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Abstract—Development of content-based image retrieval
(CBIR) techniques has suffered from the lack of standardized
ways for describing visual image content. Luckily, the MPEG-7,
or formally “Moving Pictures Expert Group Multimedia Content
Description Interface” international standard is now emerging
as both a general framework for content description and a
collection of specific agreed-upon content descriptors. We have
developed a neural, self-organizing technique for CBIR. Our
system is named PicSOM and it is based on pictorial examples and
relevance feedback (RF). The name stems from “picture” and the
self-organizing map (SOM). The PicSOM system is implemented
by using tree structured SOMs. In this paper, we apply the visual
content descriptors provided by MPEG-7 in the PicSOM system
and compare our own image indexing technique with a reference
system based on vector quantization (VQ). The results of our
experiments show that the MPEG-7-defined content descriptors
can be used as such in the PicSOM system even though Euclidean
distance calculation, inherently used in the PicSOM system, is not
optimal for all of them. Also, the results indicate that the PicSOM
technique is a bit slower than the reference system in starting to
find relevant images. However, when the strong RF mechanism of
PicSOM begins to function, its retrieval precision exceeds that of
the reference system.

Index Terms—Content-based image retrieval (CBIR), MPEG-7,
query by pictorial example (QBPE), relevance feedback (RF), self-
organizing map (SOM), visual content description.

I. INTRODUCTION

CONTENT-BASED image retrieval (CBIR) has been a
subject of very intensive research effort for more than

a decade [1]–[3]. It differs from many of its neighboring
research disciplines in computer vision due to one notable fact:
human subjectivity cannot totally be isolated from the use and
evaluation of CBIR systems. This is manifested by difficulties
in setting fair comparisons between CBIR systems and in
interpreting their results. These problems have hindered the
researchers from doing comprehensive evaluations of different
CBIR techniques. Some noteworthy initiatives have recently
been made to overcome these difficulties [4], [5].

In addition, two more points make CBIR systems special.
Opposed to such computer vision applications as production
quality control systems, operational CBIR systems would be
very intimately connected to the people using them. Also,
effective CBIR systems call for means of interchanging
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information concerning images’ content between local and
remote databases, a characteristic very seldom present, e.g., in
industrial computer vision.

We have developed a neural-network-based CBIR system
named PicSOM [6]–[8]. The name stems from “picture” and
the self-organizing map (SOM). The SOM [9] is used for un-
supervised, self-organizing, and topology-preserving mapping
from the image descriptor space to a two-dimensional (2-D)
lattice, or grid, of artificial neural units. The PicSOM system is
built upon two fundamental principles or paradigms of CBIR,
namely query by pictorial example (QBPE) [10] and relevance
feedback (RF) [11]. In QBPE, it is presumed that the user of a
CBIR system has no other means of specifying her object of
interest but giving or pointing out examples of interesting or
relevant images. On the other hand, in RF it is assumed that
one can build a CBIR system that is able to learn the user’s
preferences after seeing many enough examples of relevant
images. This kind of behavior can be implemented by allowing
the user to rank or otherwise evaluate the image outputs from
the system. Anyhow, the image querying becomes an iterative
process where the CBIR system is only a tool in the hands of a
human expert. Our conviction is that effective CBIR systems
can be built upon these four cornerstones: self-organization,
pictorial examples, RF, and iterative interaction.

Until now, there have not existed widely accepted standards
for description of the visual contents of images. MPEG-7
[12]–[14], or formally “Moving Pictures Expert Group Mul-
timedia Content Description Interface,” is the first thorough
attempt in this direction and it will become an international
standard of ISO/IEC. The appearance of the standard will affect
the research on CBIR techniques in some important aspects.
First, when some common building blocks will become shared
by different CBIR systems, comparative studies between them
will become easier to perform. Also, all CBIR developers
should prepare to accept the challenge to apply their CBIR
techniques to tasks that are expressed solely in the terms
of the standard. For example, a benchmark study could be
organized in which the systems would be given first a large
set of MPEG-7 standard image content descriptions to build
an image index of the CBIR system. Then, a separate, smaller
sample of descriptions would be given and the system should
find for each of them the best matching database images in the
larger set. The standard also facilitates the change of content
information between distributed databases. This brings about
valuable benefits if database maintainers can trust on and
make use of content descriptors calculated remotely by other
database maintainers. In such a situation the actual images need
not to be transferred between locations, nor do the descriptors
to be recalculated. As MPEG-7 Experimentation Model (XM)
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[15] has become publicly available, we have been able to test
the suitability of MPEG-7-defined image content descriptors
with the PicSOM system. We have thus replaced our earlier
nonstandard descriptors with those defined in the MPEG-7
standard and available in XM.

In this paper, we first address the general questions of
content-based image retrieval, simultaneous indexing with
multiple low-level visual features, pictorial examples, and RF in
Section II. Then, we describe the PicSOM system in Section III
and summarize the experiences we have collected this far. We
also describe a reference CBIR system built within the PicSOM
framework. This system will be used as a competitor of our own
approach in the experiments. Section IV discusses the visual
content descriptors defined in the MPEG-7 standard and their
usability for content-based image retrieval. Then, in Section V,
we present a series of experiments performed with the PicSOM
system and the reference system by using the MPEG-7-defined
visual content descriptors. Finally, conclusions are drawn
together and future prospects are discussed in Section VI.

II. CONTENT-BASED IMAGE RETRIEVAL

In this section, we will briefly review some of the central
concepts involved in content-based image retrieval.

