
Picoso – A Parallel Interval Constraint Solver∗

Natalia Kalinnik1 Tobias Schubert1 Erika Ábrahám2 Ralf Wimmer1 Bernd Becker1

1 Faculty of Engineering,
Albert-Ludwigs-University Freiburg,

79110 Freiburg im Breisgau, Germany
{kalinnik|schubert|wimmer|becker}@informatik.uni-freiburg.de

2 Chair of Computer Science II,
RWTH Aachen,

52056 Aachen, Germany
eab@informatik.rwth-aachen.de

Abstract—This paper describes the parallel interval constraint
solver Picoso, which can decide (a subclass of) boolean com-
binations of linear and non-linear constraints. Picoso follows a
master/client model based on message passing, making it suitable
for any kind of workstation cluster as well as for multi-processor
machines. To run several clients in parallel, an efficient work
stealing mechanism has been integrated, dividing the overall
search space into disjoint parts. Additionally, to prevent the
clients from running into identical conflicts, information about
conflicts in form of conflict clauses is exchanged among the
clients. Performance measurements, using four clients to solve a
number of benchmark problems, show that Picoso yields (almost)
linear speedup compared to the sequential interval constraint
solver iSAT, on which the clients of Picoso are based.

I. INTRODUCTION

Recent trends in hardware design towards multi-core and
multi-processor systems, computer clusters, and supercomput-
ers call for the development of dedicated parallel algorithms
in order to exploit the full potential of these architectures. In
this paper we describe a parallel satisfiability modulo theories
architecture and its implementation, and present some results.

The propositional satisfiability problem poses the question if
a propositional formula is satisfiable, i. e., if there is an assign-
ment mapping values to the variables in the formula such that
the formula evaluates to true. SAT-solvers are devoted to solve
such questions. One of the strongest industrial application field
of SAT-solving is in circuit verification.

Extending the propositional logic by embedding some the-
ories, e. g., equalities, uninterpreted functions, or theories
over the reals, results in powerful logics and leads to the
satisfiability modulo theories (SMT) problem. SMT-solvers
find applications in several verification domains, for example
in bounded model checking of hybrid systems, which is the
focus of our interest and serves us with benchmarks for this
paper.

∗This work was partly supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See
www.avacs.org for more information.

In the last decade we could observe a massive increase in the
efficiency of SAT- and SMT-solvers. This success, which led to
industrial acceptance and employment, was mostly due to new
efficient heuristics for and optimizations of the sequential SAT-
solving algorithms. The most prominent examples are conflict-
driven non-chronological backtracking, the usage of watches,
and the VSIDS variable selection heuristics.

Another research direction for increasing efficiency is the
parallelization of satisfiability checking algorithms, which is
a non-trivial challenging problem. In the domain of propo-
sitional satisfiability solving, parallel SAT algorithms can be
traced back to at least 1994, when Böhm and Speckenmeyer
presented the first parallel implementation of a DPLL proce-
dure for a transputer system consisting of up to 256 processors
[1]. During the past decade, a number of more advanced
implementations of parallel SAT-solvers have been developed,
e. g. [2], [3], [4]. However, we are not aware of any published
parallel SMT-solver. In this paper we introduce such a parallel
SMT-solver for the first order theory of the reals extended
with transcendental functions. This is a very powerful logic,
and allows to formalize properties of systems with continuous
components, like this is the case for hybrid systems.

Hybrid systems are systems with combined discrete and
continuous dynamics. An often cited simple example is a
thermostat, which switches a heater on and off (building the
discrete part), thereby keeping the temperature of a room (the
continuous component) between two threshold values. The
complexity of hybrid systems and their occurrence in safety-
critical applications pose a challenge in verification.

One of the most successful methods in formal verification is
bounded model checking (BMC) [5], a powerful technique to
refute safety properties, i. e., to detect errors in systems. Given
a system and a (safety or liveness) property, BMC searches for
an execution of increasing length, which violates the property.
The existence of such an execution gets encoded as a formula,
which is checked for satisfiability by an appropriate solver for
the underlying logic.

