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PicSOM—Self-Organizing Image Retrieval With
MPEG-7 Content Descriptors
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Abstract—Development of content-based image retrieval information concerning images’ content between local and
(CBIR) techniques has suffered from the lack of standardized remote databases, a characteristic very seldom present, e.g., in
ways for describing visual image content. Luckily, the MPEG-7, jndustrial computer vision
or formally “Moving Pictures Expert Group Multimedia Content | ) )

Description Interface” international standard is now emerging we haye developed a neural-network based“C'BIR iystem
as both a general framework for content description and a named PicSOM [6]-[8]. The name stems from “picture” and
collection of specific agreed-upon content descriptors. We have the self-organizing map (SOM). The SOM [9] is used for un-
developed a neural, self-organizing technique for CBIR. Our supervised, self-organizing, and topology-preserving mapping
system is named PicSOM and it is based on plCtOllcla..l eXalTp'eS and from the image descriptor space to a two-dimensional (2_D)
relevance feedback (RF). The name stems from “picture” and the | \yice or grid, of artificial neural units. The PicSOM system is

self-organizing map (SOM). The PicSOM system is implemented | . o .
by using tree structured SOMs. In this paper, we apply the visual built upon two fundamental principles or paradigms of CBIR,

content descriptors provided by MPEG-7 in the PicSOM system Namely query by pictorial example (QBPE) [10] and relevance
and compare our own image indexing technique with a reference feedback (RF) [11]. In QBPE, it is presumed that the user of a

system based on vector quantization (VQ). The results of our CBIR system has no other means of specifying her object of
experiments show that the MPEG-7-defined content descriptors jnterest but giving or pointing out examples of interesting or

can be used as such in the PicSOM system even though Euclideal . . o
distance calculation, inherently used in the PicSOM system, is notWeIevant images. On the other hand, in RF it is assumed that

optimal for all of them. Also, the results indicate that the Picsom ©ne can build a CBIR system that is able to learn the user's
technique is a bit slower than the reference system in starting to preferences after seeing many enough examples of relevant
find relevant images. However, when the strong RF mechanism of images. This kind of behavior can be implemented by allowing
PicSOM begins to function, its retrieval precision exceeds that of the user to rank or otherwise evaluate the image outputs from
the reference system. the system. Anyhow, the image querying becomes an iterative
Index Terms—Content-based image retrieval (CBIR), MPEG-7, process where the CBIR system is only a tool in the hands of a
query by pictorial example (QBPE), relevance feedback (RF), self- human expert. Our conviction is that effective CBIR systems

organizing map (SOM), visual content description. can be built upon these four cornerstones: self-organization,
pictorial examples, RF, and iterative interaction.
|. INTRODUCTION Until now, there have not existed widely accepted standards

i , for description of the visual contents of images. MPEG-7
CONTENT'BASED image retrieval (CBIR) has been @151 114) "or formally “Moving Pictures Expert Group Mul-

subject of very in_tensive research effort for more t,haf?media Content Description Interface,” is the first thorough
a decade [1]-3]. It differs from many of its neighboringyempt in this direction and it will become an international

research disciplines in computer vision due to one notable fagt; jard of ISO/IEC. The appearance of the standard will affect
human subjectivity cannot totally be isolated from the use a research on CBIR techniques in some important aspects.

.evaIuaFion of.CBIR sys_tems. This is manifested by difficultieigirst, when some common building blocks will become shared
in setting fair comparisons between CBIR systems and jjy jifterent CBIR systems, comparative studies between them
interpreting their re;ults. These pro.blems haye hlnder_ed 8 become easier to perform. Also, all CBIR developers

researchers from doing comprehensive evaluations of differgft, g prepare to accept the challenge to apply their CBIR

CBIR techniques. Some noteworthy initiatives have recentfy-pniques to tasks that are expressed solely in the terms
been made to overcome these difficulties [4], [5]. _of the standard. For example, a benchmark study could be
In addition, two more points make CBIR systems Speciglyqanized in which the systems would be given first a large

Opposed to such computer vision applications as productighy o¢ \pPEG-7 standard image content descriptions to build
quality control systems, operational CBIR systems would B, jmage index of the CBIR system. Then, a separate, smaller
very intimately connected to the people using them. AlsQyqhie”of descriptions would be given and the system should
effective CBIR systems call for means of interchanging, tor each of them the best matching database images in the

larger set. The standard also facilitates the change of content
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[15] has become publicly available, we have been able to téisis information to select such images the user is most likely to
the suitability of MPEG-7-defined image content descriptottse interested in. Other possible query methods include queries
with the PicSOM system. We have thus replaced our earlisased on user-drawn sketches and image icons representing
nonstandard descriptors with those defined in the MPEGsdme common elements found in the database images [3].
standard and available in XM.

In this paper, we first address the general questions @f RF
content-based image retrieval, simultaneous indexing with

multiple low-level visual features, pictorial examples, and RF in A CBIR system is generally not able to retrieve the best

Section Il. Then, we describe the PicSOM system in Section ﬁ}/allable Images in its first response. As a consequence, sat-

and summarize the experiences we have collected this far. Wgctory retrieval results can be obtained only if the image

also describe a reference CBIR system built within the PicSO vSar\)r/ dct?:; t()jee;#;rée%gtc; ‘3? i“ﬂ:’;ag\ée _?r?g i[cgtrzr'[ilce“\:zfi?\frﬁiﬁ
framework. This system will be used as a competitor of OUI’OV\6 a query is known angF in inf?)rmlation retrieval literature
approach in the experiments. Section IV discusses the vis query

. o ] 1.
content descriptors defined in the MPEG-7 standard and th |In text-based retrieval, RE can be implemented, e.g., by

usability for content-based image retrieval. Then, in Section V, justing the weights of different textual terms when matching

we present a series of experiments performed with the PicS : : .
. . the query text with the documents of the database in a vectorial
system and the reference system by using the MPEG-?-deﬂr}eran?_ Rchan be seen as a form of supervised learning to steer

:’;Slé?rl] e(r:(;nr;[g?Ltljjreesciic?sto(rasc,:tslzeil?:lclisi/:s CEZZS(;’?:]OQZ CS(;?] \flra‘% e subsequent query rounds by using the information gathered
9 prosp " from the user’s feedback. The role of the CBIR system is
changed by RF from an automatic answering machine to a tool
that is being used by a skillful human expert.