A. Image Indexation With Low-Level Features

In a CBIR system implemented with prototype-based statis-
tical methods, each image in the database is transformed with a
set of feature extraction methods to a set of lower-dimensional
prototype vectors in respective feature spaces. These features
can describe, e.g., the colors, textures, and shapes contained
in the images. Other types of data can also be used in the
similar fashion. Additional useful data can include metadata
or keywords describing the images, if available. In a Web
image search application, the embedding HTML page and the
related hyperlink structure may also be utilized to provide
useful information [16].

When the CBIR system tries to find images which are similar
to the relevant-marked reference images, it searches for images
whose distance to the relevant images is in some sense minimal
in any or all of the feature spaces. How the distances in various
feature spaces are calculated, weighted, and combined in order
to form a scalar value suitable for minimization, leaves a lot of
room for different techniques.

The operation of a CBIR system can be interpreted as a series
of more or less independent processing stages [8]. For each of
these stages, there exist multiple choices and thus a multitude
of CBIR systems can be implemented by combining a set of
common building blocks.

B. QBPE

With low-level visual features, it is not possible to base a
content-based image query on verbal terms like in text-based
retrieval. Therefore, other query methods must be applied.
One common approach to formulate queries in CBIR is QBPE
[10]. With QBPE, the image queries are based on example
images shown either from the database itself or some external
location. The user classifies these example images as relevant
or nonrelevant to the current retrieval task and the system uses

this information to select such images the user is most likely to
be interested in. Other possible query methods include queries
based on user-drawn sketches and image icons representing
some common elements found in the database images [3].

C. RF

A CBIR system is generally not able to retrieve the best
available images in its first response. As a consequence, sat-
isfactory retrieval results can be obtained only if the image
query can be turned into an iterative and interactive process
toward the desired image or images. The iterative refinement
of a query is known as RF in information retrieval literature
[11].

In text-based retrieval, RF can be implemented, e.g., by
adjusting the weights of different textual terms when matching
the query text with the documents of the database in a vectorial
form. RF can be seen as a form of supervised learning to steer
the subsequent query rounds by using the information gathered
from the user’s feedback. The role of the CBIR system is
changed by RF from an automatic answering machine to a tool
that is being used by a skillful human expert.

D. Multifeature Indexing

With the current state of image processing technology, image
retrieval cannot generally be based on matching the user’s query
with the images in the database on an abstract conceptual level.
Therefore, lower-level pictorial features need to be used. This
creates the basic problem of CBIR: the gap between the high-
level semantic concepts used by humans to understand image
content and the low-level visual features used by a computer
to index the images in a database. One method to tackle this
issue is to use several visual features in parallel and combine
their responses in an effective manner. A straightforward way
of achieving this is to give appropriate weights to the different
features. These weights should be automatically inferred as it
is generally a difficult task to explicitly give low-level features
such weights which would coincide with the human perception
of images [17].

One serious problem with feature weighting is that such
techniques treat the feature spaces globally rather than locally.
However, a distance measure or feature weighting which is
advantageous in the vicinity of a small set of images which are
relevant and therefore similar to each other, may not produce
favorable results for the rest of the images. Also, rules which
are applicable in one part of the feature space are not as such
generalizable to handle the whole space. All these phenomena
are direct consequences of the inherent nonlinear nature of
image similarity [18].

III. PICSOM SYSTEM

The PicSOM image retrieval system [6]–[8] is a framework
for research on algorithms and methods for CBIR. The gen-
uine methodological novelty of PicSOM is to use several SOMs
[9] in parallel for retrieving relevant images from a database.
These parallel SOMs have been trained with separate data sets
obtained from the image data with different feature extraction
techniques.
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The different SOMs and their underlying feature extraction
schemes impose different similarity functions on the images.
Every image query is unique and each user of a CBIR system
has her own transient view of image similarity and relevance.
Therefore, a system structure capable of holding many simulta-
neous similarity representations can adapt to different kinds of
retrieval tasks. In the PicSOM approach, the system is able to
discover those of the parallel SOMs that provide the most valu-
able information for each individual query instance. The goal is
to autonomously adapt to the user’s preferences regarding the
similarity and relevance of images in the database. This can be
obtained when the queries are iteratively refined as the system
exposes more and more images to the user for evaluation and
RF.

A typical retrieval session with PicSOM consists of a number
of subsequent query rounds during which the retrieval is focused
more accurately on images resembling the relevant reference
images. While in its normal human interaction mode, the system
presents the user in the beginning of a new query the first set of
reference images which have been picked uniformly from the
whole database. However, in the experiments to be described
in Section V, the queries are initiated with one database image
whose ground truth class is known in advance.

Sections III-A–F will give a brief overview of the PicSOM
system. First, Section III-A explains the tree structured SOMs
(TS-SOMs). Then, the core technology of RF in PicSOM is
described in Section III-B. Next, a more conventional way of
implementing RF, based on vector quantization (VQ) and used
later as a reference system in the experiments, is presented in
Section III-C. The remaining three sections will describe the
different features used in PicSOM this far. A more detailed de-
scription of the PicSOM system and results of earlier experi-
ments performed with it can be found in [7], [8]. The PicSOM
home page including a working demonstration of the system for
public access is located at http://www.cis.hut.fi/picsom.

