thus,

saturation of the EL2 absorption causes a decrease in the linear absorption coefficient of

roughly 30% (0.6cm-1).
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We can also use equations (2.12) – (2.14) to determine the range of carrier

densities that are generated for our experimental conditions, and then compare these with

the carrier densities determined for steady-state excitation conditions.  Evaluation of

equation (2.12) for the fluence range given above shows that, in these experiments, the

ionized EL2 density is changed from its dark value of 1.4x1015 cm-3 to a value of 1.6x1015

cm-3 at low fluences and the saturation value (7.6x1015 cm-3) at the highest fluences.  This

is in direct contrast to the steady-state results, where photoexcitation produced only a

small change in the ionized EL2 concentration.  Equations (2.13) and (2.14) also show

that, for the fluence range given above, our optical pulses generate free electron and hole

densities between 1x1014cm-3 – 1x1016cm-3 via EL2 absorption.  While this clearly is in

contrast to the steady-state case, where the maximum free carrier densities were on the

order of 1x1012cm-3, it also indicates that photoexcitation with picosecond pulses results in

carrier accumulation.  In the following sub-section, we show that carrier accumulation

leads to absorptive and refractive optical nonlinearities that we call the free carrier

nonlinearities.

2.2.5 The Refractive and Absorptive Free-Carrier Nonlinearities

In the previous sub-section, the large discrepancy between the carrier generation

and recombination rates associated with picosecond pulses in our GaAs crystal was shown

to result in large free electron and hole populations.  It is well known that the generation

of free carriers in a semiconductor results in a modification to the material’s absorptive

and refractive properties.  In this section, we discuss these free carrier nonlinearities.  It is
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important to note that these optical nonlinearities do not arise as a result of carrier

transport and are thus separate from the photorefractive nonlinearity.  Furthermore, since

the free carrier density is well below the value at which the carrier wavefunctions begin to

overlap (~1x1019 cm-3, C. Kittel and H. Kroemer, 1980), these nonlinearities are not due

to exchange and correlation interactions in the electron-hole system (K. Bohnert et al.,

1988).

Before discussing the absorptive and refractive free carrier nonlinearities, it is

necessary to review material absorption and refraction, and their interdependence.

Generally, when an incident optical field interacts with a linear medium, the field

experiences some attenuation, and it induces a dipole moment in the medium that

oscillates at the optical frequency and radiates light.  The total field inside the material is

then the sum of the incident and radiated optical fields.  Since the radiated field generally

has a different amplitude and phase than the incident field, the net effect is to change the

amplitude and phase of the total field, which is observed as absorption and refraction.

The material’s absorptive and refractive properties are interrelated, and this is most

easily seen in the relationships between the real and imaginary components of the

material’s relative permittivity, the index of refraction, and the linear absorption

coefficient.  Referring to the discussion of the previous paragraph, the amplitude and

phase changes that are incurred by the radiated wave are dictated by the real and

imaginary components of the relative permittivity constant (εrr and εri).  These quantities

are strong functions of the optical frequency around a material resonance, and they are

related through the Kramers-Krönig relation,
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which expresses the real component of the relative permittivity (at a given frequency ω) in

terms of a sum over all frequencies, involving the imaginary component of the permittivity.

The absorptive and refractive properties of the material that are observed are expressed in

the linear absorption coefficient (α) and the index of refraction (n).  These quantities are

related to the real and imaginary components of the relative permittivity constant in the

following way:
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For experimental conditions such as ours, where the imaginary component of the dielectric

constant is much smaller than the real component, equations (2.20) and (2.21) can be

written:

rrn ε= ,                                 (2.22)

and

n

k riε
α = ,                                 (2.23)

where k is the vacuum wave number.
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Photogeneration of free carriers can change the absorption in our semi-insulating

GaAs crystal in several ways.  We have already seen how photoexcitation with picosecond

optical pulses drives the neutral and ionized EL2 densities from their dark values to

“saturation” values, resulting in a 30% decrease in the effective linear absorption

coefficient (see section 2.2.6).  However, photogeneration of free carriers can produce

three other changes in the material absorption.  First, the carriers occupy valence and

conduction band states, and, by preventing additional transitions to these states, change

the absorption.  This contribution to the free carrier absorption change is called band-

blocking. The second absorptive change introduced by the free carrier population is due

the fact that their optical properties are different from those of the bulk semiconducting

material.  Indeed, when the effective mass approximation is valid for the free carriers, they

can be thought of as comprising a plasma, and having similar optical properties.  Finally,

the free carriers can absorb incident light and be promoted either to higher energy states

within the same energy band, or to higher energy states in different conduction or valence

bands.  The former process, which is known as intraband free-carrier absorption, requires

absorption of a phonon.  However, the latter process, which is called interband free-carrier

absorption, does not.

In our experiments, the excitation photon energy is smaller than the bandgap

energy, while the excitation optical frequency is much larger than the plasma frequencies

associated with the range of carrier densities generated.  As a result, the absorption change

resulting from the free carrier population is due mainly to free carrier absorption.  The
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change in the linear absorption coefficient due to free carrier absorption (∆αfc) can be

written phenomenologically in terms of the free electron (n) and hole (p) densities:

fpfefc pn σσα +=∆                                (2.24)

Here σfe and σfp are the free electron and hole absorption cross sections.  The free carrier

absorption cross sections and, hence, the absorptive change are dependent on the

wavelength of incident radiation.  For a wavelength of 1.06 µm, the sum of these cross

sections has been determined to be approximately 9x10-18 cm2 (G.C. Valley et al., 1989).

With the range of carrier densities generated in our experiments, these cross sections

produce maximum absorptive changes of 9x10-2 cm-1.  In addition to being too small to

measure with our transient grating measurement technique, this absorption change is much

smaller than the absorptive changes resulting from EL2 absorption saturation and

instantaneous two-photon absorption (discussed in section 2.2.6).  Thus, we conclude that

free carrier absorption is unimportant in our experiments.

Several researchers have derived expressions for the free carrier index change.

Their expressions are linear in the photogenerated free carrier density, which supports the

use of the phenomenological expression involving the density of electron-hole pairs (N),

and the index change per electron-hole pair (neh):

Nnn eh=∆ .                                  (2.25)

Auston et al. (1978) calculated the change in the real and imaginary parts of the dielectric

constant resulting from the free carrier population, and then used these quantities to

approximate the index change.  Wherrett and Higgins directly calculated the free carrier
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index change by summing the differential change in index caused by the removal of a

single set of valence-to-conduction band states, over all the occupied states (1981).  Both

of these methods considered valence-to-conduction band transitions only, and an

equilibrium distribution of free carriers at a lattice temperature of 0K.  The index change

per electron-hole pair resulting from the derivation by Auston et al. (1978) is:
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Here mr is the reduced mass of the electron-hole pairs, e is the electron charge, nb is the

background index of refraction, and ωg and ω are the angular frequencies corresponding to

the material bandgap energy and the incident light, respectively.

The discussions contained in section 2.2.6 and the previous paragraphs show that

the largest absorption change that has been considered up to this point is due to EL2

saturation.  However, in deriving the free carrier index change, Auston et al., assume only

band-to-band transitions, so that equation (2.25) does not take into account EL2

saturation.  Moreover, because EL2 absorption saturation produces a 14% absorption

change, it might be expected to produce an index change that is comparable to, or larger

than, the index change given by equations (2.25) and (2.26).  However, a simple analysis

of EL2 carrier generation in our crystal shows that EL2 absorption saturation does not

cause a significant index change.  As discussed in section 2.2.1, the number density (N, N-

N+) and cross sections (σe and σh) of the EL2 and EL2+ are nearly equal.  As a result,

when free electrons are generated via the EL2CB transition, holes are nearly always

generated via the VBEL2+ transition.  Thus for our experimental conditions, the EL2 act
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largely as an intermediary in the photogeneration of electron-hole pairs, and the index

change is much like that which is produced when the carriers are produced by band-to-

band transitions.  This result has also been shown experimentally by Valley et al. in

modeling transient energy transfer in semi-insulating GaAs (1988).  In their study, the

authors found that, in spite of the inaccuracies in the theoretical index change given by

equations (2.25) and (2.26), the observed and predicted index changes differed only by a

factor of 0.6 to 0.8.  It must be noted that, while we use equations (2.25) and (2.26) in

modeling the free carrier index change (see Chapter V), we seek only an order of

magnitude estimate of this index change.  This is because, in our numerical modeling, we

seek to model the dynamics of the observed diffraction efficiencies, not the magnitudes of

the nonlinearities.

The magnitude of the free carrier index change can be estimated using the

experimental range of free carrier densities given above along with measured values for

the index change per electron-hole pair.  The index change per electron hole pair has been

measured in semi-insulating GaAs in the 1.0 µm wavelength range (A.A. Said et al., 1992

and A.G. Cui, 1992).  Using the Z-scan measurement technique at a wavelength of 1.06µ

m, and taking into account carrier generation due to the EL2 sites, A.G. Cui measured a

value of –5.1x10-21 cm3 for this constant.  With the experimental range of carrier densities

given above (1x1014 cm-3 – 1x1016 cm-3), this constant predicts free-carrier index changes

ranging from 5x10-7 to 5x10-5.  While the free carrier index change is smaller than the

instantaneous bound-electronic index change (discussed in section 2.2.6) at all but the

lowest excitation fluences, it is larger than the photorefractive index change at all but the
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lowest excitation fluences (see Chapter III).  As a result, the free carrier nonlinearity

complicates the measurement of picosecond photorefractive nonlinearities.

A final point that must be made about the free carrier index change is that it can be

assumed to be isotropic on picosecond time scales.  This follows from the isotropy of the

carrier effective masses in semi-insulating GaAs (Landolt and Börnstein, vol. 17, 1982),

and the discussion of section 2.2.2, where we showed that carrier dephasing occurs

instantaneously with respect to the time scales of our experiments.  Since the free carrier

index change is isotropic, the corresponding index grating does not produce a diffracted

beam with a rotated polarization.  In our transient grating measurement method, we use

the polarization rotating properties of the photorefractive nonlinearity to separate it from

the other competing optical nonlinearities (see Chapter V).

2.2.6 Instantaneous Two-Photon Absorption

In our experiments, we employ 960nm wavelength optical pulses with peak

intensities as high as ~2.5GW/cm2.  As a result, another optical nonlinearity, instantaneous

two-photon absorption, is prevalent in our experiments.  As we will see in this section, this

optical nonlinearity results in an additional light absorption and carrier generation

mechanism that dominates over EL2 single photon absorption at high beam intensities.

We use the term “instantaneous two-photon absorption” in order to distinguish this

process from the step-wise two photon absorption process that was discussed previously

in connection with EL2 absorption saturation.
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The instantaneous two-photon absorption process is shown schematically in figure

2.3.  As shown in the figure, the material simultaneously absorbs two photons of light, and

one free electron and one free hole are produced in the conduction and valence bands.

The two-photon absorption carrier generation rate involves the square of the beam

intensity.  Including this light absorption process, the electron and hole rate equations

become:
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In these equations, β is the wavelength-dependent two-photon absorption coefficient of

the material, and we have neglected electron and hole recombination for the reasons

discussed in section 2.2.3.  Since the two-photon related carrier generation rates are

directly related to the square of the optical intensity, these processes have greater

prevalence at higher beam intensities.

Including two-photon absorption, the beam propagation equation becomes:

2)( IININN
dz
dI

he βσσ −−−−= ++  .                   (2.29)

The dependence of two-photon absorption on the square of the optical intensity means

that beams of higher intensity incur a greater absorption than beams of lower intensity.  In

this way, two-photon absorption effectively limits the beam intensity that can be

transmitted through the crystal.  Optical limiting of the laser beams by two-photon

absorption will be visible in the experimental results of Chapters VII and VIII.
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Figure 2.3 – Schematic diagram of the band structure of semi-insulating GaAs near
k=0 illustrating the instantaneous two-photon absorption process.  In this figure,
other transitions involving the light-hole and split-off valence bands are possible,
but not shown for clarity of presentation.

The two-photon absorption coefficient can be derived using second order, time-

dependent perturbation theory.  This coefficient is related to the imaginary part of the

third-order susceptibility, χ3 through the equation (A. Yariv, 1989):
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where ω1 and ω2 are the angular frequencies of the incident photons, and all the other

parameters have already been defined.  Equation (2.30) involves SI units, so that β and χ3

are in units of m/W and m2/V2.
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The two photon absorption coefficient in semi-insulating GaAs has been reported

to be anisotropic (M. D. Dvorak, et al., 1994, S.J. Bepko, 1975, R. DeSalvo et al., 1993).

For the cut of our semi-insulating GaAs crystal, as well as the crystal orientation and the

polarization of the pump beams used in our experiments, these measurements suggest a

value of roughly 19cm/GW for the two-photon absorption coefficient (M. D. Dvorak, et

al., 1994).

In order to give the reader an idea of the importance of two-photon absorption in

these experiments, the relative strengths of the single and two photon absorption

processes under these circumstances can be compared.  The solution to the single beam

propagation equation shows that single and two photon absorption are equal at the critical

intensity Icrit, given by the equation (T. F. Boggess et al., 1986):

( )( )lαβ
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eR
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.                  (2.31)

The derivation that produces this equation assumes a constant linear absorption.

The factor (1-R1) accounts for the loss of optical energy due to Fresnel reflection at the

front surface of the sample, while the factor (1-e-αl) is the fractional loss of optical energy

due to linear absorption over the length of the crystal.  When the front surface reflection

coefficient of 0.305 is used with the sample length of 0.317 cm and the values of α and β

for this crystal, equation (2.31) yields a critical intensity of 0.33GW/cm2.  This intensity is

in the middle of the range of beam intensities used in these experiments.  Thus for the

larger half of the optical fluences used in these experiments, two photon absorption is the

dominant light absorption mechanism in semi-insulating GaAs.
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2.2.6.1 The Instantaneous Bound-Electronic Refractive Nonlinearity

Semi-insulating GaAs also exhibits an instantaneous, intensity dependent refractive

nonlinearity.  At a wavelength of 960nm, this results mainly from the changes in

absorption caused by the two-photon absorption process and the quadratic Stark effect

(M. Sheik-Bahae et al., 1991).  The relationship between the index change (∆n) and the

optical intensity can be written:

Inn 2=∆   .                                 (2.32)

Here n2 is the second-order index parameter, which is related to the real part of the

instantaneous third order susceptibility χ3, through the equation:
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Here, as in the equation for the two-photon absorption coefficient, SI units are used so

that n2 and χ3 are in units of m2/W and m2/V2.  The second order index parameter has been

measured in GaAs at wavelengths near 1.0µm (M. Shiek-Bahae et al., 1991).  As part of

their study on the dispersion of refractive bound-electronic nonlinearities in solids, the

authors measured a second-order refractive index coefficient of –2.26x10-17 m2/W (-2700

esu).  Using this value and the peak optical intensity of 2.4 GW/cm2 used in our

experiments, equation (2.32) predicts an index change of 8x10-4.  This optical nonlinearity

is clearly larger than the free carrier index change discussed in the last section.

The anisotropy in the two-photon absorption coefficient, which arises from the

imaginary component of the third order susceptibility, suggests an anisotropy in the

second-order index parameter, which we have seen arises from the real component of the
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third-order susceptibility.  However, while this has been predicted for GaAs and other III-

V semiconductors (C. Flytzanis, 1970), to the knowledge of this author it has not been

measured.

In keeping with the other discussions of this chapter, we can compare the

magnitude of the instantaneous bound-electronic and free-carrier index changes, for our

experimental conditions.  In order to do this, we calculate the intensity at which the two

optical nonlinearities are equal, and then compare this with the range of intensities used in

our experiments.  Using equation (2.25) and the measured value for neh, along with

equation (2.32), we find that the free carrier and instantaneous bound electronic index

changes are equal at the intensity (Ineq):

( ) 










−

−
= α

π
ν

β
eho

neq
nt

nh
R

I 2

1

2

1

22
.                                 (2.34)

Here we have considered the instantaneous bound electronic index change that is

generated at the peak of the optical pulse, and used the carrier density that is accumulated

as a result of both single- and two-photon absorption over one half of a 1ps FWHM pulse

with a Gaussian temporal profile.  The quantity to is the HW1/e Gaussian width of the

pulses, and again, for simplicity, we have assumed a constant linear absorption coefficient.

When the measured values for neh, n2, β and R1 are used, equation (2.34) yields an

intensity of 1.6GW/cm2.  Since we employ pulse intensities between 0.03GW/cm2 and

2.4GW/cm2 in these experiments, the instantaneous bound-electronic index change is

expected to be comparable to, or larger than the free carrier index change at the largest

intensities.
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2.3 Undoped Cadmium Telluride (CdTe)

Figure 2.4 is a schematic diagram of the band structure of undoped CdTe near

k=0.  As is evident from the figure, the band structure of CdTe is similar to that of GaAs

in many ways.  First, like GaAs, CdTe is a direct bandgap semiconductor; its conduction

band minimum and valence band maximum are both at k=0.  As in GaAs, the valence to

conduction band energy difference, 1.49eV (Landolt and Börnstein, vol.17b, 1982), is

larger than the 1.3eV photon energy of the 960nm radiation that we employ in these

experiments.  Thus, direct, single photon induced band-to-band transitions do not occur in

this material when the material is excited at 960nm.

The CdTe band structure is different from that of GaAs in one notable way.  As

seen in the figure, undoped CdTe possesses no optically active mid gap levels.  Indeed, in

the studies detailed in this thesis, we have observed no measurable linear absorption for

our CdTe crystal at wavelengths near 1.0µm.  Our measurements are corroborated by the

fact that other studies have shown this same result, measuring linear absorption

coefficients less than 0.1cm-1 at wavelengths near 1.0µm (M. S. Petrovic et al., 1989).

Although it is not possible to generate free electrons and holes in undoped CdTe

by linear absorption at the 960nm excitation wavelength, the use of intense picosecond

pulses allows carriers to be generated in this material via two-photon absorption.  This

process, which is shown schematically in figure 2.4, occurs in the same way that was

discussed in the description of carrier generation in GaAs.  Thus, in undoped CdTe, the
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Figure 2.4 – Band structure diagram for undoped CdTe illustrating the lone carrier
generation and light absorption process for our experimental conditions,
instantaneous two-photon absorption.  Shown in this figure is the Γ conduction
band valley and the light-hole (LH), heavy-hole (HH) and split-off (SO) valence
bands.  The X and L conduction band valleys are not pictured because transitions
to these bands are extremely unlikely for our experimental conditions.
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Clearly, since two-photon absorption is the predominate means of carrier generation in

undoped CdTe, any free-carrier related optical nonlinearities must be due to equal
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populations of electrons and holes (assuming the absence of dark densities of electrons

and holes).

The lack of measurable linear absorption in this semiconductor means that the

incident optical radiation is depleted entirely by two photon absorption.  As a result, the

beam propagation equation can be written:

ν
β
h
I

dz
dI

2

2

−= .                       (2.37)

As in semi-insulating GaAs, the two photon absorption coefficient in CdTe has been

observed to be anisotropic (M. D. Dvorak et al., 1994).  For our experimental conditions,

which include the crystal cut and orientation, as well as the orientation of our pump beams

the above work implies a value of 17cm/GW for the two-photon absorption coefficient.

Since the measured value of the two-photon absorption coefficient is near to the value of

19cm/GW applicable to GaAs, instantaneous two-photon absorption of our 960nm optical

pulses results in similar carrier densities in both materials.

Comparison of the carrier generation and beam propagation equations for GaAs

and CdTe clearly illustrates the advantage of studying the optical nonlinearities in CdTe in

addition to those in GaAs.  While GaAs possesses free-carrier related optical nonlinearities

that result from both optically-active midgap levels and instantaneous two-photon

absorption, CdTe possesses free-carrier related optical nonlinearities that result only from

the latter of these carrier generation processes.  Thus, in addition to simplifying the

analysis of experimental results, the use of undoped CdTe also allows the nonlinearities

that result from instantaneous two-photon absorption to be independently characterized.
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In this thesis, the use of this material will allow the photorefractive nonlinearity resulting

from the electron-hole (Dember) space-charge field to be unambiguously observed for the

first time.

To the knowledge of this author, carrier relaxation has not been studied in

undoped CdTe.  However, CdTe is a polar semiconductor like GaAs, so that carrier-LO

phonon scattering can be expected to play an important role in carrier dephasing and

thermalization, along with carrier-carrier scattering.  Indeed, this has been shown in

studies involving other II-VI materials, such as CdS (P. Motisuke, et. al., 1975) and CdSe

(J. Shah, 1974).  Since the parameters that determine the carrier-carrier and carrier-LO

phonon scattering rates are of the same order of magnitude in GaAs and CdTe, it is

therefore reasonable to assume that carrier dephasing in CdTe occurs instantaneously with

respect to our experiments, while carrier thermalization occurs in times less than 4ps. We

can estimate the carrier cooling time in undoped CdTe in the same way that it was

estimated in semi-insulating GaAs, using the LO phonon emission time and energy and the

excess energy of the carriers.  Free carriers are generated in CdTe with excess energies of

~1eV.  Using the CdTe LO phonon energy of 21meV (Landolt and Börnstein, vol. 17b,

1982) and assuming that the CdTe LO phonon emission time is approximately equal to the

GaAs LO phonon emission time, the estimated carrier cooling time for CdTe is ~5ps.

Thus, as in GaAs, carrier cooling does not occur instantaneously with respect to our

experiments.

Carrier recombination has been studied to a limited degree in undoped CdTe.

While the electron-hole bimolecular recombination coefficient has not been determined for
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CdTe, Petrovic et al. reported carrier recombination times of 12ns (1989) in undoped

CdTe.  This time is on the order of those reported for semi-insulating GaAs, which

indicates that the carrier recombination rates in undoped CdTe are much smaller than the

carrier generation rates.  Thus, as in semi-insulating GaAs, photoexcitation results in the

accumulation of free carriers, and absorptive and refractive free carrier nonlinearities.

We can estimate the magnitude of the free carrier absorptive and refractive

nonlinearities and the instantaneous bound-electronic refractive nonlinearities in undoped

CdTe in the same way that they were estimated for semi-insulating GaAs.  As in semi-

insulating GaAs, the absorptive change resulting from the free carrier population is due

mainly to free carrier absorption.  A free carrier absorption coefficient of 1x10-18 cm2 has

been reported for undoped CdTe (K. Zanio, 1978).  With the carrier densities generated in

our experiments (1x1014 cm-3 – 1x1016 cm-3), this yields a maximum absorption change of

1x10-2 cm-1.  Thus, as in semi-insulating GaAs, the free carrier induced absorption change

is too small to measure, and is therefore neglected.  While the index change per

photogenerated electron-hole pair has not been measured in undoped CdTe, we can use

equation (2.26) to estimate its magnitude.  Using a band gap energy of 1.49eV, a

background index of refraction of 2.87 (Landolt and Börnstein, vol 11, 1979), and

electron and hole effective masses of 0.1 and 0.4 (K. Zanio, 1978), we estimate an index

change per electron hole pair of -2x10-21 cm3.  With the carrier densities generated in our

experiments, this leads to free carrier index changes between –2x10-7 and –2x10-5.  As in

GaAs, the free carrier index change can be expected to be easily visible in our

experimental results.  The second order index parameter (n2) has been measured in CdTe
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at a wavelength of 1.06µm (M. Sheik-Bahae et al., 1989).  The value determined for this

constant, which is –2.95x10-17 m2/W, can be used with our peak intensities to estimate the

magnitude of the instantaneous bound-electronic index change in undoped CdTe.  As

noted in the paragraphs above, we use optical intensities as high as 2.5GW/cm2 in our

experiments.  With the value cited above for n2, we estimate a maximum instantaneous

bound electronic index change of ~7x10-4.  Like the free carrier index change, the

instantaneous bound-electronic index change in CdTe is large.  As in GaAs, the presence

of both of the free carrier and instantaneous bound electronic index changes will

complicate the measurement of picosecond photorefractive effects.  While we expect the

second order index parameter to be anisotropic in CdTe, to the knowledge of this author,

this has not been measured.

2.4 Summary

We have discussed carrier generation in semi-insulating GaAs and undoped CdTe

as a result of excitation with our intense 960nm optical pulses.  While carriers are

generated in both materials via instantaneous two-photon absorption, carriers are also

generated in semi-insulating GaAs as a result of single photon induced transitions

involving the EL2 midgap levels.  In our experiments the excitation fluences are large

enough to saturate the EL2 absorption, a result that produces a 30% decrease in the

effective linear absorption coefficient, and causes carriers to be generated via step-wise

two-photon absorption involving the EL2 levels.
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Aside from instantaneous two-photon absorption and EL2 absorption saturation,

semi-insulating GaAs and undoped CdTe exhibit a variety of other optical nonlinearities.

Since the carrier generation rates in our experiments are much larger than the carrier

recombination rates, photoexcitation produces populations of free carriers in the 1014 cm-3

–1016 cm-3 range (averaged over the length of our crystals), along with subsequent

absorptive and refractive nonlinearities.  While the absorptive change induced by the free

carrier populations is small, the refractive index change is not.  In fact, the free carrier

index change is as large as 1x10-5 at the highest carrier densities generated in our

experiments.  Due to the fact that we use intense picosecond pulses in our experiments,

we generate an additional instantaneous bound electronic index change.  Like the free

carrier index change, the instantaneous bound electronic index change is large (∆n as large

as 10-4). For our experimental conditions the free carrier index changes is isotropic.  In

Chapter V, this will be shown to produce an important result: for our experimental

conditions, the free carrier does not produce a diffracted optical signal with a polarization

rotation.  Similarly, while the second-order index parameter is expected to be anisotropic

in both semi-insulating GaAs and undoped CdTe, this nonlinearity produces no

polarization rotation for our experimental conditions (W. A. Schroeder et al., 1992).
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3.1 Introduction

The photorefractive effect arises from the electrooptic response of a material to a

space-charge field that is generated by the migration of photogenerated charge carriers.

Having discussed carrier generation (and the associated optical nonlinearities) in GaAs and

CdTe for our experimental conditions, we turn our attention, in this chapter, to carrier

transport, the generation of space-charge fields, and the photorefractive effect.  The

experiments described in this thesis are intended to contrast studies with similar goals that

have investigated the steady-state space-charge field and photorefractive effect.  For this

reason, and because the formation of the steady-state space-charge field has received

much theoretical attention, it is fitting that we begin our discussion by reviewing these

results.  Following this, we focus on the transient space-charge fields that we generate in

our experiments.  Finally, we discuss the electrooptic response of GaAs and CdTe, and

some basic properties of the photorefractive nonlinearities produced in these materials.

CHAPTER III

CARRIER TRANSPORT, THE FORMATION OF SPACE-CHARGE FIELDS

AND THE LINEAR ELECTROOPTIC EFFECT
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3.1.1 Initial Conditions

The experiments described in this thesis are performed with an arrangement of

optical beams that is similar to that shown in figure 3.1.  In our experiments, two parallel-

polarized, temporally and spatially coincident laser pulses generate a modulated intensity

pattern of the form,
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inside the material.  In equation (3.1), the intensity, I0, is the sum of the squares of the two

complex optical field magnitudes (½cnε0(|E1|2+|E2|2)).  The phase difference between the

optical electric fields determines the phase of the grating (∆φ) and the grating spacing, λg,

is dependent on the wavelength of radiation (inside the material), λ, and the half-angle

between the beams, θ, through the equation:

θ
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=g .              (3.2)

The quantity m, which is given by the equation,

21

2

r
r

m
+

=                 (3.3)

dictates the depth of the intensity modulation.  Here r is the ratio of the magnitudes of the

two optical electric fields.  The carrier and space-charge field dynamics discussed in this

chapter will consider the initial conditions dictated by the arrangement of the optical

beams shown in figure 3.1.
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Figure 3.1 – Initial conditions for our experiments.  As described in the text, two
spatially- and temporally-coincident optical pulses form a modulated intensity
pattern inside our crystals.  From this modulated intensity pattern, the
photorefractive and other induced gratings are formed.

3.2 The Steady-State Space-Charge Field

For the reasons discussed in Chapter I, a wealth of theoretical work has been done

to understand the characteristics of the steady-state space-charge field.  We begin by

reviewing the relevant results of this work.  In the same way that EL2 absorption was

contrasted for steady-state and transient excitation conditions in Chapter II, the results

presented here will be compared and contrasted with the results presented in section 3.3.

The physical model for the photorefractive effect, which includes carrier

generation, drift and diffusion, and recombination, is well developed and verified after

over 30 years of study.  Charge migration was first proposed as a mechanism for forming

the photorefractive nonlinearity by Chen, who postulated that this effect arose from the

drift of photogenerated electrons in the internal field of the material (1969).  Chen’s model

was the basis for subsequent theories, first by Amoedi (1971), who showed that diffusive

charge migration and its balance with drift due to the induced space-charge field, were
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m
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important in field formation.  Later, Glass et al., (1974) proposed the bulk photovoltaic

effect as an additional mechanism for field formation.  Kukhtarev included all of the above

contributions, and solved the carrier generation and transport equations in the steady-state

to yield general expressions for the fundamental Fourier component of the space-charge

field, and its response time (N. V. Kukhtarev et al., 1979).  Separately, Feinberg applied a

different physical model, known as the “hopping model”, to explain the formation of the

photorefractive nonlinearity in BaTiO3. (J. Feinberg et al., 1980).  Though this theory

produced results that were similar to those of the charge migration model, it was different

from the charge migration model in that it was statistical in nature.  For a review of the

theoretical development of the steady-state space-charge field, the reader is referred to

“Theory of Photorefractive Effects in Electrooptic Crystals” by G.C. Valley and J.F. Lam

(1988).

The photorefractive nonlinearity that is observed in semi-insulating GaAs under

CW excitation conditions arises, in the most simple circumstances, from a steady-state

balance between the formation and decay processes depicted in figure 3.2.  In this

example, there is no applied electric field, and the photovoltaic effect is neglected because

it has been shown to have a negligible effect on space-charge field formation in

semiconductors (Glass, 1974).  Linear absorption of the sinusoidal intensity pattern of

figure 3.1 produces sinusoidal population densities of free electrons and ionized EL2.  As

we discussed in Chapter II, in semi-insulating GaAs the photoionized EL2 population

exists along with a background (dark) density of ionized EL2 that is compensated by an
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Figure 3.2 – Formation of the steady-state space-charge field in semi-insulating
GaAs.  Included are the modulated intensity pattern, the dark current, the neutral
and ionized El2 (hole generation is neglected).See text for description.

equal density of negatively charged acceptors.  The space-charge field is formed by three

processes that occur concurrently with carrier generation.  First, the photogenerated

electrons diffuse (as a result of the gradient in carrier density) from regions of high

concentration to regions of low concentration.  Second, when a non-zero space-charge

field is present, the electrons drift in the field, and the drift current density is in the

opposite direction as the diffusion current density.  Finally, the electrons recombine with

the ionized EL2.  As a result of carrier generation, drift and diffusion, and recombination,

a charge separation is established in which the ionized EL2 population is modulated above

and below the density required to compensate for the acceptors.  This charge separation

results in a periodic space-charge field, and the space-charge field has a spatial frequency

component that is equal to that of the incident irradiance pattern (equation (3.2)).
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Through the material’s linear electrooptic effect, the periodic space-charge field results in

a photorefractive index grating.

The charge separation and space-charge field that are described above decay as a

result of the dark current, as shown in figure 3.2.  Here thermally-generated free electrons

drift as a result of the space-charge field and then recombine with the ionized EL2, thereby

restoring the ionized EL2 population to that required to compensate the acceptor

population.  Destruction of the EL2/acceptor charge separation via the dark current

occurs slowly, so that the photorefractive nonlinearity is generally long-lived.  Indeed,

while the dark current will destroy the photorefractive nonlinearity in semi-insulating

GaAs on ~0.1ms time scales, in ferroelectric materials, where the electron mobilities are

smaller and the optically-active donor sites are farther below the conduction band edge,

photorefractive nonlinearities can be generated that are semi-permanent.  The long-lived

nature of the photorefractive nonlinearity allows a steady-state effect to be observed with

CW laser beams of a few milliwatts, which is one of its most unique and important

properties.  As discussed in Chapter I, this property of the photorefractive nonlinearity

makes it promising for optical device applications, and easy to study.

For a situation such as that described above, where there is no applied electric field

and only a single charge carrier is present, the fundamental Fourier component of the

steady-state space-charge field (Escss) is given by the equation:
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In this equation m is the modulation ratio (equation (3.3)), Eq and ED are the limiting

space-charge fields,

,
πε

λ
2

= Tg
q

Ne
E            (3.5)

and

,
2

e

Tk
E

g

B
D λ

π
=          (3.6)

and τeffss is the effective time constant for steady-state formation,

( )
( ) .
21

21
2

2

die

gs

gD
effss

l

r
τ

λπ

λπ
τ

+

+
=                  (3.7)

In equation (3.7), rD, τdie and ls are, respectively, the length an electron travels before

recombination, the dielectric relation time (τdie = ε/neµ), and the Debye length (ls = [ε

kBT/(NTe
2)]½ ).  The dielectric relaxation time and the Debye length will be discussed in

greater detail in the paragraphs below. The effective trap density, NT, which is the number

of traps that are available for recombination under CW illumination, is related to the dark

densities of neutral (N-N+
D) and ionized traps (N+

D) through the equation:
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In our semi-insulating GaAs crystal, where the dark densities of neutral and ionized EL2

are 1.2x1016 cm-3 and 1.4x1015 cm-3, respectively, the effective trap density is 1.25 x1015

cm-3.



63

The magnitude of the steady-state space-charge field is dependent on the relative

importance of drift and diffusion in carrier transport.  This is reflected in equations (3.4) –

(3.6) and that the magnitude of Escss is dependent only on λg through Eq and ED, which are

limiting fields that are generated when diffusion and drift, respectively, dominate carrier

transport.  In the limit of small grating periods, diffusion dominates carrier transport, so

that diffusion and then recombination completely destroy any modulation in the

photogenerated carrier density.  This results in the maximum possible charge separation

between the ionized EL2 and acceptor populations, which produces the field magnitude

given by equation (3.5).  The dependence of this field magnitude on the effective trap

density illustrates the fact that the maximum attainable steady-state space-charge field is

limited by the amount of charge that can be trapped in the material.  In the limit of large

grating spacings, electronic drift balances diffusion, so that diffusive decay of the

modulated carrier density ceases, and the modulated free carrier density is destroyed only

by recombination.  In this limit, the field magnitude, which is given by equation (3.6), is

inversely proportional to grating spacing, and independent of any material parameters.

