
Appl. Phys. B 45,225-236 (1988) A r v d l O r f H 

Physics B S Ä 
©Springer-Verlag 19K8 

Picosecond Third-Harmonic 
Light Generation in ß - B a B 2 0 4 

P. Q i u * and A . Penzkofer 

Naturwissenschaftliche Fakul tä t II - Physik, Universität, D-8400 Regensburg, 
Fed. Rep. Germany 

Received 29 September 1987/Acceptcd 19 January 1988 

Abstract. The type-II phase-matched third-harmonic light generation in a / ? - B a B 2 0 4 

crystal is studied experimentally. A passively mode-locked N d : phosphate glass laser is used 
as a pump source. At a pump pulse peak intensity of 7 1 0 = 5 x 1 0 1 0 W / c m 2 a third-harmonic 
conversion efficiency of a percent is obtained. A theoretical discussion of phase-matched 
third-harmonic generation in crystals of the symmetry group of / ? - B a B 2 0 4 (trigonal class 3) 
is given. The effective nonlinear susceptibility #e f f for type-II phase-matching is determined. 

PACS: 42.65C 

/ J - B a B 2 0 4 (BBO) is an excellent nonlinear optical 
crystal for second-order nonlinear optical applications 
like second-harmonic generation, three-photon fre-
quency mixing, and parametric three-photon interac-
tion [1-9]. The wide transparency region 
(190-2500 nm), the large second-order nonlinear sus-
ceptibility and the high damage threshold make this 
crystal superior to K D P and A D P [1-9]. The small 
group-velocity mismatch of the crystal is attractive in 
the femtosecond region [5]. 

In this paper we study the third-harmonic gener-
ation in a j 5 - B a B 2 0 4 crystal. Single picosecond pulses 
of a passively mode-locked N d : phosphate glass laser 
are used as pump source. The type-II phase-matching 
is chosen (ooe~>e interaction, o indicates the ordinary 
ray and e the extraordinary ray). 

/ ? - B a B 2 0 4 is a negative uniaxial crystal (extraordi-
nary refractive indexzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ne < ordinary refractive index n 0) 
of the trigonal crystal class (space group JzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR3, point 
group 3 [1,2]). The crystal has no inversion center. In 
the crystal light generation at the third-harmonic 
frequency, r%= 3a; t , may occur by cascading second-
order nonlinear optical effects (second-harmonic gen-
eration, coj + coj -*co2, and frequency mixing, co2 + cox 

-+co3) or by a direct third-order nonlinear optical 
process (direct third-harmonic generation, c ^ + c ^ 
+ € ^ - » 0 ) 3 ) [10,11]. 
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In the theoretical discussion the various phase-
matched cascading processes and direct third-
harmonic generation processes are analysed. The 
experiments are restricted to the type-II phase-
matched third-harmonic generation. 

1. Theory 

In a recent paper the phase-matched third-harmonic 
generation in calcite has been analysed [12]. In 
contrast to / J - B a B 2 0 4 , calcite is an uniaxial crystal 
with inversion symmetry (trigonal crystal class, space 
group Ä3C, point group 3m) and therefore no second-
order nonlinear optical processes contribute to the 
third-harmonic generation. Here, the theory of [12] is 
extended to include the second-order cascade pro-
cesses to the light generation at the third-harmonic 
frequency in / i - B a B 2 0 4 . 

The light propagation through the crystal is de-
picted in Fig . 1. Only phase-matched collinear interac-
tion is considered. The x-, y-, and z-axes represent the 
crystal-fixed rectangular coordinate system. The op-
tical axis is parallel to the z-axis. The (X, Y, Z) system is 
the laboratory-fixed rectangular coordinate system. 
The wave propagation in the (XYZ) system is charac-
terized by the wave vectors k 1 | |k 2 | |k 3 | | Z-axis, the 
ordinary field strength E 0 | | X-axis and the extraordi-
nary dielectric displacement D J Y-axis [13]. In the 
(x, y, z)-coordinate system the unit vector of the ordi-



nary electrical field strength is 

(
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and the unit vector of the extraordinary electrical field 
strength is 

(
cos(0 + a)cos</> \ 

cos(0+a)sin0 . (2) 

- s in (0 + a) / 

Phase-matching is achieved by proper crystal 
orientation (adjustment of angle 0). The dispersion of 
the principle refractive indices,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA n0 and ne9 allows the 
angle-tuned phase-matching. The wavelength depen-
dence of the principle refractive indices is givenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA by'[3] 

0 0 1 8 7 8 

(3a) 

(3b) 

where X is the wavelength in urn. n0(X) and ne(X) are 
depicted in Fig . 2. The refractive index of an ordinary 
ray is independent of the propagation direction. The 
refractive index of an extraordinary ray depends on the 
angle 0 by [13] 

M 0 ) = 
n0ne 

( n 2 W 0 + n 2

) s i n 2 0 ) 1 / 2 ' 
(4) 

For the cascading third-harmonic generation and the 
direct third-harmonic generation phase-matching is 
possible for various combinations of ordinary and 
extraordinary rays at different angles 0. The possible 
combinations are listed in Table 1. 