In this section, we will briefly review some of the central
concepts involved in content-based image retrieval. D. Multifeature Indexing

Il. CONTENT-BASED IMAGE RETRIEVAL

With the current state of image processing technology, image
. ) retrieval cannot generally be based on matching the user’s query
Ina CBIR system implemented with prototype-based statigjth the images in the database on an abstract conceptual level.
tical methods, each image in the database is transformed Withiferefore, lower-level pictorial features need to be used. This
set of feature extraction methods to a set of lower-dimensiongbates the basic problem of CBIR: the gap between the high-
prototype vectors in respective feature spaces. These featyggg| semantic concepts used by humans to understand image
can describe, e.g., the colors, textures, and shapes contai@gtent and the low-level visual features used by a computer
in the images. Other types of data can also be used in f3eindex the images in a database. One method to tackle this
similar fashion. Additional useful data can include metadajgs e is to use several visual features in parallel and combine
or keywords describing the images, if available. In a Welpejr responses in an effective manner. A straightforward way
image search application, the embedding HTML page and theachieving this is to give appropriate weights to the different
related hyperlink structure may also be utilized to provid@atures. These weights should be automatically inferred as it
useful information [16]. is generally a difficult task to explicitly give low-level features
When the CBIR system tries to find images which are similaych weights which would coincide with the human perception
to the relevant-marked reference images, it searches for imagfeﬁnages [17].
whose distance to the relevant images is in some sense minimahne serious problem with feature weighting is that such
in any or all of the feature spaces. How the distances in variogghniques treat the feature spaces globally rather than locally.
feature spaces are calculated, weighted, and combined in ofidg{vever, a distance measure or feature weighting which is
to form a s.calar value syitable for minimization, leaves a lot %fdvantageous in the vicinity of a small set of images which are
room for different techniques. relevant and therefore similar to each other, may not produce
The operation of a CBIR system can be interpreted as a sefiggorable results for the rest of the images. Also, rules which
of more or less independent processing stages [8]. For eachygf applicable in one part of the feature space are not as such
these stages, there exist multiple choices and thus a multitydg\eralizable to handle the whole space. All these phenomena
of CBIR systems can be implemented by combining a set gfe direct consequences of the inherent nonlinear nature of
common building blocks. image similarity [18].

A. Image Indexation With Low-Level Features

B. QBPE

With low-level visual features, it is not possible to base a
content-based image query on verbal terms like in text-basedrhe PicSOM image retrieval system [6]-[8] is a framework
retrieval. Therefore, other query methods must be applidar research on algorithms and methods for CBIR. The gen-
One common approach to formulate queries in CBIR is QBREne methodological novelty of PicSOM is to use several SOMs
[10]. With QBPE, the image queries are based on examg® in parallel for retrieving relevant images from a database.
images shown either from the database itself or some exterfibbse parallel SOMs have been trained with separate data sets
location. The user classifies these example images as relevartained from the image data with different feature extraction
or nonrelevant to the current retrieval task and the system useshniques.

I1l. PIcCSOM SYSTEM
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The different SOMs and their underlying feature extraction [ a. A ]
schemes impose different similarity functions on the images.
Every image query is unique and each user of a CBIR system ( & R K ® )
has her own transient view of image similarity and relevance. \
Therefore, a system structure capable of holding many simulta- @ & ¢ & ¢ & ¢ &

neous similarity representations can adapt to different kinds of

retrieval tasks. In the PicSOM approach, the system is ableFig. 1. The structure of a three-level 1-D TS-SOM. The solid lines represent

discover those of the parallel SOMs that provide the most valpgrent=child relations and the dash lines represent neighboring nodes also
. . L . included in the BMU search space.

able information for each individual query instance. The goal Is

to autonomously adapt to the user’s preferences regarding the

similarity and relevance of images in the database. This canHee usual distance metric used here is the Euclidean one. After

obtained when the queries are iteratively refined as the systéngling the BMU, a subset of the model vectors constituting a

exposes more and more images to the user for evaluation asighborhood centered around nage) are updated as