A. Tree Structured SOMs

The main image indexing method used in the PicSOM system
is the SOM [9]. The SOM defines an elastic topology-preserving
grid of points that is fitted to the input space. It can thus be used
to visualize multidimensional data, usually on a 2-D grid. The
map attempts to represent all the available observations with
an optimal accuracy by using a restricted set of models. As the
SOM algorithm organizes similar feature vectors in nearby neu-
rons, the resulting map contains a representation of the database
where similar images, according to the given feature, are located
near each other.

The fitting of the model vectors is usually carried out by a
sequential regression process, where
is the step index: For each input sample , first the index

of the best-matching unit (BMU) or the “winner” model
is identified by the condition

(1)

Fig. 1. The structure of a three-level 1-D TS-SOM. The solid lines represent
parent–child relations and the dash lines represent neighboring nodes also
included in the BMU search space.

The usual distance metric used here is the Euclidean one. After
finding the BMU, a subset of the model vectors constituting a
neighborhood centered around node are updated as

(2)

Here is the “neighborhood function,” a decreasing
function of the distance between theth and th nodes on the
map grid. This regression is reiterated over the available sam-
ples and the value of is allowed to decrease in time
to guarantee the convergence of the prototype vectors. The
large values of the neighborhood function in the
beginning of the training initialize the network and the small
values on later iterations are needed in fine-tuning.

Instead of the standard SOM version, PicSOM uses a special
form of the algorithm, the TS-SOM [19], [20]. The hierarchical
TS-SOM structure is useful for large SOMs in the training
phase. In the standard SOM, each model vector has to be
compared with the input vector in finding the best-matching
unit (BMU). This makes the time complexity of the search

, where is the number of SOM units. With the TS-SOM
one can, however, follow the hierarchical structure and reduce
the complexity of the search to . This reduction can
be achieved by first training a smaller SOM and then creating
a larger one below it so that the search for the BMU on
the larger map is always restricted to a fixed area below the
already-found BMU and its nearest neighbors on the above
map. Unlike most tree-structured algorithms, the search space
is not limited to the children of the BMU on the upper level.
As each level of the TS-SOM is a normal SOM, the search
space can be set to include also neighboring nodes having
different parent nodes in the upper level. The structure of
a TS-SOM in one-dimensional (1-D) case with three SOM
levels illustrated in Fig. 1.

In our experiments in Section V, we have used four-level
TS-SOMs whose layer sizes have been 44, 16 16, 64 64,
256 256 units. In the training of the lower SOM levels, the
search for the BMU has been restricted to the 1010-sized
neuron area below the BMU on the above level. Every image
has been used 100 times for training each of the TS-SOM levels.

After training each TS-SOM hierarchical level, that level is
fixed and each neural unit on it is given a visual label from
the database image nearest to it. This is illustrated in Fig. 2,
where MPEG-7 Edge Histogram descriptor has been used as
the feature. The images are the visual labels on the surface
of the 16 16-sized TS-SOM layer. It can be seen that, e.g.,
there are many ships in the top-left corner of the map surface,
standing people and dolls beside the ships, and buildings in the
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Fig. 2. The surface of a 16� 16-sized TS-SOM level trained with Edge Histogram descriptors.

bottom-left corner. Visually—and also semantically—similar
images have thus been mapped near each other on the map.

The hierarchical representation of the image database
produced by a TS-SOM can also be utilized in visual browsing.
The successive map levels can be regarded as providing
increasing resolution for database inspection. When browsing
the database, one can search for interesting images on one layer
and then descend to the SOM nodes below the interesting ones
to see more of similar images.

B. Self-Organizing RF

Relevance feedback has been implemented in PicSOM by
using the parallel SOMs. Each image seen by the user of the
system is graded by her as either relevant or irrelevant. All these
images and their associated relevance grades are then projected
on all the SOM surfaces. This process forms on the maps areas
where there are: 1) many relevant images mapped in same or
nearby SOM units; 2) relevant and irrelevant images mixed; 3)
only irrelevant images; or 4) no graded images at all. Of the
above cases, 1) and 3) indicate that the corresponding content
descriptor agrees well with the user’s conception on the rele-
vance of the images. Whereas, case 2) is an indication that the
content descriptor cannot distinguish between relevant and ir-
relevant images.

When we assume that similar images are located near
each other on the SOM surfaces, we are motivated to spread
the relevance information placed in the SOM units also to
the neighboring units. This is implemented in PicSOM by
low-pass filtering the map surfaces. All relevant images are

first given equal positive weight inversely proportional to the
number of relevant images. Likewise, irrelevant images receive
negative weights that are inversely proportional to the number
of irrelevant images. The overall sum of these relevance values
is thus zero. The values are then summed in the BMUs of the
images and the resulting sparse value fields are low-pass filtered.
Fig. 3 illustrates how the positive and negative responses,
displayed with white and black map units, respectively, are
first mapped on a SOM surface and how the responses are
expanded in the convolution. Each image used as a visual
label on the SOM surface is thus given a qualification value
that depends on the local denseness of positive responses on
the map and, indirectly, on the feature extraction method’s
capability to reflect the user’s view of image relevance.

In PicSOM, content descriptors that fail to coincide with the
user’s conceptions always produce lower qualification values
than those descriptors that match the user’s expectations. As a
consequence, the different content descriptors do not need to
be explicitly weighted as the system automatically takes care
of weighting their opinions. In the actual implementation, we
search on each SOM a fixed number, say 100, of yet unseen vi-
sual labels with the highest qualification values. After removing
duplicate images, the second stage of processing is carried out.
Now, the qualification values of all images in this combined set
are summed up on all SOMs. Twenty images with the highest
total qualification values have then been used as the result of the
query round.