For the pure cascading third-harmonic generation 
either the second-harmonic generation, a>l + col -*a>2> 
or the frequency mixing, <DzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 + <D\-+(O& is phase-
matchable by 

AksuG=zk'2 — k \ a ~ k i b = z § (5a) 

or 

A k F M ^ - k 2 - k ^ Q . (5b) 

The wave vectors kt are given by ki^nfojc0. A 
simultaneous phase-matching of the second-harmonic 



Table 1. Cascading third harmonic generation and direct third-harmonic generation in /*-BaB 2() 4. Pump wavelength 
^ = 1.054 urn 
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a AkFM is listed for cascading contributions 

generation and the frequency mixing is not possible in 
a single crystal. The light generation at the third-
harmonic frequency by phase-matched second-
harmonic generation and phase-matched frequency 
mixing is only possible by the successive application of 
two crystals which are differently oriented [14,15]. 
The application of two separately phase-matched 

crystals is experimentally more complex than the 
application of a single crystal, but the light generation 
is more efficient with two phase-matched crystals. 

Fo r the direct third-harmonic generation the pro-
cess cojzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA + col+a) l->CD3 is phase-matched by 

^ T H O ^ ^ ~~^la~~^l&~~^lc : = =0 . (5c) 
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Fig. 3. (a) Phase-matching angles ()PM versus wavelengthzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA kx andzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA >l3 

for type-I (ooo-»e ) , type-II (ooe-^e), and type-III (oee->e) 
interaction. Solid curves: /?-BaB 2 0 4 . Dashed curves: K D P . 
Dash-dotted curve: A D P . (b) Walk-off angles a, and a 3 versus 
wavelength Xx and A 3 for type-II phase-matched interaction in 
/*-BaB 2C) 4 

The contributing cascading second-order processes 
(Table 1) are characterized by 

A kSHG + A /c F M = A kTHG = 0. (5d) 

The wave-vector diagrams for zlfc S H G = 0 (a), AkFM = 0 
(h\ and AkTHG = 0 (c) are inserted in Fig. 2. The phase-
matching angles versus wavelength are plotted in 
Fig. 3a for type-I (ooo-»e), type-II (ooe~+e), and 
type-III (oee-+e) mixed direct and cascading third-
harmonic generation in ß - B a B 2 0 4 . For comparison 
the phase-matching curves of K D P (dashed curves, 
only type-I and type-II phase-matching possible) and 
of A D P (dash-dotted curve, only type-I phase-
matching possible) are included (refractive index data 
from [16]). 

The walk-off angle a between energy flow direction 
(ray direction) s and wavevector direction k (Fig. 1) of 
extraordinary polarized light is given by [17] 

tana = {sm(29)n2(0) ( — - -^j. (6) 

In Fig. 3b the walk-off angles a t and <x3 versus 
wavelength are shown for the type-II third-harmonic 

generation process in / ? - B a B 2 0 4 . The walk-off angles 
are listed in Table 1 for the various interaction pro-
cesses at A, = 1.054 \xm. 

For the cascading third-harmonic generation and 
the direct third-harmonic generation the relevant 
equations are derived in the following [10]. The wave 
equation is given by [17 19] 

d2 
V: d2 

CQ dt2 (7) 

being t the relative permittivity tensor, c0 the vacuum 
light velocity, and j i 0 the vacuum permeability. So-
lutions of (7) are found by the plane wave ansatz 

E^^(ElQ
H(0it~klZ)el + E2c

i((,,2t'~k2Z)e2 

- f £ 3 c i ( w a " f c 3 Z ) e 3 - f c . c . ) , 
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+ P NL, FM * 

-fee). 
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Pump pulse depletion is neglected. The slowly varying 
amplitude approximation leads to [17-20] 
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The nonlinear polarizations are given by [21] 

