
Received February 6, 2020, accepted March 4, 2020, date of publication March 10, 2020, date of current version March 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2979810

PID Controller Autotuning Design by a
Deterministic Q-SLP Algorithm

JIRAPUN PONGFAI 1, XIAOJIE SU 2, HUIYAN ZHANG3, AND
WUDHICHAI ASSAWINCHAICHOTE 1
1Department of Electronic and Telecommunication Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140,

Thailand
2College of Automation, Chongqing University, Chongqing 400044, China
3National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China

Corresponding author: Wudhichai Assawinchaichote (wudhichai.asa@kmutt.ac.th)

This work was supported in part by the Petchra Pra Jom Klao Scholarship and in part by the Department of Electronic and

Telecommunication Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi.

ABSTRACT The proportional integral and derivative (PID) controller is extensively applied in many

applications. However, three parameters must be properly adjusted to ensure effective performance of the

control system: the proportional gain (KP), integral gain (KI ) and derivative gain (KD). Therefore, the aim

of this paper is to optimize and improve the stability, convergence and performance in autotuning the PID

parameter by using a deterministic Q-SLP algorithm. The proposed method is a combination of the swarm

learning process (SLP) algorithm and Q-learning algorithm. The Q-learning algorithm is applied to optimize

the weight updating of the SLP algorithm based on the new deterministic rule and closed-loop stabilization

of the learning rate. To validate the global optimization of the deterministic rule, it is proven based on the

Bellman equation, and the stability of the learning process is proven with respect to the Lyapunov stability

theorem. Additionally, to demonstrate the superiority of the performance and convergence in autotuning

the PID parameter, simulation results of the proposed method are compared with those based on the central

position control (CPC) system using the traditional SLP algorithm, the whale optimization algorithm (WOA)

and improved particle swarm optimization (IPSO). The comparison shows that the proposed method can

provide results superior to those of the other algorithms with respect to both performance indices and

convergence.

INDEX TERMS Autotuning gain, central position control system, Q-learning algorithm, PID controller,

swarm learning process algorithm, optimal control.

I. INTRODUCTION

Nowadays, PID controllers are widely applied and represent

the most preferred choice of controller in many applications,

such as power plants, industrial and mechanical systems,

robotics [1]–[4], wind turbines [5], passive optical net-

works [6], [7], load frequency control (LFC) systems [8],

[9], hydraulic turbine regulation systems [3], and radial

active magnetic bearings [4], because they provide excel-

lent performance, reliability, and robustness and are charac-

terized by flexibility, low cost,a simple structure and ease

of design [3], [10]–[13]. To obtain good closed-loop per-

formance of PID controllers, appropriately adjusting three
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parameters, the proportional gain (KP), integral gain (KI ) and

derivative gain (KD), is integral to system control [4], [10].

In 1942, a method of tuning the PID parameter was pro-

posed by Ziglor-Nichlor [14]. After that, many methods

were proposed, for example, the Cohen-Coon, phase and

gain margin methods. These methods adjust the parameter

based on the experience of the designer and require time

for tuning. In practice, the system control is dynamic, and

these approaches are ineffective for high order system mod-

eling [7], [15], [16]. Recently, optimal tuning of the PID

parameter by applying artificial intelligence (AI) has been

implemented. This approach involves continuous tuning of

the parameter based on the dynamic system to obtain the best

system response by minimizing selection of the performance

indices [17], [18].
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At present, many AI methods have been proposed to

autotune the PID parameter, such as fuzzy logic [2], [10],

[19], [20], neural networks (NNs) [1], [7], [21], parti-

cle swarm optimization (PSO) algorithms [6], [22], [23],

hybrid firefly (FA) and pattern search [8], the ant lion

optimization (ALO) algorithm [24], the whale optimization

algorithm (WOA) [25], cuckoo search (CS) [10], [26], bac-

terial foraging optimization [27], genetic algorithms [28], the

cosine algorithm [29], the bat algorithm [12], ant colony opti-

mization (ACO) [13], [30], differential evolution (DE) [31],

World Cup optimization (WCO) [32], evaluation algo-

rithms (EAs) [33], [34], gray wolf optimization (GWO) [35],

nature-inspired algorithms [17], chaotic invasive weed opti-

mization [36], [37], flower pollination algorithm (FPA) [38]

and firefly algorithm (FFA) [39]. Although many AI methods

have been proposed to autotune the PID parameter, the chal-

lenges of long execution time and convergence persist. There-

fore, [14] proposed the novel algorithm called the swarm

learning process algorithm to improve the convergence and

performance in autotuning the PID parameter. This algorithm

is motivated by student learning in the classroom and applies

the concepts of the swarm algorithm and learning algorithm.