In our earlier experiments, e.g., [7], [8], [21], only the visual
labels of the SOM units on all but the bottommost TS-SOM
levels were considered as candidate images to be shown to
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Fig. 3. An example of how a SOM surface, on which the images selected and
rejected by the user are shown with white and black marks, respectively, are
convolved with a low-pass filter.

the user. On the bottommost levels we gave to all the images
mapped in each BMU equal precedence in the selection. In
the experiments to be described in Section V, we have now
chosen to consider exclusively the bottommost TS-SOM levels.
Therefore, the visual labels of the units have no special role
or precedence in the system. This change is motivated by the
performance evaluation scheme of Section V-A, in which the
queries are always started with one image that certainly belongs
to the specified image class. Therefore, one can choose to do a
depth first searchnear the initial reference image instead of a
breadth first searchin the whole database.

C. VQ-Based Reference Method

In order to be able to compare PicSOM’s performance to
other systems, we have built some algorithmic alternatives
within our CBIR system. Here we motivate and describe the
implementation of a simple VQ-based alternative to using
SOMs in implementing RF.

There exists a wide range of distinct techniques for indexing
images based on their feature descriptors. One alternative
method for the SOM is to first use quantization to prune the
database and then utilize a more exhaustive method to decide
the final images to be returned. For the first part, there exist two
alternate quantization techniques, namely scalar quantization
(SQ) and VQ. With either of these techniques, the feature
vectors are divided into subsets in which the vectors resemble
each other. In the case of SQ the resemblance is with respect to
one component of the feature vector, whereas resemblance in
VQ means that the feature vectors are similar as whole. In our
previous experiments [21], we have found out that SQ gives
bad retrieval results.

The justification for VQ in image retrieval is that unseen
images which have fallen into the same quantization bins as
the relevant-marked reference images are good candidates for
the next reference images to be displayed to the user. Also,
the SOM algorithm can be seen as a special case of VQ.
When using the model vectors of the SOM units in VQ, one
ignores the topological ordering provided by the map lattice
and characterizes the similarity of two images only by whether
they are mapped in the same VQ bin. By ignoring the topology,
however, we dismiss the most significant portion of the data
organization provided by the SOM.

For VQ, a well-known method is the -means or
Linde–Buzo–Gray (LBG) vector quantization [22]. According
to [21], LBG quantization yields better CBIR performance than
the SOM used as a pure vector quantizer. This is understandable
as the SOM algorithm can be regarded as a tradeoff between

two objectives, namely clustering and topological ordering.
Consequently, we will use LBG quantization in the reference
system of the experiments in Section V.

The choice for the number of quantization bins is a signifi-
cant parameter for the VQ algorithm. Using too few bins results
in image clusters too broad to be useful, whereas with too many
bins the information about the relevancy of images fails to gen-
eralize to other images. Generally, the number of bins should be
smaller than the number of neurons on the largest SOM layer
of the TS-SOM. In the experiments, we have used 4096 VQ
bins, which coincides with the size of the second bottommost
TS-SOM levels. This results in 14.6 images per VQ bin, on the
average, for the Corel database of 59 995 images to be described
in Section V-B.

Another significant parameter is the number of candidate im-
ages that are taken into consideration from each of the parallel
vector quantizers. Different selection policies lead again either
to breadth firstof depth firstsearches. In our implementation,
we rank the VQ bins of each quantizer in the descending order
determined by the proportion of relevant images of all graded
images in them. Then, we select 100 yet unseen images from
the bins in that order.

After the VQ stage, the set of potential images has been
greatly reduced and more demanding processing techniques
can be applied to all the remaining candidate images. Now, one
possible method—also applied in our reference system—is to
rank the images based on their properly weighted cumulative
distances to all already-found relevant images in the original
feature space. As calculating distance in a possibly very
high-dimensional space is a computationally heavy operation,
the VQ can thus be seen to act as a preprocessor which prunes
a large database as much as it is necessary before the actual
image similarity assessment is carried out.

D. Visual Feature Maps

We have experimented with various types of low-level visual
features. Detailed descriptions of these features can be found
in [7], [8], [23]. In this work, we have restricted our feature
selection to the ones defined in the MPEG-7 standard. These
features will be described in Section IV.

The three common CBIR feature types, enumerated also in
the MPEG-7 standard, are color, texture, and shape. For all these
types, there exist several different ways to extract feature de-
scriptions. Color features, for example, can be based on color
histograms, averaged colors, finding the most common colors
in an image according to some color quantization, etc. Also, the
division into these three categories is not unambiguous, as some
statistical features can be regarded likewise as texture or shape
descriptions. One example of such a feature is the Edge His-
togram.

The fourth type of visual features applicable to still images is
image composition or structure. Capturing the composition of
an image from salient objects, however, requires segmentation,
which is a difficult task for unconstrained images. Furthermore,
extending the discussion to video sequences would introduce
time-dependent feature types such as motion.
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E. Word Maps

In a specific database application, not connected to the
experiments of this paper, we have also used TS-SOMs trained
with textual keywords describing some aspects of the images.
We collected from the Web a set of images together with the
texts, or documents, that embedded the images. Then, after
deletion of articles and other common words as well as words
that appeared only in very few documents, we formed for each
image a binary vector that indicated the presence or absence
of each word in the corresponding document. Also, we formed
similar presence vectors for all word pairs in the documents.
Both types of vectors were quite high-dimensional, so we
appliedrandom projection[24] to reduce the dimensionality.
The resulting vector sets were used in training the word and
word pair TS-SOMs. This approach resembles to some extent
the WEBSOM [25] system used for interactive browsing of
large text document databases.