An important point to note about the steady-state space-charge field magnitude is

that it is 90o out of phase with the incident intensity pattern, as indicated by the presence

of the factor (-i) in equation (3.7).  In chapter IV, this will be shown to result in energy

transfer between beams in the two beam geometry shown in figure 3.1.  The energy

transfer properties of the photorefractive grating, which are another important

characteristic of this nonlinearity, make photorefractive gratings useful for coherent

operations such as image amplification and phase locking of lasers.
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Equation (3.7) shows that the rise time of the steady-state space-charge field (τefss)

reduces to the dielectric relaxation time in the limit of large grating periods.  This can be

easily understood by noting that drift dominates carrier transport and field formation at

large grating periods (see above), and that the dielectric relaxation time is the

characteristic time for the build-up of the space-charge field (see below).  At smaller

grating spacings, where the ratios of the diffusion and Debye lengths to the grating period

can not be neglected, the rise time is material-dependent.

The dielectric relaxation time can be written in terms of the carrier excitation rate (

αI/hν) and recombination time (τR) to illustrate two important points:

.
R

die Ie
h
µτα
νετ =          (3.8)

Here h is Planck’s constant, ε is the material permittivity, ν is the frequency of the

optical beam, and α is the material’s linear absorption coefficient.  First, as equation (3.8)

shows, the steady-state field forms more quickly when the carrier mobility-lifetime product

(µτR) is large.  As discussed in Chapter I, this corresponds to a large photorefractive

efficiency, which is the charge separation that can be generated on a per-carrier basis (see

Chapter I).  Second, equation (3.8) shows that that the field formation time is inversely

proportional to the optical intensity (I).  Since the steady-state space-charge field is

formed under excitation conditions where the carrier generation rate is much smaller than

the carrier diffusion and recombination rates, this is not surprising.  However, due to its

dependence on the optical intensity, the steady-state formation time can not be regarded as

the fundamental formation time of the space-charge field.  Instead, the fundamental
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formation time is the time required for a single charge carrier to diffuse across the grating

period.  This can only be observed in experiments where the carrier generation rates are

much larger than the carrier diffusion and recombination rates, which is the case in the

transient photorefractive experiments described in this thesis.

The Dielectric Relaxation Time and Debye Length

The dielectric relaxation time is an important constant in the temporal dynamics of

both the transient and steady-state space-charge fields.  Therefore, since an understanding

of the dielectric relaxation time is key in understanding the space-charge field dynamics, it

is necessary to briefly review this constant before proceeding.  In addition, since the Debye

length is related to the dielectric relaxation time, we also discuss this constant in the

context of our experiments.

The dielectric relaxation time is generally defined as the time constant associated

with the exponential decay of a perturbation in a material’s majority carrier density (and

the resulting space-charge field), where the mechanism responsible for destroying the

carrier density perturbation is drift due to the induced space-charge field (K. Seeger,

1985).  Not surprisingly, the dielectric relaxation time is proportional to the material

permittivity, and inversely proportional to the carrier density and mobility (τdie = ε/neµ).

In this thesis, solution of the carrier transport equations yields the dielectric relaxation

time as the time constant for an equivalent but converse process: the build-up of the

space-charge field due to the diffusion of free carriers.  As we will see, the space-charge

fields that are generated in our experiments can have a significant effect on carrier

transport.  Thus, for the purposes of this thesis, we define the dielectric relaxation time as
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the characteristic time for the build-up of the space-charge field, such that drift plays a

significant role in carrier transport.  Similarly, since the Debye length is generally defined

as the length that carriers diffuse in the dielectric relaxation time (K. Seeger, 1985), in the

context of our experiments, the Debye length can be thought of as the characteristic

distance that carriers can travel in forming an appreciable space-charge field.

3.3 The Transient Space-Charge Fields

Having reviewed the steady-state space-charge field, we now discuss the

magnitude and dynamics of the transient space-charge fields that are generated in our

experiments. We have already shown in Chapter II that for our experimental conditions,

excitation of the semi-insulating GaAs and undoped CdTe crystals produces, respectively,

electrons, holes and ionized EL2, and electrons and holes.  Thus, in this section we discuss

two illustrative transient space-charge fields; the field between equal populations of

ionized EL2 and electrons, and the Dember field, which is the field between equal

populations of electrons and holes.  In each case, in order to give the reader an intuitive

and reasonably accurate description of the picosecond carrier and field dynamics, we begin

by discussing the solution to the carrier transport and field equations in the low

modulation limit.  However, while this approximation allows these equations to be solved

analytically, our experiments are conducted with a (high) unity modulation ratio.

Therefore, we follow this procedure by numerically solving the carrier transport and field

equations in the high modulation limit.  This section should be considered the most
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important of this chapter, as it provides background that is necessary for understanding

fluence- and probe delay-dependencies of the diffraction efficiencies that we measure.

3.3.1 Fundamental Equations

The equations that are used for modeling transient space-charge field formation are

well established.  These equations, which include the carrier generation equations

developed in Chapter II along with equations and terms to include the effects of carrier

transport and space-charge field formation, have been used to model photorefraction (A.L.

Smirl et al., 1988) and transient energy transfer (G.C. Valley, 1988) on picosecond time

scales.  These equations are:
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Every quantity in these equations has been previously defined except je, jp, and µp, which

are the electron and hole current density vectors, and the hole mobility.  Equations (3.9)
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and (3.10) can be seen to be continuity equations involving the carrier generation rates,

and the divergence of the carrier current densities.  Since the photovoltaic transport length

is much less than the diffusion lengths in semiconductors, carrier transport due to the

photovoltaic effect has been neglected from equations (3.12) and (3.13) (A.M. Glass and

J. Strait, 1988).  Equation (3.14) is simply Gauss’ Law, which relates the divergence of

the space-charge field to the charge density and permittivity constant.

In comparing equations (3.9) – (3.14) with the carrier generation equations of

Chapter II, it is immediately obvious that equations (3.9) – (3.12) do not consider carrier

recombination.  This is because the carrier recombination times that are characteristic of

these experiments are much larger than the field formation times.  For example, as was

shown in Chapter II, the minimum electron recombination time in our semi-insulating

GaAs crystal is ~7ns.  In contrast, the maximum field formation time in GaAs, which is the

time required for free electrons to diffuse across the grating period, is ~5ps.  The large

discrepancy between the carrier recombination and diffusion times is key to an important

difference between the steady-state and transient space-charge fields.  Since the steady-

state space-charge field arises from a charge separation between immobile species, carrier

recombination plays a vital part in field formation (see section 3.2).  However, as we will

see in the remainder of this chapter, the transient space-charge fields arise from charge

separations involving free carriers, so that carrier recombination is not necessary in

forming these fields.  This result will be shown to have several important ramifications in

the discussions that follow.
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It must be further noted that in this analysis, we will assume that carrier

thermalization (the process by which the photogenerated electrons come to equilibrium

amongst themselves) and cooling (the process by which the electrons come to equilibrium

with the lattice) occur instantaneously. In making this assumption, we assume that carrier

transport occurs at a constant lattice temperature of 300K and that the carrier mobilities

are the measured drift mobilities.  For the purpose of estimation in this chapter, we use

values of 5000cm2/V-s and 400cm2/V-s (G.C. Valley et al., 1989), respectively, for the

electron and hole mobilities in GaAs, and electron and hole mobilities of 1050cm2/V-s and

90cm2/V-s, respectively, for CdTe (M. S. Petrovic et al., 1991).  In Chapter VII and VIII,

where we discuss our undoped CdTe and semi-insulating GaAs experimental results, we

use the ambipolar decay constant to independently measure the hole mobilities for these

materials.  In using the above carrier mobilities, we are assuming that the carriers are in

thermal equilibrium at the lattice temperature throughout our experiments.  As we

discussed in Chapter II, this assumption is not completely valid.  However, making this

assumption allows us to describe carrier transport and field formation with a (relatively)

simple set of equations.

In equations (3.9) – (3.14), carrier transport is taken into account through the

divergence of the electron and hole current densities which are given by equations (3.12)

and (3.13).  Since the space-charge fields are generated as a result of carrier transport,

many of the concepts that are discussed in this chapter are directly related to the terms in

equations (3.12) and (3.13), and their interplay.  Therefore, before proceeding, it is

necessary to discuss these equations in greater detail.  The electron and hole current
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densities each contain components describing the diffusion of carriers due to spatial

gradients in carrier density (∇n and ∇p) and drift due to the generated space-charge field.

Both current densities show that free electrons and holes diffuse from areas of greater

concentration to areas of lesser concentration.  In the case of the electron current density,

this follows from the fact that the motion of the electrons is in the direction opposite from

the direction of the electron current density.  In our experiments, where there is no applied

electric field, electronic diffusion displaces negative charge to areas where the electron

concentration is least, resulting in a space-charge field vector that points from the maxima

of the t=0 carrier distributions to the minima of the t=0 carrier distributions.  In light of

this and the direction of the electron motion relative to the electron current density,

equation (3.12) shows that electronic drift opposes electronic diffusion.  However,

equation (3.13) shows that hole drift is in the same direction as hole diffusion, and

therefore acts with diffusion to destroy the gradient in carrier density.  Thus, in the

experiments described in this thesis, electronic diffusion is opposed by electronic drift due

to the space-charge field, while hole diffusion and drift are in the same direction.

The interplay between the electronic diffusion and drift currents has already been

shown to be important in the formation of the steady-state space-charge field.  In the

remainder of this section, we will see that this interplay is key in the formation of both the

transient space-charge fields.  Not surprisingly, in the case of the transient space-charge

field between free electrons and ionized EL2, the diffusion/drift interplay produces similar

results as were seen with the steady-state space-charge field.  In the case of the transient

space-charge field between electrons and holes, this interplay will be shown to cause the
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free electrons and holes to diffuse together.  Called ambipolar diffusion, this process

destroys the space-charge field between electrons and holes.

3.3.2 Transient Space-Charge Fields – Electrons and Ionized EL2

The carrier and field equations given above (equations (3.9) – (3.14)) are solved in

Appendix C in the limit of a small modulation, and where the free carriers are assumed to

be generated instantaneously.  In solving these equations, we find that they are most easily

discussed in terms of two limits of carrier transport.  These limits, which we call the

diffusion and drift limits, are dictated by the carrier density, and reflect the importance of

electronic drift (due to the space-charge field) in carrier transport.  Since the relative

importance of diffusion and drift are dependent on carrier density, it is necessary to define

a critical carrier density at which diffusion and drift contribute easily.  Thus, before

discussing the solutions to equations (3.9) – (3.14), it is necessary to discuss this carrier

density.

Diffusion and Drift – The Critical Carrier Density

In solving the equations (3.9) – (3.14) we find that the magnitude and dynamics of

the electron density and space-charge field depend on two constants:

ε
µ en e

die
0=Γ ,                  (3.15)

and
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=Γ ,                      (3.16)
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which are the inverse of the dielectric relaxation time and the time required for electrons

to diffuse across the grating period.  Clearly, the magnitude and dynamics of the carrier

density and field will be dominated by the dielectric relaxation rate at high carrier densities,

and by the electronic diffusion rate at low carrier densities.  The electronic diffusion and

dielectric relaxation rates are equal at the critical carrier density:

( )
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n

λ
επ

= ,           (3.17)

that is ~2.5x1014cm-3 for semi-insulating GaAs.  For carrier densities less than n0crit, ΓDn > 

Γdie, and electronic diffusion dominates the carrier and field dynamics.  Conversely, for

carrier densities above this value, Γdie > ΓDn, and electronic drift dominates the carrier and

field dynamics.  In the following paragraphs we consider the solution to the above

equations in these two limits: when ΓDn >>Γdie, and when Γdie >> ΓDn.

ΓDn >>Γdie – The Diffusion Limit of Carrier Dynamics

At low carrier densities, where ΓDn >>Γdie, the time dependent modulated free

electron density (equation (C.16)) reduces to;

tDnentn Γ−≈ )0()( 11 .                                       (3.18)

Under these circumstances, the modulated free electron density can be seen to decay

exponentially with a time constant that is characteristic of the diffusion of electrons across

the grating period.  At t=∞, the modulated free carrier density is zero, so that a spatially

uniform free electron density exists within the material.  This free electron density will

persist in the material until it is destroyed by electron/ionized EL2 recombination (see
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Chapter II), and this has been shown to result in the steady-state space-charge field (see

section 3.2).  Recalling the discussion of section 3.3.1, the above situation corresponds to

one where, at all times, carrier transport is dictated by the diffusion current density.  Under

these circumstances, diffusion results in a space-charge field, but the field is never large

enough so that electronic drift significantly opposes diffusion, and diffusion completely

destroys the modulated carrier density.  Thus, the limit where ΓDn >> Γdie corresponds to

the diffusion limit of carrier transport.

In the limit where ΓDn >> Γdie, the transient space-charge field (equation (C.17))

reduces to;

( )t
qsctr

DneimEE Γ−−−≈ 1' .                           (3.19)

Here Eq’ is given by the equation:
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q .                          (C.18)

Equation (3.19) shows that the space-charge field forms exponentially with a time

constant characteristic of the diffusion of free electrons across the grating period.  Using

values for the grating period (1.7µm) and the electron drift mobility, we can see that the

characteristic field formation time (ΓDn
-1) in GaAs is roughly 5.5ps.  Referring to the

discussions of the previous section, this can be considered the fundamental formation time

for the photorefractive nonlinearity in semi-insulating GaAs.

Equation (3.19) shows that, at t=∞, when the modulated free carrier density has

been completely destroyed, the field magnitude is Eq’.  The field Eq’ can be seen to be

nearly identical to Eq (equation (3.5)), the steady-state field magnitude that results when
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diffusion dominates carrier transport.  Like Eq, Eq’ is the maximum space-charge field that

can be generated at any grating spacing.  However, while Eq was produced from a charge

separation between negatively charged acceptors and a modulated density of ionized EL2,

Eq’ results from a charge separation between a spatially uniform density of free electrons

and a modulated density of ionized EL2.  As a result, while the maximum steady-state

space-charge field is limited by the density of charge that can be trapped in the material

(through the effective trap density, NT), the maximum transient space-charge field is

limited by the density of neutral EL2 that can be photoionized (N1
+).  This difference is not

surprising, and follows from the role that recombination plays in forming the steady-state

and transient space-charge fields.

Close inspection of Eq’ (equation (C.18)) might seem to indicate that it is possible

to generate an arbitrarily large space-charge field through transient excitation (through the

presence of N1
+).  If this were possible, it would be a major contrast between Eq’ and the

equivalent steady-state field Eq (equation (3.5)), which is limited by the amount of charge

that can be trapped in the material.  However, in practical situations, the magnitude of Eq’

is limited by saturation of the EL2 transition.  Recalling the discussion of section 2.2.4,

under transient excitation conditions, the maximum density of ionized EL2 that can be

generated by photoexcitation is N+
sat (equation (2.17)), the ionized EL2 density where the

hole generation rate is equal to the electron generation rate.  Therefore, the maximum free

electron/ionized EL2 space-charge field that can be generated in our semi-insulating GaAs

crystal is:
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We can estimate the magnitude of E’qmax using the value for N+
sat (given in section 2.2.4),

along with our grating spacing of 1.7µm, and the GaAs permittivity (12.04x8.854x10-14

F/cm).  These values yield a field magnitude of  ~27kV/cm.

It is important to note that, while E’qmax is the maximum free electron/ionized EL2

transient space-charge field that can be generated in our semi-insulating GaAs for the

experimental conditions, it is not the space-charge field magnitude that would be observed

in the diffusion limit of carrier dynamics.  This follows from the fact that the value of N+
sat

(6.8x1015cm-3), which is an order of magnitude larger than n0crit, so that the criteria for

diffusion limited dynamics ((ΓDn >> Γdie) is not met.  In order to estimate the field

magnitude that would be observed in the diffusion limit of carrier dynamics, we use a

carrier density which is less than n0crit, along with the grating spacing and permittivity

value given above.  Using a carrier density of 1x1012cm-3 (corresponds to Γdie=7.5x109s-1),

equation (C.18) yields a field value of ~4V/cm.

Γdie >>ΓDn – The Drift Limit of Carrier Dynamics

For carrier densities above the critical carrier density, where Γdie >>ΓDn, the time

dependent modulated free electron density reduces to:

)0()( 11 ntn ≈ .                 (3.20)

This result describes the situation where electronic diffusion quickly produces a large

enough space-charge field so that the electronic drift and diffusion current densities
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balance, and electronic diffusion ceases.  Under these circumstances, the modulated carrier

density decays only slightly before this balance is met, so that the modulated carrier

density changes little from its initial value. This is the drift limit of carrier transport that

was described previously.

In this same limit (Γdie >> ΓDn), ED/E’q <<1, and the transient space-charge field

(equation (C.17)) reduces to;

( )t
Dsctr

dieeimEE Γ−−−≈ 1 .                           (3.21)

Thus, the field rises exponentially to the magnitude, ED (equation (3.6)), and the formation

constant is Γdie
-1.  We can arrive at the drift-limited field magnitude separately by

considering the situation described in the previous paragraph, where the electronic drift

and diffusion current densities balance.  Under these circumstances,

nTkEne Besctre ∇= µµ .                      (3.22)

If we use equations (C.10) and (3.20) to determine the carrier density, and use the

relationship between the n0 and n1 components of the carrier density, we find that the

magnitude of the space-charge field is given by ED.  For a grating spacing of 1.7µm and a

lattice temperature of 300K, equation (3.6) yields a drift-limited field magnitude of

~95V/cm (m=0.1).

Equation (3.21) shows that the drift limited field formation constant is the

dielectric relaxation time (Γdie
-1 = τdie = ε/n0eµe).  This is not surprising, since the dielectric

relaxation time is the characteristic time for field formation due to the diffusion of free

carriers.  At the highest excitation fluences used in these experiments, we generate carrier
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densities as high as ~1x1017 cm-3 in our GaAs crystal.  Under these circumstances, Γdie

(7.5x1013 s-1) is much greater than ΓDn (1.8x1011s-1), so that the resulting space-charge

field forms according to the drift limit of carrier dynamics, and the corresponding

dielectric relaxation time is ~13fs.  If we use this dielectric relaxation time together with

the electron diffusion coefficient for semi-insulating GaAs, we can determine the Debye

length (ls = [Dnτdie]
½ ), which is the distance that free carriers can diffuse in forming the

space-charge field.  Using the Einstein relation between the electron mobility and diffusion

coefficient (Dn=µekBT/e), we find a Debye length of ~1.2x10-2 µm for this carrier density.

Thus, for the peak carrier densities generated in our experiments, the modulated carrier

density decays little before the diffusion/drift balance is reached, and equation (3.20) is an

excellent approximation.

Together with the discussions of the previous paragraphs, equations (3.6) and

(3.22) give an idea of how hot carrier transport leads to an increased transient space-

charge field magnitude.  As discussed above, the drift-limited space-charge field

magnitude is dictated by the diffusion/drift current density balance (equation (3.22)).

Under these circumstances, the space-charge field magnitude is given by ED (equation

(3.6)).  If we assume that carrier thermalization occurs instantaneously with respect to

carrier transport, then the free electron population is represented by a Fermi-Dirac

distribution function with an elevated temperature.  Then, the electron diffusion current

density is increased as a result of its dependence on carrier temperature.  However, since

the drift-limited field magnitude is determined by the balance described above, the space-

charge field magnitude must increase in order for this balance to be met.  This can be
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easily seen by noting that ED increases as the electron temperature increases.  Thus, in the

drift limit of carrier dynamics, hot carrier transport results in an increased space-charge

field.

Carrier Density Dependence of Space-Charge Field Magnitude

In considering the electron/ionized EL2 transient space-charge field, it is important

to consider the dependence of the space-charge field on carrier density.  In later chapters,

where the experimental results are considered, the behavior described here will be

compared with diffraction efficiency versus fluence data to aid in associating the diffracted

signal with the photorefractive nonlinearity.

The carrier density dependence on the space-charge field magnitude is given by the

magnitude of the transient space-charge field (equation (C.17)), and equations (3.6) and

(C.18).  The transient space-charge field magnitude is plotted in figure 3.3 as a function of

dc carrier density (n0) for a grating spacing of 1.7 µm, and a modulation ratio of 0.1.  In

addition, we have included two lines on the plot; lines to illustrate Eq’ and the critical

carrier density at which diffusion and drift play equal parts in forming the field.

The carrier density dependence of the space-charge field follows directly from the

field magnitude in the diffusion and drift limits of carrier transport.  At low carrier

densities, in the diffusion limit of carrier transport, the space-charge field magnitude

follows Eq’, and depends linearly on the free carrier density (equations (C.18) and (3.19)).

At high carrier densities, in the drift limit of carrier transport, the space-charge field

magnitude is constant at ED, and is therefore independent of carrier density (equations
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Figure 3.3 – Dependence of the space-charge field magnitude on dc carrier density
for a 1.7µm grating period.  The space-charge field is due to equal populations of
electrons and ionized EL2.

(3.6) and (3.21)).  At intermediate carrier densities, the space-charge field magnitude

increases sub-linearly with carrier density.  In our experiments, we generate free carrier

densities that are always greater than or equal to the critical carrier density.  Thus, while

our experimental results are expected to exhibit drift-limited carrier dynamics, when we

monitor the fluence dependence of the photorefractive diffraction efficiencies, we expect

the diffraction efficiencies to increase at a rate less than the carrier generation rate.

3.3.3 Electrons and Holes

In this section, we summarize the solution to equations (3.9) – (3.14) for equal

populations of electrons and holes, which is considered in section C.4.  As in the previous

section, it is convenient to discuss the solution to these equations in terms of the diffusion
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and drift limits of carrier dynamics.  However, since ambipolar diffusion is an important

concept in discussing the solutions to these equations in both limits, we begin by reviewing

this transport process.  The space-charge field that is generated between electrons and

holes is the Dember field, and arises as a result of the disparity between the diffusion rates

of these species.  Since this field is between two mobile species, it decays in times less than

1ns (for typical conditions in GaAs and CdTe) and is therefore unique to transient

photorefractive experiments.  In our experiments, large populations of electrons and holes

are generated in both GaAs and CdTe as a result of the carrier generation processes

discussed in Chapter II.  Thus both materials can be expected to exhibit a substantial

Dember field-related photorefractive nonlinearity.

Ambipolar Diffusion

Before discussing the solutions to equations for the case of electrons and holes, it

is necessary to review ambipolar diffusion, and the interplay that occurs between the

electron and hole current densities.  Just as the interplay between the electron diffusion

and drift current densities dictated the magnitude and dynamics of the electron/ionized

EL2 space-charge field, the magnitude and dynamics of the electron/hole space-charge

field are dictated by the interplay between the electron and hole current densities.

Recalling the discussion of section 3.3.1, the modulated electron density decays

faster than the modulated hole density, a result that gives rise to a charge separation and

space-charge field.  However, while the drift portion of the electron current density acts to

oppose electron diffusion, the drift portion of the hole current density acts to enhance hole
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diffusion.  As a result, when the magnitude of the space-charge field is large enough, the

electron and hole current densities balance, and the electron-hole pairs diffuse together as

a single equivalent carrier species.  This transport process, which is called ambipolar

diffusion, is responsible for destroying the modulated electron and hole carrier densities, as

well as the space-charge field.

To gain a better analytical understanding of ambipolar diffusion, we can use the

electron and hole current densities (equations (3.12) – (3.13)) to form an equivalent

current density (jeq) for the electron-hole pairs.  Since the same space-charge field appears

in both current densities, the equivalent current density can be formed by first solving for

the electron current density (je) in terms of the space-charge field, and then substituting

this result into the hole current density (jp).  Following this, if we use the fact that the

current densities balance (je + jp = 0) for the situation of interest, we find the equivalent

current density, jeq:

nTkj BAeq ∇= µ ,                 (3.23)

in terms of the gradient in the electron-hole pair density (∇n), and the ambipolar mobility (

µA) of the electron-hole pairs.  The ambipolar mobility is related to the electron and hole

densities (n, p), the electron and hole mobilities (µe, µh) and the modulations of the

electron and hole densities (me, mh) through the equation:
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.           (3.24)

Thus, equations (3.23) and (3.24) show that the overall effect of the electron-hole

(Dember) space-charge field is to force the carriers to diffuse together as a single
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equivalent species.  This diffusion, which destroys the modulated density of electron-hole

pairs and the modulated space-charge field, occurs according to the ambipolar mobility.

The ambipolar mobility can range in value from the hole mobility to the electron mobility,

depending on the density of carriers present, and the carrier modulation.  In the

paragraphs below, we will discuss the ambipolar mobility in light of our experimental

conditions and the diffusion and drift limits of carrier and field dynamics.

ΓDn ΓDp >>Γdie, Γdip – The Diffusion Limit of Carrier Dynamics

For carrier densities much less than the critical carrier density of 2.5x1014cm-3

(n0crit, equation (3.33)), ΓDn ΓDp >>Γdie, Γdip, and equations (C.22) – (C.24) reduce to:
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The space-charge field magnitude E’qnp is:
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and is defined as such because of its similarity to Eq and E’q.  The constant ΓDA, which is

the ambipolar diffusion rate for the 1.7µm grating period and equal populations of



83

electrons and holes, is defined in a similar way as the electron and hole diffusion rates (Γ

DA=τDA
-1 = (2π)2µAkBT/λg

2e) .  The ambipolar mobility that is used in ΓDA is that which

results from equation (3.24), when equal populations of electrons and holes and equal

electron and hole carrier density gradients are present:
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.                      (3.29)

For the materials studied in this thesis, the electron mobility is roughly an order of

magnitude larger than the hole mobility (µe/µp ≈12.5 for semi-insulating GaAs, µe/µp ≈

11.5 for undoped CdTe).  Thus, in deriving the above equations we have used the fact

that, in both materials, ΓDn ~10ΓDp, so that µA ~ 2µp and ΓDA/2 ~ΓDp.  Though the constant 

ΓDA/2 is nearly equal to ΓDp, we have used ΓDA/2 in the above equations for reasons that

will be made obvious in the paragraphs below.

Equations (3.25) and (3.26) describe the dynamics of the modulated electron and

hole populations in terms of two exponentially-decaying components.  In both cases, the

rates associated with these terms are the electronic diffusion rate (ΓDn), and one half the

ambipolar diffusion rate (ΓDA/2).  In both equations, the fraction of the modulated carrier

density that decays according to each rate is given by the ratio of the electron and hole

diffusion rates to their sum.  For example, since ΓDn/(ΓDn + ΓDp) is approximately equal to

one for our experimental conditions, equation (3.25) tells us that a very large fraction of

the modulated free electron density decays according to the electron diffusion rate.  In

contrast, since ΓDp/(ΓDn + ΓDp) is much less than one, equation (3.26) tells us that a very
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small fraction of the modulated hole density decays according to the same rate.  This result

is not surprising, since the hole mobility is much less than the electron mobility.

Equations (3.25) - (3.27) give the following picture of carrier transport and space-

charge field formation.  Since the electron mobility is larger than the hole mobility, the

modulated electron density is destroyed more quickly than the modulated hole density, a

result that gives rise to a charge separation and space-charge field.  In equations (3.25)

and (3.49), this is reflected in the fact that the fraction of the modulated electron

population which decays via the electron diffusion rate (ΓDn/(ΓDn + ΓDp)) is much larger

than the fraction of the modulated hole population that decays via the same rate (ΓDp/(ΓDn

+ ΓDp)).  As can be seen from equation (3.28), this disparity also dictates the peak

magnitude of the space-charge field (ΓDn - ΓDp/(ΓDn + ΓDp) = µn - µp/(µn + µp)).  Even

though the space-charge field is weak (due to the low carrier density), it still affects carrier

transport by causing the electrons to diffuse together with the holes at the ambipolar

mobility. This is reflected in the equations for the modulated electron (3.25) and hole

(3.26) densities by the presence of the exponentially-decaying term involving one half the

ambipolar diffusion rate.  However, as can be seen by comparing the two terms in

equation (3.25), ambipolar diffusion does not significantly affect the decay of the

modulated electron density until t ≥ 3τDn.  As a result, since the modulated electron density

has decayed to less than e-3 of its initial value by this time, the ambipolar mobility is equal

to one half the value given by equation (3.29), which is what is expected for an electron

modulation of zero (me →0, equation (3.24)).
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Thus in the low carrier density limit, the modulated electron and hole densities

decay nearly independently.  While the space-charge field rises with the decay of the

modulated electron population, it decays with the decay of the modulated hole population.

The peak space-charge field reflects a charge separation where the modulated hole density

is nearly equal to its initial value, and the modulated electron density is nearly equal to

zero.  The characteristic rise time of the diffusion-limited Dember field can be

approximated by the electron diffusion time, which is ~5.5ps in semi-insulating GaAs and

~26ps in undoped CdTe (for a 1.7µm grating period).  The space-charge field decays with

the decay of the modulated hole population, which is ~69ps for semi-insulating GaAs and

~310ps for undoped CdTe for our 1.7µm grating periods.  Equation (3.28) can be used to

estimate the peak magnitude of the diffusion-limited Dember field in both semi-insulating

GaAs and undoped CdTe.  Using a modulated free carrier density of 1x1012cm-3, we

estimated a field magnitude of ~4V/cm for the electron/ionized EL2 field.  Using this

value, along with the electron and hole mobilities for semi-insulating GaAs (µe =

5000cm2/V-s, µp = 400cm2/V-s), we find a field magnitude of ~3.4V/cm.  For undoped

CdTe, we use the same carrier density, a relative permittivity of 10.4 (K. Zanio, 1978),

and the electron and hole mobilities (1050cm2/V-s and 90cm2/V-s) (M. Petrovic et. al,

1991), to find a field magnitude of ~4.0V/cm.

Γdie Γdip >>ΓDn, ΓDp – The Drift Limit of Carrier Dynamics

In the drift limit of carrier dynamics (n0 >> n0crit, Γdie Γdip >>ΓDn, ΓDp), equations

(C.22) – (C.24) reduce to:
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The space-charge field magnitude EDnp is:
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which is similar to the space-charge field ED which appeared in the results for the steady-

state and electron/ionized EL2 space-charge fields.  Like all the other space-charge fields,

the Dember space-charge field is 90° out of phase with the incident irradiance profile.

As in the diffusion limit, equations (3.30) – (3.32) describe the electron, hole and

space-charge field dynamics in terms of two exponentially-decaying terms that are

characteristic of the system.  In this limit, the rates that characterize these terms are the

ambipolar diffusion rate (ΓDA), and a composite rate which involves the electron and hole

dielectric relaxation rates and the ambipolar diffusion rate (Γdie + Γdip - ΓDA), but is

approximately equal to the electron dielectric relaxation rate (Γdie > Γdip >> ΓDA).  Just as in

the diffusion limit, ratios involving the electron and hole diffusion rates (ΓDn, ΓDp) and the

sum of the electron and hole dielectric relaxation rates (Γdie + Γdip) determine the fraction

of the modulated electron and hole densities that are associated with each decay.  In the
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drift limit of carrier dynamics, Γdie and Γdip are at least 2 orders of magnitude larger than Γ

DA, a fact that leads to two important results regarding equations (3.30) – (3.32).  First, the

exponential decay associated with the composite rate of Γdie, Γdip and ΓDA can be thought of

as occurring instantaneously compared to the decay associated with the ambipolar

diffusion rate (ΓDA).  Second, the fractions of the modulated electron and hole populations

that decay according to the composite rate are very small compared to the fractions that

decay according to the ambipolar diffusion rate.

Equations (3.30) – (3.32) give a picture of carrier and space-charge field dynamics

that is similar to that which was seen for the diffusion limit.  As in the diffusion limit,

diffusive decay of the modulated electron density occurs more quickly than diffusive decay

of the modulated hole density.  This is reflected in equations (3.30) and (3.31) by the fact

that the fraction of the modulated electron density that decays according to the composite

rate (ΓDn/(Γdie + Γdip)) is larger than the corresponding fraction of the modulated hole

density (ΓDp/(Γdie + Γdip)).  The diffusive decay of the electrons and holes quickly leads to

a large space-charge field (due to the high carrier density), and the rise time of the field is

commensurate with the initial decay of the modulated electron and hole densities.   The

field reaches it peak value as the electron and hole current densities balance, and thereafter

the modulated electron and hole densities decay together via ambipolar diffusion.  Under

these circumstances, since the modulated electron and hole densities balance before

significant decay occurs, the ambipolar mobility is given by equation (3.29).



88

Equations (3.30) – (3.33) can be used to estimate the rise and decay times of the

space-charge field, and the peak field magnitude.  Assuming a carrier density of 1x1017cm-

3, we find a field formation time of ~10fs for semi-insulating GaAs and ~55fs for undoped

CdTe.  Assuming a 1.7µm grating period and the electron and hole mobilities given

before, we find an ambipolar decay time of ~35ps for semi-insulating GaAs and ~155ps

for CdTe.  For a modulation ratio of 0.1, these values yield peak Dember field magnitudes

of 81V/cm in semi-insulating GaAs, and 78V/cm in undoped CdTe.