P N L . S H G = 2 ^ ( 2 , : E E 

^^ia^\bX a)(---o)2;a)l,ojl):elaelb, (10a) 
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= e 0 £ , f l £ i f c £, c x
( 3 ) ( - c ö 3 ; c o i , ( y 1 , ( y i ) ; e , ( ) e 1 6 e l c 
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Ei„ = £ i a e l f l ,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Elb = EibeXb9 and E l c = £ l c e l c are the 
components of the electric field strength, E t , that 
give phase-matching (see below). The wave vectors 
of the nonlinear polarizations are k% = kia + klh, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HM^ £2 + ^ 1 0 . a n c * k% — kXa + blb + kic. Transforma-
tions to the moving frame (t' — t~e2j?2e2/(c*0tt2cos2a2) 

x Z ^ f - [ e J C3 e3 / ( c 0 n 3 c o s 2 a 3 ) ] Z , and Z ' = Z) give 

0 Z ' ~zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 1 . 2 n 2 c 0 c o s 2 a 2

Z ' f r ' S H o E l - i ; i * C ' ( H a ) 

r l E ^ ¥ _ „ J (2) F F fii4kFMZ' (11k) 
dZ' ~ \ , c 0 c o s 2 a , X ^ ™ E 2 E u e ' ( l l b ) 

and 

<3£  _3,THG 

dz1 

CO-x 

2n3c0coshr3
X°(t-THGElaElbEue 

The effective nonlinear susceptibilities are 

e f f , S H G ~ E 2 X - e la e lb> 

i /ÜTHO^' 

V(2) — p . «(2) . ~ « 
Zeff ,FM~ e 3 X - E 2 e lc> 

Zeff,THG~" e 3 X . e l a e l f r e l 

(11c) 

(12a) 

(12b) 
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The second-order nonlinear susceptibility tensor y_w 

and the third-order nonlinear susceptibility tensorzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA x < 3 ) 

of / ? - B a B 2 0 4 are listed in Table 2 [17, 22, 23]. The 
effective nonlinear susceptibilities of the various inter-
action processes are compiled in Table 3 [12, 22, 23]. 

The solution of (11a) is 

£ 2 ( Z ' ) = - i - - *"2 - T 

2n2c0 c o s z a 2 

X Xeff ,SHG^la^lb 
exp(iAkmGZ')-l 

iAh SHG 
(13) 

for £ 2 (0 ) = 0 (walk-off is neglected). Insertion of (13) 
into ( l i b ) gives (walk-off is neglected) 

^ S H G \ ^ S H G + ^ F M 

_ e x p ( i ^ c F M Z ' ) - - l (14) 

For AkFM-*0 (phase-matched frequency mixing) (14) 
reduces to 

£ 3 . F M ( Z ' ) = - i 
uhuhXtfusnaXtfr. FM 

2n 2 «3 c o c o s 2 a 2 c o s 2 a 3 

Z ' 
x ElaElhEic : • exp(i J/c F MZ ' /2 ) 

^ S H G 

sin(d/eF MZ ' /2) 
X ^ I F M Z 7 2 " " 

(15a) 

with sin(J/c F M Z72)/(Jfc F MZ ' /2) -*  1. 

Fo r (phase-matched second-harmonic 
generation) Eq . (14) gives 

>3,FM(Z') = 

CÜ2ft)3Z(eff,SHGZLff, FM 
2n2n3c

2

) cos a 2 cos a 3 

Z' 

x E{aExhEu — — exp(iJ/c F MZ ' /2) 
Z I K F M 

sin(zl/cF MZ' /2) 
x — (155) 

/ l / c F M Z / 2 

with sin(/l/cFMZ72)/(J/cFMZ72)<^l. A comparison of 
(15a) and (16a) shows that the third-harmonic gener-
ation via phase-matched second-harmonic generation 
is negligibly small compared to third-harmonic gener-
ation via phase-matched frequency mixing. 

In case of AkSHG + AkFM = AkTHG-+0 (cascading 
contribution to direct third-harmonic generation) 

Table 2. Second- and third-order nonlinear susceptibility tensors of / J - B a B 2 0 4 (point group 3). Kleinman symmetry conjecture [24] is 
assumed 
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\ - X l 3 ~'X\o Xss 0 Xu> 0 Xl6 Xl5 Xio 0 

file:///-Xl3


Eq. (14) simplifies to 

17zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA (7'\~. \ W 2 w 3 X e f f , S H G X e f f , F M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ß 3 , F M l ^ / * M " "2 "~"~2 1 T T T 2 " 2n2n3c

2

) cos 2 a 2 cos 2 a 3 

x ElaElbEu exp(i/dkzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATH GZ72) 

^ F M 

x sin(JfeTH GZ72) 

AkjnGZ /2 

(15c) 

with sin(J/c T J I GZ72)/(^/c T H OZ72)-^l. £ 3 f F M of (15a) 
(/l/cFM~>0) and £ 3 , F M of (15c) (/l/cT H G->0) are of the 
same magnitude. 