RF.
A typical retrieval session with PicSOM consists of anumber ~ mi(t + 1) = m;(t) + h(t; c(x), 1)(x(¢) — mi(?)).  (2)
of subsequent query rounds during which the retrieval is focused
more accurately on images resembling the relevant refereftereh(t; c(x), ) is the “neighborhood function,” a decreasing
images. While in its normal human interaction mode, the systdhmction of the distance between tith andc(x)th nodes on the
presents the user in the beginning of a new query the first seto#p grid. This regression is reiterated over the available sam-
reference images which have been picked uniformly from tides and the value di(t; c(x), ¢) is allowed to decrease in time
whole database. However, in the experiments to be descriseguarantee the convergence of the prototype veetnrsThe
in Section V, the queries are initiated with one database imalgege values of the neighborhood functiégy; c(x), i) in the
whose ground truth class is known in advance. beginning of the training initialize the network and the small
Sections llI-A—F will give a brief overview of the PicSOM values on later iterations are needed in fine-tuning.
system. First, Section IlI-A explains the tree structured SOMs Instead of the standard SOM version, PicSOM uses a special
(TS-SOMs). Then, the core technology of RF in PicSOM itorm of the algorithm, the TS-SOM [19], [20]. The hierarchical
described in Section 1II-B. Next, a more conventional way ofS-SOM structure is useful for large SOMs in the training
implementing RF, based on vector quantization (VQ) and usptiase. In the standard SOM, each model vector has to be
later as a reference system in the experiments, is presenteddmpared with the input vector in finding the best-matching
Section III-C. The remaining three sections will describe thénit (BMU). This makes the time complexity of the search
different features used in PicSOM this far. A more detailed dé€X(n), wheren is the number of SOM units. With the TS-SOM
scription of the PicSOM system and results of earlier expegne can, however, follow the hierarchical structure and reduce
ments performed with it can be found in [7], [8]. The PicSOMhe complexity of the search #©(logn). This reduction can
home page including a working demonstration of the system fo@ achieved by first training a smaller SOM and then creating
public access is located at http://www.cis.hut.fi/picsom. a larger one below it so that the search for the BMU on
the larger map is always restricted to a fixed area below the
already-found BMU and its nearest neighbors on the above
map. Unlike most tree-structured algorithms, the search space
is not limited to the children of the BMU on the upper level.
As each level of the TS-SOM is a normal SOM, the search
The main image indexing method used in the PicSOM syste§pace can be set to include also neighboring nodes having
isthe SOM [9]. The SOM defines an elastic topology-preservingferent parent nodes in the upper level. The structure of
grid of points that is fitted to the input space. It can thus be usgdTS-SOM in one-dimensional (1-D) case with three SOM
to visualize multidimensional data, usually on a 2-D grid. Thewvels illustrated in Fig. 1.
map attempts to represent all the available observations withp our experiments in Section V, we have used four-level
an optimal accuracy by using a restricted set of models. As the-SOMs whose layer sizes have been4, 16x 16, 64x 64,
SOM algorithm organizes similar feature vectors in nearby nepse »x 256 units. In the training of the lower SOM levels, the
rons, the resulting map contains a representation of the databasgch for the BMU has been restricted to thex1ID-sized
where similarimages, according to the given feature, are locat@sliron area below the BMU on the above level. Every image
near each other. has been used 100 times for training each of the TS-SOM levels.
The fitting of the model vectors is usually carried out by a After training each TS-SOM hierarchical level, that level is
sequential regression process, whiere 0,1,2,...,t... — 1 fixed and each neural unit on it is given a visual label from
is the step index: For each input sampl&), first the index the database image nearest to it. This is illustrated in Fig. 2,
c(x) of the best-matching unit (BMU) or the “winner” modelwhere MPEG-7 Edge Histogram descriptor has been used as
m. ) (t) is identified by the condition the feature. The images are the visual labels on the surface
of the 16x 16-sized TS-SOM layer. It can be seen that, e.g.,
there are many ships in the top-left corner of the map surface,
Vi ||x(t) — me ()| < ||x(£) — my(t)]]. (1) standing people and dolls beside the ships, and buildings in the

A. Tree Structured SOMs
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Fig. 2. The surface of a 18 16-sized TS-SOM level trained with Edge Histogram descriptors.

bottom-left corner. Visually—and also semantically—similafirst given equal positive weight inversely proportional to the
images have thus been mapped near each other on the mapnumber of relevant images. Likewise, irrelevant images receive
The hierarchical representation of the image databasegative weights that are inversely proportional to the number
produced by a TS-SOM can also be utilized in visual browsingf irrelevant images. The overall sum of these relevance values
The successive map levels can be regarded as providiaghus zero. The values are then summed in the BMUs of the
increasing resolution for database inspection. When browsiimgages and the resulting sparse value fields are low-pass filtered.
the database, one can search for interesting images on one I&ygr 3 illustrates how the positive and negative responses,
and then descend to the SOM nodes below the interesting odesplayed with white and black map units, respectively, are
to see more of similar images. first mapped on a SOM surface and how the responses are
expanded in the convolution. Each image used as a visual
label on the SOM surface is thus given a qualification value
that depends on the local denseness of positive responses on
Relevance feedback has been implemented in PicSOM the map and, indirectly, on the feature extraction method’s
using the parallel SOMs. Each image seen by the user of dwpability to reflect the user's view of image relevance.
system is graded by her as either relevant or irrelevant. All thesean PicSOM, content descriptors that fail to coincide with the
images and their associated relevance grades are then projegtgtl’'s conceptions always produce lower qualification values
on all the SOM surfaces. This process forms on the maps aréi@en those descriptors that match the user's expectations. As a
where there are: 1) many relevant images mapped in sameonsequence, the different content descriptors do not need to
nearby SOM units; 2) relevant and irrelevant images mixed; B¢ explicitly weighted as the system automatically takes care
only irrelevant images; or 4) no graded images at all. Of thf weighting their opinions. In the actual implementation, we
above cases, 1) and 3) indicate that the corresponding contdrch on each SOM a fixed number, say 100, of yet unseen vi-
descriptor agrees well with the user’s conception on the reksal labels with the highest qualification values. After removing
vance of the images. Whereas, case 2) is an indication that tliglicate images, the second stage of processing is carried out.
content descriptor cannot distinguish between relevant andNew, the qualification values of all images in this combined set
relevant images. are summed up on all SOMs. Twenty images with the highest
When we assume that similar images are located neatal qualification values have then been used as the result of the
each other on the SOM surfaces, we are motivated to sprepckry round.
the relevance information placed in the SOM units also to In our earlier experiments, e.g., [7], [8], [21], only the visual
the neighboring units. This is implemented in PicSOM biabels of the SOM units on all but the bottommost TS-SOM
low-pass filtering the map surfaces. All relevant images ahevels were considered as candidate images to be shown to

B. Self-Organizing RF
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two objectives, namely clustering and topological ordering.
Consequently, we will use LBG quantization in the reference
system of the experiments in Section V.