3.3.4 High Modulation Effects

The previous sections considered the carrier and space-charge field dynamics in the

small modulation limit.  However, our experiments were performed at a unity (high)

modulation depth.  Thus, the carrier and field dynamics reflected by our experimental

results will be slightly different from those that have been presented.  In this section we

consider these differences.  Whereas in the previous section we truncated the Fourier

series for the carrier densities, ionized EL2 population and space-charge field after the n=1

components, in this discussion we include higher-order components.  Since the resulting

equations for the carrier densities and space-charge field can not be solved analytically, we

solve these equations numerically and compare the results with those derived in the small

modulation limit.  Together with the small signal transient grating diffraction efficiency

and the relationships between the free carrier density and space-charge field and the free-

carrier and photorefractive index changes, the equations given in this section form the

basis for the transient-grating diffraction efficiency model that is discussed in Chapter VI.
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In modeling the carrier and field dynamics in the high modulation limit, we must

include a sufficient number of terms in the Fourier series for the carrier densities and

space-charge field so that our numerical model will accurately represents the carrier and

field dynamics.  However, because there is no reference against which to measure the

accuracy of our numerical model, we must use the following method for terminating the

Fourier series.  We know that as higher-order Fourier components of the space-charge

field are considered, the magnitude of the n=1 field component will increase.  If we

assume that the lower-order components for the carrier densities and field have a higher

magnitude than the higher-order components, then when a sufficient number of higher-

order components have been included (equation (3.27)), the magnitude of the n=1

component of the space-charge field will converge to a given value.  As an arbitrary limit,

we choose to truncate the Fourier series directly after the addition of a higher-order

carrier and field component changes the peak (n=1) field magnitude by less than 1%.  In

practice, we find that as we add the n=2,3,4, and 5 components, the peak field magnitude

increases successively by 28%, 5%, 1% and 0.3%.  Thus, since addition of the n=5

component causes the peak field magnitude to change by only 0.3%, we terminate the

Fourier series for the carrier densities and space-charge field after this component.

When the Fourier series for the electron and hole densities and space-charge field

are truncated after the n=5 components, the following equations result for the electrons:
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and the space-charge field:
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where kg is the wave number associated with the grating spacing λg.

In solving equations (3.34) – (3.48), we note three high modulation effects.  First,

as can be seen from figure 3.4, the peak field magnitude is roughly 30% higher than

predicted by equations (3.6) and (3.55) when a modulation ratio of near unity is

considered.  Second, the field formation time increases by as much as 60% from that

predicted by equations (3.37) and (3.54).  Finally, the Dember space-charge field exhibits

an initial, fast decay that is followed by the exponential decay that is predicted by equation

(3.32).  As discussed in section 3.3.3, the time constant for the latter decay is the

ambipolar diffusion time for the grating period.
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We can understand the high modulation effects that are noted above by recalling

that in the drift limit, the formation constant for the space-charge field is the dielectric

relaxation time, and this constant is dependent on carrier density.  In the high modulation

limit, there is a large variation in the free carrier density from the peaks to the valleys of

the carrier modulations, and this leads to a large spatial variation in the field formation

time.  At the peaks of the modulated carrier densities, where the field formation time is

fastest, the electrons diffuse only a short distance before the electron/hole current density

balance occurs.  However in the valleys, where field formation is much slower, the

electrons diffuse much farther before the current density balance occurs.  While this results

in a longer field formation time and a larger overall charge separation (and n=1 space-

charge field), it produces another important result.  Since the maximum charge separation

is not uniform across the grating spacing, higher-order harmonics of the carrier densities

and space-charge field are generated.

The third of the high modulation effects that we observe, the fast decay of the

electron-hole space-charge field, is shown in figure 3.4 for the CdTe carrier mobilities and

a 1.7µm grating period.  While we have included a reference line illustrating the decay of

the space-charge field in the low modulation limit, the data are plotted on a semi-

logarithmic scale, so that the exponential decay of the low-modulation space-charge field

follows a straight line.  The initial, fast decay of the high modulation space-charge field

can be understood in the following way.  Once the peak charge separation is reached and

the field begins to decay, the higher-order components of the carrier
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Figure 3.4 – Decay of the electron-hole space-charge field magnitude in the high
and low modulation limits.  As discussed in the text, the initial fast decay of the
field in the high modulation limit follows from the dependence of the n=1 space-
charge field on higher-order harmonics of the carrier densities.

densities decay more quickly than the n=1 component.  This result follows from the fact

that for successively higher harmonics of the carrier densities, the associated ambipolar

diffusion times decrease by a factor of n from the ambipolar diffusion time associated with

the grating spacing (τDA = λg
2e/((2π)2µAkBT)).  Since the n=1 component of the space-

charge field depends on the higher-order carrier densities (through the n=1 electron and

hole densities), an initial, fast decay of this space-charge field results.  Since the ambipolar

diffusion time is dependent on the square of the grating period, and is inversely

proportional to the ambipolar mobility, we expect this decay to be most visible in the

CdTe results (CdTe has a lesser hole mobility than GaAs) for the longest grating period

(3.8µm).
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Since our experimental results show an initial enhanced photorefractive diffraction

efficiency that is consistent with hot carrier effects, we can not observe the slower field

formation and larger field magnitude discussed above.  However, we do observe the

initial, fast decay of the Dember space-charge field that was described.  This is most easily

seen in the data for undoped CdTe, where the constant associated with the decay of the

photorefractive diffraction efficiency is slightly less than the constant for the decay of the

free carrier diffraction efficiency.

3.4 The Linear Electrooptic Effect in Zincblende Semiconductors

The linear electrooptic effect is an optical nonlinearity in which the application of

an electric field results in an index change whose magnitude is linearly proportional to the

field strength.  This optical nonlinearity, which is expressed in the material-dependent

electrooptic tensor, only occurs in materials that lack inversion symmetry, and generally

results in an anisotropic index change.  The linear electrooptic effect is important for the

purposes of this thesis because, with space-charge fields such as those discussed in the

previous section, it also produces the photorefractive nonlinearity.  The purpose of this

section is to consider some of the general electrooptic properties of zincblende

semiconductors, the magnitude of the photorefractive index changes in these materials,

and the properties of the index gratings which result from the generation of space-charge

fields such as those discussed in the previous section.
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3.4.1 Basic Electrooptic Properties of Zincblende Semiconductors

Zincblende semiconductors such as GaAs and CdTe lack inversion symmetry and,

as a result, exhibit a linear electrooptic effect.  Since these materials have m34
−

 crystal

symmetry, the only non-zero components which their (contracted) electrooptic tensors

possess are the equal r41, r52, and r63 components (i.e., rij=0 except r41, r52, and r63 ≠ 0)

(A. Yariv, 1985 and S. Namba, 1961).  The symmetry of the electrooptic effect in

zincblende semiconductors will be later shown to result in anisotropic photorefractive

index gratings which, when generated in a properly oriented crystal and probed with a

beam of the correct polarization, produce a polarization rotation of exactly 90°.

Photorefractive polarization rotation is an important part of the transient-grating

measurement technique used in our experiments: the 90° polarization produced by this

nonlinearity allows it to be separated from the other competing nonlinearities which do not

produce a polarization rotation.

As in other materials, the linear electrooptic nonlinearity in both GaAs and CdTe

has electronic and ionic contributions (C. Flytzannis, 1969, I. P Kaminow, 1974, and C.C.

Shih and A. Yariv, 1982).  These contributions, which are functions of the spectral content

of the applied and optical electric fields, give rise to second harmonic generation and

Raman effects, respectively.  In our experiments, the space-charge fields are generated in

times long enough to allow both the electronic and ionic components to contribute to the

linear electrooptic response.  Including both of these contributions, GaAs and CdTe have



96

r41 elements equal to 1.43pm/V and 5.5pm/V, respectively at a wavelength of

approximately 1µm (A. Yariv, 1985).

3.4.2 Magnitude of the Photorefractive Index Change in GaAs and CdTe

In the experiments performed in this thesis, the semi-insulating GaAs and undoped

CdTe crystals are orientated so that the photorefractive index change is given by the

equation:

scb Ernn 41
3

2

1
=∆ .                                (3.49)

All of the parameters used in this equation have been identified previously.  This equation

can be used with (1) the background indices of refraction in GaAs and CdTe, (2) the

values given previously for the electrooptic coefficients, and (3) the space-charge field, to

estimate the magnitude of the photorefractive index change in these materials.  In the drift

limit of carrier dynamics, both the electron-ionized EL2 and electron-hole space-charge

fields have peak magnitudes of approximately 1kV/cm when a unity modulation is

considered.  Using this field value with the electrooptic coefficients given above and the

background indices of 3.47 for GaAs and 2.82 for CdTe (A. Yariv, 1985), equation (3.49)

yields a maximum index changes of 6x10-6 in CdTe and 3x10-6 in GaAs.  These index

changes are small in magnitude, but also an order of magnitude smaller than the index

changes that are produced by the instantaneous bound electronic and free carrier

nonlinearities under similar (high excitation) conditions (see Chapter II).  In Chapter V,

we will see that this result places two important requirements on our measurement
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method.  First, since the photorefractive index change is small, we must use thick crystals

in our transient grating measurement technique in order to generate measurable

photorefractive effects over a wide range of excitation intensities.  Second, since the

photorefractive nonlinearity is smaller than the other competing nonlinearities, our

measurement technique must allow the photorefractive nonlinearity to be separated from

the other competing nonlinearities.

3.4.3 Generation of Photorefractive Index Gratings

When periodic space-charge fields such as those described in the previous section

are generated in an electrooptic material, a photorefractive index grating is produced.

Since the photorefractive index grating arises from the space-charge field, it differs in

phase from the modulated intensity pattern in the same way.  Thus, for our experimental

conditions, the space-charge fields and photorefractive index gratings generated in both

semi-insulating GaAs and undoped CdTe differ in phase from the incident intensity pattern

by 90°.  This phase difference produces the maximum steady-state energy transfer

between beams in the simple two beam arrangement shown in figure 3.1, and makes the

photorefractive nonlinearity ideal for applications such as those discussed in Chapter I.

3.5 Summary

In this chapter we have discussed the dynamics of the free carrier populations and

space-charge fields that are generated under picosecond excitation conditions, and in the

low and high modulation limits.  Our discussion has considered space-charge fields arising

from equal populations of electrons and (immobile) ionized El2, and from equal
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populations of electrons and holes.  For both of these space-charge fields, the magnitude

and dynamics of the field depends on the balance between the carrier diffusion and drift

current densities, which is dictated by the carrier densities that are present.  In the low

carrier density limit, which we have called the diffusion limit, carrier transport and field

formation is dominated by the diffusive decay of the modulated carrier populations.  As

the carrier density is increased above the critical value, which we have determined to be

roughly 2.5x1014cm-3 for semi-insulating GaAs, the magnitude of the space-charge field

increases, and the drift current density plays an increasingly important role in carrier

transport and field formation.  The high carrier density (drift) limit is characterized by a

balance between the diffusion and drift portions of the carrier current densities.  While the

diffusion/drift current density balance causes transport to cease in the case of the

electron/ionized EL2 space-charge field, it gives rise to ambipolar diffusion of the

electron-hole pairs in the case of the electron-hole (Dember) space-charge field.  While the

electron-ionized EL2 space-charge field is long-lived, the electron-hole space-charge field

decays on picosecond time scales.

The equations that we derive predict maximum space-charge fields of roughly

~1kV/cm for both the materials studied in this thesis.  Using literature values for the linear

electrooptic coefficients in semi-insulating GaAs and undoped CdTe, this results in

maximum photorefractive index changes of roughly 3-6x10-6 in these materials.
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4.1. Introduction

We have shown in Chapters II and III how illumination of our semi-insulating

GaAs and undoped CdTe crystals leads to a variety of absorptive and refractive optical

nonlinearities.  We have also shown that when our materials are illuminated with two

temporally and spatially coincident optical pulses, absorptive and refractive gratings are

induced as a result of these optical nonlinearities.  However, the optical fields that are

responsible for generating these gratings can themselves interact with the induced

gratings, a result that can give rise to energy and phase coupling between the beams.  In

this chapter we consider these two-beam coupling effects in the context of our transient

photorefractive experiments.

We begin by reviewing the equations for beam propagation in the two-beam

geometry that was shown in Chapter III, in the presence of induced index and absorption

gratings and under steady-state conditions.  We use these equations to give qualitative

descriptions of energy transfer in the steady-state and transient regimes, and then apply

the results of these discussions to our picosecond photorefractive measurements.  We

show that the unique energy transfer properties of the photorefractive grating, which arise

from its dependence on the material's electrooptic tensor, allow it to be distinguished

CHAPTER IV

TWO BEAM COUPLING AND TRANSIENT ENERGY TRANSFER
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from the other competing effects, including transient energy transfer and energy coupling

due to the EL2 absorption grating.  This discussion culminates in a description of what

has been the only method for measuring picosecond photorefractive effects in

semiconductors prior to the experiments described in this thesis.  Moreover, while the

two-beam coupling method outlined in this chapter allows picosecond photorefractive

effects to be measured, it requires the induced gratings to be ‘written’ and ‘read’ by the

same optical pulses.  This precludes an unambiguous measurement of the time evolution

of this nonlinearity and therefore dictates the need for the new three-beam, transient-

grating measurement method that is discussed in Chapter V.

4.2. Energy Transfer in The Steady-State

Before discussing energy transfer in the steady-state, we outline the process for

deriving the equations that describe this phenomenon.  This discussion will also serve as

a background for section 6.2, where we discuss the beam propagation equations that

describe our experiments.

The equations that describe self-diffraction are derived using coupled wave theory

(H. Kogelnik, 1969).  In general, this theory describes the coupling of ‘reference’ and

‘signal’ electric fields via phase-matched interactions with induced index or absorption

gratings.  In the two-beam coupling effects that we will discuss in this chapter, we

consider the coupling of two incident fields such as those shown in the simple two-beam

geometry given in chapter III.  For convenience, this geometry is shown again in figure

4.1.  Since the fields are responsible for generating the permittivity change, they are

automatically phase-matched to the induced grating.  In addition, since the crystal is
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Figure 4.1 – Two-beam geometry used in two-beam coupling and transient
energy-transfer experiments.

thick, the coupling that each field experiences is limited to the first-order Bragg reflection

from the permittivity grating.

We assume that the electric field inside the material takes the form:
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where we have assumed that the field magnitudes are complex quantities, oriented along

the y direction (perpendicular polarization), and that the fields propagate as plane waves.

To derive propagation equations for E±1, we substitute equation (4.1) into the wave

equation.  We assume that the material’s relative permittivity takes the form:
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which allows for linear absorption of the fields through the imaginary part of the

dielectric constant (εri).  We have also included a real induced permittivity grating (∆εr),

which occurs as a result of the interaction of the optical fields with the material (the

spatial frequency of ∆εr is that of the modulated intensity pattern).  We have assumed a
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general form for the induced permittivity change so that we can derive a general result for

energy transfer under steady-state conditions.  While we have assumed that the induced

permittivity change is real (refractive), this analysis is easily extended to consider

permittivity changes that are imaginary (absorptive).  Generally, the permittivity grating

has a phase that is determined by the material process that is responsible for producing

the optical nonlinearity.  To simplify this analysis, we set this phase to zero, and measure

all other phases relative to the phase of the permittivity grating.

In order to derive simple propagation equations, we make some standard

assumptions about the electric fields and the material.  First, we assume that the

magnitudes of the electric fields do not vary in the x and y directions (∂2E/∂x2, ∂E/∂x,

∂2E/∂y2, ∂E/∂y =0).  This is equivalent to assuming that the material is infinitely large in

the x and y directions, and that the fields propagate along the z direction inside the

material.  This is a good assumption for experiments like ours, since the optical spot size

is made to be small compared to the size of the crystal, and the half-angle between beams

that is required to produce our 1.7µm gratings small (< 5° inside the crystal).  Next, we

assume that the variation of the electric field magnitude with respect to z and t is small

compared to the z component of the spatial propagation frequency (kz) and the optical

frequency (ω).  This simplifies the process of determining the spatial and temporal

derivatives of the fields; terms involving the first and second derivatives of the field

magnitude with respect to time (∂2E/∂t2, ∂E/∂t) can be neglected compared to terms

involving ω2E, and terms involving the second derivative of the field magnitude with

respect to z (∂2E/∂z2) can be neglected with respect to kz
2E and kz (∂E/∂z).  For
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experiments like ours, the validity of this assumption follows from the fact that the

optical pulse duration (~1ps) is long compared to the oscillation period of the fields

(~2x10-14 s), and that any changes to the optical beam intensities are incurred over

distances long compared to the inverse of the spatial frequency of the fields (k-1 ~

0.01µm).  Finally, it is important to note that, since we are considering energy transfer

under steady-state conditions, we assume that the induced permittivity change is constant

with respect to time.

The process outlined above produces the following propagation equations for the

two complex electric fields:
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where we have assumed that the z component of the spatial propagation frequency (inside

the material) is approximately equal to its magnitude (|k| ~ kz), used the relationship

between the magnitudes of the spatial propagation frequency inside the material and in

free space (k=nbk0), and used the relationship between the linear absorption coefficient

and the imaginary component of the relative permittivity (α = kεri/nb
2).  These equations

can be put into terms that are more easily understood if we assume that each electric field

has the general form:

)()( ziezEE φ= ,

and that any phase change incurred by the fields occurs on spatial scales large compared

to the propagation frequency of the optical fields.  By substituting this form into
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equations (4.3) and (4.4), we can get equations for the two beam intensities and phases of

the two fields (I±1, φ±):
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In the above equations, ∆φ is the phase difference between the modulated intensity

pattern (φ+-φ-) and the induced grating, measured relative to the phase of the induced

grating.  Since the quantity ∆φ is measured relative to the phase of the induced grating, it

is generally determined by the material process that is responsible for forming the

grating.  As examples of this, we can consider the instantaneous bound electronic and

photorefractive nonlinearities discussed in Chapters II and III.  The instantaneous bound-

electronic index change for semi-insulating GaAs is -n2I (see Chapter II).  As a result, the

corresponding index grating is 180° out of phase with the modulated intensity pattern.

However, in contrast, the photorefractive index change is proportional to the induced

space-charge field, which we have seen is 90° out of phase with the incident intensity
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pattern.  As we will see below, these two index gratings can be expected to effect the

beams in different ways in the geometry given in figure 4.1.

Equations (4.5) – (4.8) illustrate two important points about energy transfer under

steady-state conditions.  First, the equations show that the beam intensities are coupled

through the induced permittivity change, and the beams can experience gain or loss as a

result of this coupling.  Equations (4.5) and (4.6) show that energy transfer between the

beams is maximum when the modulated intensity pattern and induced permittivity

grating differ in phase by 90°.  This result, which should be considered one of the most

important of this discussion, can be explained in the following way.  Equations (4.3) and

(4.4) show that each electric field has two components; the field component in the

absence of beam-coupling, which decays according to Beer’s law, and the component

that results from the coupling of the two fields via the induced permittivity grating

(equations (4.3) and (4.4)).  The equations show that, independent of any other factors,

the scattered field component is shifted in phase by 90° relative to the transmitted field

component.  However, the phase of the scattered electric field is also shifted by the phase

difference between the modulated intensity pattern and the induced permittivity grating.

While the phase difference ∆φ is subtracted in determining the magnitude of E+1, it is

added in determining the magnitude of E-1.  Thus, the case where ∆φ is +90° describes a

situation where the scattered contribution to E+1 is 180° out of phase with respect to the

transmitted component, so that E+1 experiences loss.  In contrast, for the same conditions,

the scattered component to E-1 is in phase with the transmitted component, so that E-1

experiences gain.
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Equations (4.5) – (4.8) show that, for the general permittivity change considered

in equation (4.2), the direction of energy transfer is from the strong beam to the weak

beam.  This can be understood by noting that for E-1 > E+1, φ+ > φ-, and equations (4.5)

and (4.6) hold, so that I+1 experiences gain while I-1 experiences the same amount of loss.

On the other hand, when E+1 > E-1, equations (4.7) and (4.8) show that φ- > φ+ so that ∆φ

reverses sign, and I-1 experiences gain while I+1 experiences the same amount of loss.

A similar derivation can be performed for the general case of an imaginary

(absorptive) induced permittivity change (∆εr→i∆εi).  Under these circumstances, the

process outlined above produces the following equations for the beam intensities and

phases of the two fields:

φ
ε

α ∆
∆
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Where, again, ∆φ is the phase difference between the modulated intensity profile and the

permittivity grating, measured relative to the phase of the permittivity grating.

Equations (4.9) – (4.12) show that, in contrast to the case where a refractive

permittivity grating is present, there is no real energy transfer between the beams when

an absorption grating is present.  However, it is easy to see that for phase differences
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between 90° and 270° (cos∆φ negative), the net result of the grating will be to reduce the

effective absorption that the beams encounter in propagating through the material, an

effect that will appear to couple energy into each beam. The effective absorption of the

material will be least when the maxima of the modulated intensity pattern are spatially

coincident with the areas of minimum absorption, a situation that corresponds to a phase

difference of 180°. It is important to note that in practical situations, the maximum

nonlinear absorption change is always smaller than the linear absorption coefficient.

Thus, it is not possible for the beams to experience intensity gain in propagating through

the material.

Equations (4.9) and (4.10) also show that when the intensities of the two beams

are different, the effective absorption that each beam experiences is different, and energy

appears to be coupled from beam to the other.  This can be seen by considering the case

where ∆φ is 180°, and |E+1| is larger than |E-1|.  For these conditions, we can relate |E+1|

and |E-1| through a proportionality constant M (|E+1|=M|E-1|, M>1), and re-write

equations (4.9) and (4.10):
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Clearly, since M is greater than 1, beam I-1 experiences a lesser absorption than I+1, so

that energy appears to be transferred from beam I+1 to I-1.  In contrast, for the same

conditions and a phase difference of 0° (∆φ=0°), I-1 experiences a greater absorption, so

that energy appears to be transferred from I-1 to I+1.  The “energy transfer” properties of
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absorptive gratings have been observed experimentally in photorefractive beam coupling

studies involving GaAs (K. Walsh et al., 1987) as well as BaTiO3 (R. S. Cudney et al.,

1990).

4.3 Transient Energy Transfer

Up to this point, we have considered the transfer of energy that occurs under

steady-state conditions for the simple two-beam geometry shown in Chapter III.

However, for the transient conditions that we have described throughout this thesis, it is

possible for energy transfer to occur in circumstances where, according to the discussion

of section 4.2, energy transfer is forbidden.  In this section we give a description of this

process, which is called transient energy transfer.  However, whereas in section 4.2 we

derived a set of equations that described steady-state energy transfer, in this section we

give a qualitative description of transient energy transfer.  In discussing transient energy

transfer we are not considering energy transfer under transient conditions due to the

photorefractive grating.  As we have seen in Chapter III, photorefractive gratings

generated under steady-state and transient conditions differ in phase from the incident

intensity pattern by 90°.  As a result, both transient and steady-state photorefractive

gratings can transfer energy by the means described in section 4.2.

Transient energy transfer was first observed in nonlinear wave mixing

experiments using a solution of carbon tetrachloride and iodine (F. Gires, 1968).  This

phenomenon was first attributed to the process that will be described below by W.L.

Rother (W.L. Rother, 1970).  Transient energy transfer has been observed in a variety of

semiconducting materials, including Silicon (V.L. Vinetskii, et. al., 1976), Cadmium
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Sulfide (S.G. Odulov et. al., 1978) and semi-insulating GaAs (G.C. Valley and A.L.

Smirl, 1988).

In describing transient energy transfer, we consider the case where two optical

pulses of unequal intensity generate a refractive index grating that is nominally in phase

with the incident intensity pattern.  From the discussion of the previous section, we know

that steady-state energy transfer is forbidden for this situation.  However, as we will see,

if the duration of the optical pulses is on the order of or shorter than the relaxation time of

the optical nonlinearity, then energy transfer occurs.  In describing transient energy

transfer, we consider the illustrative situation where three consecutive slices of the two

optical pulses propagate through two layers of the material, as shown in figures 4.2a-d.

For convenience, we assume that the spatial extent of the pulse slices in the material is

equal to the thickness of the material layers.  We also assume that the pulses are perfectly

coherent before they interact with the material.  That is, the phase relationship along each

optical field is given by the relationship ei{k••r -ωt} (k and ω are the wave vector and angular

frequency of the fields).

As shown in figure 4.2a, at time t1 when the front slice of each pulse encounters

the first layer of the material, there is no index grating (∆εr = 0), so that the pulses form

the grating and are depleted via linear absorption.  At time t2, as the front slice of each

pulse encounters the second layer of the material, the same process is repeated (figure

4.2b).  However, at the same time, the second slice of each pulse encounters the first

layer of the material.  The second slice of each pulse is depleted via linear absorption, and

interacts with the existing index grating according to equations (4.5) – (4.8).  Since the
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Figure 4.2a-d – Transient Energy Transfer.  See the text for description.

phase difference between the modulated intensity pattern and index grating is zero, there

is no transfer of energy as a result of the interaction of the fields with the grating.

Though there is no energy coupling between the beams, equations (4.7) and (4.8) tell us

that under these circumstances, the two optical fields incur the maximum possible phase

change as a result of their interaction with the grating.  However, more importantly, since

the magnitudes of the fields are unequal, the fields incur unequal phase changes (as

discussed in section 4.2, the weaker field receives the larger phase change).

At time t3, which is depicted in figure 4.2c, the third pulse slices encounter the

first layer of the material, and they are depleted via linear absorption and interact with the

grating in the same way as described above for the second slice of the pulses.  At the

same time, as the second pulse slices propagate to the second layer of the material, they

are depleted via linear absorption and interfere to form a modulated intensity pattern and

index grating.  However, since the second pulse slices incurred unequal phase changes in

I + 1 I - 1

I n d e x  f r i n g e s I n t e n s i t y  f r i n g e s

∆ ϕ

g a i n

(d) Time = t4



112

propagating through the first layer of the material, the maxima of the index grating are

shifted relative to the maxima of the index grating that was formed by the first pulse

slices.  Following this, the index grating in the second material layer is generally a

superposition of the index grating written by the first slice of the pulses, and the phase

shifted grating written by the second slice of the pulses.

At time t4, which is shown in figure 4.2d, the third pulse slices reach the second

layer of the material and encounter the two component index grating.  If the relaxation

time of the optical nonlinearity is instantaneous with respect to the duration of the pulses,

than component of the index grating that is due to the first pulse slices will have

completely decayed, and is thus zero.  Under these circumstances, the phase difference

between the existing index grating and the modulated intensity profile generated by the

third slice of the pulses is zero, and the material/field interaction proceeds as described

above for the first layer of the material.  However, if the relaxation time of the optical

nonlinearity is on the order of or longer than the duration of the optical pulses, then both

components of the index grating are non-zero.  The index grating that exists under these

conditions is out of phase with the incident intensity profile, a result that leads to energy

transfer between the beams.  Since the phase of the weak beam is larger than the phase of

the strong beam, equations (4.5) and (4.6) show that energy is transferred from the strong

beam to the weak beam.

The above description illustrates three important points about transient energy

transfer. First, transient energy transfer produces energy coupling between beams where

it is forbidden under steady-state conditions.  Second, the transfer of energy occurs when



113

the optical pulses generate and interact with the index grating in a time on the order of, or

shorter than the relaxation time of the optical nonlinearity, and is therefore inherently a

transient process.  Finally, transient energy transfer only occurs when the intensities of

the two beams are unequal, and energy transfer is always from the strong beam to the

weak beam.  For this reason, we have used beams of equal intensity in generating the

nonlinear optical gratings in our experiments.  As we showed in Chapter III, this results

in high modulation effects.

4.4 Picosecond Beam Coupling in Semi-Insulating GaAs and Undoped CdTe

So far, our discussions of steady-state and transient beam coupling have been

general concerning the induced index and absorption gratings that give rise to these

effects.  However, in this section, we depart from this by considering beam coupling due

to the optical nonlinearities that are present in our semi-insulating GaAs and undoped

CdTe crystals, for our experimental conditions.  As we will see, the photorefractive

nonlinearity has some characteristics that distinguish it from the other optical

nonlinearities that we have discussed for semi-insulating GaAs and undoped CdTe.

These characteristics allow transient photorefractive effects to be measured using the

experimental method that is described in this section.  Moreover, while it is possible to

measure picosecond photorefractive effects using this measurement technique, this

method of measurement is not suitable for our experiments because it does not allow the

photorefractive nonlinearity to be time-resolved.
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4.4.1 Beam Coupling Due to the Instantaneous Bound Electronic, Free-Carrier and EL2

Absorptive Nonlinearities

From the discussions of Chapter II, we recall that excitation with our picosecond

duration optical pulses produces a host of index and absorption changes such as the free

carrier index change, the instantaneous bound electronic index change, EL2 absorption

saturation, and instantaneous two-photon absorption.  In this section we discuss the

results of sections 4.2 and 4.3 in light of these nonlinearities.

For both semi-insulating GaAs and undoped CdTe, the instantaneous bound-

electronic refractive index change is –n2I.  As a result, the instantaneous bound electronic

index grating is clearly 180° out of phase with the incident irradiance pattern, and will

therefore not transfer energy under steady-state conditions.  In addition, as is indicated by

its name, the response of this nonlinearity is instantaneous relative to the duration of our

optical pulses, so that it will not transfer energy via transient energy transfer.  Similarly,

as we saw in Chapter II, the free carrier index change is negative in both semi-insulating

GaAs and undoped CdTe, and proportional to the free carrier density (-nehN).  Since the

modulated free carrier density is in phase with the modulated intensity pattern, the free

carrier index grating is therefore also 180° out of phase with the incident intensity pattern

and will not transfer energy under steady-state conditions.  However, unlike the

instantaneous bound-electronic nonlinearity, the response of the free carrier nonlinearity

is not instantaneous relative to the duration of our optical pulses.  This follows from the

discussions of Chapter III, where we showed that the decay constant for the modulated

free carrier density in semi-insulating GaAs and undoped CdTe is 38ps and 110ps
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respectively for our experimental conditions.  Thus, unlike the instantaneous bound

electronic grating, the free carrier index grating will transfer energy via transient energy

transfer in picosecond two-beam coupling experiments.

In Chapter II we showed that excitation with our picosecond duration optical

pulses can saturate the EL2 absorption, causing the linear absorption coefficient in semi-

insulating GaAs to decrease by roughly 30% at the middle and high beam intensities used

in our experiments.  Since the absorption is decreased at high intensities, excitation with a

modulated intensity profile produces an EL2 absorption grating that is 180° out of phase

with the incident intensity profile.  Thus, the EL2 absorption grating will produce energy

transfer effects that will be manifest in two beam coupling measurements.  As discussed

in section 4.2, these effects include a decreased absorption for both beams.

Instantaneous two photon absorption can also effect picosecond beam coupling

measurements, although not through an associated absorption grating.  This follows from

the fact that a weak picosecond pulse experiences greater attenuation due to two-photon

absorption when a temporally and spatially coincident pulse of greater intensity is

present.  Thus, the presence of a more intense picosecond pulse causes the transmission

of a weak picosecond pulse to decrease.

4.4.2 Beam Coupling Due to the Photorefractive Nonlinearity

From the discussions of Chapter I and Chapter III, we know that the

photorefractive nonlinearity arises from a material’s electrooptic response to an internal

space-charge field that is generated by the transport of photogenerated charge carriers.  In

Chapter III, we showed that the periodic space-charge field that is generated from a
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modulated free carrier density is 90° out of phase with that carrier density, for both

steady-state and transient conditions.  Since the modulated carrier density is in phase with

the modulated intensity pattern from which it arises, the space-charge field is 90° out of

phase with the modulated intensity pattern, so that the photorefractive grating will

produce the maximum energy transfer for the configuration shown in figure 4.1.

While it is easy to see that the phase difference between the photorefractive

grating and modulated intensity profile is optimum for two-beam coupling, we must also

determine the direction of energy transfer for this grating.  Equations (4.5) and (4.6) show

that this follows from the sign of the induced permittivity change, which is dictated by

the electrooptic properties of the crystal.  The electrooptic response of the material is

determined using the linear electrooptic properties of the crystal in the index ellipsoid

formalism.  For 4 3m materials like our GaAs and CdTe crystals, the general equation for

the index ellipsoid can be expressed in matrix form (A. Yariv, 1985):
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All of the factors in this equation have been defined previously, and the x, y and z axes,

which are the (100), (010) and (001) crystallographic directions, do not correspond to the

x, y and z axes shown in figure 4.1.  The induced changes in the crystal’s optical
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properties are determined by diagonalizing the central matrix in this equation.  The

resulting eigenvectors are the new principal axes of the crystal (the crystal directions

where no birefringence is observed), and the eigenvalues are used to determine the

change in index along each of these directions.

Referring to figure 4.1, our semi-insulating GaAs crystal is cut so that the x, y and

z axes shown in this figure are, respectively, the (001), (110) and (110) crystallographic

directions.  For this orientation of the crystal and optical beams, it is clear that the space-

charge field will be generated along the (001) crystal axis, so that Ez=Esc in equation

(4.15), while Ex=Ey=0.  When we diagonalize the matrix for this crystal orientation, we

find the new principal axes (x’,y’,z’) for the crystal:

)1,0,0(=′x ,

)0,1,1(
2

1
=′y ,

and,

)0,1,1(
2

1
−=′z .

Which correspond to the x, y and -z axes in figure 4.1.  We also find that, while the index

of refraction is not changed along the x axis in figure 4.1, the indices of refraction along

the y and z directions (in figure 4.1) are respectively, nb-½nb
3r41Esc and nb+½nb

3r41Esc.

Since the incident fields are perpendicularly polarized, they experience an index change

equal to –½nb
3r41Esc, and equations (4.5) and (4.6) can be re-written:

111
1
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dz
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α ,                     (4.16)
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In the above equations, Γ is the photorefractive coupling constant:

o90sin41
3

0 scb Ernk=Γ ,                            (4.18)

and we have used the relationship between the index change and the real permittivity

change (∆εr=2nb∆n).  Thus, equations (4.16) – (4.17) show that for this crystal

orientation, energy is transferred from I-1 to I+1.  In contrast, if we keep the orientation of

the beams that is shown in figure 4.1, but rotate the crystal by 180°, we find the opposite

result.  For this crystal orientation, the space-charge field is formed along the (001) axis,

resulting in the same set of principal axes as before, but with index changes of

+½nb
3r41Esc and -½nb

3r41Esc respectively, along the y and z axes.  For this crystal

orientation, the sign of the index change that the perpendicularly polarized beams

experience is positive, so that the photorefractive coupling constant changes sign, and

energy is transferred from I+1 to I-1.