F. Web Link Relation Map

Recently, we have reported a method that utilizes the hyper-
text link structure of the World Wide Web [16]. The link features
have been used to create a TS-SOM of images, similar to those
created with the visual features. In the link relation map, im-
ages in neighboring map units are assumed to be semantically
correlated not due to their visual similarity but due to their close
mutual connection in the Web. The basis of the method consists
of a set of basic relations that can take place between two images
in the Web. For example, if one image acts as a hypertext link to
another image (e.g., as a thumbnail) it can be assumed that the
two images are closely related. Also, if two images are situated
on the same Web page, it is very likely that they are somehow
semantically related. For searching images in the Web, the link
feature may thus be a valuable addition to the range of other
low-level features.

In the realization of the link relation map, we used SHA-1
message digest algorithm [26] for dimension reduction by
random mapping. The URLs of each image and the Web page
where the image was found were considered, as well as all URL
links found on the page. These URLs and the directory, host,
and domain parts of them were first transformed with SHA-1 to
pseudorandom numbers of length 32 bits. These bit sequences
were then interpreted as concatenations of four eight-bit values.
The first eight-bit value was used as an index in the range [0,
255], the second in [256, 511], the third in [512, 767], and the
last one in [768, 1024]. The corresponding components in a
1024-dimensional, otherwise zero-valued, sparse vector were
then set to value one.

There were 2 622 472 unique URLs or parts of them in the
image pages of our Web image database of 1 008 844 images.
As the outcome of the SHA-1 digestion, we had that same count,
i.e., 2 622 472, 1024-dimensional vectors. We regarded this set
of random vectors as an almost orthogonal basis. Each image
was then represented by a 1024-dimensional link feature vector
obtained as a combination of all the pseudorandom vectors as-
sociated with the image and its Web page. These vectors were
then used in training a TS-SOM.

IV. MPEG-7

MPEG-7 [12]–[14] is an ISO/IEC standard developed by
Moving Pictures Expert Group. MPEG-7 aims at standardizing
the description of multimedia content data. It defines a standard
set of descriptors that can be used to describe various types
of multimedia information. The standard is not aimed at any
particular application area, instead it is designed to support as
broad a range of applications as possible. Still, one of the main
application areas of MPEG-7 technology will undoubtedly be
to extend the current modest search capabilities for multimedia
data for creating effective digital libraries. As such, MPEG-7 is
the first serious attempt to specify a standard set of descriptors
for various types of multimedia information and standard ways
to define other descriptors as well as structures of descriptors
and their relationships.

It is expected that MPEG-7 will have a similar prominent
impact on multimedia content description as the previous
MPEG standards on their respective application areas. Nowa-
days, audiovisual material is becoming more common and
widely used as the needed technologies are becoming easier to
use and more available. This development has raised the need
for quick and efficient searching techniques for all kinds of
multimedia material. MPEG-7 is developed and supported by a
wide range of professionals from publishers and digital content
creators to intellectual property rights managers, as well as
university researchers.

MPEG-7 defines a set of fundamental concepts. Descriptors
are used to represent audio–visual features. Descriptors define
the syntax and semantics of each feature representation. A
single feature, such as color, texture, or shape, may have
several descriptors representing different relevant aspects.
Description schemes (DSs) specify the structure and semantics
of relations between their components, which can be either
descriptors or other DSs. Descriptors and DSs are divided into
MPEG-7 Visual and MPEG-7 Audio description tools. Generic
description tools (descriptors and DSs) which describe neither
purely visual data nor audio are referred as multimedia DSs
(MDSs). Finally, the description definition language (DDL)
is used to specify the existing descriptors and DSs and for
defining new ones. DDL is based on W3Cs XML Schema
definition language [27].

The MPEG-7 standard—being aimed at describing still and
live images and sound—defines many different content descrip-
tors, of which only a part is applicable to still image content de-
scription. Table I lists the feature types and their applicability to
different tasks [13]. It can be seen that MPEG-7 canonizes the
old knowledge about color, texture, and shape being the three
different types of visual features applicable to automated still
image content description.

As a nonnormative part of the standard, a software experi-
mentation model (XM) [15] has been released for public use.
The XM software is the framework for all the reference code
of the MPEG-7 standard. It implements the normative MPEG-7
components such as descriptors, DSs, and the DDL. In the scope
of our work, the most relevant part of XM is the implementa-
tion of a set of MPEG-7-defined image descriptors. At the time
of this writing, XM is in its version 5.3 and not all descriptors
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TABLE I
FEATURE TYPESDEFINED BY MPEG-7AND THEIR USAGEAREAS [13]

have yet been reported to be working properly. Table II lists the
visual descriptors applicable for still images and their current
availability in the XM.

A set of key or elementary application types are also imple-
mented in the XM software. These include an application for
description extraction from media, a search & retrieval applica-
tion, a media transcoding application, and a description filtering
application. Regarding an image retrieval application, the two
first application types are clearly the most relevant. The extrac-
tion from media application is used to extract descriptions from
media input data, i.e., in this case, still images. The search and
retrieval application is a simple single-round retrieval applica-
tion implemented in the XM. The application takes a query de-
scription and all descriptions of a media database as input and
returns the resulting distance values to the best-matching items
in the database with decreasing similarity to the query. As such,
the key applications are not suitable as real-world applications.
For example, RF or other query improvement is not possible as
the key applications do not support user interaction during run
time.