Achieving efficiency of the SLP algorithm requires adjusting

the weight according to the behavior of the system. Conven-

tionally, it is adjusted by a random process. Reinforcement

learning (RL) is a method that solves the searching problem

via interaction between an agent and the environment without

needing an exact model of the environment [40], [41]. The

agent receives the previous result of the learning environment

in the form of a reward and learns until achieving the goal of

learning. The Q-learning algorithm is an RL method that is

widely applied in various applications, i.e., industrial control,

robotics, time prediction, signal control, etc., because of the

search rapidity and high convergence.

Due to the limitations of the SLP algorithm and the

usefulness of the Q-learning algorithm, this paper applies

the Q-learning algorithm to adjust the weight of the SLP

algorithm. Nevertheless, the advantages of the Q-learning

algorithm depend on the rule of updating the learning

state [40], [42]–[44]. This paper proposes a new determin-

istic Q-learning algorithm for improving the stability and

convergence performance in autotuning the PID parameter.

Additionally, to improve the stability in adjusting the weight

of the SLP algorithm based on the Q-learning algorithm,

this paper proposes closed-loop stabilization of the learning

rate, applied in the process of the Q-learning algorithm. The

sufficient condition of the closed-loop stability is proven

according to the Lyapunov stability theorem. Furthermore,

the optimization of the proposed method is proven based on

the Bellman equation. Finally, to show the superiority of the

proposed method in terms of convergence and performance,

a comparison with the simulation results of the traditional

SLP algorithm [14], the WOA [25] and IPSO [45] based

on the central position control (CPC) system is provided.

Therefore, the contributions of this paper can be summarized

as follows:

FIGURE 1. The structure of autotuning the PID controller.

1. The deterministic Q-SLP algorithm is proposed to auto-

tune the PID parameter. This algorithm is a combination of

the Q-learning algorithm and SLP algorithm. The Q-learning

algorithm is applied to adjust theweight of the SLP algorithm.

2. The deterministic Q-SLP algorithm improves the sta-

bility, convergence and performance in autotuning the PID

parameter.

3. A new rule for updating the process of the Q-learning

algorithm is proposed, and its global optimization is proven

based on the Bellman equation.

4. Closed-loop stabilization of the learning rate is proposed

to improve the stability in adjusting the weight of the SLP

algorithm based on theQ-learning algorithm. It is provenwith

respect to the Lyapunov stability theorem.

5. The superiority of the performance and convergence

time are verified by comparison with the simulation results

of the traditional SLP algorithm [14], the WOA [27] and

IPSO [47] based on the CPC system.

This paper is organized into 6 sections: Section 2 presents

the PID controller and objective design. The deterministic

Q-SLP algorithm is presented in section 3. Section 4 explains

the convergence analysis of the deterministic Q-SLP algo-

rithm. Section 5 presents the simulation results and a discus-

sion, and section 6 provides the conclusion.

II. PID CONTROLLER AND OBJECTIVE DESIGN

Generally, the structure of a PID controller combines three

control parameters, i.e., KP, KI and KD. Each parameter

affects a different response of the system: KP reduces the

error, KI increases the speed of response and reduces the

error when the operation of the system is changed but over-

shoot occurs, and KD reduces the overshoot from KI and

improves the stability of the system [7], [26]. The com-

mon closed-loop diagram of autotuning the PID controller is

shown in Figure 1.

From Figure 1, the common transfer function of the PID

controller (C(s)) is defined as follows:

C(s) = KP +
KI

s
+ KDs (1)

Therefore, the output of the controller (U (s)) can be defined

as follows:

U (s) = C(s)(R(s)− Y (s)) (2)

where P(s) is the transfer function of process control, R(s) is

the transfer function of reference input and Y (s) is a transfer
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function of system response. A(s) is the autotuning method

that this paper proposes, the deterministic Q-SLP algorithm.

Because the primary objective of the optimizing algorithm

is to find the proper value for achieving the objective func-

tion [29], the performance index of the optimal PID controller

is significant. The performance indices usually considered in

PID controller design are the integral of the absolute error

(IAE), integral of the time multiplied squared error (ITSE),

integral of the time multiplied absolute error (ITAE), mean

of the squared error (MSE) and integral of the squared error

(ISE) [12], [42]. The definition for each of the performance

indices is as follows:

IAE =

∫ τ

0

|e(t)|dt (3)

ITSE =

∫ τ

0

te(t)2dt (4)

ITAE =

∫ τ

0

t|e(t)|dt (5)

MSE =
1

t

∫ τ

0

(e(t))2dt (6)

ISE =

∫ τ

0

e(t)2dt (7)

where e(t) is the error in the time domain.