The above analysis shows that for the photorefractive grating, the direction of

energy transfer is dependent on the crystal orientation, which dictates the direction that

the space-charge field is applied within the material, and the material’s subsequent

electrooptic response to the field.  This important result, which arises from the

electrooptic properties of the photorefractive nonlinearity, is in contrast to the other

competing nonlinear effects, which are independent of the crystal orientation.  From an

experimental point of view, the most difficult aspect of picosecond photorefractive

measurements in semiconductors is separating the effects of the photorefractive
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nonlinearity from the other competing (and larger magnitude) effects.  As we will see in

the next subsection, these unique energy transfer properties of the photorefractive

nonlinearity allow us to make this separation.  For the same reason, namely separating the

photorefractive nonlinearity from the other competing effects, we utilize the electrooptic

nature of the photorefractive nonlinearity in the transient grating measurement technique

that is discussed in Chapter V.  However, whereas it is the electrooptic energy transfer

properties of the photorefractive grating that allow it to be distinguished using the two

beam coupling method, it is the electrooptic polarization rotation properties of this

nonlinearity that allow it to be distinguished using the transient grating method of

Chapter V.

4.4.3 Measurement of Picosecond Photorefractive Effects Using the Two Beam Coupling

Method

In this section we outline the two beam coupling method for measuring

picosecond photorefractive effects in semiconductors.  This method, which was

developed by A.L. Smirl, has been the only method for measuring picosecond

photorefractive measurements in semiconductors, prior to the experiments described in

this thesis.  This method of measurement has been used to measure picosecond

photorefractive effects in semi-insulating GaAs, CdTe:V, and InP:Fe using picosecond

optical pulses (A. L. Smirl et al., 1988, G. C. Valley et al., 1989, W. A. Schroeder et al.,

1991).  This method of measurement has also been used to measure picosecond

photorefractive effects in undoped CdTe (M. S. Petrovic et al. 1991).
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Referring to Figure 4.1, in the two-beam coupling method, we measure the

change in transmission that a weak beam experiences in the presence and absence of a

second strong beam.  We write the change is transmission:

prwo

prwoprw

pr

pr

T

TT

T

T −
=

∆
.

Here Tprw is the transmission that the weak beam, which we call the probe beam,

experiences with the strong beam, which we call the pump beam, present.  For reference

to figure 4.1, we assume that I+1 is the probe beam, while I-1 is the pump beam. The

quantity Tprwo is the transmission of the probe beam in the absence of the pump beam.

When we consider the photorefractive nonlinearity together with the other optical

nonlinearities discussed in sub-section 4.4.1, the differential equations that describe beam

propagation will take the form of equations (4.17) and (4.18), with terms added to

account for beam depletion via instantaneous two photon absorption, and loss or gain due

to the induced absorptive or refractive gratings.  For this set of circumstances, we can

write a general solution for the propagation of the probe beam:

αα ∆±Γ±−= zz
prpr eIzI 0)(   .

Here Ipr0 is the probe intensity as it enters the crystal, while α is the linear absorption

coefficient, Γ is the photorefractive coupling constant, and ∆α is the change in the probe

absorption due to all of the other nonlinear effects.  We can then write the transmission of

the probe beam with and without the pump present as:

lα−= eTprwo      (pump not present)

lll αα ∆±Γ±−= eTprw       (pump present),
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and the normalized change in probe transmission as:

1−=
∆ ∆±Γ± ll αe
T

T

pr

pr .        (4.19)

Here it is important to note that, while we have assumed that Γ and ∆α are constant, the

values that are extracted for these quantities are spatial averages over the beam profile

and sample length, and temporal averages over the pulse duration.

We measure picosecond beam coupling effects in the limit where the normalized

change in probe transmission is small.  Under these circumstances, we make use of the

exponential expansion, and equation (4.19) can be written:
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.        (4.20)

We measure the normalized change in probe transmission at the two crystal orientations

described in section 4.4.2, which we call crystal orientations 0 and π.  We note that for

these two crystal orientations, the photorefractive coupling constant is maximum, but it is

positive for crystal orientation 0 while it is negative for crystal orientation π.  In contrast,

as we noted in sections 4.4.1 and 4.4.2, the other contributions to the probe transmission

have the same magnitude and sign for the two crystal orientations.  Thus, we isolate the

photorefractive contribution to the probe transmission by subtracting the normalized

change in probe transmission for the two crystal orientations:
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Conversely, we isolate the other contributions to the probe transmission by adding the

normalized change in probe transmission:

lα
π

∆=








 ∆
+









 ∆
2

0 pr

pr

pr

pr

T

T

T

T
.                  (4.22)

The measurement method that is described above allows the photorefractive

contribution to the change in probe transmission to be separated from the other effects

that are present in semiconductors on picosecond time scales.  We emphasize that, as it is

described above, the relationship between the photorefractive coupling constant and the

probe transmission for the two crystal orientations is valid only when the overall change

in the probe transmission is small.  We also emphasize that the photorefractive coupling

constant that is measured represents an average over the spatial extent of the pulses, the

length of the sample, and the duration of the pulses.

Two-beam coupling is a unique nonlinear optical phenomenon in that the same

optical fields that generate the induced gratings also experience a change of amplitude

and/or phase by interacting with the gratings.  However, for this same reason, the two-

beam coupling measurement method has some important limitations.  For example, since

the incident optical pulses must both be present in order to produce the beam coupling

effects that we use to measure the photorefractive nonlinearity, we can only measure the

evolution of this nonlinearity over the temporal duration of the pulses.  In addition, since

the two-beam coupling measurement method requires that we create and sample the

photorefractive nonlinearities with the same optical fields, the results that we obtain

reflect a complex convolution of the generation and sampling processes.  Since the goal
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of this thesis is to time resolve the photorefractive nonlinearity over a wide range of times

in order to obtain an unambiguous measure of its evolution, the two-beam coupling

measurement method is not suitable for our experiments.  Instead, we seek a three-beam,

transient-grating measurement method where we generate the photorefractive gratings

with two pulses, and then probe the gratings with a third, phase-matched probe pulse that

is delayed with respect to the other pulses.  The transient grating measurement method

that is used for these measurements is the subject of Chapter V.

4.5 Conclusions

In this chapter we have considered two-beam coupling and transient energy

transfer.  For the simple two beam geometry shown in this chapter, we find that energy

transfer between beams only occurs when there is a phase difference between the induced

gratings, and the modulated intensity profile that is produced by the beams.  For our

experimental conditions, steady-state energy transfer only occurs as a result of the

photorefractive nonlinearity.  While this provides a means for measuring photorefractive

effects in zincblende semiconductors, such measurements are complicated by competing

effects such as transient energy transfer, which can occur as a result of the free-carrier

grating, induced absorption gratings, and non-linear absorption of the optical beams.

Moreover, while the two-beam coupling measurement method allows the picosecond

photorefractive effects to be separated from these competing effects, since it does not

allow the photorefractive nonlinearities to be unambiguously time resolved for a wide

range of delays, it is not suitable for our experiments.
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5.1 Introduction

In Chapter IV, we reviewed the two-beam coupling measurement method and

showed that it is not suitable for our experiments. There we stated that for our

experiments, we seek a three-beam, transient grating measurement method where the

photorefractive gratings are generated with two spatially and temporally coincident pulses,

and then probed with a third, phase-matched probe pulse.  In this chapter we discuss the

transient-grating measurement method that we use in our experiments.  We begin with

some general points about transient-grating measurement methods, and then consider

three aspects of our measurement technique.  We consider first the requirements that the

goals of this thesis place on our measurement technique, along with a general description

of how we meet these requirements.  Second, we discuss some important details about the

method of measurement, including the generation, phase-matching, and overlap of the

probe beam.

CHAPTER V

THE PHOTOREFRACTIVE POLARIZATION ROTATION

TRANSIENT-GRATING MEASUREMENT METHOD
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5.2 Measurement of Optical Nonlinearities Using Transient-Grating Methods

Before discussing the various aspects of our transient-grating measurement

technique, it is necessary to provide a general introduction to this method of measuring

optical nonlinearities.  In transient-grating experiments, we use two temporally and

spatially coincident optical pulses, incident with an angle 2θ between them, to produce a

modulated intensity pattern inside the material, as was shown in figure 3.1.  As we have

seen in Chapters II, III, and IV, the incident optical pulses, which we call pump pulses,

induce refractive index and absorption gratings as a result of the nonlinear optical response

of the material.  A third, Bragg-matched probe pulse of low intensity, incident at an

arbitrary delay with respect to the pump pulses, interacts with the induced gratings to

produce a diffracted beam.  In transient-grating experiments, we measure the intensity of

the diffracted beam relative to that of the probe beam, which provides a measure of the

diffraction efficiency of the induced gratings.

Our experiments are conducted in a regime where the beam propagation length

(3x10-3m) is much larger than the period of the induced gratings (2-4µm), and where the

diffraction efficiency of the induced gratings is much less than unity.  As we will see in

Chapter VI, under these circumstances the diffraction efficiency (η) can be written in

terms of the index change (∆n) and absorptive change (∆α) (H. J. Eichler et al., 1986):
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Where l is the propagation length, λ is the probe wavelength, and τ is the delay of the

probe pulses with respect to the pump pulses.  It is clear from equation (5.1) that the
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magnitude of the diffraction efficiency can be used to determine the magnitude of the

index and absorption changes that are induced in the material.  However, more

importantly for our experiments, we can measure the temporal dynamics of the index and

absorption changes by measuring the diffraction efficiency as a function of the delay of the

probe pulse.  As we have stated, we seek to measure the dynamics of one of many optical

nonlinearities that are generated in semi-insulating GaAs and undoped CdTe, the

photorefractive nonlinearity.  As we will see in the discussions that follow, this

experimental goal poses some experimental challenges.

5.3 Requirements

In reviewing the results of Chapters II and III, we find that our experimental goal

dictates substantial requirements on the measurement method, in terms of its inherent time

resolution, its ability to separate the photorefractive nonlinearity from the other competing

picosecond optical nonlinearities, and its inherent signal to noise ratio.  In this section we

discuss these requirements.  Here we show that our experimental goals can be met with a

two-color, forward-probing, transient grating measurement method that utilizes the

polarization rotation properties of the photorefractive nonlinearity.

5.3.1 Minimum Resolvable Time - Forward-Probing Geometry

The requirement that is placed on our transient-grating measurement technique for

minimum resolvable time is dictated by the time required for the formation and decay of

the photorefractive nonlinearities, which we have seen to be 5ps-150ps in semi-insulating

GaAs and undoped CdTe (see Chapter III).  However, a related requirement arises from

the fact that the photorefractive index change is small (see Chapter III).  Since the
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photorefractive index change is small, we must maximize the diffraction efficiency in order

to ensure that we can make measurements at a wide range of pump pulse intensities.  As

can be seen from equation (5.1), we do this by using a thick crystal (maximizing l ).

Thus, while our experimental goals dictate the requirement for a minimum resolvable time

of ~5ps, the overall magnitude of the photorefractive index change dictates an additional

requirement for a thick crystal.

Two frequently used transient grating geometries, the Raman-Nath geometry and

the Degenerate Four Wave Mixing (DFWM) geometry, are shown in figures 5.1a and b.

The Raman-Nath geometry offers the advantage of a high inherent time resolution, along

with the additional advantage that the probe beam does not have to be Bragg-matched to

the gratings in order for a diffracted signal to be produced. However, since these

advantages come at the expense of using a thin crystal, this transient-grating geometry is

not adequate for our experiments.  On the other hand, the DFWM geometry shown in

figure 5.1b offers a large crystal length, and relative ease in Bragg-matching the probe

beam to the induced gratings (the probe beam is simply aligned so that it

counterpropagates with the pump pulse E2).  However, it has been shown that the

minimum resolvable time for this geometry is equal to the time of flight of the optical

pulses in the crystal (τmin=n l /c) (Trebino and Siegman, 1985), which is roughly 10ps –

35ps in our GaAs and CdTe crystals.  Thus, like the Raman-Nath transient-grating

geometry, the DFWM geometry is inadequate for our experiments.

A Bragg-matched forward-probing transient-grating geometry such as shown in

figure 5.2 is best suited for our experiments.  Here the pump and probe beams co-

propagate through the crystal, so that the pump-probe delay is constant over the
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Figure 5.1a and b – The Raman-Nath and “DFWM” transient-grating geometries.
See the text for description.

propagation length of the crystal.  As a result, the time resolution of this transient-grating

geometry is independent of the crystal length, and limited only by the duration of the pump

and probe pulses (and effects such as dispersion or pulse broadening) (Trebino and

Siegman, 1985).  Thus, using this transient-grating geometry, a high time resolution can

be maintained while the diffraction efficiency is maximized.

Figure 5.2 – Forward-probing transient-grating geometry used in our experiments.
See the text for description.

(a) Raman-Nath Geometry

Diffracted Beam

Pump Beam

Pump Beam

Probe Beam Diffracted Beam
Pump Beams

Probe Beam

(b) “DFWM” Geometry

Diffracted Beam
Pump Beams

Probe Beam
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5.3.2 Separation of the Photorefractive and Competing Nonlinearities: Photorefractive

Polarization Rotation

As we showed in Chapters II and III, the picosecond photorefractive nonlinearities

in semi-insulating GaAs and undoped CdTe coexist with other optical nonlinearities that

are of comparable or greater magnitude. As a result, another requirement that is placed on

our measurement technique is that is must allow the photorefractive nonlinearities to be

separated from the other picosecond optical nonlinearities.  In our transient-grating

measurement method, we accomplish this using photorefractive polarization rotation (A.

L. Smirl et al., 1989, D. Liu and L.J. Cheng, 1989, P. Yeh, 1987).  Like the energy

transfer properties of the photorefractive grating observed in two-beam coupling, these

polarization rotation properties follow directly from the electrooptic nature of the

photorefractive effect.  In the following paragraphs, we solve the index ellipsoid equation

for our semi-insulating GaAs crystal orientation and show how scattering of the probe

beam from the photorefractive gratings generates a diffracted beam with a 90° polarization

rotation.  In Appendix B, we use the same method to illustrate a similar result for our

undoped CdTe crystal.  The conclusions that are reached in this section should be

considered among the most important of this chapter.  Moreover, an understanding of

photorefractive polarization rotation is critical to understanding the experimental results of

Chapters VII and VIII.

The crystal orientation that is used in our experiments is that which has been used

to demonstrate high contrast optical switching using photorefractive polarization rotation

(A. L. Smirl et al., 1989).  Shown in figure 5.3 along with the orientation of the pump

beams, this arrangement of crystal and beams results in the generation of a periodic space-
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Figure 5.3 – Crystal and beam orientation used in these experiments.  See the text
for description.

charge field in the (110) crystal direction.  Under these circumstances, the equation for the

index ellipsoid (equation (4.15)) becomes:

1

1

22

2

1
0

2
0

1

2

4141

41

2

41

2

=
























































z

y

x

n

ErEr

Er
n

Er

n

z

y

x

b

scsc

sc

b

sc

b

,                        (5.2)

where the space-charge field has been assumed to have the form:
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and we have temporarily ignored the periodicity of the space-charge field for simplicity.

In the above equations, all of the other factors have been previously defined, except x̂  and

ŷ which are the unit vectors in the (100) and (010) crystallographic directions.  As in the

two-beam coupling analysis of Chapter IV, we diagonalize the central matrix in equation
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(5.2) to determine the new principal axes of the crystal and the index changes along each

of the crystal directions.  This procedure leads to the following set of principal axes in our

semi-insulating GaAs crystal:

)0,1,1(−=′x ,                       (5.3)

)2,1,1(
2

1
−−=′y ,                         (5.4)

and

)2,1,1(
2

1
=′z .                               (5.5)

In addition, this process shows that, while the index of refraction is unchanged along the

x’ axis, it is increased along the y’ axis by ½nb
3r41Esc and decreased by the same amount

along the z’ axis.  As a result, when a periodic space-charge field is generated along the

(110) crystal direction, photorefractive index gratings are generated along the crystal axes

defined by equations (5.4) and (5.5).  Since the index changes along these crystal

directions are equal in magnitude but opposite in sign, the resulting index gratings are

equal in magnitude but differ in phase by 180°, as shown in figure 5.4.

Close analysis of figure 5.3 shows that the two new principal axes defined by

equations (5.4) and (5.5) lie in the plane parallel to the input and output faces of the

crystal, and are along the diagonal directions which connect opposite corners of each

crystal face.  As a result, as shown in figure 5.5, s- and p-polarized radiation has equal

components along the y’ and z’ axes for the crystal orientation shown in figure 5.3.  As we

know from the analyses of Chapter IV, an optical beam that is diffracted from an induced
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grating has a phase that reflects the phase of the induced grating.  Thus, when an s- or p-

polarized probe beam diffracts from the photorefractive gratings that are generated for this

Figure 5.4 – The space-charge field that is generated in our crystal, and the
resulting index gratings.  See the text for description.

crystal orientation, the result is a diffracted beam that has a phase shift of 180° introduced

between the field components in the directions defined by equations (5.4) and (5.5).  Since

the probe optical field has equal components along these directions, and the y’ and z’

photorefractive gratings are of equal magnitude, the diffracted beam that is produced has a

polarization rotation of exactly 90° relative to the probe electric field (also shown in figure

5.5).

We emphasize that the result that is described above, a diffracted beam with a 90°

polarization-rotation, arises from the linear electrooptic nature of the photorefractive

Sp
ac

e-
C

ha
rg

e
Fi

el
d

In
de

x 
C

ha
ng

e

Distance

(11   ) Direction
)(3

2
1

)( x
sc

rE
b

n
b

nxn +=

__

(11   ) Direction
)(3

2

1
)( x

sc
rE

b
n

b
nxn −=
2

2



133

effect.  Since the second-order index parameter exhibits no measurable isotropy (see

section 2.2.6.1), and the free carrier de-phasing occurs instantaneously on the time scales

Figure 5.5 – Orientation of the probe electric field along the new principal axes in
our GaAs crystal.  As discussed in the text, this results in a diffracted beam with a
polarization rotation of exactly 90°.

of our experiments, neither of these induced gratings will produce a similar result.  We can

thus separate the photorefractive contribution to the diffracted signal by placing a

polarizer-analyzer pair in the probe and diffracted beams shown in figure 5.2.  While the

polarizer ensures that the probe beam is s-polarized, the analyzer separates the s- and p-

polarized components of the diffracted beam.

5.3.3 Sensitivity – Two-Color Measurements

A third requirement for our transient-grating measurement technique is that it must

allow measurements to be made with a high sensitivity.  This requirement follows from the

fact that the expected magnitude of the picosecond photorefractive nonlinearity in our

materials is small (see Chapter III).
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In transient-grating experiments, sensitivity is gained by measuring the diffracted

beam in a way such that there is a minimum of optical background noise present.  In the

forward-probing geometry shown in figure 5.2, this can be done by making the pump and

probe beams s-polarized and then using a polarizing prism to separate the portion of the

beam that is diffracted from the photorefractive grating (p-polarized) from the transmitted

pump beam (s-polarized).  However, a simple analysis shows that under these

circumstances, the portion of the transmitted pump pulse that will leak through the

polarizing beamsplitter will be of equal or greater intensity than the p-polarized diffracted

beam that is produced by the photorefractive grating.  For example, the maximum optical

fluences that are used in our experiments are roughly 1mJ/cm2.  If we assume that the

pump pulses incur a maximum absorption of 90% in propagating through the crystal, and

that the extinction ratio of the polarizing beam splitter is typical of those that are

commercially available (10,000:1) (Spindler & Hoyer, 1999), this leads to pump pulse

leakage of roughly 10nJ/cm2.  So that our results can be analytically compared with

established sets equations describing Four Wave Mixing, the probe pulses must be at least

100 times weaker than the pump pulses, leading to a maximum probe pulse fluence of 10µ

J/cm2.  If we assume no absorption of the probe or diffracted beams, and a maximum

photorefractive diffraction efficiency of 10-4, this leads to a p-polarized diffracted signal

with a fluence that is a factor of ten smaller than the pump pulse leakage (1nJ/cm2).  Thus,

using polarizing optics in the forward probing geometry will not allow a sensitivity that is

adequate for our experiments, and we must therefore seek another method of reducing

optical background noise to produce high experimental sensitivity.



135

In light of the experimental constraints that we have already discussed in this

chapter, high sensitivity measurements can be most easily be enabled by using a two-color,

Bragg-matched, forward-probing transient-grating geometry.  Since the Bragg-matched

probe pulse is of a different wavelength, the diffracted beam will be spatially separated

from the pump pulses, leading to a background-free direction for measurement.  However,

in addition to allowing a background-free direction for measurement, use of the second

color beam also provides a background-free wavelength for measurement.  This allows for

the use of commercially available spike filters to isolate the diffracted beam from the pump

beams and thus greatly add to the sensitivity of the experiments.

5.4 The Photorefractive Polarization-Rotation Transient-Grating (PPRTG) Measurement

Technique

In the preceding section, we showed that the picosecond photorefractive

nonlinearities in semi-insulating GaAs and undoped CdTe could be separated and time-

resolved with a forward-probing, two-color, Bragg-matched transient-grating

measurement technique employing photorefractive polarization rotation.  In this section

we describe the actual technique used in our experiments, including the generation, phase

matching and overlap of the 1.06µm wavelength probe beam.  From this point on, our

measurement technique will be referred to as the Photorefractive Polarization-Rotation

Transient-Grating (PPRTG) measurement technique.

5.4.1 Writing and Reading of the Photorefractive and Other Gratings

The complete arrangement of the semiconductor crystal and optical beams used in these

experiments is shown in figure 5.6.  The induced gratings are generated by two spatially-
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Figure 5.6 – Crystal and beam orientation for the Photorefractive Polarization
Rotation Transient-Grating (PPRTG) measurement technique.

and temporally-coincident s-polarized pump beams from the amplified laser system.  Or

laser system produced energetic 960nm, 1ps duration laser pulses with Gaussian spatial

profiles (1/e radius ~0.5 mm) (T. S. Stark et al., 1988).  In our experiments, the pump

beams were given equal intensities in order to eliminate transient energy transfer effects

(see Chapters III and IV).

It is important to note that before data was taken each day, a pre-determined

procedure was followed in order to allow an accurate determination of the pump beam

fluences and intensities.  This included scans to determine the beam sizes, as well as

autocorrelation measurements to approximate the pulse duration.

Finally, an accurate determination of the picosecond nonlinear response of GaAs

required that the residual (non-amplified) 82MHz pulses be eliminated from the 10Hz

amplified pulse train (The processes described in Chapter III result in photorefractive and

free-carrier gratings in GaAs that decay on microsecond (µs) time scales).  In our
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experiments, this was accomplished using a Pockels cell, which electrooptically rotated the

polarization of the amplified pulses, along with a polarizing prism.  The Pockels cell was

electronically synchronized with our 10Hz regenerative amplifier.

As we discussed in the previous section, the gratings were read in these

experiments with a Bragg-matched probe beam of a second color in order to give the

measurements a greater sensitivity.  By passing the probe beam through a variable delay

stage consisting of a retro-reflecting corner cube mounted on a translation stage, it was

possible to probe the gratings at a chosen time either before, during or after their

generation.  The generation, Bragg-matching and synchronization of the probe beam will

be discussed in greater detail in the following sub-section.  Also shown in figure 5.6 is the

polarizer-analyzer pair in the probe and diffracted beams.  The polarizer was used (along

with a half-wave plate) to ensure that the probe beam was s- or p- polarized, while the

analyzer is used to separate the different polarization components of the diffracted beam.

It should be noted that in experiments where the free-carrier nonlinearity is measured, the

polarization of the probe beam is made orthogonal to the polarization of the pump beams.

This is done so that the analyzer can be used to isolate the diffracted radiation from the

transmitted pump radiation.  In contrast, in experiments where the photorefractive

nonlinearity is measured, the rotated polarization component is made background-free by

orienting the polarization of the probe beam so that it is parallel to that of the pump

beams.
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5.4.2 Generation and Bragg-Matching of the 1.06µm Probe Beam

One conclusion of section 5.3 was that our measurements require the use of a

probe beam of a second color.  In this sub-section, we discuss the generation and Bragg-

matching of the probe beam.  In addition, we consider the determination of pump-probe

overlap, and the probe pulse duration.

In order to keep the probe beam from experiencing a large amount of absorption,

it is advantageous to choose a wavelength that will not induce single-photon band-to-band

transitions in either GaAs or CdTe.  Furthermore, it is desirable to derive the probe beam

from the 10Hz laser beam, so that the probe pulses can be easily synchronized with the

pump pulses.  Two methods of generating the desired signal were explored: Continuum

Generation (CG) by self-phase modulation (R. R. Alfano, 1989), and Stimulated Raman

Scattering (SRS) (M. D. Levenson and S. S. Kano, 1988).  Of these methods, SRS was

chosen because it was more efficient in producing a probe beam of a specific wavelength.

The SRS down conversion process is shown scematically in figure 5.7.  The 1.06µ

m, down-shifted beam is generated by splitting off a portion (50%) of the amplified 960

nm amplified beam and gently focusing it through a 3cm cuvette filled with benzene.  Of

the liquids available for SRS, benzene was chosen because its CH vibrational line was

capable of producing 1.06µm radiation from the 960nm pump pulses (G. Eckhardt, 1966).

The use of a 1.06µm probe wavelength was chosen due to the commercial availability of

spike filters centered on the Nd:YAG and Nd:Glass laser lines.  The radiation is then sent

through a spike filter, centered at 1.06µm, to separate the 1.06µm radiation from the

unshifted 960nm light.  Unfortunately, benzene is also highly Kerr active, so that the

intense picosecond radiation induces phase modulation effects.  In order to remove the
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spatial phase distortions resulting from the Kerr effects, a spatial filter was employed.

Spatial filtering of the beam was achieved by focusing the beam on a small pinhole, and

then passing the transmitted far-field diffraction pattern through another aperture in order

to eliminate all but the central maximum of its Airy disc pattern.  Including spatial filtering,

the overall conversion efficiency of the down-shifting process was ~1%.  Finally, in order

Figure 5.7 – Diagram of the optical apparatus used to produce the 1.06µm beam.
See the text for description.

to ensure that the probe beam had a high-quality spatial profile for our experiments, the

pinhole was imaged onto the sample site.

The lenses, pinhole and aperture that are shown in figure 5.7 make up a spatial

filtering apparatus that ensures that the probe beam profile is gaussian or near-gaussian

within the crystal.  Though not shown, the vertical and horizontal shapes of the probe

beam are both near-gaussian with ~0.3mm 1/e radii.  Here it should be noted that the size

of the probe beam was purposely chosen to be smaller than the pump beam (3/5 smaller in

this case).  In addition to allowing regions of the highest index change to be probed (so

that a larger diffraction efficiency is produced), this helped minimize walk-off effects due

to the finite sizes of the pump and probe beams.

Cuvette Spike
Filter

Pinhole

Aperture
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As stated above, measurements were made in the Bragg-regime (crystal lengths

large compared to the grating spacing).  As a result, the probe beam had to be Bragg-

matched to the gratings in order to observe nonlinear diffraction.  The correct incidence

angle, θ, for the probe beam was first calculated with the Bragg relation, λ=2λgsinθ (λg is

the grating spacing and λ is the probe wavelength).  The probe beam was then aligned to

be incident on the crystals at these angles, with small adjustments made periodically for

maximum diffraction efficiency.

Overlap between the pump and probe pulses was determined by measuring the

differential transmission of the probe pulses through the semiconductor crystals in the

presence of one of the pump pulses.  Figure 5.8 shows a typical differential transmission

versus probe delay plot.  When the pump and probe beams are overlapped, the intense

960nm radiation causes the weak, 1.06µm radiation pulses to be more strongly absorbed

through the instantaneous two-photon absorption process.  The pump and probe pulses

are synchronized when the transmission of the probe pulses is minimum.  This is because

two-photon-related absorptive loss of the probe pulses is maximum when the overlap

between the pump and probe pulses is maximum.

The differential transmission plot can also be used to determine the duration of the

probe pulses.  The differential transmission feature is expected to follow the inverted

second-order correlation function between the intensity profiles of the pump and probe

pulses.  In light of this, and the fact that the duration of the pump pulses is independently

determined to be less than 1ps (this is known by measuring the intensity autocorrelation of

the pump pulses at the sample site), the shape of the differential transmission feature

shown in figure 5.8 shows a FWHM (full width at half minimum) of ~4.0ps.  It should be
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noted that in our experiments, probe pulse widths varied between 3ps and 5ps.  Since the

duration of the pump pulses was consistently ~1ps, 3ps – 5ps represents the minimum time

that can be resolved with our measurement technique.  It should also be noted that the

slight asymmetry seen in the differential transmission feature of figure 5.8 was present in

nearly all plots of this type.  This feature reflects an asymmetry in the intensity profile of

the probe pulses, which is expected from the transient nature of the SRS process (C. S.

Wang, 1985).

Figure 5.8 – Plot of differential transmission versus probe delay for the Raman-
shifted probe beam.  The duration of the down-shifted pulses, which the figure
shows is approximately 5ps, is the minimum resolvable time for our measurement
technique.

5.5 Conclusions

In this chapter we have discussed the measurement technique that we use in our

experiments.  We considered the requirements that the goals of our study places on the

measurement technique, and showed that these requirements are met in a two-color,
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Bragg-matched, forward-probing transient-grating measurement technique involving

photorefractive polarization rotation.  The use of a probe beam of a second color is an

important part of our measurement technique.  Therefore, we considered the generation,

phase matching and overlap of our probe pulses.  With this, we considered the duration of

our probe pulses, which is the minimum time that can be resolved in our experiments.
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6.1. Introduction

As part of our investigation of the picosecond photorefractive effects in semi-

insulating GaAs and undoped CdTe, it is necessary to numerically model our

experimental results.  In this chapter we consider the method that we use in achieving this

goal.  A detailed model for the diffraction efficiencies we measure must necessarily

consider the nonlinear response of the material, as well as the propagation of the pump,

probe and diffracted beams in the presence of linear and nonlinear absorption and laser-

induced index gratings.  However, as we show in this chapter, our goal, which is to model

the probe-delay dependencies of the diffraction efficiencies, can be accomplished in a

much more simple way.  We begin by deriving equations that describe the propagation of

the pump, probe and diffracted beams, as well as the n=0,1, and 2 components of the

photogenerated carrier densities.  Following this, we show that in the limit of small

diffraction, and for probe delays greater than 5ps, we can model the temporal dynamics

of the diffraction efficiencies using the carrier and field equations of Chapter III, along

with the relationship between the carrier densities and the free-carrier index change, and

the space-charge field and the photorefractive index change.  In semi-insulating GaAs,

where the relative densities of electrons, holes and ionized EL2 depend on fluence,

CHAPTER VI

NUMERICAL MODELING OF EXPERIMENTAL RESULTS
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we find that we must also solve the beam propagation equation.

6.2 Beam Propagation and Carrier Density Equations

Figure 6.1 shows the configuration of our PPRTG measurement technique that

was presented in Chapter V.  As we discussed there, in order to measure the dynamics of

the photorefractive and other induced index changes, we measure the diffraction

efficiency of the induced gratings as a function of the probe pulse delay (with respect to

the pump pulses).  As shown in figure 6.1, the quantity that we measure, which is the

ratio of the voltages of two photodiodes, is related to the ratio of the temporal and spatial

integral of the probe and diffracted intensities:

∫∫
∫∫∝

rdrdttrI

rdrdttrI

pr

drdn

rn
π

πτ
τη

2),(

2),,(,
)(, ,                       (6.1)

where τ is the probe pulse delay, the dr integral is over the surface of the photodiodes, the

dt integral is over the duration of the probe and diffracted pulses, and it is understood that

the probe intensity is measured before the front face of the crystal, and the rotated and

non-rotated diffracted intensities are measured behind the rear surface of the crystal.  The

probe and diffracted intensities (Ipr, Idn, Idr) are related to the probe and diffracted electric

fields (Epr, Edn, Edr) through the relationship:
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= ε ,                        (6.2)

where all the factors in this equation have been previously defined.

From equations (6.1) and (6.2), it is clear that that any model of the diffraction

efficiency must necessarily consider the magnitudes of the probe and diffracted electric
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Figure 6.1 – Experimental set-up depicting the quantities that we measure, the
rotated and non-rotated diffraction efficiencies.  The diffraction efficiencies
involve the ratio of the diffracted and probe intensities, as described in the text.

fields.  The magnitudes of these fields are coupled though the induced index and

absorption changes, which arise from the material response to the pump beams.  Thus, in

modeling the diffraction efficiency, we must also consider these things.  In the following

discussion, we consider the propagation of the pump, probe and diffracted beams.  While

the response of the material is described in the discussions of Chapters II and III, our

model for the carrier and field dynamics takes, as input, the n=0,1, and 2 components of

the photogenerated electrons, holes and ionized EL2.  Since these quantities follow

directly from the pump beam intensities, we consider their magnitude along with the

pump beams.

Diffracted Beam

Pump Beams
(I+1, I-1)

Probe Beam (s-polarized)
(Epr, Ipr)

Delay (τ)

GaAs, CdTe

Photodiodes

Rotated pol’n
(Edr, Idr)

Non-rotated pol’n
(Edn, Idn)
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6.2.1 Pump Beam Equations

In our experiments, we employ 960nm wavelength pump beams with a 1.0mm

(1/e) spatial width. Since the 6.5m confocal parameter associated with these beams is

much larger than our 1mm-3mm crystal lengths, we can assume that the pump beams

propagate through the crystals as plane waves.  In addition, in order to generate and probe

grating wavelengths between 1.7µm and 3.8µm in our GaAs and CdTe crystals, the pump

and probe beams propagate inside the crystals at angles less than ~5° relative to the

normal to the plane of incidence.  Thus, we can also assume that the pump beams co-

propagate along the direction normal to the plane of incidence.  Under these

circumstances, we can use the method outlined in section 4.2 in order to derive

propagation equations for the pump beams.  When we allow for instantaneous two-

photon absorption through the imaginary component of the third-order susceptibility, this

procedure results in the following equations:
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and
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where we have adopted the same conventions used in Chapter IV, calling the z direction

the propagation direction, and denoting the pump beams as I±1.

Equations (6.3) and (6.4) account for single-photon absorption at the EL2 sites as

well as self- and cross-beam instantaneous two-photon absorption.  While these equations

apply to semi-insulating GaAs, the equations for undoped CdTe result when we eliminate
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EL2 absorption (σe,σh, N, N+=0).  As we noted in Chapter II, the neutral and ionized EL2

densities can vary with fluence for our excitation conditions, so that these equations must

be solved self-consistently with the equations for the EL2 densities.  We also noted in

Chapter II that the two photon absorption coefficient (β) has been observed to be crystal-

orientation dependent in both semi-insulating GaAs and undoped CdTe (M. D. Dvorak et

al., 1994).  For our experiments in semi-insulating GaAs, where we employ s-polarized

pump beams (E|| (001) crystallographic axis), these studies suggest a value of 19cm/GW

for the two-photon absorption coefficient.  Likewise, in our experiments in undoped

CdTe, where we employ s-polarized pump beams (E|| (11 2 ) crystallographic axis), the

same studies suggest a value of 17cm/GW for the two-photon absorption coefficient.