The solution of (1 lc) is (walk-off is neglected) 

^ E l a E x h E u c m A k m G Z ' ß ) ^ f ^ p - . (16) 

For AkTUG-+0 (phase-matched direct third-harmonic 
generation) it is sin(zlfcXH GZ72)/(^/cTH GZ72)->l. 

The total third-harmonic signal is the sum over the 
various simultaneously phase-matched processes of 
Table 1 (same phase-matching angle). It may be writ-
ten as 

£ 3 ( Z ' ) = - i 
2n,cncos2oiJcfftlatlbtu 

xexp(iAk'Z'/2)- v 1 } 

Ak'Z'ß 

with 

m 

(17) 

(18) 

The sum runs over the simultaneously phase-matched 
processes. For phase-matched frequency-mixing inter-
action (AkFM-+0) it is 

Zeff,  i 
_ W2#eff, SHG, iXeff, F M , i 

(19a) 
n2c0 cos2 (oc2)AkmG 

and 

Ak'~ AkFM. 

For phase-matched second-harmonic generation 
(AkmG-+0) it is 

Xeff, iz 
,SHG,iZcff ,FM, / 

n 2 c 0 c o s 2 ( a 2 ) ^ k F M 

and 

Ak' — Ak¥M. 

(19b) 

For mixed direct and cascade third-harmonic gener-
ation ( ^ f c S HG + ^ " c F M = = ^ ' c T H G ~ * 0 ) it is {rri  number of 

phase-matched cascade processes) 

Xeff "~ Xeff, THG + Xeff, cas 

— X e f f , T H G + Z 

m v (2) y (2) 

n2c0 cos 2~(a 2j/l/cF M 

(19c) 

and 

Ak' = Ak THG • 

The third'harmonic intensity generated in a crystal 
of length / is obtained by use of the relations 
/ . = (n^ 0c 0 /2) |E ( |

2 (i = 1»3). The result is 

/3</)=  < 0 K 2 T-n3n^nihnucZ4cos*cc3 

sin2(/l/c7/2) 

M f c ' / / 2 ) 2 ' 
(20) 

The electrical field strengths £,„ , Elb, and £ l c are the 
ordinary and extraordinary field components accord-
ing to the interaction processes of Table 1. For 
example the field components for the type-II phase-
matched third-harmonic generation (ooe-»e) are 
Eu-=E lb = E°1=cos(ß)El and £ , c = £1 =sin(j8)£, 
(Fig. 1). The corresponding intensities are / l a = / , fc = /? 
= cos 2(/?)/, and / u . = /* =sin 2(/?)/,. For Gaussian 
pulses the field strengths and the intensities are 
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= cos ( J? )£ 1 0 exp 
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0 
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= cos 2 (ß) I, o exp ( - J — I exp ( -

l\(X,Y,Z,t') = sm2{ß)lX0 

A r 2 + (Y + a , Z ) 2 
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The energy conversion efficiency r\ of third-
harmonic light generation is given by 

n=w3(i)/wl(0) 

[ 00 00 00zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ~J 

S dX $ dY $ dt'I3(X,Y,l,t')\ 
-co — 00 — 00 _| 

[ 00 00 oo I 

S dX f dY I dt'Ix(X,Y,0,t')\. 
— oo — oo - 00 J 
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Fig. 4. Reduction of energy conversion efficiencyzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA rj  due to pump-

beam divergence AO. Type-II phase-matching in B a B 2 0 4 at 

wavelength Xx = 1.054 um. Beam diameter Ad — oo. Solid curves: 

/ crystal length / = 1 mm; 2 l = 2mm; 3 l=5mm; 4 1=1 cm; 5 

/ = 2 cm; 6 / = 5cm. Dashed curve gives effective wavevector 

mismatch [12] 

For Gaussian input pulses the energy conversion is 

1 coIi 2,|Z e f f|
2/?. 0 

rj 
3 3 / 2 n3nlanXbnuctslcos4(x3 

xF(ß) 
sin2(Ak'l/2) 

(22) 

The factor F(ß) depends on the specific interaction 
process and is listed in Table 1. 