Although the above performance indices are generally

applied as the criteria of designing PID controllers because

evaluation is based on the frequency domain, they have many

disadvantages such as the response result based on IAE and

ISE having a long settling time and the derivation process

of ITSE being complex [46], [47]. Therefore, [46], [47] pro-

posed the new performance index given as Equation 8. It can

be evaluated in the time domain by considering the transient

response parameters, namely, the maximum overshoot (Mp),

settling time (ts), rise time (tr ) and steady state error (ess).

This paper applies it as the criterion of autotuning the PID

parameter and the basis of closed-loop stabilization of the

learning rate.

J (t) = (1− e−β )(mp + ess)+ e
−β (ts − tr ) (8)

where β is the weighting factor, which is set by the designer.

If it is set to greater than 0.7, then the maximum overshoot

and steady-state error are reduced. If it is set to less than 0.7,

then the rise time and settling time are reduced.

III. DETERMINISTIC Q-SLP ALGORITHM

A. SLP ALGORITHM

The SLP algorithm was proposed by [14]. It applies the

concepts of the swarm algorithm and learning algorithm. Its

process consists of ()3 sub-processes of evaluation, selection

and learning. Evaluation involves checking that the students

in the class have a score corresponding to the criteria. If a

student’s score breaks the criteria, then that student is sorted

out of the class, and a new student is established. Selection

involves choosing the students for passing the class. A student

who passes the class is represented by the optimal value and

becomes the basis for new student establishment and training

of the students who remain in the class. Learning involves

training of the students in the class to achieve the criteria

of passing the class. Learning classifies the students into 2

groups: the good score group and the bad score group. The

good score group is trained based on self-knowledge and

students who pass the class, while the bad score group is

trained based on the good score group.

The process of establishing new students is defined as

follows:

S(K )new =

W (K )
N
∑

n=1

fi(K )si(K )

N
(9)

where each student is represented by S(K );KP,KI andKD are

represented by K ; the score for each student is represented by

si; the number of students in the class is represented byN ; the

weight of training for each student is represented by W (K );

and the number of scores si in the class is represented by fi(K ).

The definition of the learning process for the good score

group is given in Equation 10.

S(K ) =

W (K )
N
∑

n=1

si(K )

N
(10)

For the bad score group, the learning process is defined as

in Equation 11.

S(K ) =
W (K )(SBad (K )+ SGood (K ))

2
(11)

where SGood is the best score of the good score group and

SBad is the score of a student who is in the bad score group

and needs to learn.

The flow of the SLP algorithm, as shown in Figure 2, starts

with initial student randomization, in which each student is

represented by KP, KI and KD, and then, the score for each

student corresponding to the objective function is calculated.

Next, each student is evaluated by the score to determine

which students should remain in the class. If a student is

sorted out, then a new student is established. Finally, each

student is classified into 2 groups and trained until they can

pass the criteria of the class. In the learning process, students

are trained based on the Q-learning algorithm.

B. DETERMINISTIC Q-SLP ALGORITHM WITH A STABLE

LEARNING RATE

The Q-learning algorithm is an offline rule of reinforcement

learning (RL) [48], [49]. It approximates and updates the

current rule with the optimal action-value (Q∗) based on the

action-value (Q). This paper proposes the rule for updating

given in Equation 13. The pseudocode of the Q-learning

algorithm is presented as follows:

Initialization:

1: initial Q(x, u)

LOOP Process

2: while (episode does not end) do

3: Initialize state Si
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FIGURE 2. Flow chart of the SLP algorithm.

4: while (si does not reach the terminal state sI ) do

5: Perform action ui, and observe xi+1 and Ri+1
6: Update Q values as in Equation 13.

7: ui← ui+1

8: end while

9: end while

In the pseudocode, x is the observed state, and u is the action.

R is the reward for each episode i.
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FIGURE 3. Flow chart of the deterministic Q-SLP algorithm.

50014 VOLUME 8, 2020



J. Pongfai et al.: PID Controller Autotuning Design by a Deterministic Q-SLP Algorithm

The deterministic Q-SLP algorithm is a combination of

the Q-learning algorithm and SLP algorithm. The Q-learning

algorithm is used to adjust the weight of the SLP algorithm

as W (t) = Qi(x(k), u(k)), where Qi(x(k), u(k)) is the quality

of the Q-function for which the basic equation used is the

Bellman equation as follows: [49]

Qi(x(k), u(k))=J (x(k), u(k))+λmin(Qi(x(k + 1), u(k+1)))

(12)

where J (x(k), u(k)) is the reward received, which, in this

paper, is the value of the cost function, and λ is the learning

rate.