BMC, originally developed for discrete systems, has also

been adopted to hybrid systems [6], [7], [8]. As the behavior
of a hybrid system can be non-linear and non-deterministic,
the resulting BMC formula is a boolean combination of rich
arithmetic constraints over the reals (involving transcendental
functions like sin, log, . . .). Such BMC formulae are usually
difficult and time-consuming to solve. Thereby, the efficiency
of the BMC procedure heavily depends on the efficiency of the
underlying solver. Besides further optimizing the (sequential)
cores of such solvers, parallelization is a promising way to
reduce the computation time.

Note that the satisfiability question of this problem class
is undecidable. To nevertheless be able to handle problems
from this logical domain, the authors of [9] proposed the iSAT
algorithm, which uses interval arithmetic (cf. e. g., [10]).

In this paper we present the parallel interval constraint
solver Picoso. To our best knowledge, Picoso is currently
the only parallel solver for the undecidable domain of non-
linear constraints involving transcendental functions. The al-
gorithmic core of Picoso is based on the above-mentioned
interval constraint solver iSAT and has been extended by
an adaptation of the classical master/client model. The basic
idea of our parallelization is to decompose the search space
on demand into disjoint parts, which are then solved by the
involved clients (copies of iSAT) in parallel. Additionally,
distribution of conflict clauses among the clients has been
integrated, too. This allows the clients to directly benefit from
information others have learnt about the given benchmark
problem and in particular prevents the clients from running
into identical conflicts. The complete communication has been
carried out using MPICH2 [11], an implementation of the
Message Passing Interface (MPI) standard [12].

The remainder of the paper is structured as follows: Sec-
tion II introduces the logical domain and the basic iSAT
satisfiability checking algorithm. Section III describes the
parallelization of iSAT, resulting in our parallel solver Picoso.
After presenting benchmark results in Section IV, we conclude
with a summary of the work done so far.

II. ISAT

The iSAT algorithm [9] checks the satisfiability of formulae
being the boolean combination of boolean variables and non-
linear (including transcendental) arithmetic constraints over
bounded reals and integers. This algorithm tightly integrates
SAT solving based on the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm [13] and interval constraint propagation (see
e. g. [14]) enriched by enhancements like conflict-driven learn-
ing and non-chronological backtracking.

A. Syntax and semantics of iSAT formulae

The input language of iSAT consists of arbitrary boolean
combinations of boolean variables (propositions) and non-
linear arithmetic constraints over the reals and integers. For
simplicity, we restrict ourselves in this paper to the real

domain.1

By the front-end of our constraint solver, these formulae are
rewritten into equi-satisfiable formulae in conjunctive normal
form (CNF, a conjunction of disjunctions). This rewriting
applies the Tseitin-transformation [15], which can be done in
linear time on the cost of new auxiliary variables. Also the
size of the resulting CNF is linear in the number of operators
in the input formula.

Furthermore, all arithmetic constraints, which are
(in)equations, get decomposed into simpler (in)equations
containing at most 3 variables. This happens by introducing
additional auxiliary variables for all inner nodes of the
constraint expressions. For example, sin (x · y) ≤ 2 gets
decomposed into x · y = h1 ∧ sinh1 = h2 ∧ h2 ≤ 2,
where h1 and h2 are fresh auxiliary variables. After
this transformation the resulting equi-satisfiable formula
contains (1) equations between a variable and a unary (e. g.,
sinh1 = h2) or binary operator expression over variables
(e. g., x · y = h1) and (2) bounds on variables (e. g., h2 ≤ 2).
We benefit from this transformation in the form of simple
interval propagation rules, see Section II-B.

Thus, the abstract syntax of formulae is defined as follows:

formula ::= clause | formula ∧ clause
clause ::= atom | clause ∨ atom
atom ::= bound | equation

bound ::= var comp op rational const
equation ::= pair | triplet

pair ::= var = unary op var
triplet ::= var = var binary op var

where var is a real-valued variable, comp op is one of <, ≤,
=, ≥, or >, unary op and binary op are unary and binary
operation symbols, respectively, and rational const ranges
over the rational numbers.

The semantics of formulae is straightforward. Let Var be
the set of variables. A valuation β : Var → R satisfies a
constraint formula iff the formula resulting from replacing
each variable x by its value β(x) evaluates to true. A formula
is satisfiable iff there is a satisfying valuation. Otherwise it is
called unsatisfiable. Note that a formula in CNF is satisfied by
a valuation iff all of its clauses are satisfied, i. e., iff at least
one atom in each clause is satisfied.