For divergent pump pulses, phase matching Ak'-O 
is achieved only for the central component of the pulse. 
The reduction of energy conversion due to the beam 
divergence AO ( F W H M ) of the pump pulse was 
analysed in [Ref. 12, Eq . (31)]. The energy conversion 
ratio r](A6)/ri(0)  and the effective wavevector mismatch 
Aktff(A6) [12] are displayed in Fig . 4 for various crystal 
lengths. The curves apply to type-II phase-matched 
third-harmonic generation (dAkmG/dO = —1.6 x 10 4 

cm - 1 / r ad ) . For our experimental situation of AO 
±5 x 1 0 " 4 rad and / = 0.72 cm it is ^ 0 ) ^ ( 0 ) ^ 0 . 6 5 . 

The spectral width J v ( F W H M ) of the pump pulses 
reduces the energy conversion efficiency, since phase-

0 1 10 100 

SPECTRAL BANDW I DTH Av [cm"1] 

Fig. 5. Reduction of energy conversion efficiency Y\ due to spectral 

bandwidth Av of pump pulse. Type- I I phase matching in 

/?-BaB 2 0 4 . Wavelength kx = 1.054zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA urn. Beam diameter Ad- oo. 

Lower abscissa gives spectral width of chirped pulses. Upper 

abscissa presents pulse duration of Gaussian band-width limited 

pulses. Solid curves: / crystal length l-\ mm; 2 / = 2mm; 3 

1-5mm; 4 /= 1 cm; 5 /=2cm; and 6 / = 5cm. Dashed curve 

presents effective wavevector mismatch versus spectral band-

width [12] 

matching is achieved only for the central laser frequ-
ency. The reduction of the third-harmonic energy 
conversion efficiency was analysed in [Ref. 12, 
Eq . (33)]. The energy conversion ratio ri(Av)/rj(0) and 
the effective wavevector mismatch Akeff(A v) are plotted 
in Fig. 5 for various crystal lengths. The curves belong 
to type-II phase-matched third-harmonic generation 
(dAkTHO/dv = 1.53 c m " 7cm~ l ). The lower abscissa re-
presents the spectral width of chirped pulses. (For 
bandwidth limited pulses Av is a factor of three larger 
[12].) The upper abscissa is valid for the duration 
of bandwidth limited Gaussian pulses 
{At = [2to(2)/w]/(Jvc 0) [25]}. For J v ^ 2 0 c m " 1 

(chirped pulses) and 1=0.12 cm it is rf(Av)/rj(0)^025. 
The walk-off angle of extraordinary rays reduces 

the pulse overlap in the case of a finite pump beam 
diameter Ad ( F W H M ) . The reduction of energy con-
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Fig. 6. Reduction of energy conversion efficiency rj  due to finite 

pump pulse beam diameter Ad. Type-II phase-matching in 

0 -BaB 2 O 4 . Wavelength kx = 1.054 um. Solid curves: / /=5 mm; 

2 /= 1 cm; 3 / = 2 cm; 4 / = 5 cm. Dashed curve presents effective 

interaction length [12] 

version due to the walk-off angle OLX was studied in 
[Ref. 12, Eq . (35)]. In Fig . 6 the energy conversion 
ratiozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA rj(Ad)/rj(co) versus pump beam diameter Ad is 
depicted for type-II third-harmonic generation in 
/ J - B a B 2 0 4 . The effective interaction length / e f f is 
included (for a definition, see [12]). For a beam diam-
eter of Ad = 2 mm and a crystal length of / = 0.72 cm 
the energy conversion ratio is (Ad)/rj(oo)czQ.93. 

The energy conversion ratio rj(6)/ri(0 ?M) for J 0 = O, 
A v = 0, and Ad = oo is plotted in Fig . 7 [dashed curve 1, 
Eq. (22)]. The fringe pattern belongs to type-II 
third-harmonic generation in a / ? - B a B 2 0 4 crystal of 
0.72 cm lengths. Several energy conversion ratios 
*/(M0)/r/(0 P M,O) for Av = 0 (curves 2-6) and 
rj(09Av)/rj(0PM9O) for A0~0 (curves 7-11) are included 
in Fig. 7. 

Several energy conversion ratios rj(09 A8, Av)/rj 
x(0pM>O>O) f ° r 4d=oo are plotted in Fig. 8 (type-II 
third-harmonic generation). The left half belongs to 
J 0 = 5 x 10~ 4 rad and the right half to A9=10"4 rad. 
The dashed curves belong to bandwidth-limited 
pulses of zlv = 3 c m - 1 . The solid curves are calculated 
for various spectral widths At of chirped pulses. 