The updating weight of the SLP algorithm is

W (t + 1) = Qi+1(x(k), u(k)), where Qi+1(x(k), u(k)) is the

iterative updating of the Q-function at arbitrary state x(k) and

control u(k), for which this paper proposes a new determinis-

tic optimal Q-function to define it. The deterministic optimal

Q-function is defined as follows:

Qi+1(x(k), u(k)) = J (x(k), u(k))+ λi((1− µ)Qi(x(k), u(k))

+αminQi(x(k + 1), u(k + 1))) (13)

where λi is the learning rate of theQ-function generated based

on the closed-loop stabilization of the learning rate of the

deterministic Q-learning algorithm as in Equation 15.µ is the

factor of the Q-function at iteration i. Note that the determin-

istic Q-SLP algorithm provides a quantitative methodology

for selecting the controller parameters to approach an optimal

transient response where the relative stability can be consid-

ered by the transient response in each time of tuning.

In the initialization, the proposed method is initiated as

Q0(x(k), u(k)) = ϒ(x(k), u(k)) (14)

where ϒ(x(k), u(k)) is a positive semi-definite function.

Theorem 1: At sampling time t, the system with PID con-

trol that is tuned according to KP, KI and KD by the deter-

ministic Q-SLP algorithm is stable if the learning rate of the

deterministic Q-function is generated as follows:

3ν(t)(
ρ(t)− ψ(t)+ β(t)

2tξ (t)+6ν(t)β(t)
) < λ ≤ 3ν(t)(

ρ(t)+ψ(t)+β(t)

2tξ (t)+6ν(t)β(t)
)

(15)

where

ρ(t) =

√

t̟ (t)

υ(t)
+ 4NX (t)λ(t),

ν(t) =
t(W (t)W (t − 1)E2

pp(t))
2

υ(t)

and β(t) = NW (t)X (t).

Proof: The stability of the learning rate is proven

according to the Lyapunov function, which can be defined

as follows:

V (t) = ϕ

∫ t

0

tE2(t)dt + (1− e−β )(mp(t)+ E(t))

+e−β (ts(t)− tr (t)) (16)

The Lyapunov function can be changed as follows:

1V (t) = V (t + 1)− V (t)

= ϕ

∫ t

0

tE2(t + 1)dt − ϕ

∫ t

0

tE2(t)dt + ((1− e−β )

×(mp(t+1)+E(t + 1))+e−β (ts(t+1)−tr (t+1))

−(1− e−β )(mp(t)+ E(t))+ e
−β (ts(t)− tr (t)))

(17)

= ϕ

∫ t

0

t1E2(t)dt + (1− e−β )(1mp(t)+1E(t))

+e−β (1ts(t)−1tr (t)) (18)

From the structure of the SLP algorithm as shown in Equa-

tion 10 and Equation 11,

1E(t) = 1W (t)Ep(t)

= −
(λ(t)W (t)−W (t − 1))Ep(t)

N
(19)

where Ep(t) =
∑M

i=1
∂Ei(t)
∂W (t)

, andM is the number of students.

1mp(t) = 1W (t)Mpp(t)

= −
(λ(t)W (t)−W (t − 1))Mpp(t)

N
(20)

where Mpp(t) =
∑M

i=1
∂mpi(t)

∂W (t)
.

1ts(t) = 1W (t)Tsp(t)

= −
(λ(t)W (t)−W (t − 1))Tsp(t)

N
(21)

where Tsp(t) =
∑M

i=1
∂Tsi(t)
∂W (t)

.

1ts(t) = 1W (t)Trp(t)

= −
(λ(t)W (t)−W (t − 1))Trp(t)

N
(22)

where Trp(t) =
∑M

i=1
∂tr i(t)
∂W (t)

.

Therefore, Equation 11 can be written as follows:

1V (t) = ϕ

∫ t

0

t(
(−λ(t)W (t)−W (t − 1)Ep(t))

2

N
)dt

−
λ(t)W (t)−W (t − 1)

N
((1−e−β )(Mpp(t)−EP(t))

+e−β (Tsp(t)− Trp(t))) (23)

If at sampling time t , βI (t) > βM (t) < βA(t),

where βI (t) = t(
(−λ(t)W (t)−W (t−1)Ep(t))

2

N
), βM (t) =

λ(t)W (t)−W (t−1)
N

((1 − e−β )(Mpp(t) − EP(t)) and βA(t) =

e−β (Tsp(t) − Trp(t))), is satisfied, then the stability based

on Lyapunov stability is guaranteed. This means that the

learning of the deterministic Q-SLP algorithm is stable when

the learning rate (λ) satisfies Equation 15.