Before proceeding, several additional points must be made about equations (6.3)

and (6.4).  First, it must be noted that we have not allowed for energy coupling between

the two pump beams.  This is because the means for energy coupling, photorefractive

beam coupling and transient energy-transfer, are not allowed for our experimental

conditions.  For transient energy-transfer, this follows from the fact that the pump beams

have equal intensities (see section 4.3).  In the case of the photorefractive effect, beam

coupling is not allowed for our crystal orientation (see section 5.4).  It must be noted that

while photorefractive energy coupling is not allowed for our crystal orientation, the pump

beams will experience photorefractive polarization rotation in the way that is discussed in

Chapter V.  However, we neglect this in equations (6.3) and (6.4) because the overall

magnitude of this effect is small, and results in no significant effect to the modulated

intensity pattern that is produced by the pump pulses.
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Second, in modeling our experiments, we do not consider non-linear optical

effects that alter the phase structure of the optical electric fields and affect the ability of

the pulses to form the modulated optical intensity pattern.  As a result, while the pump

beams will experience intensity-dependent self- and cross-phase modulation through the

real part of the third order susceptibility (refractive instantaneous bound-electronic

nonlinearity), we have neglected these effects in equations (6.3) and (6.4).  Instead, we

assume that the pump pulses are perfectly coherent at 960nm, so that the modulated

optical intensity pattern is perfectly formed.  Since we employ pump pulses of equal

intensity, self- and cross-phase modulation effects are expected to affect both beams

equally.

Third, in describing the propagation of the pump beams, we do not consider

nonlinear optical effects involving the refractive instantaneous bound-electronic

nonlinearity which rotate the polarization of the pump beams (W. A. Schroeder et al.,

1992).  This follows from a simple analysis involving the crystal orientation, pump beam

orientation, and tensor properties of the cubic 4 3m third order susceptibility, which show

that interactions of this type are not allowed for our experimental conditions.

Finally, while it is possible for the 1.06µm probe pulse probe pulse to interfere

with either of the pump pulses and form modulated intensity patterns and induced

gratings, we do not consider interactions of this type.  This is because the probe pulse

intensity is much weaker than the pump pulse intensities, so that any induced gratings of

this type would have a much smaller magnitude than those generated by the pump pulses.
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6.2.2 Carrier Density and Ionized EL2 Equations

In Chapter III, we used the Fourier series formalism to derive equations that

describe the dynamics of the carrier densities and space-charge fields.  However, in

modeling the carrier and field dynamics in this way, it is necessary to determine the

initial Fourier components of the electron, hole and ionized EL2 densities for use in these

equations.  In this section, we derive rate equations for the n=0, 1 and 2 densities of the

electrons, holes and ionized EL2.  We use the functional form for the modulated intensity

pattern, along with the carrier generation equations of Chapter II, to produce these

equations.

As we noted above, the rate equations for the Fourier components of the carrier

densities and ionized EL2 are derived using the functional form for the modulated

intensity pattern (equation (3.1), m=1), along with the carrier generation equations of

Chapter II (equations (2.27), (2.28) and (2.3)).  If we allow the density of ionized EL2 to

be modulated as a result of saturation, we find the following equations for the electrons:
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and ionized EL2:
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We emphasize that though equations (6.5) – (6.13) describe the carrier and ionized EL2

densities in terms of Fourier components, in treating carrier generation due to the EL2

sites, these equations contain the same information as equations (2.12) – (2.14).

However, we note that the above equations must be solved together with equation (2.12),

which yields the maximum ionized EL2 density in the crystal.  This, quantity, which we

refer to as N+
peak, is used with the dark density of ionized EL2 (A-) to determine the

constant and modulated components of our assumed ionized EL2 density:

+++ =+ peakdcac NNN ,

−++ =− ANN acdc .

All of the other parameters in equations (6.5) – (6.13) have been previously defined,

including I0, the peak intensity in the crystal, which is the combined intensity of both

pump beams (see equation (3.1)).  As with the beam propagation equations (equations
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(6.3) and (6.4)), the CdTe carrier generation equations follow when we do not consider

EL2 absorption (σe,σh, N, N+=0).

In modeling the attenuation of the pump beams and the subsequent generation of

free carriers, it is necessary to ensure that the photogenerated carrier densities balance the

light that is absorbed.  We can see this balance easily in equations (6.3) – (6.13) if we

express equations (6.3) and (6.4) in terms of the modulated intensity pattern.  This is done

by summing the electric field equations that are associated with equations (6.3) and (6.4)

to obtain a propagation equation for the total pump electric field inside the material.  We

then use this equation to form a propagation equation for the total intensity inside the

material, noting that the modulated intensity is formed by cross-terms between the two

pump fields.  When we allow the neutral and ionized EL2 densities to be modulated, this

balance is directly seen.

6.2.3 Probe and Diffracted Field Equations

The equations of section 6.2.1 describe the propagation of the pump beams

through the crystal, and the effect that the material has on the beams is taken into account

completely by the linear and non-linear absorption terms.  Conversely, the effect that the

pump beams have on the material is described in the equations of section 6.2.2, and

Chapters II and III.  In this section, we consider the only remaining element in modeling

our experiments: the propagation of the probe and diffracted beams in the presence of

linear and nonlinear absorption and diffraction due to the induced gratings.  Since the

quantities that we observe in our experiments, the rotated and non-rotated diffraction
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efficiencies, follow directly from the propagation equations for the probe and diffracted

beams, this forms a very important part of our model.

As we discussed in Chapter V, the 1.06µm wavelength probe beam that we use in

our experiments is focused to a 0.6mm (1/e) spatial width.  Since the 2.1m confocal

parameter associated with the propagation of this beam is much larger than our 1mm-

3mm crystal lengths, we can assume, as in the case of the pump beams, that the probe and

diffracted beams propagate through our crystals as plane waves.  Furthermore since the

phase matching angle for our induced gratings is less than ~6.5° relative to the normal to

the plane of incidence, we can assume that the probe and diffracted beams co-propagate

with the pump beams along the direction normal to the plane of incidence.  Under these

circumstances, we can use the process described in section 4.2 to derive equations for the

probe and diffracted electric fields.  As in section 4.2, we model the coupling between the

probe and diffracted beams in terms of phase-matched interactions with the induced

gratings.  This procedure produces the following equations for the rotated and non-

rotated components of the probe (Eprr, Eprn) and diffracted (Edr, Edn) electric fields:
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and,
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Here λ is the vacuum wavelength of the probe and diffracted fields, and ∆npr, ∆nfc, and

∆nibe, the index changes associated with the photorefractive, free-carrier and

instantaneous bound-electronic nonlinearities, are defined respectively by equations

(3.56), equations (2.25) and (2.26), and equations (2.32) and (2.33).  In the case of the

refractive instantaneous bound-electronic nonlinearity, the induced index change in

equations (6.14) and (6.16) arises from the third-order susceptibility tensor associated

with the pump and probe wavelengths (equation (2.33), 960nm, 1.06µm).

As we noted at the beginning of this discussion, the propagation equations for the

probe and diffracted beams form an important part of our model.  Thus, there are several

points about the above equations that are worthy of discussion.  First, we have assumed

in equations (6.14) – (6.17) that the fluences associated with the probe and diffracted

fields are small enough so that no EL2 saturation occurs, so that α is the small-signal

linear absorption coefficient at the wavelength of the probe and diffracted fields

(1.06µm).  In addition since the optical intensities associated with the probe and

diffracted fields are small, we have neglected self- and cross-instantaneous two-photon

absorption between the probe and diffracted beams.  However, we have allowed for

instantaneous two-photon absorption of the probe and diffracted beams due to the

presence of the pump beams, so that β is the non-degenerate two-photon absorption

coefficient for the wavelengths of 960nm and 1.06µm.  Clearly, this effect is negligible

except for probe delays less than ±5ps.
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Second, equations (6.14) – (6.17) show that the probe and diffracted fields are

coupled through the induced index gratings.  While equations (6.16) and (6.17) show that

the diffracted beam is generated as a result of the interaction of the probe beam with these

gratings, equation (6.15) and the last two terms on the right of equation (6.14) allow for

energy coupling back into the probe beam in the limit of large diffraction.  Moreover,

equations (6.16) and (6.17) show that, while the non-rotated (polarization) component of

the diffracted beam arises from interactions with the refractive instantaneous bound-

electronic and free-carrier gratings, the sole contribution to the rotated (polarization)

component is due to the photorefractive grating.  As we noted in Chapters II and V, the

free-carrier grating produces no polarization rotation because the associated optical

nonlinearity is isotroptic on picosecond timescales.  Furthermore, since the probe electric

field is polarized parallel to the pump fields, interactions between the pump and probe

beams due to the refractive instantaneous bound-electronic nonlinearities can not result in

a beam with a rotated polarization (W.A. Schroeder et al., 1992).

Third, in discussing the terms describing nonlinear diffraction in equations (6.14)

– (6.17), it is important to note that the lengths of our crystals (1-3mm) are large

compared to the periods of the induced gratings that we probe (1.7µm-3.8µm).  As a

result, the free-carrier instantaneous bound-electronic and photorefractive index changes

that are responsible for nonlinear diffraction in equations (6.14) – (6.17) follow from the

n=1 Fourier components of the free carrier population, optical intensity, and space-charge

field.
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Finally, close examination of equations (6.14) – (6.17) in light of the discussions

of Chapter IV shows that we have neglected the effects of absorption gratings in these

equations.  More specifically, while our pump pulses produce absorption gratings that are

present due to EL2 absorption saturation and instantaneous two-photon absorption (due

to the presence of the modulated intensity pattern, the probe and diffracted beams see a

change in absorption: ∆α=βI0), we have neglected the effects of these gratings.  Using the

magnitude of the absorption change (∆α~0.7cm-1) associated with EL2 absorption

saturation, equation (5.1) shows that the diffraction efficiency associated with this grating

is small relative to the diffraction efficiencies associated with the refractive index

gratings present in our experiments.  In addition, the magnitude of this grating can be

considered constant over the range of probe delays used in our experiments, so that it will

not affect our diffraction efficiency versus probe delay results.  Conversely, the

magnitude of the absorption grating associated with instantaneous two-photon absorption

can be large, but it is only significant between probe delays of ±5ps.  In terms of the

probe delay-dependence of the diffraction efficiency, this grating will affect our results in

the same way as the refractive instantaneous bound-electronic grating.  Since these

nonlinearities convey no information about the carrier or field dynamics that produce the

photorefractive nonlinearity, and since we have allowed for the presence of the refractive

instantaneous bound-electronic nonlinearity in equation (6.16), the contribution of this

absorption grating is neglected.
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6.2.4 Summary

Using the pump, probe and diffracted beam equations given in this section, as

well as the materials equations given here and in Chapters II and III, we can model the

dynamics of the diffraction efficiencies that we observe with a high degree of fidelity.

These equations must be solved self-consistently for each probe delay, for the length of

each crystal, and for each element of the spatial profile of the beams.  Clearly, we can

only solve these equations numerically, so that modeling of our experimental results is

clearly a complicated endeavor.  However, as we show in the following section, we can

simplify this process by making some observations that follow from our experimental

conditions.

6.3 Modeling Method

The set of equations given in section 6.2 can be used to perform high fidelity

modeling of our experiments.  However, while it is desirable to model our results with a

high degree of fidelity, as we noted in section 6.2, such fidelity comes with a high degree

of complexity.  It is therefore necessary to investigate ways of simplifying the modeling

method outlined in section 6.2.  As we show in this section, this can be done for our

experimental conditions, so that we can model the observed diffraction efficiencies for

probe delays greater than ~5ps using the carrier and field equations that are derived in

Chapter III, along with the small-signal diffraction efficiency and the relationship

between the carrier density and free-carrier index change, and space-charge field and

photorefractive index change.
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6.3.1 Time Resolving the Rise of the Photorefractive Nonlinearities in Semi-insulating

GaAs and Undoped CdTe

We begin by discussing the rise of the photorefractive nonlinearities in semi-

insulating GaAs and undoped CdTe for our experimental conditions and show that the

expected rise time of the space-charge field is always comparable to, or less than, the

duration of our probe pulses.  Thus, while we are therefore relegated to modeling only the

decay of the photorefractive nonlinearities in our materials, this results in a considerable

simplification to the equations for the probe and diffracted beams.

An important simplification to equations (6.14) – (6.17) can be made by

estimating the expected formation time of the photorefractive nonlinearities generated in

our materials.  While we stated, for the purposes of estimation in Chapter II, that we

generate average carrier densities between 1014cm-3 and 1016 cm-3 in our materials, it is

necessary for the purposes of discussion to cite a more specific estimation of the carrier

densities generated in our materials.  Using the beam propagation equations along with

the parameters given in Chapter II, we find that we generate carrier densities between

3x1015cm-3 and 3x1017cm-3 in CdTe, and carrier densities between 2x1014cm-3 and 1x1017

cm-3 in semi-insulating GaAs (at the center of our pump pulses).  As we discussed in

Chapter III, for these carrier densities we expect the space-charge fields to follow drift-

limited dynamics, where the field forms in the (carrier density-dependent) dielectric

relaxation time.  Using the carrier densities given above, along with the parameters given

in Chapter III, we find that the space-charge fields can be expected to form in times less

than ~2.5ps for our experimental conditions.  Since the space-charge fields form in times
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less than the FWHM intensity duration of our probe pulses, we do not expect to be able to

time-resolve the formation of the photorefractive nonlinearities generated in our

materials.  As a result, in modeling the probe delay dependencies of the diffraction

efficiencies, we are relegated to modeling the decay of the diffraction efficiencies in these

materials at probe delays greater than ~5ps.  For probe delays greater than 5ps, we can

neglect the terms in equations (6.14)-(6.17) that describe pump-intensity dependent

absorption of the probe and diffracted beams, as well as the contribution to the non-

rotated diffracted beam due to the instantaneous bound-electronic grating.

In the data for both GaAs and CdTe, we observe an enhancement to the rotated

component of the diffraction efficiency that is consistent with diffraction from a

photorefractive grating that is formed by hot carrier transport.  In semiconductors, the

free carrier mobilities are linearly proportional to the momentum relaxation time (τm),

which increases with increasing carrier temperature in materials like GaAs and CdTe,

where polar optical phonon scattering is the dominant scattering mechanism (K. Seeger,

1985).   Thus, in our materials, an increased carrier temperature leads to increased carrier

mobilities.  Since the dielectric relaxation time is inversely proportional to the carrier

mobility, we observe a faster photorefractive rise time than is estimated above, especially

at higher excitation fluences.  As a result, even if we numerically solved equations (6.14)

– (6.17) for the full range of probe delays, the predictions of our model would be in

disagreement with the experimental results for probe delays less than ~5ps, where carrier

cooling is incomplete.
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6.3.2 Small-Signal Approximation

The second simplification that we can make to the equations given in section 6.2

follows from the fact that, at all times in our experiments, we measure diffraction

efficiencies that are much less than unity.  Under these circumstances, we can neglect

equation (6.15), and the terms in equation (6.14) that describe nonlinear diffraction from

the non-rotated diffracted beam to the probe beam.  Taking this into account, along with

the discussions of section 6.3.1, the equations for the probe and diffracted beams can be

re-written:
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These equations can be easily solved to yield expressions for the small-signal rotated and

non-rotated diffraction efficiencies:
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where l  is the length of the crystal, and it is understood that the diffraction efficiencies

(ηnr and ηr) and the corresponding index changes (∆nfc, ∆npr) are functions of the probe

delay (τ).

The results contained in equations (6.21) and (6.22) are important because they

encapsulate the physics contained in equations (6.18) – (6.20) into two (relatively) simple

analytical expressions for the quantities that we observe, the diffraction efficiencies

associated with the non-rotated and rotated polarization components of the diffracted

beam.  In principle, we can use these equations, along with equations that describe the

dynamics of the free-carrier and photorefractive index changes, to model the dynamics of

the non-rotated and rotated diffraction efficiencies.  A dynamical picture of the free-

carrier and photorefractive index changes is given by the equations derived in Chapter III,

which describe the dynamics of the free-carrier populations and space-charge fields.  To

model the dynamics of the photorefractive and free-carrier index changes, these equations

are used with the equations that relate the free-carrier and photorefractive index changes

to the free-carrier density and space-charge field magnitude.  While the carrier and field

equations of Chapter III assume free-carrier populations that are generated

instantaneously, use of these equations is justified, since the carrier populations are

generated by 1ps duration pulses, which is instantaneous relative to the decays that are

expected in our experiments (35ps – 750ps).
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6.3.3 Spatial and Beam Propagation Effects

While it would seem that equations (6.21) and (6.22) offer a simple way of

modeling our diffraction efficiency versus probe delay results, we must take caution in

using this approach.  It is important for us to note that the observed diffraction

efficiencies reflect index changes that must be thought of as averages over the spatial

profile and temporal duration of the probe pulses, as well as averages over the

propagation length of the crystal.  Thus, in using equations (6.21) and (6.22) to model the

observed diffraction efficiencies, we must consider effects due to the spatial profiles of

the pump pulses, as well as propagation effects related to the pump beams.

As we discussed in section 5.4.3, we minimize effects with the spatial profiles of

the pump and probe beams by choosing a probe beam with a (1/e) radius that is 60% of

that of the pump beams.  As a result, we can model the diffraction efficiencies in terms of

the peak intensities of the pump pulses.  However, since we use long crystal lengths, and

since our pump beams can be depleted via instantaneous two photon absorption,

averaging effects over the crystal lengths might be expected to have a non-negligible

effect on our experimental results.  For example, due to the presence of instantaneous

two-photon absorption, our pump beams experience optical limiting as they propagate

through the crystal, an effect that leads to a non-negligible variation in pump intensity

between the front and back faces of the crystal and a similar variation in the

photogenerated free carrier densities.  Since the decay of the free-carrier populations and

electron-hole space-charge field can be carrier density-dependent, this can lead to the

following result: the photorefractive diffraction efficiency that is measured at a given
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probe pulse delay is an average over a set of gratings encountered at different points

along the propagation length, at various stages of decay.

By recalling the carrier generation discussions of Chapter II, as well as the carrier

transport and field formation discussions of Chapter III, we can estimate the effect that

the propagation length has on the diffraction efficiencies that we observe.  As we saw in

Chapter II for undoped CdTe, the sole carrier generation mechanism, which is

instantaneous two-photon absorption, produces equal populations of electrons and holes.

In addition, as we saw in Chapter III and in section 6.3.1, the carrier densities that we

generate in undoped CdTe are large enough so that our experimental results can be

expected to exhibit drift-limited carrier and field dynamics.  In the drift limit of carrier

and field dynamics, the decay of the free carrier populations and electron-hole space-

charge field occur by ambipolar diffusion, and the associated time constant is the same

for all carrier densities, since equal populations of electrons and holes are always present.

Thus, we conclude that in undoped CdTe, the decay of the induced index changes will

not vary over the length of the crystal for our experimental conditions.

The result of the previous paragraph, that the decay of the free-carrier and

photorefractive index changes do not vary over the crystal length for our experimental

conditions, leads to the following method for modeling our CdTe results.  For each

excitation fluence, we numerically solve the beam propagation equation to determine the

average electron and hole densities that are generated over the crystal length.  We then

use these carrier densities in the carrier and field equations of Chapter III to determine the

dynamics of the n=1 electron density and space-charge field.  Following equations (6.21)
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and (6.22) and the equations that relate the free carrier density and space-charge field to

the corresponding index changes, we square these quantities and then fit them to the non-

rotated and rotated diffraction efficiencies.

The situation is not as simple in semi-insulating GaAs.  As we saw in Chapter II,

beam depletion and carrier generation in semi-insulating GaAs occur by linear and

instantaneous two-photon absorption, and the relative importance of these two carrier

generation mechanisms varies as a function of fluence over the propagation length.

However, more importantly, excitation of our crystal generally produces unequal

populations of electrons and holes, and the relative magnitude of the electron and hole

densities varies with fluence over the crystal length.  Since the drift-limited dynamics of

the free carrier populations and electron-hole space-charge field vary with the relative

magnitudes of the electron and hole populations, the dynamics of the non-rotated and

rotated diffraction efficiencies can be expected to vary over the length of the crystal.

In order to consider propagation effects involving the pump beams, we can use

the following procedure in modeling our semi-insulating GaAs results.  We numerically

solve the beam propagation equations (equations (6.3) and (6.4)) using the peak beam

intensities, and assuming a constant linear absorption.  For each excitation fluence, we

divide the crystal into slices (d l ) over which the optical fluence decreases by 20% from

its initial value.  For each slice, we use the equations given in section 6.2.2 to determine

the n=0,1, and 2 components of the electron, hole, and ionized EL2 densities.  These

carrier densities are then used in the carrier and field equations of Chapter III to

determine the dynamics of the n=1 component of the space-charge field and electron
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density.  For each incident fluence, we use the dynamics of the carrier densities and field

for each crystal slice, along with the slice thickness to form the sum of the square of the

field or carrier density and slice thickness ( ( )∑ ∆∆ 2, ldnn prfc ).  This result is then fit to

the diffraction efficiency for the corresponding fluence and polarization component.

In concluding this discussion, we note that Appendix B contains source listings

for the computer codes used in modeling our experimental results.  In modeling the CdTe

results, we use “beamprop.for” to determine the average carrier densities, and “cdte5.for”

to determine the carrier and field dynamics.  In modeling our semi-insulating GaAs

results, we use “carrgen.for” to determine the crystal slices and carrier densities, and then

“gaas5.for” to determine the carrier and field dynamics.

6.4 Conclusions

In this chapter we have considered the numerical modeling of our experimental

results.  We began by deriving a set of equations that describe the propagation of the

pump, probe and diffracted beams, as well as the photogenerated EL2 and carrier

densities.  With the equations that were derived in Chapter III, which describe the

dynamics of the free carriers and space-charge fields, these equations form a detailed

model for our experiments.  We found that while the set of equations that comprise our

model can not be solved analytically, we can simplify the equations for the probe and

diffracted beams by noting that our diffraction efficiencies are always much less than

unity, and by modeling the dynamics of the diffraction efficiencies only for probe delays

greater than 5ps.  With these two simplifications, we solved the equations for the probe



165

and diffracted beams to yield analytical expressions for the rotated and non-rotated

diffraction efficiencies.  We then showed that, with numerical solutions to the equations

of Chapter III that describe carrier and field dynamics, these expressions for the

diffraction efficiencies could, in principle, be used to model our experimental results.

In modeling our results for semi-insulating GaAs, we must take into account

propagation effects with the pump beams.  We outlined a method for this that involved

numerically solving the beam propagation equations, in order to divide the crystal into

slices.  For each slice, the procedure described above is followed, with the carrier and

field equations of Chapter III numerically solved for each crystal slice.  These results are

used to form a sum involving the square of each slice thickness and the photorefractive of

free-carrier index change, which is fit to the experimental results.  In the case of undoped

CdTe, where equal population densities of electrons and holes are always present, the

modeling method is much more simple.  The beam propagation is solved to determine the

average carrier densities that are generated over the crystal length.  These carrier densities

are used in the carrier and field equations of Chapter III, in order to determine the

dynamics of the free-carrier or photorefractive index change.  This result is squared and

then fit to our experimental results.
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7.1. Introduction

With this chapter we begin our presentation of the experimental results.  Here we

consider the results obtained using our PPRTG measurement technique and the more

simple of the two materials that we are studying, undoped CdTe.  Since the undoped

CdTe crystal used in our experiments exhibits no measurable linear absorption at the laser

operating wavelength of 960nm, free carriers can only be produced in this material by

instantaneous two-photon absorption.  Since instantaneous two-photon absorption always

produces equal populations of electrons and holes, our experimental results for undoped

CdTe provide unambiguous evidence of a photorefractive nonlinearity that arises entirely

as a result of the Dember space-charge field.

We begin by presenting data for the non-rotated polarization component of the

diffracted beam and then follow this by presenting the data for the rotated component.

After considering the non-rotated and rotated data sets, we conclude by comparing our

CdTe experimental results with predictions made by our numerical model.  Whereas our

discussions of the non-rotated and rotated diffraction efficiencies focus mainly on data for

CHAPTER VII

UNDOPED CdTe - THE DEMBER SPACE-CHARGE FIELD
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the 1.7µm grating period, our modeling discussion considers these and the results taken at

a grating period of 3.8µm.

As we will see, the data for the non-rotated component of the diffraction efficiency

exhibits sharply-peaked and decaying features that are consistent with diffraction from

instantaneous bound electronic and free carrier gratings.  The data for the rotated

polarization component of the diffracted beam exhibits crystal-orientation and fluence

dependencies consistent with diffraction from a photorefractive grating.

7.2 Non-Rotated Polarization Component: The Free-Carrier and Instantaneous Bound-

Electronic Nonlinearities

In this section we consider the experimental results obtained by monitoring the

non-rotated component of the diffracted beam in the way discussed in Chapter V.  The

experimental results shown in this section were taken with the space-charge field

generated parallel to the )101(  crystallographic direction, where diffraction from the

photorefractive grating produces a beam with a rotated polarization component.  Thus,

the diffraction efficiencies shown in this section are not due to the photorefractive grating.

7.2.1 Temporal Dynamics

The dynamics of the non-rotated component of the diffracted signal are shown in

figure 7.1a-c for a range of fluences and a grating spacing equal to 1.7µm.  In each of

these figures, the diffraction efficiency is plotted against the delay of the probe beam.  As

can be seen most easily from the two lower fluence plots (figures 7.1b and c), the
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Figure 7.1a-c – Non-rotated diffraction efficiency versus probe delay for fluences
of (a) 2.33mJ/cm2, (b) 1.26mJ/cm2 and (c) 0.50mJ/cm2.  In all cases, the fluences
listed on the figure is the peak excitation fluence (i.e., the fluence at the peak of the
are the modulated fluence profile).

diffracted signal possesses two components with distinctly different temporal

dependencies.

The first of these features, a sharply-peaked signal which is centered at a probe

delay of 0ps, is most evident in the lower fluence plots.  A comparison of figure 7.1c with

figure 5.8 reveals that this sharply-peaked diffraction efficiency roughly follows the shape

of the probe pulse intensity profile.  In light of the fact that the temporal shape of the

diffraction efficiency is generally determined by the correlation function involving the

probe pulse intensity profile and the square of the induced index change (which involves

both the fundamental material response and the pump pulses), the similarity between these

plots indicates that this feature arises from a grating whose onset and decay are both
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instantaneous with respect to the duration of the probe pulses.  Though not shown for the

sake of brevity, this diffraction efficiency exhibited the fluence dependence expected for

the instantaneous bound electronic nonlinearity.  Thus, both the fluence and temporal

dependencies of this feature suggest that it arises from a refractive index grating generated

through the instantaneous bound-electronic nonlinearity.  Since this feature tells us nothing

of the free-carrier or space-charge field dynamics of the material, it is not of further

interest in this discussion.

The second feature in figures 7.1a-c, the decaying diffraction efficiency, is of

interest in this study.  Since this decaying diffraction efficiency dominates the sharply-

peaked signal at the highest fluences, the rise of this feature can only be studied with the

data shown in figures 7.1a-c.  As shown, the rise of the decaying diffraction efficiency

closely follows the shape of the integral of the probe pulse intensity profile.  This

diffraction efficiency reaches half of its peak value at a delay of 0ps and its maximum at

small positive probe delays.  This response is consistent with diffraction from a grating

that is created cumulatively in a time that is shorter than the duration of the probe pulses,

and that decays in a time much longer than the duration of the probe pulses.  This is the

general behavior that is expected for a free carrier grating in undoped CdTe.  The free-

carrier populations are cumulatively generated over the 1ps duration of the pump pulses

by instantaneous two-photon absorption.  In the drift limit of carrier dynamics, the free

carrier populations decay by ambipolar diffusion, and the decay constant of 70ps that is

predicted using the literature value for the hole mobility (90cm2/V-s) and our 1.7µm

grating spacing is approximately equal to the value of 65ps that we observe.
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Though the decaying diffraction efficiency shown in figure 7.1a exhibits the decay

constant expected for a drift-limited free carrier grating, it is necessary to more rigorously

compare the dynamics of this feature that are observed at 1.7µm, 3.0µm, and 3.8µm

grating periods with the expected behavior.  We can do this by noting that in the drift

limit, and when the modulated free carrier population is also destroyed by carrier

recombination, the observed decay rate (1/τ) of the free-carrier diffraction efficiency can

be written (R.K. Jain and M.B. Klein, 1983):

2

2821

g

A

r

D
λ

π
ττ

+= .                       (7.1)

Here τr is the carrier lifetime, and DA is the ambipolar diffusion coefficient (discussed in

Chapter III).  Thus, a plot of the observed decay rate as a function of the grating constant

(8π2/λ2
g) will yield a linear plot whose slope is the diffusion coefficient and whose y-

intercept is twice the carrier recombination rate.  We can therefore make a plot of this

type, and then compare our measured values with those reported in the literature.  The

result of this procedure is shown in figure 7.2.  In this plot, the solid line is the result of a

least-squares fit of the data, and yields an ambipolar diffusion coefficient of 4.83cm2/s and

a carrier recombination time of 1ns.  Both of these values are close to the reported values

for these constants of 3.0 cm2/s and 12.5ns ±9ns (M.S. Petrovic et al., 1989).  While this

further supports the identification of the decaying diffraction efficiency with a drift-limited

free-carrier grating, it provides an independent measure of these constants for use in our

model of the carrier and field dynamics.
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Figure 7.2 – Grating constant (8π2/λ2
g) versus observed decay rate.  As discussed

in the text, the slope of the resulting plot yields the ambipolar diffusion coefficient,
while the y-intercept yields twice the carrier recombination time.

Two other characteristics of the dynamics of the decaying diffraction efficiency

also support the association of this feature with diffraction from a free-carrier grating.

First, separately for each of the three grating periods, the decay constant associated with

the decaying feature was observed to be the same over the range of fluences where a

measurable decaying feature was present.  As we discussed in Chapter VI, this is the

behavior that is expected for a drift-limited free-carrier grating in undoped CdTe.  This

follows from the dependence of the ambipolar decay time on the relative densities of

electrons and holes, and the fact that instantaneous two-photon absorption always

produces equal populations of electrons and holes.  Also included in this is the fact that
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the dominant carrier recombination process in our undoped CdTe crystal is electron-hole

bimolecular recombination, so that neither species is preferentially depleted.  Second, for

all of the data sets where a measurable decaying feature was present, the decay was seen

to be purely exponential.  This is the behavior that is expected for materials like undoped

CdTe, where photogeneration produces only electrons and holes, and no ionized midgap

levels.  As will be shown in Chapter VIII, this is not the case in semi-insulating GaAs.  As

we saw in Chapter II, photoexcitation produces population densities of electrons, holes,

and ionized EL2, causing space-charge fields between the electrons and holes, and

between the electrons and ionized El2.  Since the EL2 are immobile, the EL2-associated

space-charge field is long-lived, and in the drift-limit of carrier dynamics, results in a free-

carrier grating that is constant on picosecond time scales.  Thus, rather than decaying to

zero, the free-carrier diffraction efficiency in semi-insulating GaAs decays to a constant

value.

7.2.2 Fluence Dependence of the Free-carrier Diffraction Efficiency

Whereas we examined the temporal dynamics of the decaying diffraction efficiency

in the previous sub-section, in this sub-section we examine the fluence dependence of this

feature.  Since the fluence-to-the-fourth-power dependence that is measured for this

feature is that which is expected for a free-carrier grating that is generated by two-photon

absorption, this data serves to further strengthen the association between the decaying

feature in our data, and diffraction from a free-carrier grating.
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It is beneficial to begin this discussion by considering the expected diffraction

efficiency-versus-fluence behavior that a two-photon absorption generated free-carrier

grating is expected to exhibit.  In Chapter VI, the small-signal transient-grating diffraction

efficiency was shown to be proportional to the square of both the index change and

interaction length.  In addition, in Chapter II, the free-carrier index change was shown to

be proportional to the carrier density.  Therefore, in undoped CdTe, where carriers are

generated by two-photon absorption according to the square of the beam intensity, the

free-carrier diffraction efficiency is expected to be proportional to the product of the

fourth power of the fluence, and the square of the interaction length.

The fluence dependence of the decaying diffraction efficiency is shown in figure

7.3.  The data shown in this figure are taken at a fixed probe delay of 5ps, where the

sharply-peaked signal does not contribute to the measured diffraction efficiency.  As

shown, the diffraction efficiency follows the F4 fluence dependence closely over the lower

and middle portion of the range of fluences for which diffraction is observed.  However, as

the fluence is increased past 1.0mJ/cm2, the diffraction efficiency deviates from this

dependence, increasing at a lower rate than predicted by the F4 dependence.

The high-fluence deviation can be understood by recalling that, in addition to

producing free carriers, two-photon absorption depletes the optical beams and introduces

an optical absorption depth that is inversely proportional to the beam intensity (l=1/βI).

In transient-grating experiments, the intensity-dependent absorption depth introduces an

intensity-dependent effective interaction length.  At low fluences, where the effective



175

Figure 7.3 – Non-rotated diffraction efficiency versus fluence for a fixed probe
delay of 5ps.  Shown in the figure, the data follow the F4 dependence expected for
a free-carrier grating.

interaction length longer than the crystal length, the diffraction efficiency reflects the

square of the index change.  However at high fluences, where the effective interaction

length is shorter than the crystal length, the diffraction efficiency reflects the fluence

dependence of both the index change and the interaction length.  While the index change

increases with increasing fluence, the interaction length decreases with increasing fluence,

and the result is that the diffraction efficiency increases more slowly than the square of the

index change.  Thus, the decaying diffraction efficiency follows the fluence dependence

expected for a free-carrier grating generated by two-photon absorption in the presence of

beam depletion.
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7.3 Rotated Polarization Component: The Dember Photorefractive Nonlinearity

In this section we present the experimental results pertaining to the rotated

polarization component of the diffracted beam.  The experimental results shown in this

section were obtained using our PPRTG measurement technique, an s-polarized probe

beam, and a crystal orientation where the space-charge field was parallel to the ( 011 )

crystal axis.  As is shown in Appendix A, for this crystal orientation the photorefractive

grating is expected to produce a diffracted beam with a rotated polarization component.