The different group velocities of the ordinary and 
extra-ordinary pump rays limit their overlap length in 

EXTERNAL PHASE - M I SMATCHI NG ANGLE [ r o d ] 

4x1Q"3 -2x1Q'3 -10"3 0 10"3 2x10"3 3*K) 3 
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1NTERNAL PHASE - M I SMATCHI NGzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA G- ÖR M I r o d I 

Fig. 7. Normalized energy conversion efficiency versus internal 

and external phase-mismatching angle. O — OPM~(6--0pM)ouJnol 

is the internal mismatch angle. Type-II phase-matching in 

jft-BaB 20 4. Crystal length / = 0.72 cm. Wavelength kx =1.054 urn. 

Dashed curve / : Av — 0 and / iö = 0. Solid curves 2-6: /1v = 0 with 

2 A9 = 5x 10~ 4 rad, 3 A0= 10" 3 rad, 4 A0 = 2 x K T 3 rad, 5 

A0 = 5 x 10 " 3 rad, and 6 A6 = 10 ~ 2 rad. Solid curves 7 - / / :A0 = 0 

with 7 /1v = 1 0 c m _ 1 , 8 Jv = 20cm~ 1 , 9 /1v = 40cm" 1 , JO 

Jv = 80cm \ and / / Av = 160cm" 1. Bandwidth-limited pulses 

are assumed 

the crystal. The group refractive index is 
ng = n / [ l — (v/ri) (dn/dv)"]. The time delay per unit length 
between the ordinary and extraordinary ray at 
A t = 1.054 jam is 

W O o i e i - C ^ 0 1 - » f c l ( ö p M ) ] / c o * . 1 . 5 4 ps/cm 

in / } - B a B 2 0 4 . The overlap length of a pump pulse of 
duration At ( F W H M ) , lw„*At/(6t/öl) oUt9 is plotted 
in Fig. 9a. 

The group-velocity dispersion broaden the dura-
tion of the generated third-harmonic light pulses. 
Without group-velocity dispersion and without pump 
pulse depletion the third-harmonic duration is 
At3-At/3l/2 [12]. For type-II phase-matching the 
time delay between the third-harmonic light and 
the ordinary ray of the pump pulse is 
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Fig. 8. Normalized energy conversion efficiency versus internal 

and external phase-mismatching angle. Type-II phase-matching 

in /?-BaB 2 0 4 . Crystal length /=0.72 cm. Wavelength 

Xx = 1.054 um. Left half: A0 = 5 x 10~ 4 rad; right half: J0=1 

x 10" 4 rad. Curves / are bandwidth limited with Av = 3cm~1. 

The other curves are chirped with 2 49= 10 cm" 1 , 3 

Jv = 20cm 4 /iv = 40cm" 1 , 5 <dv = 80cm" 1 , and 6 

dv = 160 cm" 1 . The circles belong to /dv^20cm" 1 and the 

triangles belong to Ave* 10cm" 1 
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Fig. 9. (a) Overlap length between ordinary and extraordinary 

ray of pump pulses versus pump pulse duration in /?-BaB 2 0 4 . 

Xx = 1.054 urn, (St/Sl)oUl = 1.54 ps/cm. (b) Pulse duration of gen-

erated third-harmonic light in / ? -BaB 2 0 4 versus crystal length. 

Aj = 1.054 urn, (<5t/<5/)e3oi = 2.86 ps/cm. Solid curves: / pump 

pulse duration At = 5 ps; 2 At-1 ps. Dashed curve: time delay 

between extraordinary ray at X3 and ordinary ray at Xx 

M .L.LASER SW I TCH M .L.LASER SW I TCH AM PLI FI ER 

(8t/dt)e3ol-2.86 ps/cm (A r = 1.054 |im).- The third-
harmonic pulse duration broadens to At3 = [At2/3 
+(St/St)2t3olr

2y12 with /'==min(U o v e r). The approxi-
mate third-harmonic pulse duration versus crystal 
length is shown in Fig . 9b for two pump pulse 
durations. 

2. Experimental 

The experimental setup is similar to the arrangement 
used for phase-matched third-harmonic generation in 
calcite [12]. The schematic setup is shown in Fig . 10. 
The pump pulses are generated in a passively mode-
locked N d : phosphate glass laser (Ax = 1.054 |im). 
Single picosecond pulses of about 5 ps duration are 
separated with the Ker r cell shutter. The pulse energy 
is increased in one or two N d : phosphate glass 
amplifiers. The pump pulse spectrum is monitored 
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Fig. 10. Experimental setup. (SP; grating spectrometer; VID; 

vidicon of optical spectrum analyser; L : lens. D A : linear diode 

array; PD1 and PD2: vacuum photodetectors; SA: saturable 

absorber for intensity detection; C R : /? -BaB 2 0 4 crystal; F : 