IV. CONVERGENCE ANALYSIS OF THE DETERMINISTIC

Q-FUNCTION

Definition 1 ( [40]): The convergence of the Q-function

can be proven by generating the sequence of the Q-function

(Qi(x, u)), where i ∈ Z
+ + {0}; then,
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1. Q∗(x(k), u(k)) ≤ Qi+1(x(k), u(k)) ≤ Qi(x(k), u(k)) and

2. lim
i→∞

Qi(x(k), u(k)) = Q∗(x(k), u(k)).

Lemma 1: For iteration i ∈ Z
++{0}, if Qi(x(k), u(k)) can

be updated with the learning rate corresponding to Equa-

tion 15 and Q0(x(k), u(k)) can be defined as Equation 14,

then Q∗(x(k), u(k)) ≤ Qi+1(x(k), u(k)) ≤ Qi(x(k), u(k)).

Proof: At sequence i = 0, Q0(x(k), u(k)) is initiated

with the positive semi-definite function given in Equation 14.

Therefore, the above holds for the case of Q0(x(k), u(k)) =

Q0(x(k), u(k)).

At sequence i+ 1, λi+1 = 1, and µ = 0.

Qi+1(x(k), u(k))

= J (x(k), u(k))+ λi+1((1− µ)Qi+1(x(k), u(k))

+αminu(k+1){Qi+1(x(k + 1), u(k + 1))}

= Qi(x(k), u(k))+ λ0((1− µ)Q0(x(k), u(k))

≤ Qi(x(k), u(k)) (24)

At sequence i, λi+1 = 1, and µ = 0.

Qi(x(k), u(k)) = J (x(k), u(k))+ αminu(k+1){Qi+1(x(k + 1),

×u(k + 1))}

≥ J (x(k), u(k))+ αminu(k+1){Q∗(x(k + 1),

×u(k + 1))}

= Q∗(x(k), u(k)) (25)

From Equations 24 and 25, we can conclude that

Q∗(x(k), u(k)) ≤ Qi+1(x(k), u(k)) ≤ Qi(x(k), u(k)).

Lemma 2: Let ζ (x(k), u(k)) = J (x(k), u(k)) + λmink→∞
(x(k + 1), u(k + 1))− µQ∞(x(k), u(k)), where x(k), u(k) 6=

0. Let φ be a small positive number; if ζ (x(k), u(k)) > 0,

then ζ (x(k), u(k)) − φ > 0, and if ζ (x(k), u(k)) < 0, then

ζ (x(k), u(k))+ φ < 0; then, Q∞(x(k), u(k)) is finite.

Proof: From Equation 13, in the case of lim
i→inf

λi 6= 0,

Q∞(x(k), u(k)) = J (x(k), u(k))+ (1− µ)Q∞(x(k), u(k))

+αminuk→∞(x(k + 1), u(k + 1)) (26)

Assumption 1: From Equation 26, it is assumed that if

lim
i→∞

λi = 0 is true, then lim
i→∞

Qi(x(k), u(k)) exist.

Given this,

ζ (x(k), u(k))=J (x(k), u(k))+αminu(k)→∞(x(k+1), u(k+1))

−µQ∞(x(k), u(k)) (27)

where ζ (x(k), u(k)) 6= 0 and x(k), u(k) 6= 0.

∀φ > 0 andN > 0, whereN ∈ R
+−{0}, if ζ (x(k), u(k))+

φ and ζ (x(k), u(k))− φ have the same sign, then

ζ (x(k), u(k))− φ ≤ J (x(k), u(k))+ αQminu(k+1)(x(k + 1),

u(k + 1))− µQ(x(k), u(k))

= ζ (x(k), u(k))+ φ (28)

On the other hand, from Equation 13,

Qi+1(x(k), u(k)) = J (x(k), u(k))+ λi((1− µ)Qi(x(k), u(k)))

+αminu(k+1)Qi(x(k + 1), u(k + 1))

Qi(x(k), u(k)) = J (x(k),u(k))+λi−1((1−µ)Qi−1(x(k),u(k)))

+αminu(k+1)Qi−1(x(k + 1), u(k + 1))

...