B. The iSAT algorithm

Propositional SAT-solvers basically execute a loop consist-
ing of (1) making a decision, (2) propagating the decision,
and (3) if a conflict occurred, resolving the conflict.

Let us explain the SAT-procedure on an example. Assume
a problem consisting of two clauses (x∨y)∧ (x∨y), where y
stands for the negation of y. A solver could decide to search
first for solutions with x being false. Using the clause (x∨y),
the solver would propagate that, under the current decision,

1Since we assume that the variable domains are all restricted by both upper
and lower bounds, the integer case reduces to finite domains, and is therefore
decidable. Note that boolean variables can be represented as integers with
domain [0, 1].

y must be true. Similarly, with (x ∨ y) it would propagate
that y should be false, leading to a conflict. Modern solvers
use a resolution-based conflict analysis procedure to resolve
a conflict. The analysis yields a new clause called a conflict
clause, that gets added to the formula in order to prevent
the solver from running into the same conflict again. In the
example above the solver would undo its decision about x and
learn the conflict clause (x), which now leads the search into
the other half of the search space.

Since the domain is finite, the method is complete, i. e.,
either the solver finds a conflict-free assignment, or after
having tried all necessary cases, it concludes that the formula
is unsatisfiable.

Now, let us switch from the propositional to the real domain.
Usually, SMT-solvers adapt the SAT-solving mechanism and
combine it with other decision procedures for the given theory.
However, the logic we deal with is undecidable, so there is no
(complete) decision procedure we could embed.

Instead of valuations, the iSAT algorithm manipulates in-
terval valuations, assigning an (open or closed, possibly also
point) interval from the real domain, a so-called box, to each
variable, within which it currently searches for a satisfying
solution. Initially, all variables are bounded by an initial box.
A decision in iSAT consists of splitting a box into two halves,
and deciding in which one to search first. Propagation can,
similarly to the propositional case, restrict the possible variable
values under the current decisions, leading to smaller boxes.
A conflict occurs when the box of a variable becomes empty.
Similarly to the propositional case, iSAT learns a conflict
clause that prevents the solver from future conflicts with the
same “reason”.

Let us again use a simple example for illustration. Let (x =
y + z ∨ x > 8.0) be a clause and let the current boxes for x,
y, and z be [−5.0, 10.0], [3.2, 3.8], and [4.2, 5.0], respectively.

Assume that the solver decides to split the box of x at
8.0 and to search first for solutions from [−5.0, 8.0]. By
propagation, iSAT would recognize that the literal x > 8.0
cannot be satisfied by any values from the box of x, and thus
the literal x = y + z must be fulfilled in order to satisfy the
clause under the current decisions.

From x = y + z we know that the value of x must be in
the interval of y+ z, i. e., in [3.2+4.2, 3.8+5.0] = [7.4, 8.8].
By the intersection with the current box [−5.0, 8.0] of x, we
can compute a new, tighter interval for x without the loss
of any possible solutions, namely [7.4, 8.0]. We can further
deduce from the redirection z = x − y that z must be in
[7.4−3.8, 8.0−3.2] = [3.6, 4.8] yielding the new box [4.2, 4.8]
for z. Such deduced new interval bounds may trigger further
propagation steps.

For efficiency and termination reasons, we avoid long
interval propagation chains with just negligible progress: the
propagation stops if a fixed point is reached or if the progress
of the newly deduced intervals becomes negligible.

Due to undecidability, iSAT terminates with one of three
possible answers: (1) it reports satisfiability if it finds an
interval valuation (which can also consist of point intervals)

such that all values from all intervals satisfy the formula, or
(2) it reports unsatisfiability if all branches lead to conflicts, or
(3) it reports a valuation containing an approximate solution.

Note that having the possibility of an “unknown”-answer,
like the approximate solution, is unavoidable due to the
undecidability of the logical domain. The source of such
approximate solutions is the following: In general, equations
like x = y · z can only be satisfied by point intervals.
However, reaching such point intervals by propagation cannot
be guaranteed for continuous domains. One option to mitigate
this problem is to stop the search when all intervals have a
width smaller than a certain threshold, the so-called minimal
splitting width, and to return the found approximation of a
solution.