filters; P M : photomultiplier) 

with a spectrometer and a vidicon system. The beam 
diameter is measured with a linear diode array system. 
The input pump pulse peak intensity, J 1 0 , is deter-
mined by measuring the pulse transmission through a 



saturable absorber (Kodak dye N o . 9860 in 1,2-
dichloroethane [26]). The relevant crystal parameters 
are / = 0.72 cm, 0 P M = 47.40° (type-II phase-matching), 
and </> = 90° [27]. Only type-II phase-matched third-
harmonic generation is investigated. The generated 
third-harmonic signal is measured with a photo-
multiplier. The energy conversion is determined by 
calibrating the photomultiplier signal, energyzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA W3(l), to 
the signal of the photodetector P D 1 , energy Wx(0). At 
high pump pulse intensities (7 1 0 £ 2 x 1 0 1 0 W/cm 2 ) a 
vacuum photodiode is used to measure the third-
harmonic signal. 

3. Results 

The angular dependence of the generated third-
harmonic signal is shown by the data points in Fig. 8 
(type-II phase-matched third-harmonic generation). 
The data belong to A8~5 x 10~ 4 r ad and Ad^lmm. 
The spectral widths are Avcz 1 0 c m " 1 (triangles) and 

I NPUT PEAK I NTENSI TY I 1 0 [ W / c m 2 1 

Fig. 11. Energy conversion efficiency of third-harmonic light 
versus input pump pulse peak intensity. Type-II phase-matching 
in /?~BaB 2 0 4 . Pump laser wavelength A x = 1.054 um. Circles and 
solid curve / : zlv = 2 0 c m _ 1 , / = 0.72 cm. Triangles and solid 
curve 2: J v ~ 10 cm ~ 1 , / == 0.72 cm. Dashed curves / andzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 2 belong 
to / lv~0, A6~0, Ad-*co with /=2cm and /=0.72cm, respec-
tively. Curves are calculated withzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA x ef f = 1.3 x 10" 2 2 m2 V " 2 , see 
(22) 

/ I V A 2 0 c m " 1 (circles). The experimental points agree 
well with the calculated curves. 

The maximum energy conversion efficiency 
(0 = 0 P M ) versus input pump pulse intensity is depicted 
in Fig. 11. The circles (A v ~ 20 c m " x ) and triangles 
( / IVA 10 c m " 1 ) represent the experimental points 
( / } 0 ^ 5 x l O " 4 r a d , AdÄ2 mm, / = 7.2mm). The solid 
curves are fitted to the experimental data. The fit-
ting parameter is | ^ e f f | = (1 .3±0 .2)x 1 0 " 2 2 m 2 V ~ 2 

= ( 9 . 2 ± 1 . 4 ) x l 0 " 1 5 e s u (1 esu = 9 x 108/4TT m 2 V " 2 

[21]). The dashed curves belong to A 0 = 0, /1v = (), 
Ad = oo with (2) / = 7.2 mm and (1) / = 2 cm [see (22)]. 

In the experiments a third-harmonic conversion 
efficiency ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA rjcz 0.008 has been obtained at an input 
pump pulse intensity of 7 1 0 = 5 x 1 0 1 0 W / c m 2 . The 
damage threshold of / ? - B a B 2 0 4 crystals is expected to 
be of the order of 1 0 1 2 W / c m 2 for picosecond pump 
pulses of about 5 ps duration. A damage threshold of 
1.35 x l O 1 0 W / c m 2 was reported for N d : Y A G laser 
pulses of 1 ns duration [4, 7]. The curves in Fig . 11 
indicate that very high third-harmonic conversion 
efficiencies may be obtained for picosecond (and 
femtosecond) light pulses in B B O ( / i -BaB 2 0 4 ) well 
below the damage threshold. 

4. Discussion 

The type-II phase-matched third-harmonic generation 
is composed of the direct third-harmonic generation 
and of four cascading second-order processes. The 
contributing processes are listed in Table 1. The 
second-order nonlinear susceptibility components 
were determined by an analysis of the second-
harmonic generation [1, 5-7]. The reported values 
are [7] d 2 2 = (1.94 ± 0.22) x 1 0 " 1 2 m/V, dn <0.1 xd22 

