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Feature detection

Felzenswab Talk, 2007
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Presentation Notes
Find interesting features

Build spatial model on how feature locations vary

LOCAL decisions on feature detection difficult – NO CONTEXT


Pictorial Recognition

Felzenswab Talk, 2007


Presenter
Presentation Notes
Springs are cool. Parts put together by spring, and try to make it fit the image!

 Provides context!


The Task
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Given model from higher being on what a human should look like.. Find it in an image!


Formalizing this intuition
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Vertex v; has {u;}

Edge has c;
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What exactly does the higher being give you? A set of parameters



Object is a graph where the nodes are parts, and the edges are connections



U_i is the appearance parameter, what we expect the part to look like pixel-wise



C_ij  characterizes the connections.. How tight is the spring? How is it oriented? 



These are all relative aspects, nothing is location fixed!


The Task

© ={u,c} | L={l,,1,, ..

L™ = argmax p(L|1, )
L



Bayes Rule to the Rescue...

p(L\1,6) o< p(I|L,0)p(L|0)

Assuming part independence,

PiL|I,0) x (H pld |, ;) H lel.?i.li'j|r-ij:|)
i=1 {1
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P(I|L,theta) -> how likely that the training image comes from this dataset (level of mismatch)

P(L|\theta) -> how likely this configuration comes from the model (deformation.. How far from ideal model in terms of stretching)



DECOUPLING OF MISMATCH AND DEFORMATION!!!!


A more Intultive formulation:

L™ = argmax p(L|I,0)
L

— z].l'glllill — 1()?,[])([4|-[ 9)]
I



LY = argmgn Y omi(L)+ Y dill 1)
i=1 (v el

/ |

Mismatch with image

f Deformation Cost
~ cost of stretching springs!
my(l;) = —log p(I|l;, u;) ( o 5pnesy

dij“irgjj = —logpll;,l]e;) /

Fischler and Eschlager
(21972)



The Grand Assumption

Want to define di;(li. ;)

Let: X=1I,—1,

2
In 1- (X—ﬂj
dimension: o

In N-dimensions: (X _ ,LI)T Z_l(X _ ,U)




The Grand Assumption

dij(li, ;) = ( i(li) T.;(f,;) Lj(l:) — T5i(l;))

l

dii (L 1) = —logp(li,15]ei)

l
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Done to reduce running time, as explained later!


lconic Models - Faces

© ={u,c} L={l,, 1,15 ..

L™ = argmax p(L|1, )
L
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Here, l_1 is simply (x,y)

 reminder: u is what each part should “look like”

C is how stiff the spring is and what the ideal spatial location is


What an eye should look like

e The naive way:
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But can reduce dimensions!

e The Intuition:
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More intuition-building:
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Applied to natural data
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Robust to gain or bias from lighting conditions

Changes in small scale or image deformations


U; = (44,2:)

(1|1, u;) oe N(ex (), g, 25)



Characterizing springs

"
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Cj = (S;j,2)

Ij’

(II’ |‘C) N(I — | le)

) IJ’



Tl
LY = El,l‘gll}dill (Z (1) + Z diil iy, fjj)
i=1 (vyv;)eE

Seek models to define:

Location l. = (X, y)
Appearance | U =(u,X))

Connections Ci = (S, 2y)

ij !
f-H:IH!I: "!'['i!ij p(l|l,u.) oc N(ex(l),u.,Z.)

* F"Hi' Ef""i,i‘j Jn |Cij):N(|i _Ij’sij’zij)
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Go to blackboard for this part!


Some Math:
p(ll’ I‘Clj) N(I _IJ’ Ij’zlj)

!

pli, llei;) = N(T35(L) = T5:(15), 0, Dij)






299
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If you were a terrorist and tried to hide your face in airport, no luck! 3/5 part detection!
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Gaze direction, location uncertainty when 1 fixed


Articulated Models - Humans
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BLACKBOARD

Talk about how to get the probability distributions, and the various definitions. Notes written up on paper for blackboard use!


Location

Appearance
Connections
pl ;. ;)

° f_}f

ki’
L* = El,l‘gll}dill (; (1) + Z :’:!T;!;jiIZE!;.-!T:,::J)

{1:511:§:|EE

Seek models to define:

E"u

C..

i =(X,Y,s,0)
U; = (ql’qZ)

i = (X Vi Xjin ¥in 04, 0y, 05, 65, K)

p(HIh,u;) =0, (L-0)™ 6, (L-0,)"™ (0.5)

p(l;. 1

1 C5) o N(T; (1) =T (15).0, Dy)
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Go to blackboard for this part!


Figure 13: Matching results (sampling 200 times).
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Good results


Figure 14: In this case, the binary image doesn't provide enough information to

estimate the position of one arm.
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One Arm estimate wrong because of binary foreground/background selection.

But still good estimate because of context


Figure 15: This example illustrates how our method works well with noisy images.
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Deals with noise well.. Model from higher being provides context for robust fitting even with noise
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More good noise countering. Power of context in pictorial representation.


* Restriction on d; allows linear running time
for Finding L*

o Efficient ways to sample from the Posterior
p(L[l, &)



Learning

| ={1%,12,.} L={U'’.} 8 ={u,c)
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Note: connections not preset! Algorithm learns itself!


Learning the Model

p(I*, ... . 0™ L ... L™6) = ] p(I*, L"8).
k=1

|

m m

A* = aremax || o(I¥|L*. ) TT p( L*|6).
g 1m; gf LE,6) ] p(L7]0)

k=1



Learning Appearance and
Connections

i
= - i |||; |||; i
uf = argmax [ p(I*|I7, ).
k=1
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General Framework

Felzenswab Talk, 2007



Key Points

Pictorial models bring context to
recognition

Robust to noise, scale, lighting effects
Generalized structure

Heavily dependent on prior training of
model

Require robust definitions of (u,v)
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Robust definitios – i.e. dependent on background subtraction for humans
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Original picture,

HAIR WAE LOCATED AT {11, 21}
LYESQE WAS LOCATED AT (25, 11)
R/EDGE WAS LOCATED AT (25, 24)
L/EYE WAE LOCATED AT {21, 15)
R/EYE WAS LOCATED AT {21,231}
MOSE WAE LOCATED AT (24, 18)
MOUTH WAS LOCATED AT (23, 17)

Fischler and Eschlager (1972)
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