7.3.1 Crystal Orientation-Dependence of the Rotated Polarization Component

In this section, we discuss the crystal orientation-dependence of the rotated

polarization component of the diffracted signal.  From the discussions of Chapter II and V,

and Appendix A, it is generally expected that only the photorefractive grating will produce

a diffracted signal with a rotated polarization component, and that the associated

diffraction efficiency will exhibit a strong crystal orientation-dependence.

In figure 7.4, the diffraction efficiency associated with the rotated polarization

component is plotted versus probe delay for an s-polarized probe beam, and two

orientations of our 1.0mm CdTe crystal: Esc||( 011 ) and Esc|| )211( .  For clarity, we

summarize the polarization rotation properties of our CdTe crystal, which are discussed in

Appendix B.  When the probe electric field is s-polarized and the crystal is oriented so that

the space-charge field is generated along the ( 011 )direction, the photorefractive grating

produces a diffracted beam whose polarization is rotated by exactly 90°.  In contrast,
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Figure 7.4 – Crystal orientation dependence of the rotated diffraction efficiency.
As discussed in the text, the data shows the crystal orientation dependence
expected for the photorefractive nonlinearity.

when the probe beam is s-polarized and the crystal is oriented so that the space-charge

field is parallel to the )211(  direction, the photorefractive grating produces a diffracted

beam whose polarization is not rotated.  As discussed in Chapters II and V, neither the

free-carrier or instantaneous bound-electronic gratings are capable of producing a

polarization rotation for our experimental conditions.

The diffraction efficiency data shown in figure 7.4 clearly follows the dependence

expected for the photorefractive grating.  While the diffraction efficiency exhibits a clear

rise, peak and decay when the space-charge field is parallel to the ( 011 ) crystal direction,

the diffraction efficiency decreases dramatically when the space-charge field is oriented

along the )211(  direction.  Thus, the diffraction efficiency data shown in this section can
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be attributed entirely to the photorefractive nonlinearity.

7.3.2 Temporal Dynamics

The dynamics of the photorefractive diffraction efficiency are shown in figure 7.5

for incident fluences of (a) 2.33mJ/cm2, (b) 1.12mJ/cm2 and (c) 0.47mJ/cm2 and a grating

period of 1.7µm.  Visible in each of the data sets shown in figures 7.5a-c are a transient

feature which peaks at small probe delays, and a decaying feature similar to that seen in

the data for the non-rotated diffraction efficiency.

Transient Photorefractive Diffraction Efficiency

The first of the features that is visible in figures 7.5a-c, the transient feature, is

clearly not related to the instantaneous bound electronic diffraction efficiency of the

previous section for the following reasons.  Firstly, this feature exhibits a cumulative rise,

peaking at small positive probe delays, followed by a decay that is fastest at high fluences,

and slowest at low fluences.  This is in contrast to the instantaneous bound-electronic

diffraction efficiencies shown in the previous section, which peak at a probe delay of 0ps

and follow the shape of the probe pulse at all fluences.  In addition, as is evident from

figure 7.4, this diffraction efficiency exhibits the crystal orientation dependence expected

for the photorefractive nonlinearity.  In contrast, as we discussed in Chapter V, the

instantaneous bound-electronic nonlinearity allows no such polarization rotation for the

experimental conditions.  Finally, this diffraction efficiency exhibits a fluence dependence

that is characteristic of the photorefractive nonlinearity.  Although not shown, this

dependence is easily distinguished from the F2 dependence of the instantaneous bound-
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Figure 7.5a-c – Rotated diffraction efficiency versus probe delay for fluences of (a)
2.33mJ/cm2, (b) 1.12mJ/cm2, and (c) 0.47mJ/cm2. In all cases, the fluences listed
on the figure is the peak excitation fluence (i.e., the fluence at the peak of the are
the modulated fluence profile).

electronic diffraction efficiency.

Comparison of the data of figure 7.5 with results obtained for the same

experimental conditions in InP:Fe yields evidence as to the origin of the transient

photorefractive diffraction efficiency.  Such a comparison is made in figure 7.6, which is a

plot of the photorefractive responses of both CdTe and InP:Fe at approximately equal

excitation fluences.  At 960nm, the photorefractive response of both materials is due to

the Dember Space-charge field.  In undoped CdTe, where there are no optically-active

midgap levels, this is due to the fact that the intense 960nmpulses used in these

experiments can generate electron-hole pairs by instantaneous two-photon absorption.
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Because the photon energy of the 960nm radiation is ~1.3eV, and the bandgap energy of

this material is 1.49eV, these carriers are produced with an excess energy of roughly 1eV.

The situation is completely different in InP:Fe.  In this material, iron doping

produces optically-active Fe2+/Fe3+ centers which can absorb near infrared radiation and

produce free carriers (P.B. Klein et al., 1984).  In our InP:Fe crystal, the linear absorption

coefficient due to these species is approximately 1.0cm-1 at the probe wavelength of 1.06µ

m (G.C. Valley et al., 1989).  However, at 960nm, this material exhibits an additional

linear absorption (α≅10cm-1 at 960nm) because the laser photon energy is sufficient to

couple the tails of the valence and conduction bands (the InP band-gap energy is 1.34eV

(Landolt-Börnstein, vol.17, 1982)).  This results in a strong single-photon band-to-band

generation of electron-hole pairs which, under the experimental conditions, dominates the

photoexcitation of free carriers due to both linear absorption at the Fe2+/Fe3+ mid-gap

sites and instantaneous two-photon absorption.  Since these carriers are generated through

the coupling of the valence and conduction band tails, they have no excess energy.  As

shown in figure 7.6, the transient feature is not present in the InP:Fe results.  Thus, we

postulate that this feature arises from hot carrier effects.

Though a detailed description of hot carrier transport and space-charge field

formation is beyond the scope of this thesis, a simple analysis of the drift-limited carrier

dynamics can be used to show that the transient photorefractive diffraction efficiency is

consistent with diffraction from a photorefractive grating produced by hot electrons (W.

A. Schroeder et al., 1991).  In Chapter III, we showed that the drift-limited Dember field

magnitude is linearly proportional to the temperature:



182

Figure 7.6 – Plot of diffraction efficiency versus probe delay contrasting the
grating dynamics observed in undoped CdTe (open squares) and InP:Fe (filled
squares) for similar excitation fluences (2.33mJ/cm2 and 2.25mJ/cm2).  As
discussed in the text, this gives information as to the origin of the transient
diffraction efficiency that we observe in our undoped CdTe results.
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When the carriers can be assumed to thermalize faster than they cool (this is an excellent

assumption at the highest carrier densities generated in our experiments), they can be

represented by Maxwell-Boltzmann distributions with an elevated temperature.  Since the

electron effective mass is roughly 4 times the hole effective mass, the electrons and holes

are photoexcited with, respectively, roughly 0.8eV and 0.2eV of the 1eV excess energy.

Considering the electrons only, this corresponds to an equivalent initial carrier temperature
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of ~6000K, which is roughly 20 times larger than the lattice temperature (300K).  Thus,

we would expect for hot carrier effects to produce a significant enhancement to the space-

charge field magnitude.

We can also consider the effect of hot carrier transport on space-charge field

formation in terms of the interplay between the electron and hole current densities that

was discussed in Chapter III.  There we showed that the electron-hole space-charge field

is generated as a result of the discrepancy between the electron and hole mobilities, and

the field reaches its peak value when it becomes large enough to cause the electron and

hole current densities to balance.  As we noted in Chapter VI, in zincblende

semiconductors, where polar optical phonon scattering is the dominant carrier scattering

mechanism, an increased carrier temperature results in an increased carrier mobility.  Since

the electrons receive the majority of the excess energy, their mobility is enhanced more

than the hole mobility.  While the increased electron mobility causes the field to form more

quickly (the dielectric relaxation time is inversely proportional to the carrier mobility), it

and the increased electron temperature together produce a larger electron diffusion current

density.  Thus, a larger electron diffusion current density means that the balance described

above is reached at a larger space-charge field magnitude.

Once the field reaches its maximum value, it decays by two processes that occur

simultaneously.  First, as we described in Chapter III, the electron-hole pairs decay by

ambipolar diffusion to destroy the modulated space-charge field.  For the grating periods

used in our experiments, this occurs more slowly than the second process, the cooling of

the carriers.  As the carriers cool, the space-charge field decays from its enhanced value to
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the lattice temperature value, so that the balance described above is dynamically

maintained.  At high carrier densities, where the dielectric relaxation time is much shorter

than the carrier cooling time, the carriers can respond instantaneously to the cooling of the

carriers, and the decay of the hot carrier space-charge field is the cooling time of the

carriers (we estimate this to be 5ps in section 2.3).  However, at lower carrier densities,

where the opposite situation holds, the decay of the hot carrier space-charge field is the

dielectric relaxation time of the carriers, which is as long as 20ps for our lowest carrier

densities.  This is the trend that we observe in our experimental results: we see the decay

of the transient photorefractive diffraction efficiency decrease as the excitation fluence is

decreased.  While we can not resolve this decay at higher fluences, at lower fluences this

decay is comparable to the expected dielectric relaxation time.  Thus the rise, magnitude

and decay of the transient photorefractive diffraction efficiency of figures 7.5 shows the

qualitative features expected for a hot carrier photorefractive grating.

In light of the above discussion, it might seem surprising that we do not see

evidence of hot carrier transport in the non-rotated polarization data presented in section

7.2.  Based of the above discussions, we would expect these effects to be manifest as a

fast decay of the free-carrier grating for times less than ~5ps.  However, by using the

discussions of section 3.3.3, we can show that the overall effect of hot carrier transport on

the free carrier decay is minimal.  From section 3.3.3, we recall that the Debye length can

be thought of as the distance that free electrons travel before the field magnitude reaches

its maximum value.  Assuming that this occurs before the carriers cool, we can use the

electron temperature given above, along with the dependence of the Debye length on
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carrier temperature (T½) to estimate the increase in this quantity.  Using a carrier density

of 1x1017cm-3, along with the electron temperature given above of 6000K, we find that the

Debye length increases to ~5.5x10-8m.  Since this is still only about 3% of our smallest

grating period, we conclude that the effect of hot carrier transport on the decay of the

modulated free-carrier population is minimal, so that its effect on the free-carrier grating

decay is unobservable.

The above discussion leads to an important contrast that must be made between

the free-carrier and photorefractive nonlinearities.  While we have seen that hot carrier

transport causes a negligible increase in the decay of the free carrier population so that the

overall effect on the free-carrier grating is minimal, our experimental results clearly show

that hot carrier transport has a non-negligible effect on the magnitude of the

photorefractive effect that is observed.  This is because, while the free-carrier grating is

dependent on the modulated carrier density, the photorefractive grating is dependent on

the modulated space-charge field.  According to Gauss’ law, the modulated space-charge

field is proportional to the modulated charge separation, summed over the grating period.

Thus, instead of being sensitive to the modulated carrier density, the photorefractive

grating is sensitive to differences in the modulated carrier populations through the space-

charge field.  Therefore, though an effect such as hot carrier transport might produce a

small overall change in the modulated free electron density, when the resulting charge

separation that is summed over the grating period, the overall effect can be substantial.
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Decaying Photorefractive Diffraction Efficiency

In addition to the transient photorefractive diffraction efficiency discussed above,

the data in figure 7.5 also reflect a decaying photorefractive diffraction efficiency.  When

closely examined, the dynamics of this decaying photorefractive diffraction efficiency are

similar to those of the free-carrier grating decay discussed in the previous section.  Most

importantly, the 55ps decay constant is in the range of values expected for ambipolar

diffusion of electron-hole pairs across the 1.7µm grating period.  In addition, like the

decay of the free-carrier grating, the decay of this photorefractive diffraction efficiency is

both fluence-independent and exponential.  According to the discussions of Chapter III,

this is the behavior that is expected for a Dember photorefractive nonlinearity that is due

to equal populations of electrons and holes.

The slight difference between the decay of the free-carrier and photorefractive

diffraction efficiencies is expected.  Indeed, for larger grating periods we see larger

discrepancies between the decay of the free-carrier and Dember photorefractive diffraction

efficiencies.  This will be discussed in section 7.4, where we discuss our modeling of the

experimental results.

7.3.3 Fluence Dependence of the Photorefractive Diffraction Efficiency

Having discussed the temporal dynamics of the diffraction efficiency associated

with the rotated polarization component, we now consider its fluence dependence.  Here it

is important to note that it is the fluence dependence of the transient photorefractive

diffraction efficiency that we measure.  As we will see, this diffraction efficiency exhibits
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the fluence dependence that is expected for a drift-limited Dember photorefractive

nonlinearity generated by two-photon absorption.

In analyzing our diffraction efficiency versus fluence results, we must be able to

compare our data with results that are expected for the photorefractive nonlinearity.  As

we have already seen, the diffraction efficiency is proportional to the square of the induced

index change and the interaction length.  Therefore, in order to make this comparison, we

must relate the incident fluence to the magnitude of the photorefractive index change.

This can be done using the relationship between the carrier density and space-charge field

magnitude that was discussed in Chapter III.  Here we note that the induced index change

is linearly proportional to the space-charge field magnitude, and that the photogenerated

carrier density increases according to the square of the incident fluence.

Recalling the discussion of Chapter III, the space-charge field magnitude is linearly

proportional to the carrier density at low carrier densities (the diffusion limit), but

increases sub-linearly as the carrier density is increased, and is independent of carrier

density at high carrier densities (the drift limit).  As we discussed in Chapter VI, our

lowest photogenerated carrier densities are comparable to the critical carrier density where

diffusion and drift are equally important in field formation.  Thus, in the absence of effects

which decrease the effective interaction length for the nonlinear diffraction process, we

expect to the diffraction efficiency to increase at a rate less than F4 at our lowest fluences,

but be independent of fluence at our highest fluences.

The fluence dependence of the rotated diffraction efficiency is shown in figure 7.7.

For reference, a line with F4 dependence is shown with the data.  In addition, in order to
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Figure 7.7 – Rotated diffraction efficiency versus fluence for a fixed probe delay of
55ps.  As discussed in the text, the data are consistent with diffraction from a drift-
limited photorefractive grating.

neglect hot carrier effects, the diffraction efficiency is measured at a fixed probe delay of

55ps.  The data exhibit the behavior that is expected for a Dember photorefractive

nonlinearity between the diffusion and drift limits.  While the rate of increase of the

diffraction is less than F4 at the lowest fluences, it is sub-linear through the middle and

upper fluences, increasing by a factor of less than 2 as the fluence is increased by a factor

of roughly 3.  Looking again at figure 3.3, this behavior is expected for a drift-limited

photorefractive grating.  This result is consistent with the results of the previous sections,

where we observed drift-limited free-carrier and photorefractive grating dynamics.
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7.4 Modeling

In this section we discuss the modeling of our CdTe experimental results.  As we

discussed in Chapter VI, we model these results using the relationship between the small-

signal transient grating diffraction efficiency and the induced index change, and the

relationship between the free-carrier and photorefractive index changes and the n=1

modulated carrier densities and space-charge field.  The parameters that we use in

modeling our CdTe results are summarized in table 7.1.

Parameter Value Reference
εr 10.4 K. Zanio, 1978
nb 2.82 Landolt-Börnstein, 1982

µe 1050cm2/V-s M. S. Petrovic et al., 1991
µh 93cm2/V-s This work
β 17cm/GW M. D. Dvorak et al., 1994
τr 1ns This work

Table 7.1 – Parameters used in modeling our undoped CdTe experimental results.

Figures 7.8a and b show the experimental results for the decay of the free-carrier

grating at grating periods of 1.7µm and 3.8µm, along with the predictions of our model

(solid line).  In generating the model predictions, we have used the procedure described in

Chapter VI with the values given in table 7.1.  While it is the results from our model in the

high modulation limit that are shown in these figures, in both limits the model describes

the same result: exponential decay of the free carrier populations via ambipolar diffusion,

with the time constant given by the ambipolar diffusion time for the grating period.  As

can be seen from the plots, in all cases the results of our model fit the data very well,
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Figure 7.8a and b – Non-rotated diffraction efficiency versus probe delay plots
comparing the predictions of our model with experimental results at grating
periods of (a) 1.7µm and (b) 3.8µm.
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indicating that our model accurately accounts for the dynamics of the n=1 modulated free

carrier population.

The dynamics of the photorefractive diffraction efficiency are shown in figure 7.9a

and b for grating periods of 1.7µm and 3.8µm, along with fits from our model in both the

high (black lines) and low (gray lines) modulation limits.  Here we have followed the same

procedure as outlined above, except that it is the square of the modulated space-charge

field that we have fit to the experimental results.  Immediately obvious from all three

figures is the disagreement between our model and the experimental results for short

probe delays.  Since we have shown that the transient feature in our data arises from hot

carrier effects, and our model considers only free carriers at the lattice temperature, this

disagreement is not surprising.  Moreover, because we expect this disagreement, and in

order to better facilitate a comparison between the model and experimental results at

longer probe delays, we have plotted the data so that the peak of the transient

photorefractive diffraction efficiency is not visible.

In comparing the output of our model with the photorefractive experimental

results at probe delays greater than ~10ps, it is clear that the fit between the data and the

low modulation prediction is not good at both grating periods.  In contrast, the agreement

between the data and our model in the high modulation limit is excellent at the 1.7µm

grating period, and good at the 3.8µm grating period.  As we noted in Chapter III, in the

low modulation limit, the electron-hole space-charge field decays with the modulated free

carrier densities, by ambipolar diffusion and with a decay constant given by the ambipolar
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Figure 7.9a and b – Rotated diffraction efficiency versus probe delay plots
comparing the predictions of our model with experimental results at grating
periods of (a) 1.7µm and (b) 3.8µm.  Gray lines are predictions in the low
modulation limit, while black lines are predictions in the high modulation limit.
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diffusion time for the grating period.  However, inspection of the data in figures 7.9a and b

reveals that the photorefractive diffraction efficiencies decay more quickly than the rate

dictated by ambipolar diffusion.  Indeed, in the case of the 3.8µm grating period results,

where the predicted ambipolar decay is roughly 380ps, we observe a decay constant of

110ps.  Due to the large discrepancy between the observed and predicted constants, and

the fact that the agreement between the observed and predicted free carrier results is

excellent, this discrepancy can not be counted as experimental error.

To understand the discrepancy between the data and the low modulation

predictions, we must review the discussion given in Chapter III that details drift-limited

field formation in the high modulation limit.  Recalling the discussion of section 3.3.4, the

high modulation effects that we observe arise from the fact that under these circumstances

there is a wide discrepancy in the field formation time (the dielectric relaxation time)

between the minima and maxima of the modulated intensity profile.  Consequently, as the

field is formed, higher-order spatial harmonics of the carrier densities and space-charge

field are generated that are coupled to the n=1 component of the space-charge field

(through the n=1 components of the carrier densities, as illustrated in equations (3.34)-

(3.48)).  Once the field reaches its maximum value, the higher order components of the

carrier densities are destroyed by ambipolar diffusion according to the ambipolar diffusion

rates for the higher order harmonics of the grating period.  As we saw in Chapter III, this

produces an initial decay of the space-charge field that is faster than the rate dictated by

ambipolar diffusion for the fundamental grating period.  This decay persists until the

higher order components of the carrier densities are destroyed, and thereafter the n=1
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modulated carrier densities decay according to the ambipolar diffusion rate for the

fundamental grating period.  Since the ambipolar diffusion time is proportional to the

square of the grating period, as the grating period is increased, a longer time is required

for the higher order components of the carrier densities to decay.

From the above discussion, two points about our predicted and observed results

are immediately obvious.  First, since the decay of the photorefractive diffraction

efficiency is fundamentally a process involving many spatial harmonics of the carrier

densities and field, it is not surprising that the low modulation predictions, which consider

only the fundamental component of the carrier densities and field, do not accurately

predict the decay.  Second, it is clear that these high modulation effects are more clearly

illustrated in our experimental results for the longer grating periods because at longer

grating periods, the time required for the decay of the higher order carrier density

harmonics is a larger fraction of the maximum probe delay.  For example, at the 1.7µm

grating period, where our maximum probe delay is roughly 150ps, the ambipolar diffusion

time for the n=3 harmonic is 21ps.  However, at the 3.8µm grating period, where our

maximum probe delay is roughly 200ps, the ambipolar decay time for the n=3 harmonic is

105ps.  For the same reason, it is clear that for our experimental conditions, these high

modulation effects will be less prominent as the electron mobility is increased.  Thus, we

expect this effect to be less prominent in our results for semi-insulating GaAs.

7.5 Summary

In this chapter we have presented the experimental results obtained using the
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PPRTG measurement technique and our 1.0mm undoped CdTe crystal.  Our results for

the non-rotated polarization component show evidence of index gratings resulting from

the instantaneous bound-electronic and free carrier gratings.  Data for the free carrier

grating exhibits the behavior expected for a drift-limited population of electrons and holes,

and our independent measurement of the ambipolar diffusion coefficient and carrier

lifetime produce values that are in good agreement with those that have been previously

reported.

Our experimental results for the rotated polarization component of the diffracted

beam provide the first unambiguous illustration of a Dember photorefractive nonlinearity.

Although the presence of this photorefractive response has been assumed in order to

explain the results of picosecond two-beam coupling experiments, this photorefractive

nonlinearity has not previously been unambiguously resolved.  In addition, the transient

feature that is present in our experimental results for the rotated polarization component

shows the most clear evidence to date of a hot carrier photorefractive nonlinearity.

Though we have not used a rigorous treatment of hot carrier transport and space-charge

field formation to make this identification, we have used qualitative arguments to show

that the characteristics of this transient feature are those that are expected for a hot carrier

photorefractive nonlinearity.

Additionally, we have modeled our experimental results using the small-signal

transient-grating diffraction efficiency, and the carrier and field equations that were

derived in Chapter III.  The results of our model are in excellent agreement with the free-

carrier experimental results in both the low and high modulation limits, and for the range
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of grating periods used in our experiments.  Since our model considers carrier transport at

the lattice temperature, it is not surprising that the results of our model are in poor

agreement with the photorefractive experimental results for probe delays less than about

10ps.  For probe delays longer than about 10ps, we observe decay constants associated

with the photorefractive diffraction efficiency that are shorter than expected for ambipolar

decay.  While this trend is not predicted by our model in the low modulation limit, we

obtain good agreement between the data and our model in the high modulation limit.  On

the whole, modeling of our photorefractive results provides a unique illustration of the

interplay between the different Fourier components of the carrier densities and space-

charge field in forming the fundamental component of the space-charge field.
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8.1. Introduction

In this chapter we consider the experimental results that have been obtained with

the PPRTG measurement technique, and our 3.17mm semi-insulating GaAs crystal.  As

we have noted throughout this thesis, semi-insulating GaAs is the more complicated of the

two materials that we are studying.  Like undoped CdTe, semi-insulating GaAs exhibits

substantial instantaneous two-photon absorption at the laser wavelength of 960nm.

However, as we have discussed, single photon absorption can occur at the EL2 midgap

levels, resulting in populations of electrons, holes and ionized EL2.  Thus, not only does

the EL2 absorption serve as an independent source for the electron-hole free-carrier and

Dember photorefractive nonlinearities, but it also serves as a source for a second

contribution to the photorefractive and free-carrier nonlinearities involving the excess

photogenerated electrons and ionized EL2.

As in the previous chapter, we begin by considering the experimental results for

the non-rotated polarization component of the diffracted beam.  Following this, we

consider the results for the rotated polarization component, and then conclude by

discussing the modeling of our semi-insulating GaAs results.  As before, while our main

CHAPTER VIII

PICOSECOND PHOTOREFRACTIVE RESPONSE OF SEMI-INSULATING GaAs
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emphasis in discussing the rotated and non-rotated diffraction efficiencies is on data taken

at a grating period of 1.7µm, our modeling discussion considers these and the results

taken at a grating period of 3.8µm.

As in undoped CdTe, the results pertaining to the non-rotated polarization

component exhibit sharply-peaked and decaying features that are consistent with

diffraction from instantaneous bound-electronic and electron-hole free-carrier gratings.

However, we see an additional feature in the non-rotated results that is consistent with

diffraction from a long-lived free-carrier grating.  This behavior is that which is expected

for semi-insulating GaAs, and is also reflected in the results for the rotated polarization

component.  Here, in addition to the transient and decaying features that were present in

the CdTe data, we also see a long-lived feature that is consistent with diffraction from an

electron-EL2 photorefractive grating.

8.2 Non-Rotated Polarization Component: Instantaneous Bound-Electronic and Free-

Carrier Nonlinearities

In this section, we discuss the experimental results obtained using our PPRTG

measurement technique, and by monitoring the non-rotated polarization component of the

diffracted beam.  The data shown in this section were taken with the space-charge field

generated parallel to the (110) direction, where diffraction from the photorefractive

grating produces a beam with a rotated polarization component.  Since we are monitoring

the non-rotated polarization component of the diffracted beam, these results can not be

attributed to the photorefractive grating.
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8.2.1 Temporal Dynamics

The temporal dependence of the non-rotated diffraction efficiency is shown in

figures 8.1a-c for a range of incident fluences.  As shown, the data share some of the same

characteristics as the non-rotated diffraction efficiency observed in undoped CdTe: a

sharply-peaked feature that is most easily seen in figures 8.1b and c, and a decaying

feature that is most easily seen in figures 8.1a and b.  The temporal- and fluence-

dependencies of the sharply peaked feature indicate that it results from diffraction from the

refractive instantaneous bound-electronic grating.  Since it does not reflect the carrier or

field dynamics of the material, it is not of interest and will not be considered further.  In

addition, there is a third component of the non-rotated diffraction efficiency that is not

seen in the CdTe results: a long-lived feature.  As we show in the following paragraphs,

the temporal-dependencies of these features indicate that they are produced by diffraction

from free-carrier gratings arising from the decaying electron-hole population, and a long-

lived population of free electrons.

As in the non-rotated CdTe data shown in the previous chapter, the decaying

feature of figure 7.1a shows the cumulative rise and slow decay that are expected for

diffraction from a free-carrier grating.  Preliminary inspection of this feature reveals a

decay constant of ~30ps, which is in the range of values expected for ambipolar diffusion

of electrons and holes in GaAs across our 1.7µm grating period.  While it is therefore

reasonable to assume that the decaying feature of figure 8.1a arises from a drift-limited
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Figures 8.1a-c – Non-rotated diffraction efficiency versus probe delay for incident
fluences of (a) 2.12mJ/cm2, (b) 0.42mJ/cm2, and (c) 0.11mJ/cm2.  The data show
sharply-peaked, decaying and constant features.

free-carrier grating in GaAs, it is necessary to make this association more rigorously.  This

can be done in the way described in Chapter VII, by using the observed decay rate of this

feature to measure the ambipolar diffusion coefficient, and then comparing our measured

value with values reported in the literature.  However, in performing this analysis we must

be cautious of two things.  First, since the decaying diffraction efficiency exists in the

presence of a constant component, we must be careful that the presence of the constant

component does not influence our determination of the decay rate.  Second, the ambipolar

diffusion coefficient depends on the relative densities of electrons and holes, and EL2 light

absorption produces population densities of electrons and holes whose proportions vary
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depending on the excitation fluence.  As a result, we must be careful to use decay rates

that are observed when similar population densities of electrons and holes are present.

At the incident fluence of 2.12mJ/cm2, the fluence and corresponding intensity are

high enough over the crystal length so that the dominant carrier generation mechanisms

are instantaneous two-photon absorption and step-wise two-photon absorption at the EL2

sites.  As a result, for this fluence, we can say that the decaying diffraction efficiency arises

from a free-carrier grating where the electron and hole populations are nearly equal.  For

the same reason, at the shorter probe delays, we expect the magnitude of the constant

component of the diffraction efficiency, which is proportional to the square of the

photoionized EL2 density (see section 8.2.2), to be much smaller than the magnitude of

the decaying component (proportional to the square of the electron and hole populations).

We therefore measure the decay of this feature at the shorter probe delays and find a

decay constant of roughly 27ps.

For the 3.8µm grating period (data shown in section 8.4), we find that the electron

and hole populations are nearly equal at the incident fluence of 1.56mJ/cm2.  Since we

measure the diffraction efficiency at probe delays that are at most 1.5 times longer than the

expected ambipolar decay constant of ~133ps, it is reasonable to assume that over the

range of our measurements, the decaying component of the diffraction efficiency is much

larger than the magnitude of the constant component.  Using the decay constant of ~137ps

that we observe at this grating period, together with the constant of 27ps observed at

1.7µm, we find an ambipolar diffusion coefficient of 13.7cm2/s, which corresponds to a

hole mobility of roughly 265cm2/V-s.  Since this hole mobility is within the range of values
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reported in the literature for this constant (140cm2/V-s to 400cm2/V-s, (W. Walukiewicz

et al, 1982, J. S. Blakemore, 1982, K. Takeda, et al., 1985, and H. J. Lee and D. C. Cook,

1983)), we can associate the dynamics of our decaying non-rotated diffraction efficiency

with those of a drift-limited free-carrier grating.

As we stated above, the non-rotated diffraction efficiency data exhibits a long-lived

feature that is not present in the CdTe results.  This feature can be most easily seen by in

the data of figure 8.1b, where the magnitudes of the decaying and constant components

are comparable.  Shown in figure 8.2, we have graphed the data of figure 8.1b on a semi-

logarithmic plot for probe delays where the free-carrier nonlinearity is the main contributor

to the diffraction efficiency.  Also included on the plot are two lines representing an

exponential decay, and an exponential decay to a constant value.  Since we have already

shown that the dynamics of the decaying feature are consistent with diffraction from a

drift-limited free-carrier grating, we have used the decay constant that is expected for

ambipolar diffusion of electrons and holes across the grating period (~27ps).  From the

figure it is clear that the data more closely follows the line representing ambipolar decay to

a constant value.  While we could fit the data with a decay that is purely exponential (no

constant value), this would require a much longer decay constant, which is clearly not

justified, given the discussion of the previous paragraph.

The decay of the free-carrier diffraction efficiency to a constant value is expected

in semi-insulating GaAs.  As we showed in Chapter II, light absorption in our semi-

insulating GaAs crystal produces a greater density of electrons and holes, and the excess

electron density is compensated by a density of photoionized EL2 (n-p=EL2+
ph).  As a
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Figure8.2 – Semi-logarithmic plot of non-rotated diffraction efficiency versus
probe delay for an incident fluence of 0.42mJ/cm2 and probe delays greater than
7ps.  The data show that the non-rotated diffraction efficiency decays to a constant
value.

result, semi-insulating GaAs exhibits a two-component space-charge field on picosecond

time scales, and we can think of these fields as being between equal densities of electrons

and holes, and the excess electrons and photoionized EL2.  While we have already seen

that the drift-limited electron-hole space-charge field decays by ambipolar diffusion, we

showed in section 3.3.4 that the drift-limited electron-ionized EL2 space-charge field

results in a t=∞ modulated electron density (in the absence of carrier recombination).  As

we noted in Chapter III, it is this free electron population that is destroyed by carrier
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recombination to produce the ionized EL2-acceptor space-charge field that is observed in

experiments with CW laser beams.

8.2.2 Fluence Dependencies of the Decaying and Constant Diffraction Efficiencies

In the previous section we showed that the temporal dependence of the decaying

and constant diffraction efficiencies are consistent with diffraction from free-carrier

gratings due to electrons and holes and excess electrons.  We can further strengthen these

associations by examining the fluence dependencies of these features.  We consider first

the fluence dependence of the decaying diffraction efficiency and then consider the fluence

dependence of the constant diffraction efficiency.

In considering the fluence dependence of the decaying diffraction efficiency, it is

beneficial to begin our discussion as we have in the other discussions of this type; by

considering the expected fluence dependence of this diffraction efficiency.  However,

whereas the expected dependence of the electron-hole diffraction efficiency took a

relatively simple form in undoped CdTe, its form is clearly much more complicated in

semi-insulating GaAs.  Unlike undoped CdTe, where free carriers are generated solely by

instantaneous two-photon absorption, free carriers are generated in our semi-insulating

GaAs crystal by linear absorption at the EL2 sites, and instantaneous two-photon

absorption.  Furthermore, while the relative importance of these carrier generation

mechanisms changes as the fluence is increased, we have also seen that the EL2 absorption

saturates at high fluences, resulting in a change in the effective linear absorption

coefficient, and step-wise two-photon absorption with the EL2 sites as the intermediary.
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Finally, due to the presence of nonlinear absorption, we expect the fluence dependence of

the diffraction efficiency to reflect an effective transient-grating interaction length that is

fluence-dependent (discussed in section 2.2.- and 7.2.2).  In light of these complexities, it

is clear that it is necessary to use our numerical models to make a rigorous association

between our data and the expected behavior.

The fluence dependence of the decaying diffraction efficiency is shown in figure

8.3.  Here the diffraction efficiency has been measured at a constant probe delay of 10ps,

where the instantaneous bound-electronic nonlinearity does not contribute to the

diffraction efficiency.  The data of figure 8.3 are accompanied by a line that is the

“expected dependence” of the diffraction efficiency, as determined by numerical modeling

of beam propagation and carrier generation in semi-insulating GaAs.  Here we have used

the beam propagation equation to determine the variation of the optical intensity (and

fluence) over the crystal length (assuming a constant linear absorption).  The optical

intensity and fluence have in turn been used in equations (6.5) –(6.7) to calculate the n=1

photogenerated electron density for each dz element of the crystal.  The propagation

length dependence of the carrier density is then used to estimate the small-signal

diffraction efficiency, which is proportional to the square of the product of the carrier

density and interaction length.  As can be seen from the figure, the agreement between the

data and model is good.  Thus, the fluence dependence of the decaying diffraction

efficiency is that which is expected for an electron-hole free carrier grating, based on a

simple model of the diffraction efficiency.
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Figure8.3 - Diffraction efficiency versus fluence for the non-rotated component of
the diffracted beam and a constant probe delay of 10ps.  The data (filled diamonds)
follow the expected dependence (line) for an electron-hole free-carrier grating,
based on a simple model for the small-signal diffraction efficiency.