The choice for the number of quantization bins is a signifi-
cant parameter for the VQ algorithm. Using too few bins results
in image clusters too broad to be useful, whereas with too many
Fig. 3. An example of how a SOM surface, on which the images selected dth'S the information about the relevancy of images fails to gen-
rejected by the user are shown with white and black marks, respectively, @ralize to other images. Generally, the number of bins should be
convolved with a low-pass filter. smaller than the number of neurons on the largest SOM layer
of the TS-SOM. In the experiments, we have used 4096 VQ

the user. On the bottommost levels we gave to all the imad@lgs, which coincides with the size of the second bottommost
mapped in each BMU equal precedence in the selection. 1§-SOM levels. This results in 14.6 images per VQ bin, on the
the experiments to be described in Section V, we have n@werage, for the Corel database of 59 995 images to be described
chosen to consider exclusively the bottommost TS-SOM level8.Section V-B.

Therefore, the visual labels of the units have no special roleAnother significant parameter is the number of candidate im-
or precedence in the system. This change is motivated by #ges that are taken into consideration from each of the parallel
performance evaluation scheme of Section V-A, in which theector quantizers. Different selection policies lead again either
gueries are always started with one image that certainly belorigdreadth firstof depth firstsearches. In our implementation,

to the specified image class. Therefore, one can choose to dwearank the VQ bins of each quantizer in the descending order
depth first searchnear the initial reference image instead of determined by the proportion of relevant images of all graded

breadth first searclin the whole database. images in them. Then, we select 100 yet unseen images from
the bins in that order.
C. VQ-Based Reference Method After the VQ stage, the set of potential images has been

greatly reduced and more demanding processing techniques

In order to be able to compare PicSOM's performance {yn pe applied to all the remaining candidate images. Now, one
other systems, we have built some algorithmic alternativggssime method—also applied in our reference system—is to
within our CBIR system. Here we motivate and describe thgnk the images based on their properly weighted cumulative
implementation of a simple VQ-based alternative to usingjstances to all already-found relevant images in the original
SOMs in implementing RF. feature space. As calculating distance in a possibly very
There exists a wide range of distinct teChniqueS for indeXir"ggh-dimensiona| space is a Computationa”y heavy Opera‘[ion,

images based on their feature descriptors. One alternatiqe vQ can thus be seen to act as a preprocessor which prunes

method for the SOM is to first use quantization to prune thg |arge database as much as it is necessary before the actual
database and then utilize a more exhaustive method to degid@ge similarity assessment is carried out.

the final images to be returned. For the first part, there exist two

alternate quantization techniques, namely scalar quantization

(SQ) and VQ. With either of these techniques, the featul® Visual Feature Maps

vectors are divided into subsets in which the vectors resemble

each other. In the case of SQ the resemblance is with respect td/e have experimented with various types of low-level visual
one component of the feature vector, whereas resemblancée@tures. Detailed descriptions of these features can be found
VQ means that the feature vectors are similar as whole. In dar[7], [8], [23]. In this work, we have restricted our feature
previous experiments [21], we have found out that SQ giveslection to the ones defined in the MPEG-7 standard. These
bad retrieval results. features will be described in Section IV.

The justification for VQ in image retrieval is that unseen The three common CBIR feature types, enumerated also in
images which have fallen into the same quantization bins th& MPEG-7 standard, are color, texture, and shape. For all these
the relevant-marked reference images are good candidatestypes, there exist several different ways to extract feature de-
the next reference images to be displayed to the user. Alsariptions. Color features, for example, can be based on color
the SOM algorithm can be seen as a special case of Mi@stograms, averaged colors, finding the most common colors
When using the model vectors of the SOM units in VQ, oni@ an image according to some color quantization, etc. Also, the
ignores the topological ordering provided by the map lattiadivision into these three categories is not unambiguous, as some
and characterizes the similarity of two images only by whethstatistical features can be regarded likewise as texture or shape
they are mapped in the same VQ bin. By ignoring the topologyescriptions. One example of such a feature is the Edge His-
however, we dismiss the most significant portion of the datagram.
organization provided by the SOM. The fourth type of visual features applicable to stillimages is

For VQ, a well-known method is theK-means or image composition or structure. Capturing the composition of
Linde—Buzo-Gray (LBG) vector quantization [22]. Accordingn image from salient objects, however, requires segmentation,
to [21], LBG quantization yields better CBIR performance thawhich is a difficult task for unconstrained images. Furthermore,
the SOM used as a pure vector quantizer. This is understandaending the discussion to video sequences would introduce
as the SOM algorithm can be regarded as a tradeoff betweaene-dependent feature types such as motion.
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E. Word Maps IV. MPEG-7

In a specific dgtabase application, not connected to _theMPEG-7 [12]-[14] is an ISO/IEC standard developed by
experiments of this paper, we have also used TS-SOMs tralrmgving Pictures Expert Group. MPEG-7 aims at standardizing
with textual keywords describing some aspects of the imaggge gescription of multimedia content data. It defines a standard
We collected from the Web a set of images together with 1@ ot gjescriptors that can be used to describe various types
texts, or documents, that embedded the images. Then, afiet,iiimedia information. The standard is not aimed at any
deletion of articles and other common words as well as wordgticylar application area, instead it is designed to support as
that appeared only in very few documents, we formed for eaghyaq a range of applications as possible. Still, one of the main
image a binary vector that indicated the presence or absegggjication areas of MPEG-7 technology will undoubtedly be
of each word in the corresponding document. Also, we formggd extend the current modest search capabilities for multimedia
similar presence vectors for all word pairs in the documentgata for creating effective digital libraries. As such, MPEG-7 is
Both types of vectors were quite high-dimensional, so Wge first serious attempt to specify a standard set of descriptors
appliedrandom projection24] to reduce the dimensionality. for various types of multimedia information and standard ways
The resulting vector sets were used in training the word agsl define other descriptors as well as structures of descriptors
word pair TS-SOMs. This approach resembles to some extepf their relationships.

the WEBSOM [25] system used for interactive browsing of |t js expected that MPEG-7 will have a similar prominent

large text document databases. impact on multimedia content description as the previous
MPEG standards on their respective application areas. Nowa-
F. Web Link Relation Map days, audiovisual material is becoming more common and

. widely used as the needed technologies are becoming easier to
Recently, we have reported a method that utilizes the hyp y 9 g