Q1(x(k), u(k)) = J (x(k), u(k))+λ0((1−µ)Q0(x(k), u(k)))

+αminu(k+1)Q0(x(k+1), u(k+1)) (29)

Therefore, it can be obtained that

Qi+1(x(k), u(k))

= J (x(k), u(k))+

i
∑

j=0

λj(((1− µ)Qj(x(k), u(k)))

+αminu(k+1)Qj(x(k + 1), u(k + 1))) (30)

Let the limit of i approach∞. For x(k) and u(k),

Q∞(x(k), u(k))

= J (x(k), u(k))+

N−1
∑

j=0

λj(((1− µ)Qj(x(k), u(k)))

+αminu(k+1)Qj(x(k + 1), u(k + 1)))

+

∞
∑

i=N

λi(((1− µ)Qi(x(k), u(k)))+ αminu(k+1)

×Qi(x(k + 1), u(k + 1))) (31)

From Equation 28, J (x(k), u(k))+
∑N−1

j=0 λj(((1−µ)Qj(x(k+

1), u(k + 1))) + αminu(k+1)Qj(x(k + 1), u(k + 1))) +

(ζ (x(k), u(k))−φ)
∑∞

i=N λi(Qi(x(k), u(k)))≤Q∞(x(k), u(k))

< J (x(k), u(k)) +
∑N−1

j=0 λj(((1 − µ)Qj(x(k + 1), u(k +

1)))+ αminu(k+1)Qj(x(k + 1), u(k + 1)))+ (ζ (x(k), u(k))+

φ)
∑∞

i=N λi(Qi(x(k), u(k))). For
∑∞

j=N λj → ∞, Q∞(x(k),

u(k)) > ∞; if ζ (x(k), u(k)) > 0, then ζ (x(k), u(k)) − φ > 0,

and if ζ (x(k), u(k)) < 0, then ζ (x(k), u(k))+φ < 0. This means

thatQ∞(x(k), u(k)) is finite. Therefore, Assumption 1 is true,

and the conclusion holds.

Theorem 2: Let Qi(x(k), u(k)) be updated as in

Equation 13, where i ∈ Z
+ + {0}, the learning rate is

generated as in Equation 15 and 0 ≤ µ < 1. Qi(x(k), u(k))

can approach its Q∗(x(k), u(k)) of the Bellman equation for

all sequences i, where i = 1→∞. That is,

lim
i→∞

Qi(x(k), u(k)) = Q∗(x(k), u(k)) (32)

where Q∗(x(k), u(k)) = minu(k){Q(x(k), u(k)) + αQ∗(x(k +

1), u(k + 1))}.

Proof: FromLemma 2 and Equation 26, letN > 0, where

N ∈ R
+; then,

Q∞(x(k), u(k))

= J (x(k), u(k))+ (1− µ)Q∞(x(k), u(k))

+αminuk→∞(x(k+1),u(k+1))

minQ∞(x(k), u(k))

= minuk (J (x(k), u(k)+ (1− µ)(J (x(k),

u(k))+ . . .+ (1− µ)(J (x(k + N ),

u(k + N ))+ αminu(x→k)(J (x(k + 1),
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FIGURE 4. The structure diagram of the CPC system with a PID controller.

u(k + 1))+ (1− µ)(J (x(k + N − 1),

u(k + N − 1))+ αminu(k→N )Q∞(x(k + N ),

u(k + N )))))))) (33)

With respect to the Bellman principle of optimization [50],

Equation 33 can be applied as follows:

lim
N→∞

(1− µ)Q∞(x(k + N ), u(k + N )) = 0 (34)

and

lim
N→∞

αminQ∞(x(k + N ), u(k + N )) = 0 (35)

From Definition 1 of the optimal Q-function, it can be

obtained that

Q∗(x(k), u∗(x(k)))≤minu(k+N )Q∞(x(k+N ),u(k+N )) (36)

According to Definition 1 and Equation 26,

Q∞(x(k), u(x(k)))= J (x(k), u(k))+ (1− µ)Q∞(x(k), u(k))

+αminu(k→∞)Q∞(x(k + 1),u(k+1))

= R(x(k),u(k))+αminu(k→∞)Q∗(x(k+1),

u(k + 1))

= Q∗(x(k), u(k)) (37)

This means that lim
i→∞

Qi(x(k), u(k)) = Q∗(x(k), u(k)) for

all sequences i. Therefore, Equation 15 can be proven as

optimal based on the Bellman equation. With respect to the

conclusion of Lemma 1 and Theorem 2, the convergence of

the new deterministic Q-function given in Equation 13 can be

proved according to Definition 1.

V. SIMULATION AND DISCUSSION

A. MODEL OF CENTRAL POSITION CONTROL

To verify the performance and convergence in autotuning the

PID parameter, this paper uses a CPC system as a platform

for the verification.