In [9] a comparison between iSAT and ABSolver [16],
the only other SMT-based solver addressing the domain of
boolean combinations of non-linear arithmetic constraints over
the reals, is given. The results clearly outline, that iSAT
yields orders of magnitude of speedup compared to ABSolver,
making it the number one choice for the algorithmic core of a
parallel solver, tackling the particular domain considered here.

III. PICOSO

In this section we describe the design of Picoso by intro-
ducing its communication scheme and the work distribution
mechanism. Furthermore, we discuss the integration of lemma
exchange.

A. General architecture and communication structure

The implementation of the distributed solver Picoso follows
the well-known master/client model. There are several clients
(copies of iSAT), performing the search process, and a master
process, acting as the coordinator by controlling the work
distribution and the sharing of conflict clauses among the
clients. Communication takes place only between the master
and individual clients. Currently, there is no direct communi-
cation between clients.

During the initialization phase all available clients read the
same input formula and store the problem clauses in their
local database. Then the first client determines all implications
forced by the initial intervals of the variables (also specified
in the input formula) and starts solving the entire problem. All
other clients are idle and send requests for work to the master.

When receiving a request for work, the master selects a
non-idle client and asks it for a subproblem still to be solved.
The selected client determines such a subproblem according to
the mechanism described in Section III-B, and sends it to the
master which transfers it to the idle client. During the search
process, this kind of work stealing is performed whenever a
client is ready with solving its previous subproblem.

Similarly to the sequential solver, Picoso terminates with
(1) UNSAT, if all clients are idle, or with (2) SAT, if a
client was able to find a model, or with (3) APPROXIMATE
SOLUTION, if one of the clients has found an approximate
solution.

x ∈ [0, 6] y ∈ [2, 6] z ∈ [−1, 4]

Initial Intervals

Implication
x ∈ [0, 3]

x ∈ (3, 6] Client 2

Client 1
Decision

Fig. 1. Search space partitioning at interval splitting points in Picoso

In more detail, the task responsibilities of the master are as
follows:

– to start/stop the clients,
– to receive work requests from idle clients,
– to select a running client for providing an unevaluated

subproblem,
– to receive subproblems from non-idle clients and to

forward them to idle clients,
– to receive/forward conflict clauses from/to clients, and
– to receive the results from the clients.

Likewise, the tasks of the client processes are as follows:

– to receive and solve a new subproblem,
– to return an unevaluated part of the client’s current

subproblem (if asked for by the master),
– to forward well-suited conflict clauses to the master

process,
– to receive conflict clauses from the master and to insert

them into the client’s local clause database, and
– to send the results to the master process.

As mentioned in the introduction, the communication has
been realized using MPICH2 [11], an implementation of the
Message Passing Interface standard [12]. According to the
master/slave model sketched above, all communication tasks
are encoded as messages and sent/received using MPI_Send
and MPI_Recv respectively.

B. Problem splitting from the client’s perspective

As explained above, the clients work in parallel, and each
time a client is ready with its work (and did not find any solu-
tion (or approximate solution)), it asks for a new subproblem
to solve. In the following we describe how those subproblems
are determined.

The basic idea is to split the search space on demand into
disjoint parts, which are then treated in parallel by different
processes. For this purpose, we extended the concept of
guiding paths, first introduced in [17] for parallel SAT-solvers,
to the richer and more complex framework of SMT solving.

In our setting, a guiding path describes the current search
process of a client solver, extended with some information
about which subproblems still need to be solved. If the master
asks a client for a subproblem, the client remembers with the
help of these flags which subproblem it gave away, and thus
does not need to search through.

More formally, a guiding path of a solver is a sequence of
bounds, consisting of all decisions and propagated implications
in chronological order with a flag attached to each sequence
element. The flag of a sequence element stores if the subprob-
lem corresponding to the subsequence up to this element and
the negation of this element still needs to be checked. A new
decision appends the chosen bound to the guiding path with
its flag set to true, since the decision is a box split, and the
other half of the split box has not yet been handled. Bounds
which are implied by propagation are consequences of earlier
decisions. Consequently, the combination of earlier decisions
with the negation of an implied bound is conflicting and does
not need to be checked: they are appended to the guiding path
with a flag set to false. In case of a conflict, backtracking
removes also the undone decisions and implications from the
guiding path.