In order to understand the expected dependence of the constant diffraction

efficiency, we can recall the dynamics for this feature discussed in the previous section,

along with the carrier generation properties of our semi-insulating GaAs crystal.  We

showed in the previous section that the dynamics of this component are consistent with

diffraction from a long-lived free-carrier grating, arising from the excess electron

population that is generated as a result of absorption at the EL2 sites.  Since the

diffraction efficiency follows the square of the excess electron population, and the excess

electron population balances the photoionized EL2 density, we expect the fluence
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dependence of the constant diffraction efficiency to follow the square of the fluence

dependence of the photoionized EL2 density.  We can use equation (2.12), along with the

fact that the photoionized EL2 density is the density of ionized EL2 minus the dark density

of ionized EL2 (N+-A-), to glean the expected fluence dependence of the constant

component (ηc):

2

1











−∝

−

satF

F

c eη .               (8.1)

Here Fsat is the EL2 saturation fluence, which is 0.7mJ/cm2 (see Chapter II).

Figure 8.4 shows the fluence dependence of the constant diffraction efficiency.

Here the data are taken at a constant probe delay of 130ps, where the contribution from

the decaying component of the diffraction efficiency is minimized.  Also included in the

figure is a line depicting the dependence expected for the long-lived free-carrier grating.

As can be seen from the figure, the line offers an excellent fit to the data for the middle

range of fluences.  The disagreement at low fluences is due to noise in the data (the

diffraction efficiencies at these fluences are near the minimum measurable value).  At the

highest fluences, the disagreement is due to the fact that, even after 130ps, the magnitude

of the decaying component is comparable to the magnitude of the constant component.

Thus, the fluence dependence of the constant diffraction efficiency is that which is

expected for a free-carrier grating due to excess electrons generated at the EL2 sites.
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Figure 8.4 – Diffraction efficiency versus fluence for the non-rotated component of
the diffracted beam and a constant probe delay of 130ps.  The data follow the
trend expected for a long-lived free carrier grating due to the excess electrons
photogenerated at the EL2 sites.

8.3 Rotated Polarization Component: Dember and Electron-EL2 Photorefractive

Nonlinearities

In this section, we discuss the experimental results for the rotated polarization

component of the diffracted beam in our 3.17mm semi-insulating GaAs crystal.  These

results were obtained by monitoring the rotated polarization component of the diffracted

beam as discussed in Chapter V.

Before discussing the experimental results for the rotated polarization component,
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it is useful to consider the behavior that we can expect to observe, based on the non-

rotated results of the previous section.  In the previous section, we saw decaying and

constant components to the non-rotated diffraction efficiency.  We showed that these

features exhibited the temporal and fluence dependencies that are expected for free-carrier

gratings due to the electron and hole and excess electron populations generated in our

semi-insulating GaAs crystal.  As a result, we anticipate that the rotated diffraction

efficiency, which we expect to portray the photorefractive nonlinearity, will also exhibit

decaying and constant features.  However, whereas the components to the non-rotated

diffraction efficiency arise from decaying and constant free-carrier populations, the

decaying and constant components of the rotated diffraction efficiency will arise from

electron-hole and electron-ionized EL2 space-charge fields.  Furthermore, since we have

already shown that the density of photogenerated carriers exceeds the critical value, we

expect the electron-hole and electron-ionized EL2 space-charge fields to exhibit drift-

limited temporal and fluence dependencies.

8.3.1 Crystal Orientation Dependence

We begin our discussion of the rotated diffraction efficiency by considering its

crystal orientation dependence.  Here we show that the rotated diffraction efficiency

exhibits the crystal orientation dependence expected for a photorefractive nonlinearity.

The polarization rotation properties of our semi-insulating GaAs crystal are

discussed in Chapter V, and can be summarized as follows.  Radiation that is scattered

from the photorefractive grating has a polarization rotation of exactly 90° when the
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incident radiation is s- or p-polarized, and when the space-charge field is generated along

the (110) crystal direction.  However, when the space-charge field is generated parallel to

the (001) crystal direction, the photorefractive grating produces no polarization rotation

for either s- or p-polarized probe radiation.  The photorefractive grating is the only grating

that is capable of producing this result; as we saw in Chapter II, the instantaneous bound

electronic and free-carrier gratings do not produce a polarization rotation for our

experimental conditions.

The crystal orientation dependence of the rotated diffraction efficiency is shown in

figure 8.5.  As is shown, the rotated diffraction efficiency exhibits the crystal orientation-

dependence expected for a photorefractive grating.  While a substantial rotated diffraction

efficiency is seen when the crystal is oriented with the space-charge field parallel to the

(110) direction, the rotated diffraction efficiency decreases dramatically when the crystal is

oriented with the space-charge field parallel to the (001) direction.  Thus, the rotated

diffraction efficiency can be attributed entirely to the photorefractive grating.

8.3.2 Temporal Dynamics

The probe delay dependence of the rotated diffraction efficiency is shown in figure

8.6a-d for a range of incident fluences and a grating period of 1.7µm.  Like the non-

rotated results, the rotated results show some of the same features that are present in the

CdTe data: a transient feature and a decaying feature.  In Chapter VII, where we

discussed the transient component of the diffraction efficiency, we showed that the

magnitude,
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Figure 8.5 – Diffraction efficiency versus probe delay for two orientations of our
semi-insulating GaAs crystal: Esc||(110) (open squares) and Esc||(001) (filled
diamonds).  The rotated diffraction efficiency exhibits the crystal orientation
dependence expected for the photorefractive nonlinearity.

formation time, and decay time of this feature are consistent with diffraction from a hot

carrier photorefractive grating.  The transient feature shown in figures 8.6a-c exhibits the

same characteristics as were observed in the CdTe results.  Since free carriers generated in

semi-insulating GaAs by instantaneous two-photon absorption and linear absorption at the

EL2 sites have a significant excess energy, we postulate that this component arises from

diffraction from a hot-carrier photorefractive grating.  Since a detailed description of hot

carrier photorefractive effects is beyond the scope of this thesis, we will not consider this

feature further.  For a qualitative explanation of hot carrier photorefractive effects, the

reader is referred to the description that is given in Chapter VII.
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Figure 8.6a-d – Rotated diffraction efficiency versus probe delay for a range of
incident fluences ((a) 2.4mJ/cm2, (b) 0.5mJ/cm2, (c) 0.125mJ/cm2, (d)
0.05mJ/cm2).  The data exhibit transient, decaying and long-lived features.
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Visible especially in figures 8.6a and b is a decaying photorefractive diffraction

efficiency that is similar to that which was observed in the undoped CdTe results.  The

presence of this feature, which can be associated with a Dember (electron-hole)

photorefractive grating, is not surprising.  Instantaneous two-photon absorption, the

predominant carrier generation mechanism in semi-insulating GaAs at these fluences

(2.4mJ/cm2, and 0.5mJ/cm2), produces equal populations of electrons and holes.  In

addition, since these fluences are near to or larger than the EL2 saturation fluence, light

absorption at the EL2 sites results in step-wise two-photon absorption, and populations of

electrons and holes that are nearly equal.  The decay constant that is observed for this

feature is that which is expected for a drift-limited Dember photorefractive grating.  It is

nearly equal to that observed for the electron-hole free-carrier grating (~28ps at

2.4mJ/cm2), and in the range of values expected for ambipolar diffusion of electron-hole

pairs across our 1.7µm grating period.  In addition, the observed constant also decreases

with decreasing fluence, behavior that is expected in light of the dependence of the

ambipolar diffusion constant on the electron and hole densities, and the carrier generation

properties of our semi-insulating GaAs crystal.

It is important to note that, while the decay constants for the electron-hole free-

carrier and photorefractive gratings are nearly equal at the 1.7µm grating period, we find

that the electron-hole photorefractive grating decays more quickly than the electron-hole

free-carrier grating at the 3.8µm grating period.  This feature of the data, which was also

observed in the CdTe results, arises from interplay between the fundamental and higher-
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order Fourier components of the carrier densities in the decay of the n=1 space-charge

field.  Our experimental results for the 3.8µm grating period will be discussed in section

8.4.  For an explanation of this effect, the reader is referred to the discussion given in

Chapter VII.

While exhibiting features that are similar to those that are present in the CdTe

results, the semi-insulating GaAs data of figures 8.6a-d are fundamentally different from

the CdTe results in an important way.  As is most visible from figure 6.7d, the rotated

diffraction efficiency in semi-insulating GaAs decays to a constant value.  The presence of

this feature, which can be associated with diffraction from a photorefractive grating arising

from the space-charge field between the excess electrons and photoionized EL2, is not

surprising.  As we noted in section 8.2.1, light absorption in our semi-insulating GaAs

crystal results in populations of electrons, holes and photoionized EL2, where the density

of electrons exceeds the density of holes, but is compensated by the density of

photoionized EL2 (n=p+EL2+).  As we showed in Chapter III, since the ionized EL2 are

immobile, carrier transport results in a long-lived field between the excess electrons and

photoionized EL2.  As we have already seen, this long lived modulated electron density

produces a constant component to the non-rotated diffraction efficiency.

As the fluence is decreased in figures 8.6a-d, the long-lived feature becomes

increasingly important in the diffraction efficiency.  This result is expected, given the light

absorption and carrier generation properties of our semi-insulating GaAs crystal

(discussed in Chapter II).  As the fluence is decreased, saturation of the EL2 absorption

decreases, so that light absorption at the EL2 sites produces proportionally higher
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densities of electrons and ionized EL2, and a proportionally lower density of holes.  In

addition, the importance of instantaneous two-photon absorption, which produces equal

densities of electrons and holes, decreases.

Another important difference between the data of figure 8.6d and the data taken at

the higher fluences (figures 8.6a-c) is that the former data set exhibits no observable

transient photorefractive diffraction efficiency.  The absence of this feature is not

surprising, and can be understood in the following way.  As we noted, instantaneous two-

photon absorption is insignificant at the incident fluence of 50µJ/cm2, so that the

photorefractive nonlinearity that is observed at this fluence is due to free carriers that are

generated via linear absorption at the EL2 sites.  As we noted in Chapter II, linear

absorption at the EL2 sites results in free electrons with an excess energy of roughly

0.5eV.  Using the simple carrier cooling formula given in Chapter II, we estimate that

carriers with this excess energy cool in a time of roughly 2.5ps.  However, using the

EL2CB carrier generation equation with the equation for the dielectric relaxation time, we

estimate a formation time of roughly 4.8ps for the space-charge field that is responsible

from producing the rotated diffraction efficiency shown in figure 8.6d.  Thus, for the

experimental conditions relevant to figure 8.6d, the carriers cool in about one-half the time

required to form the space-charge field, so that there is no hot carrier enhancement to the

space-charge field.

A general comparison between the non-rotated and rotated diffraction efficiency

results shows that the long-lived component of the rotated diffraction efficiency is much

more prominent in these results than the constant component of the non-rotated



218

diffraction efficiency is in the non-rotated results. This follows from a fundamental

difference between the free-carrier and photorefractive nonlinearities that can be

understood as follows.  Since the non-rotated diffraction efficiency is proportional to the

square of the free-carrier population, diffraction efficiencies that are due to small carrier

densities, such as the excess electron population that is responsible for the long-lived

component, are not easily observed.  In contrast, the rotated diffraction efficiencies, which

we have shown arise from the photorefractive nonlinearity, are proportional to the square

of the space-charge field magnitude.  The space-charge field magnitude is proportional to

the integrated charge separation, so that observable diffraction efficiencies can be

generated when small carrier densities are present, so long as an appreciable charge

separation is produced.

8.3.3 Time Resolution of the Formation of the Photorefractive Nonlinearities in semi-

insulating GaAs

As we have noted throughout this thesis, the primary goal of our study is to time-

resolve the formation of the picosecond photorefractive nonlinearities in semi-insulating

GaAs and undoped CdTe.  While CdTe is an important photorefractive material, our

emphasis throughout this thesis has been on semi-insulating GaAs.  It is therefore fitting,

as we consider the temporal dynamics of the photorefractive nonlinearity in semi-

insulating GaAs, to separately consider how our results detail the formation of the

picosecond photorefractive nonlinearities.

In the CdTe results, we saw that we could not time-resolve the formation of the
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Dember photorefractive nonlinearity.  As a result, the onset of the rotated diffraction

efficiency was manifest in a cumulative rise that was at roughly half of its peak value at a

probe delay of 0ps.  In viewing the rotated diffraction efficiency results for GaAs in figures

8.6a-c, we see roughly the same behavior.  As in undoped CdTe, the instantaneous rise of

the photorefractive nonlinearity at these fluences results from two factors.  First, for these

experimental conditions, the photogenerated carrier densities are high enough so that the

field formation time is shorter than the duration of our probe pulses.  In addition,

especially for the experimental conditions relevant to figures 8.6a and b, a significant

portion of the free carrier density is produced as a result of instantaneous two-photon

absorption.  As we have seen, instantaneous two-photon absorption results in free carriers

with an excess energy of roughly 1eV.  As we noted in Chapters V and VI, for our

experimental conditions, this results in enhanced carrier mobilities and a faster field

formation time.  Thus, as in undoped CdTe, we do not resolve the rise of the

photorefractive nonlinearity for the middle and high fluences that are used in our

experiments.

At the lowest fluences used in our experiments, we see the diffraction efficiency

reach one-half of its maximum value at a probe delay that is greater than 0ps.  This result,

which is an indication that the rise of the field is not instantaneous with respect to the

duration of the probe pulses, is not surprising given the low carrier density and the

absence of hot carrier effects.  Nevertheless, we find that at this fluence, the rise time of

the photorefractive nonlinearity is comparable to but less than the duration of our probe

pulses, so that our resolution is at best incomplete.  To illustrate this, we can use the data
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of figure 8.6d to estimate the observed rise time of the photorefractive nonlinearity.  Here

we note that the rise of the diffraction efficiency follows the convolution of the probe

pulse intensity with the rise of the square of the induced index change.  As a result, the rise

time of the diffraction efficiency is approximately equal to the sum of the FWHM duration

of the probe pulses and one half the formation time of the photorefractive nonlinearity.

Using the ~5ps rise time that is observed for the diffraction efficiency with the probe pulse

duration of 3-5ps, we estimate a rise time of ~1ps for the photorefractive nonlinearity.

This is in the range of values that is expected.  For these experimental conditions, we find

a dielectric relaxation time that is roughly equal to the electronic diffusion time of 5ps.

Together, these suggest a field formation time of 2.5ps, which is approximately equal to

the photorefractive rise time given above.

Unfortunately, at a similar fluence and a grating spacing of 3.8µm, we find a result

that is only slightly different.  Shown in figure 8.7 for an incident fluence of 47µJ/cm2, we

observe a rise time for the diffraction efficiency of roughly 7ps.  Using this, with the

method described in the previous paragraph and the duration of the probe pulses, we

estimate a rise time for the photorefractive nonlinearity of 4-8ps.  Since this rise time is

comparable to the duration of our probe pulses, the rise of the photorefractive nonlinearity

is again only partially resolved.  The rise time of 4-8ps that is observed is also in the range

of values that is expected.  This follows from the fact that, since the increase in grating

spacing increases the electronic diffusion time by a factor of 4, the field formation time is

approximately equal to the dielectric relaxation time of ~5ps.
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Figure8.7 – Rotated diffraction efficiency versus probe delay for a fluence of
0.047mJ/cm2, and a grating spacing of 3.8µm.  We estimate an observed rise time
of 4-8ps for the photorefractive nonlinearity that is comparable to the duration of
our probe pulses.

8.3.4 Fluence Dependencies of the Decaying and Long-Lived Diffraction Efficiencies

Having thoroughly discussed the temporal dynamics of the decaying and long-lived

diffraction efficiencies, we now consider the fluence dependence of these features.  Here

we show that the fluence dependencies of the decaying and long-lived features are

consistent with diffraction from photorefractive gratings.

As in previous discussions of this type, we begin by considering the expected

fluence dependence of the decaying and long-lived diffraction efficiencies. We have

already seen in section 8.2.2 that the presence of linear absorption, instantaneous two-

photon absorption, and EL2 absorption saturation complicates the fluence dependence of

the photogenerated free-carrier density in semi-insulating GaAs.  As a result, the Dember

and electron-ionized EL2 photorefractive nonlinearities might be expected to have
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complicated fluence dependencies.  However, as we noted in Chapter III, the drift limited

space-charge field magnitude increases sub-linearly with carrier density at carrier densities

near to the transition point between the diffusion and drift limits, and then is independent

of carrier density at high carrier densities.  Since our experiments are performed near to or

above the transition point (the critical carrier density), we therefore expect the fluence

dependence of the Dember and electron-ionized EL2 photorefractive nonlinearities to take

relatively simple forms.  While we expect both diffraction efficiencies to be fluence

independent at high fluences, we expect both diffraction efficiencies to increase at a rate

that is less than F2 at low fluences.  This latter dependence follows from the fact that, at

low fluences, the dominant carrier generation mechanism is single-photon absorption at

the EL2 sites.

The fluence dependence of the decaying and long-lived diffraction efficiencies are

shown in figure 8.8.  Also shown in figure 8.8 is a reference line depicting a fluence-

squared (F2) dependence.  In the figure, the data taken at a constant probe delay of 130ps

highlight the long-lived diffraction efficiency.  The data taken at a constant probe delay of

20ps do not consider the transient feature, but take into account both the decaying and

long-lived features.  Especially at higher fluences, we expect this diffraction efficiency to

be due mainly to the Dember photorefractive nonlinearity.  As can be seen from the figure,

at low fluences both diffraction efficiencies increase at a rate that is less than F2, which is

the behavior that is expected for diffraction from drift-limited photorefractive gratings.  As

the fluence is increased, we see the decaying diffraction efficiency slowly increase in the

fluence range between 0.1mJ/cm2 and 2.2mJ/cm2.  This behavior, which is slightly
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Figure8.8 – Diffraction efficiency versus fluence for the decaying and long-lived
diffraction efficiencies.  The components exhibit fluence dependencies that are
expected for drift-limited photorefractive gratings.

different than that which is expected, can be attributed to hot carrier effects.  Over the

same fluence range, we see the long-lived diffraction efficiency reach a constant value and

then decrease.  We can understand this behavior by considering the long-lived electron-

ionized EL2 field magnitude in the presence of EL2 saturation.  Using the balance

between the electron drift and diffusion current densities to determine the field magnitude,

and considering up to the n=2 component of the electron density, we find a field

magnitude of:
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which reduces to ED (equation 3.6) when a small modulation ratio is considered (n2→0).

Thus, the presence of the n=2 excess electron density results in a smaller n=1 charge
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separation and space-charge field.  The high fluence decrease in the long-lived diffraction

efficiency can be understood by noting that the n=2 component of the long-lived carrier

density, which arises as a result of EL2 absorption saturation, is prevalent at high fluences.

Thus, the decaying and long-lived diffraction efficiencies exhibit the fluence dependencies

expected for drift-limited photorefractive gratings.

8.4 Modeling

In this section we discuss the modeling of our semi-insulating GaAs experimental

results.  We model our semi-insulating GaAs results in the way discussed in Chapter VI,

using the small signal diffraction efficiency and the beam propagation equation. The

parameters used in our model are summarized in table 8.1.  See Chapters II and III for a

description of these parameters.

Parameter Value Reference
εr 12.9 K. S. Champlin et al., 1967
nb 3.47 D. T. F. Marple, 1964
µe 5000 (cm2/V-s) M. B. Klein, 1984
µh 265 (cm2/V-s) This work
σe 1.7x10-16 (cm2) This work
σh 1.3x10-16 (cm2) This work
β 19 (cm/GW) M. D. Dvorak et al., 1994

N-N+ 1.2x1016(cm-3) M. B. Klein, 1984
N+ 1.4x1015 (cm-3) M. B. Klein, 1984

Table 8.1 – Parameters used in modeling our semi-insulating GaAs experimental
results.

Figures 8.9a and b show the decay of the free-carrier grating at grating periods of

1.7µm and 3.8µm.  Also shown in the figure are fits to the data that are generated using
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Figure 8.9a and b – Numerical modeling of our non-rotated diffraction efficiency
versus probe delay results.  At both grating periods, the predictions fit the data
well.
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the equations derived in Chapter III.  In generating these predictions, we have used the

measured value for the hole mobility, squared the output from these equations, and then fit

the result to the magnitude of the diffraction efficiency.  As in CdTe, though we show the

results from our model in the high modulation limit, in both limits the model describes the

same result: exponential decay of the free carrier populations via ambipolar diffusion, with

the time constant given by the ambipolar diffusion time for the grating period.  As can be

seen from the plots, our model fit the data very well, indicating that our model accurately

accounts for the dynamics of the n=1 modulated free carrier population.

The dynamics of the photorefractive diffraction efficiency are shown in figure

8.10a and b for a grating period of 3.8µm, along with fits from our model in the high

modulation limit.  In the case of figure 8.10b, we have simply re-plotted the data of figure

8.7 with the prediction from our model in the high modulation limit.  In generating these

fits, we have followed a slightly different procedure than in the CdTe results.  Whereas we

previously determined the time-dependent space-charge field magnitude from the average

carrier density, in these results we use the beam propagation equation to divide the crystal

into slices over which the beam intensity decreases by 20%.  For each crystal slice we

determine the average carrier density, and from each set of carrier densities, a time

dependent space-charge field.  We square the field magnitude for each slice and then

weight this using the square of the thickness of the crystal slice.  The sum of these

weighted field magnitudes is then fit to the experimental results.  As we discussed in

Chapter VI, this procedure is followed because the carrier dynamics can vary significantly

over the length of our semi-insulating GaAs
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Figure8.10a and b – Comparison of the predictions of our model (solid lines) with
our rotated diffraction efficiency results for a range of fluences and a grating
period of 3.8µm.  See the text for description.

Rotated Diffraction Efficiency -vs- Probe Delay

0

20

40

60

80

100

120

140

160

-20 0 20 40 60 80 100 120 140 160 180 200

Probe Delay (ps)

D
if

fr
ac

ti
o

n
 E

ff
ic

ie
n

cy

Rotated Diffraction Efficiency -vs- Probe Delay

0

5

10

15

20

-15 0 15 30 45 60 75 90 105

Probe Delay (ps)

D
if

fr
ac

ti
o

n
 E

ff
ic

ie
n

cy

F=1.81mJ/cm2, λg=3.8µm

F=47µJ/cm2, λg=3.8µm



228

crystal for our experimental conditions.

As in the CdTe results, there is disagreement between our model and the

experimental results for probe delays less than about 10ps.  This disagreement is not

surprising, since we have shown that the transient feature in our data arises from hot

carrier effects, and our model considers only free carriers at the lattice temperature.  At

probe delays greater than 10ps, we see good agreement between our model and the

experimental results.  The decay constant of 113ps that is associated with the decaying

feature in figure 8.10a is shorter than the 137ps decay constant that is observed for the

free-carrier grating and similar experimental conditions (see figure 8.9b).  This behavior,

which arises because higher-order carrier harmonics contribute to the decay of the n=1

space-charge field, is expected.  For an explanation of this effect, see the discussion in

section 6.4.  In figure 8.10b, we see the diffraction efficiency arise more quickly than the

prediction of our model.  This can be understood by noting that the diffraction efficiency

follows the convolution of the probe pulses with the rise of the photorefractive grating.

Since we have already shown that the rise time of the photorefractive grating is

comparable to the duration of the probe pulses, we expect the diffraction efficiency to rise

more quickly than our prediction of the space-charge field.

Results for the rotated diffraction efficiency and the 1.7µm grating period are

shown in figures 8.11a-d.  While the predictions of our model are fit to the experimental

results at delays of roughly 20ps in figures 8.11a and b, they are fit to the maximum

diffraction efficiency in figures 8.11c and d.  In the latter two figures, this follows from the

fact that at the lowest fluences, the photogenerated carrier densities are relatively small
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Figures 8.11a-d – Comparison of the predictions of our model (solid lines) with
our rotated diffraction efficiency results for a range of fluences and a grating
period of 1.7µm.  See the text for description.
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and are created with an excess energy of only ~0.5eV.  As a result, the carrier cooling

time is equal to or less than the field formation time, so that we do not observe a

significant enhancement to the diffraction efficiency due to hot carrier effects.  As can be

seen from the figures, the overall agreement between the experimental results and the

predictions of our model are good.  Thus, we conclude that for a wide range of

experimental conditions, our numerical model accurately predicts the dynamics of the

carrier densities and space-charge fields, as well as the relative magnitudes of the Dember

and excess-electron-ionized EL2 photorefractive nonlinearities.

8.5 Summary

The experimental results that are presented in this chapter provide a unique picture

of the picosecond dynamics of the carrier densities and space-charge fields that generated

in semi-insulating GaAs as a result of excitation with our 960nm optical pulses.  Our

results for the non-rotated component of the diffraction efficiency illustrate two separate

free-carrier nonlinearities whose temporal and fluence dependencies are consistent with

the light absorption and carrier generation properties of our crystal.  We observe a

decaying free-carrier nonlinearity that arises from the electron and hole populations

generated by instantaneous two-photon absorption and EL2 absorption, as well as a long-

lived free carrier nonlinearity that arises from the excess electron population that is

generated as a result of single-photon absorption at the EL2 sites.

By exhibiting the expected temporal, fluence, and crystal-orientation dependencies,

our results for the rotated component of the diffraction efficiency provide the most
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complete and unambiguous illustration of the picosecond photorefractive response of

semi-insulating GaAs to date.  Our results illustrate two separate components of the

photorefractive response that are consistent with the free-carrier results, and the light

absorption and carrier generation properties of our crystal.  The first of these, a decaying

diffraction efficiency that is shown to arise from a Dember photorefractive nonlinearity, is

unique to picosecond photorefractive experiments.  The second component, a long-lived

diffraction efficiency, is shown to arise from a photorefractive nonlinearity that arises from

the space-charge field that is generated between the excess photogenerated electrons, and

the ionized EL2.  As we noted in this chapter, carrier recombination transforms this

photorefractive nonlinearity into the photorefractive nonlinearity that is observed in

experiments with CW laser beams.  Though not considered in detail, our results also show

a third, transient component that is consistent with a photorefractive nonlinearity that is

produced by hot carrier effects.  The magnitude, rise and decay of this component were

considered in greater detail in Chapter VII.

Our numerical model, which is applied to both the non-rotated and rotated

components of the diffraction efficiency, produces predictions that are in good agreement

with our experimental results over a wide range of conditions.  More specifically, using

constants that have been measured for our crystal, our model accurately predicts the

dynamics of the free carrier populations and space-charge fields, as well as the relative

magnitudes of the Dember and excess electron-ionized EL2 photorefractive nonlinearities,

for a range of fluences and grating periods.

Unfortunately, while our results provide a detailed picture of the picosecond
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photorefractive response of semi-insulating GaAs, they fail to illustrate the fundamental

formation of this nonlinearity.  At best, we only partially-resolve the drift-limited rise of

the photorefractive nonlinearity at the lowest fluences, and at the longest grating period.
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9.1. Purpose

The results presented in this dissertation constitute an important step forward in

the field of photorefractive nonlinear optics.  In this, the final chapter of this dissertation,

we summarize these results and place them into context with the body of scientific

research in this area.  We conclude with possible directions for future research.

9.2 Subject Area Review and Research Summary

The photorefractive effect has been studied extensively in a wide variety of

materials, and for a wide variety of applications, over the past thirty years.  A very large

fraction of these studies have been conducted with CW and nanosecond-pulsed laser

beams, where the photorefractive nonlinearity arises from a space-charge field that results

from the steady-state balance between the photogeneration, transport, and recombination

processes that occur in the material during illumination.  In performing studies of this

type, many researchers have reported “rise times” for the photorefractive nonlinearity.

However these “rise times”, which in all cases are the time required for the optically-

CHAPTER IX

DISSERTATION SUMMARY
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induced index change to reach steady-state, cannot be considered the fundamental

formation time for this optical nonlinearity.

Some of the most important photorefractive studies that have been conducted

have involved semiconducting materials.  Semiconductors are an important class of

photorefractive materials because their carrier transport properties make them optimum

for both speed and sensitivity.  Moreover, the use of semiconductors as nonlinear optical

materials offers the potential for a variety of new and technologically-fruitful

applications, such as the integration of high-speed electronic and optical processing

devices on a single semiconductor chip.

Though comparatively few in number, photorefractive studies conducted with

picosecond optical pulses are some of the most relevant.  These studies are in direct

contrast with those conducted with CW and nanosecond-pulsed laser beams in that the

photorefractive nonlinearities arise from free carriers that are generated in times

comparable to, or less than, the time required for carrier transport to form the field.  For

this reason, these studies, which probe the transient space-charge fields that are generated

in the material, are well suited to provide information about the fundamental processes

that produce this optical nonlinearity.  While studies of this type are of clear relevance for

the fundamental physics that they detail, in the case of semiconductors, where the

majority of the picosecond photorefractive studies have been conducted, such

information is also relevant to the design of both electronic and optical devices.

Up to the date of this research, the picosecond photorefractive experiments that

have been conducted have shared the same shortcoming that was described above for the
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CW/nanosecond photorefractive experiments: they have not provided a direct picture of

the fundamental processes that produce the photorefractive nonlinearity.  For this reason,

in this dissertation, we have sought to time-resolve the picosecond dynamics of the

photorefractive nonlinearities that are produced in two zincblende semiconductors, semi-

insulating GaAs and undoped CdTe.  While semi-insulating GaAs has been chosen

because it is an important photorefractive material in its own right, it has been used in

high speed electronic applications, and offers a lattice match to near infra-red diode laser

and LED materials.  Furthermore, since semi-insulating GaAs has been well

characterized though a wealth of studies, our experimental results can be compared with

theory that is based on material parameters that are readily available in the literature.

Similarly, while CdTe has been chosen because it is a highly-touted photorefractive

material, it also offers a lattice-match to the important infra-red detection material,

HgxCd1-xTe.  In addition, since undoped CdTe has no optically-active midgap species or

traps, use of this material allows direct study of the Dember space-charge field and

photorefractive nonlinearity.

In order to measure the picosecond photorefractive nonlinearities that are

produced in zincblende semiconductors, we have had to overcome some important

experimental challenges.  As we showed in Chapters II and III, while the overall

magnitude of the picosecond photorefractive effects that are produced in these materials

are small, they coexist with other absorptive and refractive optical nonlinearities that are

of comparable or larger magnitude.  In Chapter IV we reviewed what has been, prior to

the research described in this dissertation, the most widely used method for measuring
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picosecond photorefractive effects in semiconductors.  Called the two-beam coupling

measurement method, this measurement technique allows the picosecond photorefractive

nonlinearities to be separated from the other competing nonlinearities that are generated

in these materials.  However, one important shortcoming of the two-beam coupling

measurement technique is that it requires the photorefractive nonlinearities to be

generated and probed with the same optical pulses.  As a result, the experimental data

that are produced do not provide a direct, unambiguous picture of the evolution of the

photorefractive nonlinearity at arbitrary times in its formation and decay.  This

shortcoming led us to seek a new transient-grating measurement technique where the

photorefractive nonlinearities are written and probed independently.

Our measurements were made with a novel transient-grating measurement

technique that was presented in Chapter V, called the Photorefractive Polarization-

Rotation Transient-Grating (PPRTG) measurement technique.  The PPRTG measurement

technique utilizes a forward-probing geometry to allow 3-5ps temporal resolution over

millimeter crystal interaction lengths, photorefractive polarization rotation to allow the

photorefractive nonlinearities to be separated from the other competing nonlinearities,

and a probe beam of a second color for increased sensitivity.

Our experimental results for undoped CdTe, which were presented in Chapter

VII, detailed the Dember space-charge field, which is unique to picosecond

photorefractive experiments.  These results, which detail the crystal-orientation,

temporal, and fluence dependencies of the photorefractive diffraction efficiency, provide

the most comprehensive and unambiguous evidence of the Dember photorefractive
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nonlinearity given to date.  We emphasize that our results for this photorefractive

nonlinearity supersede the results of recent photorefractive studies (A. L. Smirl et al.,

1988, G. C. Valley, 1989, M. S. Petrovic et al., 1991, W. A. Schroeder et al., 1991),

where the Dember photorefractive response has been assumed in order to account for the

magnitude of the nonlinear coupling between beams.  Our photorefractive results were

presented with similar results that detail the evolution of the photogenerated free carrier

populations.  In providing a simultaneous picture of the evolving free-carrier populations

as well as the evolving space-charge field (that forces the carrier populations to evolve

together), our experimental results provide an extensive picture of carrier transport on

picosecond time scales.

Our results for semi-insulating GaAs provide a clear and detailed picture of the

picosecond photorefractive response of this material, which is the most comprehensive

given to date.  As in undoped CdTe, our results exhibit a large Dember photorefractive

nonlinearity.  However, in addition, we observe a long-lived photorefractive nonlinearity

that arises as a result of the EL2 midgap species and the excess photogenerated electrons.

The excess electron population is destroyed through carrier recombination, and this

produces the space-charge field and photorefractive nonlinearity that are observed with

CW and nanosecond-pulses laser beams.  On the whole, our semi-insulating GaAs results

provide a rich picture of the picosecond carrier transport processes that take place in this

material.

In both undoped CdTe and semi-insulating GaAs, we observed an ultrafast

enhancement to the photorefractive response that is consistent with space-charge field
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formation via hot carrier transport.  This result, which is clearly unique to picosecond

photorefractive experiments, marks the first direct observation of hot carrier

photorefraction.  Though we have not given a detailed discussion of hot carrier

photorefraction, we have given qualitative arguments to show that hot carrier effects are

expected for our experimental conditions, and that the formation time, magnitude and

decay time associated with this diffraction efficiency are consistent with expectations.  In

undoped CdTe, where the hot carrier enhancement to the space-charge field is the largest,

we observe an order-of-magnitude increase in the photorefractive diffraction efficiency.

In both undoped CdTe and semi-insulating GaAs, we fail to time-resolve the rise

of the photorefractive nonlinearities.  This is due to the presence of hot carrier effects,

which cause the field to form more quickly than the measurement limits of the PPRTG

technique.  The minimum resolvable time for our technique is 3ps-5ps, and

photorefractive nonlinearities are measurable with our technique that are generated at

carrier densities where the field formation time is less than this limit.