The CPC system is the most important part of a strip

steel manufacturing line. It improves the yield of the strip to

prevent transverse deviation of the strip. An electro-hydraulic

servo valve is used in the CPC system. The structure diagram

of the CPC systemwith a PID controller is shown in Figure 4.

From Figure 4, the main system model is composed of

the electro-hydraulic servo valve, hydraulic cylinder and

displacement detection sensor. The transfer function of the

electro-hydraulic servo valve can be written as follows [45]:

Gsv(s) =
Q(s)

U (s)
=

Ksv
s2

ω2
sv
+

2ζsv
ωsv

s+ 1
(38)

FIGURE 5. Comparison of transient responses in the case of β = 0.5.

where Ksv is the gain of the servo valve with no load, which is

set as 0.00196 m3/(sA). ζsv is the damping ratio of the servo

valve, which is set as 0.7, and ωsv is the natural frequency

of the servo valve, which is set as 157 rad/sec. The transfer

function of the hydraulic cylinder obtained by neglecting the

load uncertainty and quality can be written as follows:

Gh(s) =
Xo(s)

Q(s)
=

1
Ap

s( s
2

ω2
h

+
2ζh
ωh
s+ 1)

(39)

where Xo is the displacement of the hydraulic cylinder. ωh is

the natural frequency of the hydraulic cylinder, which is set

as 88 rad/sec. ζh is the damping ratio of the hydraulic cylinder,

which is set as 0.3. Actually, the system is a combination of

complexity and many disturbances. Thus, for without loss of

generality and for easy analysis of the transient response in

each time of autotuning [45], the mathematical model of the

electro-hydraulic servo valve system can be just simplified by

neglecting the external noise and the load.

B. SIMULATION RESULT

In this paper, the performance and convergence in autotuning

the PID parameter are verified by comparing the simulation

results of the deterministic Q-SLP algorithm with those of

the traditional SLP algorithm [14], the WOA [25] and the

IPSO [45] based on the CPC system when changing the

constant of the objective function (β). The changing constant

of the objective function given in Equation 8 is set to β =

0.5, β = 1 and β = 1.5. In the simulation, the number of

nodes for each algorithm is 20, with the same initial value,

simulation time of 5 sec, and ranges of KP, KI and KD of

[0,20], [0,20] and [0,1]. The maximum number of iterations

is 150 iterations.

The comparison results of the performance and conver-

gence in the case of β = 0.5 are shown as Figures 5 and 6.

In the case of β = 1, the comparison results are shown in

Figures 7 and 8. Figures 9 and 10 show the comparison results

of the performance and convergence in the case of β = 1.5.

The comparative performance indices, such as Mp, ts,

tr and ess, based on CPC system for β = 0.5 are shown

in Figure 5, and Table 1. The comparison of the proposed

method yields ts = 0.113 sec, tr = 0.107 sec,Mp = 0.002 mm

and ess = 0.002 mm. The traditional SLP algorithm [14]

yields ts = 2.006 sec, tr = 0.220 sec, Mp 0.025 mm and
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FIGURE 6. Comparison of objective functions in the case of β = 0.5.

TABLE 1. Summary of the performance and convergence comparison for
β = 0.5.

FIGURE 7. Comparison of transient responses in the case of β = 1.

ess = 0.023 mm. The WOA [25] yields ts = 0.120 sec,

tr = 0.110 sec, Mp = 0.066 mm and ess = 0.003 mm.

Finally, the IPSO [45] yields ts = 0.449 sec, tr = 0.127 sec,

Mp = 0.045 mm and ess = 0.006 mm. The compara-

tive convergence curve between the proposed method, the

traditional SLP algorithm [14], the WOA [25] and the

IPSO [45] is shown in Figure 6 and Table 1. The minimiz-

ing result of the fitness function for the proposed method

is 0.0052 and takes 20 iterations; for the traditional SLP algo-

rithm [14] is 0.517 and takes 50 iterations; for theWOA [25]

is 0.082 and takes 54 iterations; for the IPSO [45] is 0.216 and

takes 45 iterations.

The comparative performance indices, such as Mp, ts,

tr and ess based on CPC system for β = 1 are shown

in Figure 7, and Table 2. The comparison of the proposed

method yields ts = 0.403 sec, tr = 0.102 sec,Mp = 0.001 mm

and ess = 0.001 mm. The traditional SLP algorithm [14]

yields ts = 1.789 sec, tr = 0.189 sec, Mp = 0.023 mm and

ess = 0.021 mm. The WOA [25] yields ts = 0.417 sec,

tr = 0.117 sec, Mp = 0.003 mm and ess = 0.001 mm.