When a client gets asked by the master for a subproblem,
it is in principle free to pick any bound with a true flag
from its own guiding path to generate a new and unevaluated
subproblem. However, for different reasons it is a good policy
to select the top-most one (but other choices would also
be conceivable). The search space division is performed by
returning to the master the subproblem consisting of all the
bounds on the guiding path preceding the chosen bound as well
as the complement of the chosen bound. Since this subproblem
now gets solved by another client, the sending client sets the
flag of the selected bound to false. The client which receives
the generated subproblem sets all flags on its initial guiding
path to false.

Besides the exchange of conflict clauses (see Section III-D)
and the generation of new subproblems as described above, we
also modified the core iSAT algorithm to be able to start the
search process at any point within the search space specified
by an initial guiding path. During the search, the clients
periodically check (per default after each third decision) for
incoming messages from the master, using the MPI_Iprobe
command.

To illustrate the generation of subproblems as it is done in
Picoso, assume we have two clients and a formula, consisting
of three real-valued variables x, y, and z with initial intervals
x ∈ [0, 6], y ∈ [2, 6], and z ∈ [−1, 4]. Figure 1 shows this
scenario. After determining the implications forced by the
initial intervals for x, y, and z, the first client starts the search
process by making a decision, e. g., splitting the interval of x

into x ∈ [0, 3] and x ∈ (3, 6], and deciding to evaluate the
branch x ∈ [0, 3] first. This decision can be represented by
the simple bound x ≤ 3 with flag true. As a consequence, the
guiding path of the first client is as follows:

GP1 = [(x ≥ 0,false), (x ≤ 6,false),
(y ≥ 2,false), (y ≤ 6,false),
(z ≥ −1,false), (z ≤ 4,false),
(x ≤ 3,true)]

Client 2 is still idle and sends a work request to the
master process, which asks client 1 to provide an unevaluated
subproblem. As described before, client 1 picks all bounds
preceding the first simple bound with a true flag (x ≤ 3) and
the complement of that particular bound (x > 3) to specify a
new subproblem:

GP2 = [(x ≥ 0,false), (x ≤ 6,false),
(y ≥ 2,false), (y ≤ 6,false),
(z ≥ −1,false), (z ≤ 4,false),
(x > 3,false)]

As can be seen, GP2 contains the two bounds x ≥ 0 and
x > 3. Since the latter one is stronger than the first one, x ≥ 0
can be removed from the guiding path, resulting in:

GP ′
2 = [(x ≤ 6,false),

(y ≥ 2,false), (y ≤ 6,false),
(z ≥ −1,false), (z ≤ 4,false),
(x > 3,false)]

Finally, client 1 sets the flag of its bound x ≤ 3 to false
and sends GP ′

2 to the master, which forwards it to client 2.
Unlike in the boolean case, guiding paths may contain atoms
which are implied by other atoms on the guiding path (like
x ≥ 0 and x > 3 in the example above). They are redundant
and therefore removed automatically by the ceding client in
order to reduce the size of the messages.

C. Work distribution from the master’s perspective

When designing a parallel algorithm it is important to
evenly distribute the workload among the processes in order
to keep the communication as low as possible. In general
the size of the search tree and moreover the computation
time for its exploration are unpredictable. Therefore, in Picoso
the work load is distributed dynamically among clients at
runtime. To assure the most efficient use of the available
computation power provided by the distributed architecture,
a dynamic work stealing policy, similar to [4], [18], has been
implemented.

In Picoso this works as follows: Suppose one client finished
exploring its current subproblem and terminates with UNSAT.
This client can be re-used for the exploration of the next
subproblem and because of this it sends a work request to
the master. Subsequently, the task of the master process is to
determine a client that should split its current fraction of the
search space and provide an unevaluated subproblem.

Usually, there are several active clients and the master is
free to pick out any of them for the problem distribution.

An essential criterion for the client selection is the current
work load of a client. The bounds of a guiding path represent
an n-dimensional box. For each client the master computes
the volume of the box, formed by the client’s guiding path.
Larger guiding path boxes presumable correspond to larger
portions of the search space. Motivated by this fact, the master
asks the client with the maximum volume to split its current
subproblem.