We have coupled our experimental work with the development of a numerical

model that predicts the diffraction efficiencies that we observe with our PPRTG

measurement technique (described in Chapters III and VI).  While our work is based on a

model that was previously formulated to describe picosecond photorefractive beam

coupling experiments, it is novel in that it describes the diffraction efficiency associated

with the photorefractive nonlinearity, and that it considers the picosecond carrier and

field dynamics that result when the induced gratings are generated with a large (unity)

optical intensity modulation.  We have shown that the following consideration is
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important in that it requires the carrier populations and space-charge field to be

represented by Fourier series truncated after the n=5 component.  This is in contrast to

other models in which the same Fourier series are truncated after the n=1 or n=2

components.  We find excellent agreement between the predictions of our model and our

experimental results, for both materials and a wide variety of experimental conditions.

Moreover, in comparing the results of our model with our experimental results, we see

some unique features that are characteristic of the photorefractive nonlinearity.  Most

notably, in the decay of the Dember photorefractive nonlinearities, we observe the

interplay between the fundamental Fourier component of the space-charge field, and the

higher order components of the carrier densities and space-charge field.

9.3 Directions For Future Research

As with all investigations of this type, many unanswered questions remain.  In

this section, we discuss some future research that could address these questions.

As we noted in the previous section and in Chapters VII and VIII, we failed to

time-resolve the rise of the photorefractive nonlinearities in GaAs and CdTe in this study.

In order to be able to time resolve the formation of these nonlinearities, there are at least

two changes that must be made to our laser system and experimental technique.  The

simplest way to change our experimental technique for these purposes is to incorporate

more sensitive detection equipment.  With this change, we could measure the rise of the

photorefractive nonlinearities in the diffusion limit of carrier dynamics.  Since the rise

and decay of the photorefractive nonlinearities are dependent on the electron and hole

mobilities in this limit, measurements of this type have the potential for yielding
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fundamental information about the electron-hole transport properties of the material.  For

materials such as undoped CdTe, where the photorefractive response is due only to the

Dember space-charge field (decays on nanosecond time scales), greater detection

sensitivity can be gained by using phase sensitive detection methods (lock-in amplifiers)

and higher repetition rate laser systems.  However, for semi-insulating GaAs, where the

presence of the long-lived photorefractive nonlinearity forces us to operate at low

repetition rates, other detection methods must be sought.

We can change our measurement technique to attain greater temporal accuracy by

reducing the duration of the probe pulses.  This can be done by generating the probe

pulses from a second laser, or by shortening the duration of the 960nm pump pulses.

Unfortunately, both of these alternatives result in additional experimental complexity,

especially since we need probe pulses shorter than ~100fs duration to resolve the rise of

the photorefractive nonlinearity at the middle and high excitation fluences used in our

experiments.

As we have noted, the photorefractive effect can easily be used for a variety of

spectroscopic applications.  Towards this end, with the existing measurement technique,

or with the changes described above, there are numerous studies that could be performed.

For example, our laser system and measurement technique could be used to study the

photorefractive properties of semiconducting materials such as GaN.  This material has

been targeted for use in the manufacture of blue-green laser diodes and LEDs, and the

material’s midgap defect structure – which is highlighted by its photorefractive response -
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dictates its suitability for applications such as these.  Other materials that could be studied

are II-VI materials such as ZnSe, which are also of interest for LED applications.

Finally, with the datasets that have been generated in our experiments, further

modeling and analyses could be done to investigate the properties of each material that

are related to hot carrier transport and carrier cooling.  This would be especially useful in

undoped CdTe, since very little work has been done in this area.  To carry out analyses

such as these, it is necessary to develop a model similar to that discussed in Chapter III,

which describes the formation of the space-charge field due to hot carrier transport.

However, since our experiments were conducted with a unity intensity modulation, such

a model must necessarily include the effects of heat transport along with those of charge

transport.  Work has been done to derive equations to describe these effects, and these

equations have been numerically solved using methods similar to those used in

computational fluid dynamics studies.  However, in order to model our results with best

computational efficiency, these equations must be “parameterized” in the Fourier series

form that is given in Appendix C.
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APPENDIX A

POLARIZATION ROTATION IN THE (111) CUT CdTe CRYSTAL
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A.1 Purpose

In this appendix, we discuss the polarization rotation properties of the

photorefractive grating that follow when the photorefractive gratings are generated in our

(111) cut undoped CdTe crystal.  In particular, we show that while a the photorefractive

grating produces a diffracted beam with a 90° polarization rotation when the space-charge

field is oriented along the ( 011 ) axis, no polarization rotation results when the space-

charge field is placed along the ( 211 ) axis.

A.2 Space-Charge Field Parallel to the ( 011 )Crystallographic Axis

When the space-charge field is generated as in figure A.1, parallel to the ( 011 )

crystallographic axis, it can be written:
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As in Chapter V, we find the new principal axes for the material by diagonalizing the index
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This procedure produces the following principal axes and index changes:

)0,1,1(=′x ,          0' =∆ xn ,             (A.3)
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Figure A.1 – Orientation of the optical beams and CdTe crystal used in our
experiments.  As shown in the text, the photorefractive grating produces a
diffracted beam with a polarization rotation of exactly 90° for this arrangement of
the crystal and beams.
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To find the orientation of the probe beam with respect to each of these axes, we take the

inner product of the probe electric field, which is polarized along the ( 211 ) direction, with

each of the directions defined by equations (A.3) – (A.5).  This procedure shows that the

probe electric field has a projection along the x’ axis, though there is no index change

along this direction.  It also shows that the probe electric field has equal projections along

the y’ and z’ axes.  Since the projections along these axes are equal, and since the index
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changes along these directions are equal but opposite, the photorefractive grating will

produce a diffracted beam with a polarization rotation of exactly 90° when the crystal and

beam orientation of figure A.1 is used.

A.3 Space-Charge Field Parallel to the ( 211 ) Crystallographic Axis

Referring again to figure A.1, when we rotate the crystal by 90° about the ( 111 )

crystallographic axis, we find a different result.  Under these circumstances, the space-

charge field is aligned along the ( 211 ) axis, so that it takes the form:

( )zyx
E

E sc
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−+= .                          (A.6)

Under these circumstances, the index ellipsoid matrix takes the form:
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Diagonalization of this matrix produces the following set of principal axes and index

changes:
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As in the previous analyses, the polarization properties of the diffracted field are

determined by finding the projection of the probe electric field along the principal axes

defined by equations (A.8) – (A.10).  When the space-charge field is oriented along the

( 211 ) axis, the probe electric field is aligned along the ( 011 ) axis.  In taking the inner

product between the probe electric field and the principal axes defined above, we find that

the probe electric field has no projection along either axis.  Thus, for this orientation of the

probe electric field and CdTe crystal, the electric field that is diffracted from the

photorefractive grating has no polarization rotation.  This is the result that is observed

experimentally in section 7.3.
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APPENDIX B

FORTRAN COMPUTER CODES
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B.1 Purpose

In this appendix, we give a source listing for the fortran computer codes used in

modeling our experiments.  In section B.2, we list “beamprop.for” and “cdte5.for” which

were used in modeling our CdTe results.  In section B.2, we list “carrgen.for” and

“gaas5.for” which were used to model our semi-insulating GaAs results.

B.2 CdTe Computer Codes – “beamprop.for” and “cdte5.for”

Beamprop.for

C     Last change:  TS    4 May 99    2:48 pm
C
C     Beam propagation and carrier generation in undoped CdTe for two optical beams of
equal intensity.
C     linear absorption is neglected.
C
C
       program main

       REAL*8 e,bmav
       REAL*8 bm0, bm, length, nav, zprop
       REAL*8 dz, hnu, bet
       REAL*8 zct, nsl, dt
c-----------------------------------------------------------------------
c      Declaration of constants.  e is the electronic charge, hnu is the photon energy in eV
c      length is the crystal length in cm.  bet is the two photon absorption coefficienct
(cm/W).
c      bm0 is the incident intensity (both beams combined), dt is the pulse length in seconds.
c      dz is the propagation slice thickness in cm, zct is the number of slices comrising the
crystal.
c      nsl is the electron density generated in a single dz crystal slice.

       e=1.602e-19
       hnu=1.3
       length=1.0e-1
       bet=17e-9
       bm0=2.4e9
       dt=1e-12
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       dz=1.0e-4
       refl=0.695
c------------------------------------------------------------------------
c      Initialize constants, open the output file
c
       open(unit=56,file='bmp1out.dat')
       zprop=0
       zct=1
       bm=bm0*refl
       nav=0

c------------------------------------------------------------------------
c      Loop to iterate through the beam propagation equation for the crystal thickness
c      bm is the changing beam intensity, zprop is the total distance traveled. nav is used
c      to determine the average carrier density
c
       do while (zprop.lt.length)
       nsl=((bet*bm*bm*dt)/(2*hnu*e))
       nav=nav+nsl
       zct=zct+1
       bm=bm-(3.0/2.0)*bet*bm*bm*dz
       bmav=bmav+bm
       zprop=zprop+dz
10     format (F11.5, ES21.11E3, ES21.5E3)
       write (56,10) zprop, bm, nsl
       end do
       bmav=bmav/zct
       nav=nav/zct
       WRITE(6, *) bmav, nav
       end program main

CdTe5.for

C     Electron Transport and Space-charge field formation over an optically-induced
C     grating in undoped CdTe.  The electron and hole densities,
C     and space-charge field are modeled by Fourier series truncated
C     after the n=5 component.  The equations are solved iteratively in the loop
C     below.
C
C
C
       program main
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       REAL*8 eps0,epsrel,e,mu,kbt,kg,dt
       REAL*8 n0,n1,n2,n3,n4, n5, esc1,esc2
       REAL*8 esc3, esc4, esc5, mup, lg
       REAL*8 p1, p2, p3, p4, p5, nt
       INTEGER wiq, wi
c-----------------------------------------------------------------------
c      Declaration of constants.  eps0 and epsrel are the free space and
c      relative permittivities.  e is the electronic charge and mu (e) and (p) are the
c      electron and hole drift mobilities in cm2/V-s.  kbt is Boltzmann's constant
c      times temp=300K.  kg is the grating wave vector, and dt is the time
c      step.
c
       eps0=8.854e-14
       epsrel=10.4
       e=1.602e-19
       mu=1010
       mup=93
       kbt=4.143e-21
       tr=1e-9
       lg=1.7e-4
       kg=(6.28)/lg
       dt=5e-17
c------------------------------------------------------------------------
c      Initialize the Fourier components of the carrier densities and the
c      space-charge field. Open output file. wiq and wi are counters that control the output.
c
       n0=1e17
       n1=1.33e17
       n2=0.33e17
       n3=0e0
       n4=0e0
       n5=0e0
       p0=n0
       p1=n1
       p2=n2
       p3=0e0
       p4=0e0
       p5=0e0
       esc1=0e0
       esc2=0e0
       esc3=0e0
       esc4=0e0
       esc5=0e0
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       open(unit=56,file='enp172out.dat')
       wiq=10000
       wi=10000
       t=0
       nt=0
10     format (F11.5, ES36.20E3, ES21.5E3)
       write (56,10) nt, esc1, n1
c------------------------------------------------------------------------
c      Loop to iterate through equations for n1-n5, p1-p5 and esc1-esc5
c
       do while (t.lt.200e-12)
       nt=t/(1.0e-12)
       n0=n0-(n0*dt/tr)
       n1=n1-((mu*kbt*kg*kg*n1*dt)/e)-(n1*dt/tr)
       n1=n1+(mu*kg*dt/2)*(2*n0*esc1+n1*esc2-n2*esc1-n3*esc2+n2*esc3)
       n1=n1+(mu*kg*dt/2)*(n3*esc4-n4*esc3+n4*esc5-n5*esc4)
       n2=n2-((4*mu*kbt*kg*kg*n2*dt)/e)-(n2*dt/tr)
       n2=n2+mu*kg*dt*(2*n0*esc2+n1*esc1-n3*esc1+n1*esc3)
       n2=n2+mu*kg*dt*(n2*esc4-n4*esc2-n5*esc3+n3*esc5)
       n3=n3-((9*mu*kbt*kg*kg*n3*dt)/e)-(n3*dt/tr)
       n3=n3+mu*kg*dt*(3*n0*esc3+(3/2)*n1*esc2+(3/2)*n2*esc1)
       n3=n3+mu*kg*dt*(3/2)*(n1*esc4-n4*esc1+n2*esc5-n5*esc2)
       n4=n4-((16*mu*kbt*kg*kg*n4*dt)/e)-(n4*dt/tr)
       n4=n4+2*mu*kg*dt*(2*n0*esc4+n1*esc3+n2*esc2+n3*esc1)
       n4=n4+2*mu*kg*dt*(n1*esc5-n5*esc1)
       n5=n5-((25*mu*kbt*kg*kg*n5*dt)/e)-(n5*dt/tr)
       n5=n5+(5/2)*mu*kg*dt*(2*n0*esc5+n2*esc3+n3*esc2+n1*esc4+n4*esc1)
c-------------------------------------------------------------------------------
       p0=p0-(p0*dt/tr)
       p1=p1-((mup*kbt*kg*kg*p1*dt)/e)-(p1*dt/tr)
       p1=p1-(mup*kg*dt/2)*(2*p0*esc1+p1*esc2-p2*esc1-p3*esc2+p2*esc3)
       p1=p1-(mup*kg*dt/2)*(p3*esc4-p4*esc3+p4*esc5-p5*esc4)
       p2=p2-((4*mup*kbt*kg*kg*p2*dt)/e)-(p2*dt/tr)
       p2=p2-(mup*kg*dt)*(2*p0*esc2+p1*esc3+p2*esc4-p3*esc1)
       p2=p2-(mup*kg*dt)*(p3*esc5-p4*esc2-p5*esc3+p1*esc1)
       p3=p3-((9*mup*kbt*kg*kg*p3*dt)/e)-(p3*dt/tr)
       p3=p3-mup*kg*dt*(3*p0*esc3+(3/2)*p1*esc2+(3/2)*p1*esc4)
       p3=p3-mup*kg*dt*(3/2)*(p2*esc1+p2*esc5-p4*esc1-p5*esc2)
       p4=p4-((16*mup*kbt*kg*kg*p4*dt)/e)-(p4*dt/tr)
       p4=p4-2*mup*kg*dt*(2*p0*esc4+p1*esc3+p1*esc5+p2*esc2)
       p4=p4-2*mup*kg*dt*(p3*esc1-p5*esc1)
       p5=p5-((25*mup*kbt*kg*kg*p5*dt)/e)-(p5*dt/tr)
       p5=p5-(5/2)*mup*kg*dt*(2*p0*esc5+p1*esc4+p2*esc3+p3*esc2+p4*esc1)
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c--------------------------------------------------------------------------------
       esc1=(e/(eps0*epsrel*kg))*(p1-n1)
       esc2=(e/(2*eps0*epsrel*kg))*(p2-n2)
       esc3=(e/(3*eps0*epsrel*kg))*(p3-n3)
       esc4=(e/(4*eps0*epsrel*kg))*(p4-n4)
       esc5=(e/(5*eps0*epsrel*kg))*(p5-n5)
       if (nt.gt.0) then
       if (wi.eq.wiq) then
       write (56,10) nt, esc1, n1
       WRITE(6,*) nt, esc1
       wi=0
       end if
       wi=wi+1
       end if

       t=t+dt

       end do
       end program main

B.3 GaAs Computer Codes – “carrgen.for” and “gaas5.for”

Carrgen.for

C     Beam propagation and carrier generation in semi-insulating GaAs for two
beams of equal intensity

C     which form a modulated intensity profile.  Code calculates the n=0, 1 and 2
Fourier components

C     of the carrier and EL2 densities assuming EL2 absorption and two-photon
absorption.  Concurrently,

C     the optical intensity is depleted according to the beam propagation equation.
C
C
C
       program main

       REAL*8 e,tdc,tac,n0,n1,n2,se,sh,f0,ii0
       REAL*8 hnu,bet,nsat,fsat,tmax,ict2,ict3,zct
       REAL*8 dt,p0,p1,p2,tr0,tr1,tr2,iif,fi,ict1
       REAL*8 alph,dz,fwml,tlng,lct

c-----------------------------------------------------------------------
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c      Declaration of constants.  hnu is the photon energy in eV.  bet is the crystal
orientation-

c      dependent two-photon absorption coefficient.  dt is the pulse duration in
seconds, se and sh

c      are the electron and hole el2 absorption cross sections in cm2.  refl is the
front surface

c      reflection coefficient, fi and f0 are the incident fluences before and after
reflection

c      (at the peak of the modulation).  dz is the crystal slice thickness, the ii
variables are used to

c      decrement the beam intensity by 20% as the beam propagates through the
crystal, and to determine

c      representative intensity for the crystal slice.  alph is the constant linear
absorption coefficient

c      determined from the electron and hole cross sections. fsat is the EL2
saturation fluence, nsat is

c      the saturation density of ionized el2.
c
       hnu=1.3e0
       bet=19e-9
       dt=1e-12
       se=1.68e-16
       sh=0.76*se
       refl=0.695
       fi=2.4e-3
       dz=1.0e-4
       f0=fi*refl
       ii0=fi/dt
       iif=0.8e8
       ict1=0.0e0
       ict2=00.0e0
       ict3=ii0
       alph=se*(1.2e16)+sh*(1.4e15)
       fsat=(e*hnu)/(se+sh)
       nsat=(se*1.34e16)/(se+sh)
       tlng=0.317
       lct=0

c------------------------------------------------------------------------
c
       open(unit=56,file='CG2out.dat')

10     format (F11.5, ES21.5E3, ES21.5E3, ES21.5E3)
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11     format (F11.5, ES21.5E3, ES21.5E3, ES21.5E3, F11.5)
c------------------------------------------------------------------------
c      Loop to deplete beam and generate carriers.
c      first decrements the intensity by 20% and determines the representative

intensity
c      for the slice, then calculates the thickness of the slice in cm.  Following this,
c      uses the intensity and fluence to calcualte the n=0, 1 and 2 carrier and el2

densities.
c
       do WHILE (ii0.gt.iif)
       ict1=ict3*0.8
       ict2=(ict3-ict1)/2.0d0
       ii0=ict1+ict2
       zct=0
       do while (ict3.gt.ict1.and.lct.lt.tlng)
       zct=zct+1
       lct=lct+dz
       ict3=ict3-(alph*ict3*dz)-(3.0/2.0)*(bet*ict3*ict3*dz)
       end do
       fwml=dz*zct
       f0=ii0*dt
       tmax=nsat+(1.4e15-nsat)*EXP(-(f0)/fsat)
       tac=(tmax-1.4e15)/2
       tdc=tac+1.4e15
       n0=(se*f0/(hnu*e))*(1.34e16-tdc-tac/2)
       n0=n0+(3.0e0*bet/(4.0e0*hnu*e))*ii0*f0
       p0=(sh*f0/(hnu*e))*(tdc+tac/2.0e0)
       p0=p0+(3.0e0*bet/(4.0e0*hnu*e))*ii0*f0
       tr0=n0+1.4e15-p0
       n1=(se*f0/(hnu*e))*(1.34e16-tdc-tac)
       n1=n1+(bet/(hnu*e))*ii0*f0
       p1=(sh*f0/(hnu*e))*(tdc+tac)
       p1=p1+(bet/(hnu*e))*ii0*f0
       tr1=n1-p1
       n2=(se*f0/(hnu*e))*(-tac/2.0e0)
       n2=n2+(bet/(4.0e0*hnu*e))*ii0*f0
       p2=(sh*f0/(hnu*e))*(tac/2.0e0)
       p2=p2+(bet/(4.0e0*hnu*e))*ii0*f0
       tr2=n2-p2
       WRITE(6,*) n0, n1, n2
       WRITE(6,*) p0, p1, p2
       WRITE(6,*) tr0, tr1, tr2
       write (56,11) f0, n0, n1, n2, fwml



256

       write (56,10) f0, p0, p1, p2
       write (56,10) f0, tr0, tr1, tr2
       ict3=ict1
       end do

       end program main

GaAs5.for

C     Electron Transport and Space-charge field formation over an optically-
induced

C     grating in undoped GaAs.  The electron and hole densities,
C     and space-charge field are modeled by Fourier series truncated
C     after the n=5 component.  The equations are solved iteratively in the loop
C     below.
C
C
C
       program main

       REAL*8 eps0,epsrel,e,mu,kbt,kg,dt
       REAL*8 n0,n1,n2,n3,n4, n5, esc1,esc2
       REAL*8 esc3, esc4, esc5, mup, lg
       REAL*8 p1,p2,p3,p4,p5,nt,el0,el1,el2
       REAL*8 wiq, wi
c-----------------------------------------------------------------------
c      Declaration of constants.  eps0 and epsrel are the free space and
c      relative permittivities.  e is the electronic charge and mu (e) and (p) are the
c      electron and hole drift mobilities in cm2/V-s.  kbt is Boltzmann's constant
c      times temp=300K.  kg and lg are the grating wave vector and period, and dt

is the time
c      step. tr is the carrier recombination time.
c
       eps0=8.854d-14
       epsrel=13.03
       e=1.602d-19
       mu=5000
       mup=265
       kbt=4.143d-21
       tr=2d-9
       lg=1.7d-4
       kg=(6.28)/lg
       dt=5.000d-17
c------------------------------------------------------------------------
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c      Initialize the Fourier components of the carrier and EL2 densities and the
c      space-charge field.
c
       n0=1.1017e15
       n1=1.2237e15
       n2=1.2199e14
       n3=0d0
       n4=0d0
       n5=0d0
       p0=4.8264e14
       p1=6.2178e14
       p2=1.3914e14
       p3=0d0
       p4=0d0
       p5=0d0
       el0=n0+1.4e15-p0
       el1=n1-p1
       el2=n2-p2
       esc1=0d0
       esc2=0d0
       esc3=0d0
       esc4=0d0
       esc5=0d0
       open(unit=56,file='eg17m12o.dat')
       wiq=0.5000e4
       wi=0.5000e4
       t=0
       nt=0
10     format (F11.5, ES36.20E3, ES21.5E3)
       write (56,10) nt, esc1, n1
c------------------------------------------------------------------------
c Loop to iterate through equations for n1-n5, p1-p5 and esc1-esc5
c
       do while (t.lt.130e-12)
       nt=t/(1.0e-12)
       n0=n0-(n0*dt/tr)
       n1=n1-((mu*kbt*kg*kg*n1*dt)/e)-(n1*dt/tr)
       n1=n1+(mu*kg*dt/2)*(2*n0*esc1+n1*esc2-n2*esc1-n3*esc2+n2*esc3)
       n1=n1+(mu*kg*dt/2)*(n3*esc4-n4*esc3+n4*esc5-n5*esc4)
       n2=n2-((4*mu*kbt*kg*kg*n2*dt)/e)-(n2*dt/tr)
       n2=n2+mu*kg*dt*(2*n0*esc2+n1*esc1-n3*esc1+n1*esc3)
       n2=n2+mu*kg*dt*(n2*esc4-n4*esc2-n5*esc3+n3*esc5)
       n3=n3-((9*mu*kbt*kg*kg*n3*dt)/e)-(n3*dt/tr)
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       n3=n3+mu*kg*dt*(3*n0*esc3+(3/2)*n1*esc2+(3/2)*n2*esc1)
       n3=n3+mu*kg*dt*(3/2)*(n1*esc4-n4*esc1+n2*esc5-n5*esc2)
       n4=n4-((16*mu*kbt*kg*kg*n4*dt)/e)-(n4*dt/tr)
       n4=n4+2*mu*kg*dt*(2*n0*esc4+n1*esc3+n2*esc2+n3*esc1)
       n4=n4+2*mu*kg*dt*(n1*esc5-n5*esc1)
       n5=n5-((25*mu*kbt*kg*kg*n5*dt)/e)-(n5*dt/tr)
       n5=n5+(5/2)*mu*kg*dt*(2*n0*esc5+n2*esc3+n3*esc2+n1*esc4+n4*esc1)
c-------------------------------------------------------------------------------
       p0=p0-(p0*dt/tr)
       p1=p1-((mup*kbt*kg*kg*p1*dt)/e)-(p1*dt/tr)
       p1=p1-(mup*kg*dt/2)*(2*p0*esc1+p1*esc2-p2*esc1-p3*esc2+p2*esc3)
       p1=p1-(mup*kg*dt/2)*(p3*esc4-p4*esc3+p4*esc5-p5*esc4)
       p2=p2-((4*mup*kbt*kg*kg*p2*dt)/e)-(p2*dt/tr)
       p2=p2-(mup*kg*dt)*(2*p0*esc2+p1*esc3+p2*esc4-p3*esc1)
       p2=p2-(mup*kg*dt)*(p3*esc5-p4*esc2-p5*esc3+p1*esc1)
       p3=p3-((9*mup*kbt*kg*kg*p3*dt)/e)-(p3*dt/tr)
       p3=p3-mup*kg*dt*(3*p0*esc3+(3/2)*p1*esc2+(3/2)*p1*esc4)
       p3=p3-mup*kg*dt*(3/2)*(p2*esc1+p2*esc5-p4*esc1-p5*esc2)
       p4=p4-((16*mup*kbt*kg*kg*p4*dt)/e)-(p4*dt/tr)
       p4=p4-2*mup*kg*dt*(2*p0*esc4+p1*esc3+p1*esc5+p2*esc2)
       p4=p4-2*mup*kg*dt*(p3*esc1-p5*esc1)
       p5=p5-((25*mup*kbt*kg*kg*p5*dt)/e)-(p5*dt/tr)
       p5=p5-(5/2)*mup*kg*dt*(2*p0*esc5+p1*esc4+p2*esc3+p3*esc2+p4*esc1)
c--------------------------------------------------------------------------------
       esc1=(e/(eps0*epsrel*kg))*(p1+el1-n1)
       esc2=(e/(2*eps0*epsrel*kg))*(p2+el2-n2)
       esc3=(e/(3*eps0*epsrel*kg))*(p3-n3)
       esc4=(e/(4*eps0*epsrel*kg))*(p4-n4)
       esc5=(e/(5*eps0*epsrel*kg))*(p5-n5)
       if (nt.gt.0) then
       if (wi.eq.wiq) then
       write (56,10) nt, esc1, n1
       WRITE(6,*) nt,esc1
       wi=0
       end if
       wi=wi+1
       end if

       t=t+dt

       end do
       end program main
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APPENDIX C

TRANSIENT CARRIER TRANSPORT AND SPACE-CHARGE FIELD EQUATIONS
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C.1 Purpose

In Chapter III we discussed carrier transport and space-charge field formation

under transient conditions, and in the low and high modulation limits.  In our discussions

on the low modulation limit, we cited equations that describe these processes.  With our

starting point the fundamental equations for transient space-charge field formation, in this

appendix, we produce the equations cited in Chapter III for the low modulation limit.

C.2 Fundamental Equations – General Method of Solution

Even after recombination is neglected, equations (3.9) – (3.14) are difficult to

solve.  In general, this is due to the time dependence of the optical intensity (I), and the

fact that the equations for the free carrier densities are coupled through the space-charge

field (Esc).  As a result, it is necessary to make additional simplifying assumptions to solve

these equations.  In the following paragraphs, we discuss these assumptions and their

validity for our experimental conditions.

In order to eliminate equation (3.11), and the carrier generation terms in equations

(3.9) and (3.10), we can assume that carrier generation occurs instantaneously compared

to field formation.  In place of these terms, we assume the presence of t=0 concentrations

of ionized EL2, free electrons, and holes (N+(0), n(0) and p(0)).  While this assumption

simplifies the solution of equations (3.9) – (3.14), it is not completely valid for our

experimental conditions.  Since photoexcitation with our 1.0ps FWHM optical pulses

produces average free electron densities as large as 1x1016 cm-3 in our semi-insulating

GaAs crystal, the space-charge field forms in times of  ~100fs at the largest excitation
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intensities in our experiments.  Thus, under these conditions, field formation can occur

nearly simultaneously with carrier generation.  After assuming that carrier generation

occurs instantaneously, equations (3.9) – (3.14) reduce to:
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By assuming a solution for the carrier densities and space-charge field, we can

further simplify equations (C.1) – (C.5).  In assuming a functional form for the carrier

densities and space-charge fields, we refer to the arrangement of the crystal and optical

beams shown in figure 3.1, which is the basis for our experiments.  Since we probe the

n=1 Fourier components of the induced optical nonlinearities, it is convenient to express

the ionized EL2 density, free carrier densities, and space-charge fields in the general form

of a Fourier series in the grating period:
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Here we have assumed that the time dependence of the free carrier densities and space-

charge field are contained in the magnitudes of the different Fourier components, with the

zero order components independent of time.  In addition, since recombination has been

neglected the EL2 concentration is independent of time, and since there is no applied

electric field, there is no zero order component of the space-charge field.

When equations (C.6) – (C.9) are substituted into equations (C.1) – (C.5), the

following problem arises.  We find that the equations for the fundamental Fourier

components of the carrier densities and space-charge field are coupled to like equations

for the higher order components, and the general result is that the set of equations is not

analytically soluble.  In order to proceed, we assume that the free carrier densities are

generated with a small modulation ratio (see equation (3.3), m<<1).  Under these

conditions, the higher order components of the carrier densities and space-charge fields

can be neglected, so that the fundamental Fourier components of the carrier densities and

space-charge fields are dependent only on the zero order and fundamental components of

these quantities.  As a result, equations (C.6) – (C.9) reduce to:
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Here N+’ is equal to the sum of the dark density of ionized EL2, plus the density generated

by photoexcitation (N+’=ND
++N+(0)).

C.3 Electrons and Ionized EL2

In considering the ideal case where the space-charge field is formed by electrons

and holes, we assume that photoexcitation produces only equal population densities of

electrons and ionized EL2.  More specifically, we assume that p=0 at all times, and that

the density of neutral EL2 is large enough so that photoexcitation produces no saturation

of the EL2CB transition.  Under these circumstances, we must solve only the following

equations:
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with the electrons, ionized El2 and space-charge field following the form given by

equations (C.10), (C.12) and (C.13).

Generally, the above equations are solved by first eliminating variables to produce

a differential equation for the time dependent modulated free carrier density n1(t).  This

equation is then solved, and n1(t) is used in equation (C.14) to determine the time

dependent space-charge field (Esc1(t)).  The differential equation for the modulated carrier

density is formed from the differential equation for n(t) (equation (C.1)) using the electron

current density (equation (C.3)) and the functional form for n(x,t) (equation (3.24)).  The

space-charge field is eliminated from the resulting equation by using the functional forms

for the electron density (equation (C.10)), the ionized EL2 density (equation (C.12)) and

the space-charge field (equation (C.13)) in Gauss’ Law (equation (C.14)).  The acceptor

density (A-) is eliminated by using the relationship between the dark density of ionized EL2

and the acceptor population (ND
+=A-), and the relationship between the total dc

population density of ionized EL2 and the dark density of ionized EL2 (N+’=ND
++N+(0)).

The procedure outlined in the previous paragraph yields the following differential

equation for n1(t):
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Here the constants Γdie and ΓDn are the inverse of the dielectric relaxation time (τdie = ε/n0e

µe) and diffusion time (τDn = λg
2e/(2π)2µekBT), respectively.  While the dielectric relaxation

time has been previously described, the diffusion time is the time required for electrons to
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diffuse across the grating period.  Solution of this equation yields the time dependent

carrier density:
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Γ+Γ−

Dndie

t
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Dndiee
ntn )0()( 11 .                         (C.16)

This leads to the equation for the transient space-charge field:

( )( )t
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,                        (C.17)

which is similar to the steady-state space-charge field (equation (3.4)) in form, and that it

shows that the space-charge field is 90° out of phase with the incident irradiance pattern..

As in the case of the steady-state space-charge field, ED is the diffusion field:

e

Tk
E

g

B
D λ

π2
= .                             (3.6)

The field Eq’ is given by the equation:

πε
λ
2

1'
+

=
Ne

E g
q ,                          (C.18)

and is so named because it is clearly similar to the limiting field, Eq, that was introduced in

the discussion of the steady-state space-charge field.  In these equations, we have used the

relationship between the zero order free electron density, and the fundamental component

of the ionized EL2 density (n0 = N1
+/m).  It is these equations that are used in the

discussions of section 3.3.2.
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C.4 Electrons and Holes

When the field arises from equal populations of electrons and holes, equation (C.5)

reduces to:

( )np
e

Esc −=⋅∇
ε

  .               (C.19)

Together, equations (C.1) – (C.4) and (C.19) completely describe the carrier and field

dynamics.  In solving these equations we proceed as before, by assuming that the Fourier

series for the carrier densities can be truncated after the n=1 component (equations (C.10),

(C.11)) and field (equation (C.13)).  As before, the carrier densities and space-charge field

are used in equations (C.1) – (C.4) to produce equations for ∂n1/∂t and ∂p1/∂t:

( ) 111
1 nnp
t

n
Dndie Γ−−Γ−=

∂
∂

,                  (C.20)

and

( ) 111
1 pnp
t

p
Dpdip Γ−−Γ=

∂
∂

.                     (C.21)

Here Γdip and ΓDp are defined in an analogous way to Γdie and ΓDn, as the inverse of the

hole dielectric relaxation time (τdip = ε/p0eµp), and the inverse of the hole diffusion time (τ

Dp = λg
2e/(2π)2µpkBT).  In order to de-couple these equations, we differentiate with respect

to time, and use the relationship between ∂n1/∂t and p1, and ∂p1/∂t and n1 (given by

equations (3.40) and (3.41) to eliminate variables.  The result is two second-order

equations for n1 and p1:
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and
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which can be recognized as equations for overdamped simple harmonic oscillators.  These

equations can be solved to yield the general form for the time dependent carrier densities

and space-charge field:
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and


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Here 2γ = (Γdie + Γdip + ΓDn + ΓDp), and ω2
0 = ΓdieΓDp + ΓdipΓDn + ΓDpΓDn.  Also, since γ

2>>ω2
0, we have made the approximation: (γ2-ω2

0)
½ ≈ γ-ω2

0/2γ.  Equations (C.22) –

(C.24) are those that are used in the discussion of section 3.3.3.
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