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Feature detection

Felzenswab Talk, 2007

Presenter
Presentation Notes
Find interesting features

Build spatial model on how feature locations vary

LOCAL decisions on feature detection difficult – NO CONTEXT



Pictorial Recognition

Felzenswab Talk, 2007

Presenter
Presentation Notes
Springs are cool. Parts put together by spring, and try to make it fit the image!

 Provides context!



The Task 
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Presentation Notes
Given model from higher being on what a human should look like.. Find it in an image!



Formalizing this intuition

Vertex vi has {ui } Edge has cij

Presenter
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What exactly does the higher being give you? A set of parameters



Object is a graph where the nodes are parts, and the edges are connections



U_i is the appearance parameter, what we expect the part to look like pixel-wise



C_ij  characterizes the connections.. How tight is the spring? How is it oriented? 



These are all relative aspects, nothing is location fixed!



The Task 

Θ ={u,c} I L = {l1 , l2 , l3 …



Bayes Rule to the Rescue…

Assuming part independence,
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P(I|L,theta) -> how likely that the training image comes from this dataset (level of mismatch)

P(L|\theta) -> how likely this configuration comes from the model (deformation.. How far from ideal model in terms of stretching)



DECOUPLING OF MISMATCH AND DEFORMATION!!!!



A more intuitive formulation:



Fischler and Eschlager 
(1972)

Mismatch with image

Deformation Cost
(cost of stretching springs!)



The Grand Assumption
Want to define

In 1- 
dimension:
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The Grand Assumption
x
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Done to reduce running time, as explained later!



Iconic Models - Faces

Θ ={u,c} L = {l1 , l2 , l3 …
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Here, l_1 is simply (x,y)

 reminder: u is what each part should “look like”

C is how stiff the spring is and what the ideal spatial location is



What an eye should look like

• The naïve way:
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But can reduce dimensions!

• The intuition:

COS424 notes



COS424 notes

More intuition-building:



Applied to natural data
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Robust to gain or bias from lighting conditions

Changes in small scale or image deformations
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Characterizing springs

sij
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Seek models to define:

• Location
• Appearance
• Connections
•
•
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Go to blackboard for this part!



Some Math:
),,()|,( ijijjiijii sllcllp Σ−Ν=
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If you were a terrorist and tried to hide your face in airport, no luck! 3/5 part detection!
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Gaze direction, location uncertainty when 1 fixed



Articulated Models - Humans
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BLACKBOARD

Talk about how to get the probability distributions, and the various definitions. Notes written up on paper for blackboard use!



Seek models to define:

• Location
• Appearance
• Connections
•
•

),( 21 qqui =
),,,( θsyxli =

),,,,,,,,( kyxyxc ijsyxjijiijijij θσσσ=
212211 )5.0()1()1(),|( '

22
'

11
AATnnnn

ii qqqqulIp −−−−=

),0),()(()|,( ijjijijiijii DlTlTcllp −Ν∝

Presenter
Presentation Notes
Go to blackboard for this part!
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Good results



Presenter
Presentation Notes
One Arm estimate wrong because of binary foreground/background selection.

But still good estimate because of context
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Presentation Notes
Deals with noise well.. Model from higher being provides context for robust fitting even with noise
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More good noise countering. Power of context in pictorial representation.



• Restriction on dij allows linear running time 
for Finding L*

• Efficient ways to sample from the Posterior  
p(L|I,θ)



Learning

,..},{ 21 III = ,..},{ 21 LLL = Θ ={u,c} 
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Note: connections not preset! Algorithm learns itself!



Learning the Model



Learning Appearance and 
Connections



General Framework

Felzenswab Talk, 2007



Key Points

• Pictorial models bring context to 
recognition

• Robust to noise, scale, lighting effects
• Generalized structure
• Heavily dependent on prior training of 

model
• Require robust definitions of (u,v)

Presenter
Presentation Notes
Robust definitios – i.e. dependent on background subtraction for humans



Fischler and Eschlager (1972)
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