- : . :
. . ) se and more available. This development has raised the need
text link structure of the World Wide Web [16].Thel|nkfeature§Or quick and efficient searching techniques for all kinds of

have been used to create a TS-SOM of images, similar to t,h?ﬁﬁltimedia material. MPEG-7 is developed and supported by a

created with the visual features. In the link relation map, iM;iye range of professionals from publishers and digital content

ages in neighboring map units are assumed to be semanticaflyasors to intellectual property rights managers, as well as
correlated not due to their visual similarity but due to their Clostﬁﬁiversity researchers.
mutual connection in the Web. The basis of the method consistﬁwaGJ defines a set of fundamental concepts. Descriptors
ofa setof basic relations that can take place between twoimages | sq to represent audio-visual features. Descriptors define
in the Web. For example, if one image acts as a hypertextlinkd9, oyntax and semantics of each feature representation. A
anot'her image (e.g., as a thumbnail) ?t can .be assumed .thatgn@e feature, such as color, texture, or shape, may have
two images are closely related. Also, if two images are situatggyera| descriptors representing different relevant aspects.
on the same Web page, it is very likely that they are someh@ykgcription schemes (DSs) specify the structure and semantics
semantically related. For searching images in the Web, the ligK rgjations between their components, which can be either
feature may thus be a valuable addition to the range of othgtscriptors or other DSs. Descriptors and DSs are divided into
low-level features. MPEG-7 Visual and MPEG-7 Audio description tools. Generic
In the realization of the link relation map, we used SHA-}escription tools (descriptors and DSs) which describe neither
message digest algorithm [26] for dimension reduction Byyrely visual data nor audio are referred as multimedia DSs
random mapping. The URLs of each image and the Web pa@#DSs). Finally, the description definition language (DDL)
where the image was found were considered, as well as all URLused to specify the existing descriptors and DSs and for
links found on the page. These URLs and the directory, hogkfining new ones. DDL is based on W3Cs XML Schema
and domain parts of them were first transformed with SHA-1 @efinition language [27].
pseudorandom numbers of length 32 bits. These bit sequencephe MPEG-7 standard—being aimed at describing still and
were then interpreted as concatenations of four eight-bit valugge images and sound—defines many different content descrip-
The first eight-bit value was used as an index in the range [@rs, of which only a part is applicable to stillimage content de-
255], the second in [256, 511], the third in [512, 767], and thscription. Table | lists the feature types and their applicability to
last one in [768, 1024]. The corresponding components indéferent tasks [13]. It can be seen that MPEG-7 canonizes the
1024-dimensional, otherwise zero-valued, sparse vector wefé knowledge about color, texture, and shape being the three
then set to value one. different types of visual features applicable to automated still
There were 2622472 unique URLs or parts of them in thmage content description.
image pages of our Web image database of 1008 844 imagesAs a nonnormative part of the standard, a software experi-
As the outcome of the SHA-1 digestion, we had that same cougientation model (XM) [15] has been released for public use.
i.e., 2622472, 1024-dimensional vectors. We regarded this $& XM software is the framework for all the reference code
of random vectors as an almost orthogonal basis. Each imagehe MPEG-7 standard. It implements the normative MPEG-7
was then represented by a 1024-dimensional link feature veatemponents such as descriptors, DSs, and the DDL. In the scope
obtained as a combination of all the pseudorandom vectors asour work, the most relevant part of XM is the implementa-
sociated with the image and its Web page. These vectors waoa of a set of MPEG-7-defined image descriptors. At the time
then used in training a TS-SOM. of this writing, XM is in its version 5.3 and not all descriptors
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TABLE | TABLE 1l
FEATURE TYPESDEFINED BY MPEG-7AND THEIR USAGE AREAS [13] AVAILABILITY OF XM’ S VISUAL CONTENT DESCRIPTORSAPPLICABLE FOR
STILL IMAGES
feature type | still images | video | audio
Color Descriptors
Time X X
Dominant Color available
Shape X X
Scalable Color available
Color X X
Texture % Color Layout available
Motion % Color Structure available
Camera motion % GoF/GoP Color not yet available
Mosaic x Texture Descriptors
Audio features x x Edge Histogram available
Homogeneous Texture not yet available
Texture Browsing not yet available
have yet been reported to be working properly. Table Il lists the Shape Descriptors
visual descriptors applicable for still images and their current Region-Based Shape  available
availability in the XM. Contour-Based Shape not yet available
A set of key or elementary application types are also imple- Shape 3D not yet available

mented in the XM software. These include an application for
description extraction from media, a search & retrieval applica-

tion, a media transcoding application, and a description filtering . .
o . : : o All features can be studied separately and independently from
application. Regarding an image retrieval application, the t . . i L
ppiicat garding an 1mag eval appiicatl W?hers for their capability to map visually similar images near

first application types are clearly the most relevant. The extrag- .
tion from media application is used to extract descriptions fro§ECh other. Such an analysis should account both for local and

media input data, i.e., in this case, still images. The search bal c!usterlng of image classes as was done, e.g., in [28].
retrieval application is a simple single-round retrieval applica- ese Kinds of feature-wise assessments, however, h'ave severe
tion implemented in the XM. The application takes a query di[nl_tatlons because they are not relateq to the operation of the
scription and all descriptions of a media database as input aermIre CBIR syst_em asa whole. In particular, they do nqt take

y RF mechanism into account. One may note that this type

returns the resulting distance values to the best-matching ite an approach resembles the search and retrieval application
in the database with decreasing similarity to the query. As su ;
© base creasing v query. As s r1]|g1'plemented in the MPEG-7 XM.

the key applications are not suitable as real-world applicatio . .
yapp PP The evaluation of an entire CBIR system can be math-

For example, RF or other query improvement is not possible as’ .
P queryimp P atically formulated as follows. Let the “correctness” of

:ir;::ekey applications do not support user interaction during r@rﬁg outputs of a CBIR system be expressed by a series