V. EXPERIMENTS

This section first addresses the question of performance
evaluation in Section V-A. Then, Section V-B describes the
image database and ground truth classes we have used in
the experiments. Next, Section V-C gives the details of the
MPEG-7 visual content descriptors used in the study. Finally,
Section V-D presents the results of a comparison involving
the MPEG-7 content descriptors. Also, our original PicSOM
approach in CBIR is compared with a reference system based
on VQ as described in Section III-C.

A. Performance Measures and Evaluation Scheme

The performance of a CBIR system can be evaluated in many
different ways. Even though the interpretation of the contents of
images is always casual and ambiguous, some kind of ground
truth classification of images must be performed in order to au-
tomate the evaluation process. In the simplest case—employed
also here—some image classes are formed by first selecting
verbal criteria for membership in a class and then assigning the
corresponding Boolean membership value for each image in the
database. In this manner, a set of ground truth image classes, not
necessary nonoverlapping, can be formed and then used in the
evaluation.

TABLE II
AVAILABILITY OF XM’ S VISUAL CONTENT DESCRIPTORSAPPLICABLE FOR

STILL IMAGES

All features can be studied separately and independently from
others for their capability to map visually similar images near
each other. Such an analysis should account both for local and
global clustering of image classes as was done, e.g., in [28].
These kinds of feature-wise assessments, however, have severe
limitations because they are not related to the operation of the
entire CBIR system as a whole. In particular, they do not take
any RF mechanism into account. One may note that this type
of an approach resembles the search and retrieval application
implemented in the MPEG-7 XM.

The evaluation of an entire CBIR system can be math-
ematically formulated as follows. Let the “correctness” of
the outputs of a CBIR system be expressed by a series

where stands for the size of the
database and is the Boolean membership value of
image in the studied image class, i.e.,

if
if

(3)

The series specifies the order in which the
system presents the images to the user for acceptance or
rejection based on their relevance in the query. It is naturally
supposed that the verbal class membership criterium and
thus also the correctness function is independent of the
presentation order of the images. If the classcontains
images, it holds that

(4)

The above notation does not make explicit the possibility that
the CBIR system may show the user more than one image si-
multaneously. We assume that the user still glances at these im-
ages in the order the system has selected them. This may not
always be true, but it simplifies the notations to some extent. If
it is chosen that the system shows more than one image at one
time, the RF mechanism gets lagged as it does not receive feed-
back after every successive image but only between consecutive
image sets. The size of these image sets can be denoted with.
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A simple scalar describing the performance of a CBIR system
for a given image class can be formed as

(5)

Here, is thea priori probability of class , i.e., .
The measure coincides with the question “how large portion
of the whole database needs to be browsed through until, on the
average, the searched image will be found.” It can be noted that
the value can be solved with one pass for the whole class

, i.e., it does not need to be repeated over each image in the
class. We have employed this measure in some of our earlier
experiments, e.g., [7], [8], [21].

The above kind of evaluation setting becomes, however,
meaningless if the size of the database is so large that it is
anyway beyond human limits to browse through it exhaustively.
In such cases, it must be supposed that the database will not
contain just a single best match to the user’s request, but
that many images will be sufficiently close to what is being
searched for. We can therefore assume that there is a count
of images the user is willing or has the time for to browse. The
system should thus demonstrate its talent within this number
of images.

In our current experiments, we have applied this type of
nonexhaustive performance evaluation. In our setting, each
image in class is “shown” to the system one at a time as an
initial image to start the query with. The mission of the CBIR
system is then to return as much as possible similar images.
In order to obtain results that do not depend on the particular
image used in starting the iteration, the experiment needs to be
repeated over every image in. This results in a leave-one-out
type testing of the target class and the effective size of the class
becomes instead of and .
We have chosen to show the evolution ofprecisionas a function
of recall during the iterative image retrieval process.

Recall expresses how large portion of the relevant image
class has already been shown up to time instance

(6)

Precision indicates the accuracy of retrieval, i.e., how ex-
clusively only relevant images have been retrieved

(7)

Precision and recall are intuitive performance measures that
suite also for the case of nonexhaustive browsing. When not
the whole database but only a smaller number of
images is browsed through, the recall value very unlikely
reaches the value one. Instead, the final value —as well
as —reflects the total number of relevant images found
that far. The intermediate values of first display the initial
accuracy of the CBIR system and then how the RF mechanism

is able to adapt to the class. With an effective RF mechanism,
it is to be expected that first increases and then turns
to decrease when a notable fraction of relevant images have
already been shown.

In our experiments, we have normalized the precision value
by dividing it with thea priori probability of the class and
call it thereforerelative precision. This makes the comparison of
the recall-precision curves of different image classes somewhat
commensurable and more convenient because relative precision
values relate to the relative advantage the CBIR system produces
over random browsing.

B. Database and Ground Truth Classes

We have used images from the Corel Gallery 1 000 000
product [29] in our evaluations. The database contains 59 995
color photographs originally packed with a wavelet compres-
sion and then locally converted in JPEG format with a utility
provided by Corel. The size of each image is either 384256
or 256 384 pixels.