( d n = 0 used in the following), and dl5 ==.(1.36±0.83) 
x 1 0 " 1 3 m/V. A value of d33 is still not known. The 

effective susceptibility of the cascading contributions is 
found to be X e f f , c a 8 = ( 6 . 6 ±0 . 8 ) x 1 0 - 2 3 m 2 V " 2 . [Equa-
tion (19c) with Table 1 and Table 3, 0 = 90°, the weak 
processes O n O j - ^ e ^ j - ^ e a and o ^ - ^ o , - + e 3 are 
neglected.] The measured effective susceptibility of 
type-II third-harmonic generation is |#eff| = |x (

eff,THG 
+ Zeff,caJ = ( l - 3 x 0 . 2 ) x l 0 " 2 2 m 2 V ~ 2 resulting' in 
xiVf,THG^(6'4±2%)xW~23m2V-2 (same sign of 
Xcfl,THG a n ( l Zeff.cas * s assumed). The effective nonlinear 

susceptibility values indicate the same magnitude of 
the cascading processes and the direct third-harmonic 
generation. 

5. Conclusions 

Energy conversion efficiencies up to 1% have been 
achieved by type-II phase-matched third-harmonic 
generation in / ? - B a B 2 Ö 4 with picosecond pump pulses 



Table 3. Effective second- and third-order nonlinear susceptibilities of ̂ - B a B 2 0 4 (point group 3). Angles are defined in Fig. 1 

Process Xeff 

Second-harmonic generation XiffzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.SHG(G>l+">l-^2) 
o o - » e [—dx t cos(30) + d22 sin(30)] eos(04- a2)—dx5 sin(0 + a 2) 
00-+0 —</, t sin(30)-f ^22 cos(30) 
oe-+c [d t x sin(30) -1-d22 cos(30)] cos(0-fa,) cos(0 + a2) 
o e - » o [  — d x j cos (30) 4- d2 2 sin (30)] cos(0 -Ha,)—d j 5 sin (0 4- a,) 
ee-*e [dx x cos (30)—d2 2 sin (30)] cos(0 -1- a2) cos2(0 4- aj) 4- d 3 3 sin(0 -1- a2) sin 2 (04- a,) 

4- dx 5 cos(0 -ha^ [sin(0 4- a2) cos(0 -f a,)—2 cos(0 4- a 2) sin(0 -fa,)] 
ee-*o [dyx sin(30)-f d 2 2 cos (30)] cos 2 (04- a,) 
Frequency mixing X (eff.FM(Wl+C02-+OJ3) 
oo->e [  — dx i cos(30)4-d22 sin(30)] cos(0-f a3) — dx 5 sin(0-f a3) 
OO-*0 — sin(30)-M22cos(30) 
oe-+e , sin(30) 4- d22 cos(30)] cos(0 4- a2) cos(0 -f a3) 
o c - » o [  — dx x cos(30) -f d2 2 sin (30)] cos(0 4- a2) — d t 5 sin(0 -f a2) 
cc-*-c [dxx cos(30)—d22sin(30)]cos(0 4- a,)cos(0 4- a2)cos(0 4- a3) 

-f d3 3 sin (0 -f a,) sin (0 4- a2) sin (0 -f a3) 
-f d, 5 [cos(0 4- a,) cos(0 4- a2) sin (0 4- a3) — cos(0 4- a,) sin(0 4- a 2) cos(0 4- a3) 
— sin (0 4- a,) cos(0 4- a2) cos(0 -f a3)] 

ee-*o [dx x sin(30)4-d22 cos(30)] cos(04-a,)cos(04-a2) 
Direct third-harmonic generation Z S / . T H O K + W I + W I - ^ C Ü S ) 
ooo-*e - Ixi s sin(30) 4- Xio cos(30)] sin(0 4- a3) 
ooe->e iXi l cos(0 4- a3) cos(0 + ax) 4- [xi o sin(30) - Xi 5 cos(30)] sin (20 4- a t 4- a3) 

4zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-x 1 6sin(0 + a 3)sin(0-fa 1) 
oee-+e ilXio cos(30) 4- XizyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 5 sin(30) cos(0 4- a3) sin(20 4- 2aJ] 

of a N d : glass laser. Conversion efficiences up to the 
10% region are expected for more powerful picosec-
ond pump pulses well below the damage threshold. 
Comparing the third-harmonic generation in B B O 
with the third-harmonic generation in calcite reveals 
the favorite parameters of j 8 - B a B 2 0 4 : The effective 
nonlinear susceptibility #c f f (type-II) is about a factor 
of 40 higher, the walk-off angle is nearly a factor of 2 
smaller, and the half-width of the phase-matching 
curve (Fig. 7, curve 1) is a factor of 1.35 wider (same 
crystal thickness). 
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Note added in proof. In a recent paper [28] convincing argu-

ments are given that the trigonal crystal 0 -BaB 2 O 4 is of higher 
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