{hi,h2y... e, ... hn} where N stands for the size of the
database andl; = h(I;) is the Boolean membership value of
V. EXPERIMENTS imagel, in the studied image clas i.e.,

This section first addresses the question of performance

T i . ; 1, ifl, eC
evaluation in Section V-A. Then, Section V-B describes the he = h(ly) = {0 it It ¢c (3)
image database and ground truth classes we have used in ’ ¢ '
the experiments. Next, Section V-C gives the details of thkhe series{;,I,...,Ix} specifies the order in which the

MPEG-7 visual content descriptors used in the study. Finalsystem presents the imagésto the user for acceptance or

Section V-D presents the results of a comparison involvirfgjection based on their relevance in the query. It is naturally

the MPEG-7 content descriptors. Also, our original PicSOMupposed that the verbal class membership criterium and

approach in CBIR is compared with a reference system bagbds also the correctness functidfl) is independent of the

on VQ as described in Section llI-C. presentation order of the images. If the cl&ssontains Ve
images, it holds that

A. Performance Measures and Evaluation Scheme

N
The performance of a CBIR system can be evaluated in many Ne = Z he. 4)
different ways. Even though the interpretation of the contents of t=1
images is always casual and ambiguous, some kind of ground he above notation does not make explicit the possibility that
truth classification of images must be performed in order to atire CBIR system may show the user more than one image si-
tomate the evaluation process. In the simplest case—employedtaneously. We assume that the user still glances at these im-
also here—some image classes are formed by first selectaggs in the order the system has selected them. This may not
verbal criteria for membership in a class and then assigning @levays be true, but it simplifies the notations to some extent. If
corresponding Boolean membership value for each image in th&ss chosen that the system shows more than one image at one
database. In this manner, a set of ground truth image classestimo¢, the RF mechanism gets lagged as it does not receive feed-
necessary nonoverlapping, can be formed and then used inlihek after every successive image but only between consecutive
evaluation. image sets. The size of these image sets can be denotedvith
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A simple scalar describing the performance of a CBIR systeimiable to adapt to the class. With an effective RF mechanism,

for a given image class can be formed as it is to be expected thaP(¢) first increases and then turns
to decrease when a notable fraction of relevant images have
1 X e e already been shown.
c = NN ;tht € [77 1= 7} . ®) In our experiments, we have normalized the precision value

by dividing it with thea priori probability p¢ of the class and
call it thereforeelative precisionThis makes the comparison of
Othe recall-precision curves of different image classes somewhat

of the whole database needs to be browsed through until, on \?/I%) uer;r;erre]ls:treat?)ktahaenrdelrgtci)\:: ;gcgﬁ?;egttﬁg(?gfs ;egg\rls p::gfégg
average, the searched image will be found.” It can be noted 8 9 y P

, over random browsing.
the 7¢ value can be solved with one pass for the whole class 9

C, i.e., it does not need to be repeated over each image in the
class. We have employed this measure in some of our earfier Database and Ground Truth Classes
experiments, e.g., [7], [8], [21]. We have used images from the Corel Gallery 1000000
The above kind of evaluation setting becomes, howeveroduct [29] in our evaluations. The database contains 59 995
meaningless if the size of the database is so large that itcislor photographs originally packed with a wavelet compres-
anyway beyond human limits to browse through it exhaustivelsion and then locally converted in JPEG format with a utility
In such cases, it must be supposed that the database will piivided by Corel. The size of each image is either 3866
contain just a single best match to the user’s request, lmut256x 384 pixels.
that many images will be sufficiently close to what is being The images have been grouped by Corel in thematic groups
searched for. We can therefore assume that there is a 8guntand also keywords are available. However, we found these
of images the user is willing or has the time for to browse. Thmage groups rather inconsistent with the keywords. Therefore,
system should thus demonstrate its talent within this numbee created for the experiments six manually picked ground
of images. truth image sets with tighter membership criteria. All image
In our current experiments, we have applied this type skts were gathered by a single subject. The used sets and
nonexhaustive performance evaluation. In our setting, eaclembership criteria were

image in clas€ is “shown” to the system one at a time as an + faces1115 imagesd priori probability 1.85%), where the
initial image to start the query with. The mission of the CBIR main target of the image has to be a human head which has
system is then to return as much as possible similar images. poth eyes visible and the head has to fill at least 1/9 of the
In order to obtain results that do not depend on the particular image area.

image used in starting the iteration, the experiment needs to be. cars 864 images (1.44%), where the main target of the

Here,p¢ is thea priori probability of clasg’, i.e.,pc = N¢/N.
Ther measure coincides with the question “how large porti

repeated over every imageGh This results in a leave-one-out  jmage has to be a car, and at least one side of the car has
type testing of the target class and the effective size of the class  to be completely shown in the image and its bodly to fill at
becomesVc — 1 instead ofN¢ andpc = (Ne — 1)/(N - 1). least 1/9 of the image area.
We have chosen to show the evolutiorpoécisionas a function « planes 292 images (0.49%), where all airplane images
of recall during the iterative image retrieval process. have been accepted.
RecallR expresses how large porti.on qf the relevant image . sunsets663images (1.11%), where the image has to con-
class has already been shown up to time instance tain a sunset with the sun clearly visible in the image.
. * houses 526 images (0.88%), where the main target of the
4 image has to be a single house, not severely obstructed,
. hi . . \
R(t) = i=1 €[0,1], t=1,2,...,Nr. ©6) and it has to_ fill at least 1/16 of the image area.
Ne—1 » horses 486 images (0.81%), where the main target of the
o o ) ] image has to be one or more horses, shown completely in
PrecisionP indicates the accuracy of retrieval, i.e., how ex- 0 image.
clusively only relevant images have been retrieved
. C. Content Descriptors
;1 hi We have used a subset of MPEG-7 content descriptors for
P(t)=——¢€I[01], t=12,...,Nr. (7)  stillimages [15], [30] in a set of experiments with the PicSOM