D. Sharing of conflict clauses

In sequential SAT solving learning plays a very important
role to prune the search space. Generating and recording infor-
mation in form of conflict clauses (also referred to as lemmas)
prevents the solver from attempting the same assignments and
running into the same conflicts again. It may also prevent the
solver from visiting those parts of the search space that can be
inferred to contain no satisfying assignment. Thus, exchanging
lemmas generated by one client with the other clients can help
all clients to prune the unexplored search space faster and
by this to improve the overall parallel solver performance.
Nevertheless, exchanging conflict clauses is associated with
a communication overhead, therefore it is very important to
decide which conflict clauses are worthwhile to share.

If the mechanism of sharing learnt clauses is switched off,
then lemmas are exchanged only in a natural way: If one client
finds out that its subproblem is unsatisfiable, then the clause
database is preserved for the next solver run.

When sharing is active, then the clauses to be exchanged
are selected according to their lengths. In Picoso, clients share
only “short” conflict clauses in order to minimize the com-
munication overhead. Furthermore, short clauses are expected
to be more helpful in generating further implications. Based
on experimental evaluation we select learnt clauses having a
length less or equal to 6. To reduce the communication costs
all selected lemmas are bundled up in a transfer buffer with
length 20. A bundle of conflict clauses is communicated to the
master as soon as the corresponding buffer is filled completely.
The master process gets the conflict clauses and distributes
them among the available clients. The clients analyze received
learnt clauses immediately and integrate them in their own
clause database. This ensures that a client becomes promptly
aware that its current subproblem is unsatisfiable if a received
conflict clause is violated.

E. Other approaches and planned work

In the previous sections we introduced the parallel algorithm
of Picoso. The underlying master/client MPI architecture is
one of several possible solutions for the communication be-
tween different solvers. In order to optimize our solver, in the
future we will implement and compare different approaches.

In the master/client approach all clients send their conflict
clauses to a single master, which distributes them. Another
possibility would be a direct client-to-client communication
of that information. It is not clear which approach is better.
On the one hand, in the master/client setting the clients do
not have to invest much time in communication. On the other

hand, the main communication overhead is left to the master.
This might be a bottleneck when having a large number of
clients.

Instead of (or additionally to) MPI-based communication we
could also consider a multi-threaded solution. Threads have
access to a shared memory, thus parts of the communication
become superfluous. However, synchronization is expensive,
thus also here the question, which solution is better, remains
open.

To delegate work, in the current implementation the search
space is divided into disjoint parts, that are searched through
by the different solvers. However, a “good” partitioning of the
search space is hard to determine. For example in the case
of an unsatisfiable formula, a division based on the variables
which occur in the core of unsatisfiability, i. e., which cause
unsatisfiability, would probably be advantageous. However, we
do not know those variables in advance. As future work we
will try different search space splitting heuristics.

IV. EXPERIMENTAL RESULTS

In this section we compare the performance between the
sequential solver iSAT and our parallel solver Picoso. The
experiments were performed on a machine with four 2.3 GHz
AMD processors and 64 GByte of physical memory, running
Ubuntu 8.04.1x86 64 GNU/Linux.

For our measurements, we used a set of four non-linear
and one linear BMC benchmarks. The non-linear ones are
(1) a controller for train separation implementing a “moving
block” interlocking scheme of the forthcoming European Train
Control System Level 3 [19] (etcs train), (2) a model of
the discrete-continuous behavior of a golf ball on a minigolf
course (minigolf), (3) a conflict resolution protocol for air
traffic management aiming at avoiding collisions between
airplanes, which was specified by Tomlin [20] (tomlin), and
(4) a model of a car parking assistant (parking). The linear
benchmark describes an elastic approach to distance control
of trains running on the same track [8] (train distance). Here,
trains can accelerate or decelerate freely if they do not violate
their mutual safety envelopes. An automatic speed control
takes authority over a train if another train gets close, thereby
controlling acceleration proportional (within physical limits)
to the front and/or back proximity of the neighboring trains.

For all benchmarks we created input formulae for the two
solvers by unrolling the modelled systems a certain number
of times, which is given in the column denoted by “depth”.
The solver runs are independent from each other, i. e., no
information (e. g. about conflicts) is kept between different
unrolling depths of the same system. Thereby, we selected
those depths for which the sequential solver needs at least
60 s to compute a result and for which at least one of the two
solvers does not exceed the time limit. For tomlin and parking
we only used one unrolling depth because, for all other depths,
the formula is unsatisfiable and both solvers terminate within
a few seconds.