The images have been grouped by Corel in thematic groups
and also keywords are available. However, we found these
image groups rather inconsistent with the keywords. Therefore,
we created for the experiments six manually picked ground
truth image sets with tighter membership criteria. All image
sets were gathered by a single subject. The used sets and
membership criteria were

• faces, 1115 images (a priori probability 1.85%), where the
main target of the image has to be a human head which has
both eyes visible and the head has to fill at least 1/9 of the
image area.

• cars, 864 images (1.44%), where the main target of the
image has to be a car, and at least one side of the car has
to be completely shown in the image and its body to fill at
least 1/9 of the image area.

• planes, 292 images (0.49%), where all airplane images
have been accepted.

• sunsets, 663 images (1.11%), where the image has to con-
tain a sunset with the sun clearly visible in the image.

• houses, 526 images (0.88%), where the main target of the
image has to be a single house, not severely obstructed,
and it has to fill at least 1/16 of the image area.

• horses, 486 images (0.81%), where the main target of the
image has to be one or more horses, shown completely in
the image.

C. Content Descriptors

We have used a subset of MPEG-7 content descriptors for
still images [15], [30] in a set of experiments with the PicSOM
system and its VQ-based competitor of Section III-C. These de-
scriptors were available and working in the XM [15] software
of MPEG-7 and they are summarized in Table III.

The MPEG-7 standard defines not only the descriptors
but also special metrics to be used with the descriptors when
calculating the similarity between images. However, we use
Euclidean metrics in comparing the descriptors because the
training of the SOMs and the creation of the VQ prototypes are
based on minimizing a square-form error criterium. Only in the
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TABLE III
THE MPEG-7 VISUAL CONTENT DESCRIPTORUSED IN THE EXPERIMENTS. d IS THE DIMENSIONALITY OF THE DESCRIPTOR. THE DESCRIPTORHAVE BEEN

DEFINED IN [30] AND IMPLEMENTED IN [15]

case of the Dominant Color descriptor this has necessitated a
slight modification in the use of the descriptor.

The original Dominant Color descriptor of XM is variable-
sized, i.e., the length of the descriptor varies depending on the
count of dominant colors found. Because this could not be fit in
the PicSOM system, we used only two most dominant colors or
duplicated the most dominant color if only one was found. Also,
we did not make use of the color percentage information. These
two changes do not make our approach incompatible with other
uses of the Dominant Color descriptor.

D. Results

Our experiments were two-fold. First, we wanted to study
which of the four color descriptors in Table III would be the
best one to be used together with the one texture and one shape
descriptor in the table. Second, we wanted to compare the per-
formance of our PicSOM system with that of the VQ-based
variant. We performed two sets of experiments in which the first
question was addressed in the first set and the second question
in both sets.

We performed 48 computer runs in the first set of experi-
ments. Each run was characterized by the combination of the

method (PicSOM/VQ), color feature (Dominant Color/Scal-
able Color/Color Layout/Color Structure) and the image class
(faces/cars/planes/sunsets/houses/horses). Each experiment
was repeated as many times as there were images in the image
class in question, the recall and relative precision values were
recorded for each such instant and finally averaged. Twenty
images were shown at each iteration round, i.e., ,
which resulted in 50 rounds when was set to 1000 images.
Both recall and relative precision were recorded after each
query iteration. Fig. 4 shows, as a representative selection, the
recall-relative precision curves of three of the studied image
classes (faces, cars, and planes). Qualitatively similar behavior
would be observed with the three other classes as well. The
recorded values are shown with symbols and connected with
lines.

The following observations can be made from the resulting
recall-relative precision curves. First, none of the tested color
descriptors seems to dominate the other descriptors and on
different image classes the results of different color descriptors
often vary considerably. Regardless of the used retrieval method
(PicSOM or VQ), Color Structure seems to perform best with
faces and using Scalable Color yields best results with planes
and horses. With the other classes (cars, sunsets, houses),
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Fig. 4. Recall-relative precision plots of the performance of different color descriptors and the two CBIR techniques. In all cases also Edge Histogram and Region
Shape descriptors have been used.

naming a single best color descriptor is not as straightforward.
The second observation is that, in general, if a particular color
descriptor works well for a particular image class, it does so
with both retrieval algorithms.

Third, the PicSOM method more often obtains better preci-
sion than the VQ method when comparing the same descriptor
sets, although the difference is rather small. Also, in the end,
PicSOM has in a majority of cases reached a higher recall level.
The last observation here is, that the difference between the pre-
cision of the best and the worst sets of Ds is larger with the VQ
method than with PicSOM. This can be observed, e.g., in the
planes column of Fig. 4.

In the second set of experiments, we wanted to use all the
available MPEG-7 visual content descriptors simultaneously.
Runs were again made separately for the six image classes and
the two CBIR techniques. The results for all classes can be seen
in Fig. 5, where each plot now contains mutually comparable
recall-relative precision curves of the two techniques.

It can be seen in Fig. 5 that in all cases PicSOM is at first
behind of VQ in precision, but soon reaches and exceeds it. In
some of the cases (faces and cars), this overtake by PicSOM
takes only one or two rounds of queries. With planes, reaching
VQ takes the longest time, 11 rounds, due to the good initial
precision of VQ, observed also in Fig. 4 with the Scalable Color
descriptor.