t
system and its VQ-based competitor of Section I1I-C. These de-

Precision and recall are intuitive performance measures tisatiptors were available and working in the XM [15] software
suite also for the case of nonexhaustive browsing. When radtMPEG-7 and they are summarized in Table Il

the whole database but only a smaller numbgr <« N of The MPEG-7 standard defines not only the descriptors
images is browsed through, the recall value very unlikelyut also special metrics to be used with the descriptors when
reaches the value one. Instead, the final véti&/-)—as well calculating the similarity between images. However, we use
asP(Nrp)—reflects the total number of relevant images founBuclidean metrics in comparing the descriptors because the
that far. The intermediate values®f¢) first display the initial training of the SOMs and the creation of the VQ prototypes are
accuracy of the CBIR system and then how the RF mechanifased on minimizing a square-form error criterium. Only in the
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TABLE Il
THE MPEG-7 MSUAL CONTENT DESCRIPTORUSED IN THE EXPERIMENTS d |S THE DIMENSIONALITY OF THE DESCRIPTOR THE DESCRIPTORHAVE BEEN
DEFINED IN [30] AND IMPLEMENTED IN [15]

Color Descriptors

Dominant Color (d = 6) This descriptor is a subset from the original MPEG-7 XM descriptor
and is composed of the LUV color system values of the first and sec-
ond most dominant color. If the XM routine only found one dominant

color, it has been duplicated.

Scalable Color (d = 256) The descriptor is a 256-bin color histogram in HSV color space, which

Bins=256 is encoded by a Haar transform.

Color Layout (d = 12) The image area is divided in 8x8 non-overlapping blocks where the
#coeff(Y,Cb,Cr)=(6,3,3) dominant colors are solved in YCbCr color system. Discrete Cosine
Transform (DCT) is then applied to the dominant colors in each

channel and the coefficients of DCT used as s descriptor.

Color Structure (d = 256)  The image is presented in HMMD color systemand quantized in 256
Bins=256 bins. A 8x8-sized structuring element is slid over the image and the
numbers of positions where the element contains each quantized color

are used as a descriptor.

Texture Descriptors

Edge Histogram (d = 80) The image is divided in 4x4 non-overlapping sub-images where the
relative frequencies of five different edge types (vertical, horizontal,
45°, 135°, non-directional) are calculated by using 2x2-sized edge
detectors for the luminance of the pixels. The descriptor is obtained

with a nonlinear mapping of the relative frequencies to discrete values.

Shape Descriptors
Region Shape (d = 35) 35 Angular Radial Transform (ART) [30] coefficients are calculated

within a disk centered at the center of the image’s Y channel. A

nonlinear mapping is applied to the magnitudes of the complex ART

coefficients and the outputs used as a descriptor.

case of the Dominant Color descriptor this has necessitatechathod (PicSOM/VQ), color feature (Dominant Color/Scal-
slight modification in the use of the descriptor. able Color/Color Layout/Color Structure) and the image class
The original Dominant Color descriptor of XM is variable{faces/cars/planes/sunsets/houses/horses). Each experiment
sized, i.e., the length of the descriptor varies depending on thas repeated as many times as there were images in the image
count of dominant colors found. Because this could not be fit olass in question, the recall and relative precision values were
the PicSOM system, we used only two most dominant colors@corded for each such instant and finally averaged. Twenty
duplicated the most dominant color if only one was found. Alsimages were shown at each iteration round, iéf, = 20,
we did not make use of the color percentage information. Theshich resulted in 50 rounds whe¥; was set to 1000 images.
two changes do not make our approach incompatible with ottgoth recall and relative precision were recorded after each
uses of the Dominant Color descriptor. query iteration. Fig. 4 shows, as a representative selection, the
recall-relative precision curves of three of the studied image
classes (faces, cars, and planes). Qualitatively similar behavior
would be observed with the three other classes as well. The
Our experiments were two-fold. First, we wanted to studyecorded values are shown with symbols and connected with
which of the four color descriptors in Table Il would be thdines.
best one to be used together with the one texture and one shapkhe following observations can be made from the resulting
descriptor in the table. Second, we wanted to compare the pefeall-relative precision curves. First, none of the tested color
formance of our PicSOM system with that of the VQ-basedescriptors seems to dominate the other descriptors and on
variant. We performed two sets of experiments in which the firdifferent image classes the results of different color descriptors
question was addressed in the first set and the second questiten vary considerably. Regardless of the used retrieval method
in both sets. (PicSOM or VQ), Color Structure seems to perform best with
We performed 48 computer runs in the first set of experiaces and using Scalable Color yields best results with planes
ments. Each run was characterized by the combination of #wed horses. With the other classes (cars, sunsets, houses),

D. Results
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Fig. 4. Recall-relative precision plots of the performance of different color descriptors and the two CBIR techniques. In all cases also Edge &fistBggion
Shape descriptors have been used.

naming a single best color descriptor is not as straightforwaid.not a large difference between the single houses and groups
The second observation is that, in general, if a particular colof houses, e.g., small villages.

descriptor works well for a particular image class, it does so As the final outcome of the experiment, it can be stated that
with both retrieval algorithms. the RF mechanism of PicSOM is clearly superior to that of

Third, the PicSOM method more often obtains better precY—QS- The VQ retrieval has good initial precision but after a few
sion than the VQ method when comparing the same descripf@fnds, when PicSOMs RF begins to have an effect, retrieval
sets, although the difference is rather small. Also, in the erRf€cision with PicSOM is in all cases higher. The houses class
PicSOM has in a majority of cases reached a higher recall levg®n be regarded as a draw and a failure for both methods with
The last observation here is, that the difference between the ghe given set of content descriptors. _
cision of the best and the worst sets of Ds is larger with the VQ One can also compare the curves of Fig. 4 and the curves in

method than with PicSOM. This can be observed, e.g., in tHe upper row of Fig. 5 for an important observation. It can be
planes column of Fig. 4. seen that the PicSOM method is, when using all Ds simulta-