FIGURE 8. Comparison of objective functions in the case of β = 1.

TABLE 2. Summary of the performance and convergence comparison for
β = 1.

Finally, the IPSO [45] yields ts = 0.473 sec, tr = 0.130 sec,

Mp = 0.066 mm and ess = 0.004 mm. The compara-

tive convergence curve between the proposed method, the

traditional SLP algorithm [14], the WOA [25] and the

IPSO [45] is shown in Figure 8 and Table 2. The minimiz-

ing result of the fitness function for the proposed method

is 0.112 and takes 18 iterations; for the traditional SLP

algorithm [14] is 0.499 and takes 96 iterations; for the

WOA [25] is 0.113 and takes 22 iterations; for the IPSO [45]

is 0.171 and takes 115 iterations.

The comparative performance indices, such as Mp, ts,

tr and ess based on CPC system for β = 1.5 are shown

in Figure 9, and Table 3. The comparison of the proposed

method yields ts = 0.117 sec, tr = 0.100 sec,Mp = 0.002 mm

and ess= 0.002 mm. The traditional SLP algorithm [14]

yields ts = 2.006 sec, tr = 0.220 sec, Mp = 0.025 mm and

ess = 0.023 mm. The WOA [25] yields ts = 0.120 sec,

tr = 0.110 sec, Mp = 0.066 mm and ess = 0.003 mm.

Finally, the IPSO [45] yields ts = 0.450 sec, tr = 0.127 sec,

Mp = 0.045 mm and ess = 0.0064 mm. The compara-

tive convergence curve between the proposed method, the

traditional SLP algorithm [14], the WOA [25] and the

IPSO [45] is shown in Figure 10 and Table 3. The minimiz-

ing result of the fitness function for the proposed method

is 0.0069 and takes 14 iterations; for the traditional SLP

algorithm [14] is 0.209 and takes 35 iterations; for the WOA

[25] is 0.082 and takes 16 iterations; for the IPSO [45]

is 0.216 and takes 98 iterations.

From the comparative results, it can be clearly observed

that the proposed method can provide 4 performance indices

and convergence superior to those of the traditional SLP

algorithm [14], the WOA [25] and IPSO [45].
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FIGURE 9. Comparison of transient responses in the case of β = 1.5.

FIGURE 10. Comparison of objective functions in the case of β = 1.5.

TABLE 3. Summary of the performance and convergence comparison for
β = 1.5.

Remark 1: According to the comparative performance

indices based on the transient response analysis and the con-

vergence result for 3 cases study, the proposed method is

lowest the value of performance indices, objective function

and iteration of tuning since in every time of autotuning, the

proposed method records the current of the PID parameter

and the current value of objective function to the database

and uses it to determine the new PID parameter. Further-

more, in the PID parameter autotuning processing, the pro-

posed method adjusts the PID parameters by considering the

learning rate with the current transient response as Equation

15. Note that the traditional SLP algorithm [14] autotunes

the PID parameters under the random processing while the

WOA [25] and the IPSO [45] autotune the PID parameters

under the neighbor value and the initial value. Therefore,

it can be concluded that the PID controller which is auto

tuned by using deterministic Q-SLP algorithm with fitness

function as Equation 8 based on CPC control system has a

high performance, more stable and faster tuning than the other

algorithm.

VI. CONCLUSION

In this paper, a deterministic Q-SLP algorithm is proposed to

optimize and improve the stability, convergence and perfor-

mance in autotuning the PID parameter. It differs from the

traditional SLP algorithm [14], and the scheme of adjusting

the weight of the SLP algorithm is presented based on the new

deterministic Q-learning algorithm. The global optimization

of the proposed method is proven based on the Bellman equa-

tion. Additionally, this paper proposes closed-loop stabiliza-

tion of the learning rate to improve the stability of the learning

process of the Q-learning algorithm, for which the stability is

proven according to the Lyapunov stability theorem. To con-

firm the performance and convergence, the simulation results

of autotuning the PID controller for the CPC system are

compared. The comparison shows that the proposed method

can produce better results than the traditional SLP algorithm,

theWOA [24] and the IPSO [45]. According to the simulation

results, it can be concluded that the theoretical approach in

this paper achieves the performance indices, i.e, ts, tr , Mp

and ess, and convergence of the optimal autotuning of the

PID parameter suitable for practical applications. However,

the time-delay and the disturbance can be easily found in

many real physical control problems which may make the

system convergence and the system performance out of con-

trol. Therefore, the new deterministic Q-SLP algorithm for

an uncertain nonlinear system with time-varying delay can

be investigated in future research work.
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