All experiments in Table I were run with four clients and
one master process. The clients are allowed to share learnt

TABLE I
EXPERIMENTAL RESULTS

iSAT Picoso
Benchmark depth time [s] time [s] result speedup
minigolf 8 80.32 28.60 unsat 2.79
minigolf 9 305.44 123.00 unsat 2.47
minigolf 10 2005.29 944.60 unsat 2.12
minigolf 11 10932.27 4176.00 unsat 2.61
minigolf 12 –time out– –time out– unknown —
etcs train 37 80.00 23.80 unsat 3.36
etcs train 40 127.55 38.20 unsat 3.32
etcs train 41 105.74 43.40 unsat 2.41
etcs train 42 144.46 47.00 unsat 3.06
etcs train 43 151.22 70.00 unsat 2.15
etcs train 44 97.58 66.60 unsat 1.46
etcs train 45 177.47 63.00 unsat 2.80
etcs train 46 393.86 42.80 unsat 9.18
etcs train 47 184.81 95.60 unsat 1.93
etcs train 48 253.50 93.60 unsat 2.70
etcs train 49 311.49 92.60 unsat 3.35
etcs train 50 597.37 82.60 unsat 7.22
etcs train 51 313.75 103.20 unsat 3.03
etcs train 52 683.84 150.80 unsat 4.52
etcs train 53 329.67 90.20 unsat 3.65
etcs train 54 367.00 142.00 unsat 2.58
etcs train 55 703.12 245.60 unsat 2.86
etcs train 56 678.10 249.40 unsat 2.71
etcs train 57 590.33 210.80 unsat 2.80
etcs train 58 411.31 323.80 unsat 1.27
etcs train 59 1923.10 537.60 unsat 3.58
etcs train 60 4716.36 1462.00 unsat 3.22
etcs train 61 –time out– 25568.00 approx. sol. >1.17
train distance 8 85.94 12.53 unsat 7.08
train distance 9 158.50 28.20 unsat 5.64
train distance 11 149.04 46.40 unsat 3.21
train distance 12 2290.81 115.00 unsat 19.91
train distance 13 642.09 137.60 unsat 4.68
train distance 14 3012.74 592.00 unsat 5.08
train distance 15 22904.00 1798.80 unsat 12.73
train distance 16 –time out– 12193.00 unsat >2.46
train distance 17 –time out– 21471.00 unsat >1.39
train distance 18 –time out– –time out– unknown —
tomlin 3 212.00 197.40 approx. sol. 1.07
parking 53 108.00 33.20 approx. sol. 3.25

clauses with length less or equal to 6. The length of the transfer
buffer for conflict clauses was set to 20. The computation times
for Picoso are the arithmetical mean of five individual runs.
We set a time-out limit of 30 000 s for both the sequential and
the parallel solver. In the last column we give the speedup of
the parallel version compared to the sequential one.

For all instances we can observe a significant speedup.
The average speedup of all benchmarks is > 3.8 which is
linear in the number of clients. Remarkably, for some of the
train distance instances, the speedup is super-linear. This is
due to the different evaluation order compared to the sequential
solver and the conflict clause exchange: Assume that one
clients computes a conflict clause c in a part of the search
space which would be considered by the sequential solver
only towards the end of the search process. If c prunes a
considerable part of the overall search space, this obviously
leads to a super-linear speedup.

Moreover, the parallel solver is able to solve some instance
for which the sequential solver fails due to the time limit.

V. CONCLUSION

In this paper we presented Picoso, which—to the best of
our knowledge—is the first published parallel SMT-solver
for boolean combinations of linear and non-linear arithmetic
constraints.

The parallelization is based on the classical master/client
model and can readily be adapted to other SMT engines.
The algorithmic core of the clients is formed by the iSAT
algorithm which merges interval constraint propagation with
boolean SAT solving techniques to decide the satisfiability of
such formulae. To distribute the workload evenly among the
clients, it employs dynamic work stealing based on guiding
paths and exchanges information in form of conflict clauses.
To reduce the communication overhead, only conflict clauses
of a bounded length are distributed.