‘%eously (Fig. 5), able to follow and even exceed the path of the
S

In the second set of experiments, we wanted to use all thé ; " R
est recall-relative precision curve for the four alternative single

available MPEG-7 visual content descriptors simultaneou élc')lgr Ds (Fig. 4). This behavior is present in all cases, also with

Runs were again made separately for the six image classes an L )

: e’image classes not shown in Fig. 4, and can be interpreted as
the two CBIR techniques. The results for all classes can be séef . >~ : o . .
P : n Indication that the automatic weighting of features is working
in Fig. 5, where each plot now contains mutually comparable

recall-relative precision curves of the two techniques properly and additional, inferior, descriptors do not degrade the
' results. On the contrary, the VQ method fails to do the same and

It can be seen in Fig. 5 that in all cases PicSOM is at firghe vQ recall-relative precision curves in Fig. 5 resemble more
behind of VQ in precision, but soon reaches and exceeds it.thp average than the maximum value of the corresponding VQ
some of the cases (faces and cars), this overtake by PicS@Myes in Fig. 4. As a consequence, the VQ technique is clearly
takes only one or two rounds of queries. With planes, reachifghre dependent on the proper selection of used features than
VQ takes the longest time, 11 rounds, due to the good initigle picSOM technique.
precision of VQ, observed also in Fig. 4 with the Scalable Color ps a finalillustration, Fig. 6 shows howthe groundtruth classes
descriptor. are distributed on the 256 256-sized bottom levels of the six

Of the tested image classes, sunsets yields the best retriglifierent TS-SOM maps. The distributions are in conformance
results as its relative precision rises at best over 30 and, on ttieh our earlier observations concerning Figs. 4 and 5: 1) Of the
average, almost half of all the images in the class are fousik classes, sunsets, and planes are clearly best concentrated in
among the 1000 retrieved images. This is understandablecaty some specific map areas, faces and horses exhibitlesser level
sunset images can be well described with low-level descriptoo$ concentration while cars and especially houses are very badly
especially color. On the other hand, houses is clearly the meptead. 2) Ofthe four-color descriptors, Scalable Color is the best
difficult class, as its precision does not ever rise much abowee in two cases (planes and horses) and Color Structure is the
twice thea priori probability of the class. This is probably duebest one for faces. All the color descriptors cluster the sunsets
to the problematic nature of the class as, descriptor-wise, thetass well, whereas none of them performs well with cars and
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Fig. 5. Recall-relative precision plots of the performance of the two CBIR techniques when all four-color Ds were used simultaneously togétbedgéh t
histogram and region shape Ds.

planes sunsets houses

Region Shape ’ Edge Histogram|| Color Structure| Color Layout Scalable Color | Dominant Color]

Fig. 6. The distributions of the image classes on the bottom levels of the six TS-SOM maps. The distributions have been low-pass filtered in erther to eas
inspection. Darker shades present map areas where the images of the class have been mapped densely.

houses. In addition, one can see that the Edge Histogram tigs for the planes and sunsets classes. Also, one notifies that the
ture descriptor is better than other descriptors for faces and catmsets class is an easy one not only for the color but also for the
whereas the Region Shape descriptor produces the best clusexture and shape features as well.
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Overall, convolved class distribution images such as in Fig. 6
are valuable visualizations of the performance of differentfeatureyy)
extraction techniques for differentimage classes.

VI. CONCLUSION AND FUTURE PLANS 2]

The MPEG-7 content description standard does not solve3]
the open questions of CBIR. Nor does it establish which visual
descriptors will be used in future applications. Still, the impact
of the standard on the development of content-based search
techniques will be outstanding. As the standard enables thé®!
definition of new types of image content descriptions, it will
hopefully not restrict the development but only set the frames[e]
for it.

In this paper, we have described our self-organizing CBIR
system named PicSOM and shown that MPEG-7-defined conten
descriptors can be successfully used with it. The PicSOM syste
is based on using SOMs inimplementing RF from the user of the
system. As the system uses many parallel SOMs, each traine
with separate content descriptors, it is straightforward to use
any kind of features. Due to PicSOMs ability to automatically [°]
weight and combine the responses of the different descriptorﬁ,o]
one can make use of any number of content descriptors without
the need to weight them manually. As a consequence, thidl
PicSOM system is well suited for operation with MPEG-7 12
which also allows the definition and addition of any number
of new content descriptors.

In the experiments we compared the performances of foun4]
different color descriptors available in the MPEG-7 XM soft- 15]
ware. The results of that experiment showed that no singIL
color descriptor was the best one for all of our six hand-picked16]
image classes. This was also confirmed by visual inspection
of the distributions of the image classes on the SOMs. That
result was no surprise, and it merely emphasizes the need /]
use simultaneously many different types of content descriptor[si8
in parallel. In an experiment where we used all the available
color descriptors, the PicSOM system indeed was able to alt!
tomatically reach and even exceed the best recall-precision
levels obtained earlier with preselection of features. This i$20]
a very desirable property, as it suggests that we can initiate
queries with a large number of parallel descriptors and the1)
PicSOM system focuses on the descriptors which provide the
most useful information for the particular query instance. [y

We also compared the performance of the self-organizing RF
technique of PicSOM with that of a VQ-based reference systent?3!
The results showed that in the beginning of queries, PicSOM
starts with a bit lower precision rate. Later, when its strong RH24]
mechanism has enough data to process, PicSOM outperforms
the reference technique. In the future, we plan to study how thps)
retrieval precision in the beginning of PicSOM queries could
be improved to the level attained by the VQ technique in thg,g
experiments.

Asthe MPEG-7 XMis not all mature yet, also our experimentsp?]
are only partially finished. When more MPEG-7 standard[28]
content descriptors become implemented in the XM, we will
continue the evaluations. Also, we will compare our earlierg]
descriptors with those of the standard, perhaps finding a mixture
of them that exceeds in performance both our original an
the MPEG-7-defined descriptors alone.

]

[13]
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