Of the tested image classes, sunsets yields the best retrieval
results as its relative precision rises at best over 30 and, on the
average, almost half of all the images in the class are found
among the 1000 retrieved images. This is understandable as
sunset images can be well described with low-level descriptors,
especially color. On the other hand, houses is clearly the most
difficult class, as its precision does not ever rise much above
twice thea priori probability of the class. This is probably due
to the problematic nature of the class as, descriptor-wise, there

is not a large difference between the single houses and groups
of houses, e.g., small villages.

As the final outcome of the experiment, it can be stated that
the RF mechanism of PicSOM is clearly superior to that of
VQs. The VQ retrieval has good initial precision but after a few
rounds, when PicSOMs RF begins to have an effect, retrieval
precision with PicSOM is in all cases higher. The houses class
can be regarded as a draw and a failure for both methods with
the given set of content descriptors.

One can also compare the curves of Fig. 4 and the curves in
the upper row of Fig. 5 for an important observation. It can be
seen that the PicSOM method is, when using all Ds simulta-
neously (Fig. 5), able to follow and even exceed the path of the
best recall-relative precision curve for the four alternative single
color Ds (Fig. 4). This behavior is present in all cases, also with
the image classes not shown in Fig. 4, and can be interpreted as
an indication that the automatic weighting of features is working
properly and additional, inferior, descriptors do not degrade the
results. On the contrary, the VQ method fails to do the same and
the VQ recall-relative precision curves in Fig. 5 resemble more
the average than the maximum value of the corresponding VQ
curves in Fig. 4. As a consequence, the VQ technique is clearly
more dependent on the proper selection of used features than
the PicSOM technique.

Asafinal illustration,Fig.6showshowthegroundtruthclasses
are distributed on the 256256-sized bottom levels of the six
different TS-SOM maps. The distributions are in conformance
with our earlier observations concerning Figs. 4 and 5: 1) Of the
six classes, sunsets, and planes are clearly best concentrated in
onlysomespecificmapareas, facesandhorsesexhibit lesser level
of concentration while cars and especially houses are very badly
spread. 2) Of the four-colordescriptors,Scalable Color is the best
one in two cases (planes and horses) and Color Structure is the
best one for faces. All the color descriptors cluster the sunsets
class well, whereas none of them performs well with cars and
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Fig. 5. Recall-relative precision plots of the performance of the two CBIR techniques when all four-color Ds were used simultaneously together with the edge
histogram and region shape Ds.

Fig. 6. The distributions of the image classes on the bottom levels of the six TS-SOM maps. The distributions have been low-pass filtered in order to ease the
inspection. Darker shades present map areas where the images of the class have been mapped densely.

houses. In addition, one can see that the Edge Histogram tex-
ture descriptor is better than other descriptors for faces and cars,
whereas the Region Shape descriptor produces the best cluster-

ings for the planes and sunsets classes. Also, one notifies that the
sunsets class is an easy one not only for the color but also for the
texture and shape features as well.
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Overall, convolved class distribution images such as in Fig. 6
arevaluablevisualizationsof theperformanceofdifferent feature
extraction techniques for different image classes.

VI. CONCLUSION AND FUTURE PLANS

The MPEG-7 content description standard does not solve
the open questions of CBIR. Nor does it establish which visual
descriptors will be used in future applications. Still, the impact
of the standard on the development of content-based search
techniques will be outstanding. As the standard enables the
definition of new types of image content descriptions, it will
hopefully not restrict the development but only set the frames
for it.

In this paper, we have described our self-organizing CBIR
systemnamedPicSOMandshownthatMPEG-7-definedcontent
descriptors can be successfully used with it. The PicSOM system
is based on using SOMs in implementing RF from the user of the
system. As the system uses many parallel SOMs, each trained
with separate content descriptors, it is straightforward to use
any kind of features. Due to PicSOMs ability to automatically
weight and combine the responses of the different descriptors,
one can make use of any number of content descriptors without
the need to weight them manually. As a consequence, the
PicSOM system is well suited for operation with MPEG-7
which also allows the definition and addition of any number
of new content descriptors.

In the experiments we compared the performances of four
different color descriptors available in the MPEG-7 XM soft-
ware. The results of that experiment showed that no single
color descriptor was the best one for all of our six hand-picked
image classes. This was also confirmed by visual inspection
of the distributions of the image classes on the SOMs. That
result was no surprise, and it merely emphasizes the need to
use simultaneously many different types of content descriptors
in parallel. In an experiment where we used all the available
color descriptors, the PicSOM system indeed was able to au-
tomatically reach and even exceed the best recall-precision
levels obtained earlier with preselection of features. This is
a very desirable property, as it suggests that we can initiate
queries with a large number of parallel descriptors and the
PicSOM system focuses on the descriptors which provide the
most useful information for the particular query instance.

We also compared the performance of the self-organizing RF
technique of PicSOM with that of a VQ-based reference system.
The results showed that in the beginning of queries, PicSOM
starts with a bit lower precision rate. Later, when its strong RF
mechanism has enough data to process, PicSOM outperforms
the reference technique. In the future, we plan to study how the
retrieval precision in the beginning of PicSOM queries could
be improved to the level attained by the VQ technique in the
experiments.

As the MPEG-7 XM is not all mature yet, also our experiments
are only partially finished. When more MPEG-7 standard
content descriptors become implemented in the XM, we will
continue the evaluations. Also, we will compare our earlier
descriptors with those of the standard, perhaps finding a mixture
of them that exceeds in performance both our original and
the MPEG-7-defined descriptors alone.
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