The experimental results demonstrate that Picoso yields a
(nearly) linear speedup for both linear and non-linear bench-
marks and thus provides an excellent basis for further research
in this area. This will include improvement of partitioning
strategies, integration of shared memory concepts and appli-
cation specific parallelism.

REFERENCES

[1] M. Böhm and E. Speckenmeyer, “A fast parallel SAT-solver – efficient
workload balancing,” Annals of Mathematics and Artificial Intelligence,
vol. 17, no. 3-4, pp. 381–400, 1996.

[2] M. D. T. Lewis, T. Schubert, and B. Becker, “Multithreaded SAT
solving,” in Asia and South Pacific Design Automation Conference
(ASPDAC). IEEE Computer Society, 2007, pp. 926–931.

[3] Y. Feldman, N. Dershowitz, and Z. Hanna, “Parallel multithreaded
satisfiability solver: Design and implementation,” Electronic Notes in
Theoretical Computer Science, vol. 128, no. 3, pp. 75–90, 2005.

[4] T. Schubert, M. D. T. Lewis, and B. Becker, “PaMira – A parallel SAT
solver with knowledge sharing,” in 6th Int’l Workshop on Microproces-
sor Test and Verification (MTV 2005). IEEE Computer Society, 2005,
pp. 29–36.

[5] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal Methods in System Design, vol. 19,
no. 1, pp. 7–34, 2001.

[6] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani, “Verifying
industrial hybrid systems with MathSAT,” in Int’l Workshop on Bounded
Model Checking (BMC’04), ser. Electronic Notes in Theoretical Com-
puter Science, vol. 119, no. 2, 2005, pp. 17–32.

[7] E. Ábrahám, B. Becker, F. Klaedke, and M. Steffen, “Optimizing
bounded model checking for linear hybrid systems,” in Int’l Workshop
on Verification, Model Checking, and Abstract Interpretation (VMCAI),
ser. Lecture Notes in Computer Science, vol. 3385. Springer-Verlag,
2005, pp. 396–412.

[8] M. Fränzle and C. Herde, “HySAT: An efficient proof engine for
bounded model checking of hybrid systems,” Formal Methods in System
Design, vol. 30, no. 3, pp. 179–198, 2007.

[9] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure,” Journal on Satisfiability, Boolean Modeling, and
Computation, vol. 1, 2007.

[10] R. E. Moore, Interval Analysis. Englewood Cliffs, NJ, USA: Prentice
Hall, 1966.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel Computing, vol. 22, no. 6, pp. 789–828, Sept. 1996.

[12] M. Snir, S. Otto, D. Walker, J. Dongarra, and S. Huss-Lederman, MPI:
The Complete Reference. MIT Press, 1995.

[13] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem proving,” Communications of the ACM, vol. 5, pp. 394–397,
1962.

[14] F. Benhamou and L. Granvilliers, “Continuous and interval constraints,”
in Handbook of Constraint Programming, ser. Foundations of Artificial
Intelligence. Elsevier Science Publishers, 2006, ch. 16, pp. 571–603.

[15] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” Studies in Constructive Mathematics and Mathematical Logic, Part
2, pp. 115–125, 1970.

[16] A. Bauer, M. Pister, and M. Tautschnig, “Tool-support for the analysis
of hybrid systems and models,” in Int’l Conf. on Design, Automation,
and Test in Europe (DATE). San Jose, CA, USA: EDA Consortium,
2007, pp. 924–929.

[17] H. Zhang, M. P. Bonacina, and J. Hsiang, “PSATO: A distributed
propositional prover and its application to quasigroup problems,” Journal
of Symbolic Computation, vol. 21, no. 4, pp. 543–560, 1996.

[18] B. Jurkowiak, C.-M. Li, and G. Utard, “Parallelizing SATZ using
dynamic workload balancing,” in Workshop on Theory and Applications
of Satisfiability Testing (SAT 2001), vol. 9. Elsevier Science Publishers,
June 2001.

[19] C. Herde, A. Eggers, M. Fränzle, and T. Teige, “Analysis of hybrid
systems using HySAT,” in Int’l Conf. on Systems (ICONS). IEEE
Computer Society, 2008, pp. 196–201.

[20] C. Tomlin and S. Sastry, “Conflict resolution for air traffic management:
A study in multi-agent hybrid systems,” IEEE Transactions on Automatic
Control, vol. 43, pp. 509–521, 1998.

