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Piecewise Affine System Identification of a

Hydraulic Wind Power Transfer System
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Abstract— Hydraulic wind power transfer systems exhibit
a highly nonlinear dynamic influenced by system actuator
hysteresis and disturbances from wind speed and load torque.
This paper presents a system identification approach to
approximate such a nonlinear dynamic. Piecewise affine (PWA)
models are obtained utilizing the averaged nonlinear models of
hysteresis in a confined space. State-space representation of PWA
models is obtained over the allocated operating point clusters.
The experimental results demonstrate a close agreement with
that of the simulated. The experimental results and simulation
show more than 91% match.

Index Terms— Hydraulic wind power systems, nonlinear
systems, piecewise affine (PWA) models, system identification.

I. INTRODUCTION

C
ONVENTIONALLY, wind turbines utilize gearboxes to

transmit low-speed high-torque energy from blades to the

generator. This system configuration can be improved as the

cost of gearbox accounts for up to 34% of wind turbine. It also

needs several overhauls and may need to be replaced several

times in a 20-year lifespan of a wind turbine. Therefore,

alternative replacements can be used to transfer the energy in

the form of pressurized fluid such as hydraulic transmission.

In this method, kinetic energy of the turbine is converted to a

hydraulic pressurized fluid at the pump to transfer the energy

to the generator on ground level [1], [2].

To reach the desired operating objectives from a hydraulic

transmission system, the system needs to be controlled appro-

priately [3]. The speed control of hydraulic wind power

systems is challenging, since it is a nonlinear system under

random disturbances such as wind speed [4] and load torque.

The nonlinearities in such a system are originated from nonlin-

ear behavior of components, such as check valves, directional

valves, and more importantly, the proportional valve. These

nonlinearities will cause behavioral changes and variations

in the system. Therefore, the speed control of the system

would require an in-depth modeling. The controller’s structure

and performance depend on the accuracy of state variable

approximation while the system is influenced by large input
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variations in a wide operating range. Proper controllers can be

designed using the linearized models [5], [6].

Implementing a flawless control loop for nonlinear systems

with a wide range of operating points requires sufficient

knowledge about the system dynamic by either mathematical

modeling or system identification as well as information

about all states. One of the promising ways to address those

needs is to approximate the nonlinear system with piecewise

affine (PWA) system. This method provides a number of

linear models, each of which describes the nonlinear system

in a specific operating region or cluster. A comprehensive

model can be obtained utilizing a switching rule among

the linearized models [7]–[11]. An estimation of the system

state variables can also be carried out using a bank

of linear models in multiple model adaptive estimation

scheme [12], [13].

In addition, control of complex, nonlinear, and time-variant

systems may need a bank of linearized models represent-

ing the system over a wide range of operating points. For

instance, in multiple model adaptive controllers, a bank of

candidate linearized models is designed to be used by the

control structure [14]–[16]. A supervisory controller selects

the most appropriate model or a linear combination of models

to generate the control command. For each model, a suitable

controller can be designed offline.

The precision of piecewise linear models selected in the

bank of models directly influences the approximation,

estimation, and control robustness [16]–[20]. The model

bank can be obtained by: 1) piecewise linearization of

nonlinear mathematical models [21] and 2) PWA system

identification [22].

Considering the mentioned drawbacks of conventional wind

turbines, several research projects are being conducted to

improve the efficiency of hydraulic wind power transfer

system (HWPTS) technology. There are several challenges

regarding this new technology such as stability analysis,

control system design, and efficiency analysis. Mathematical

modeling is the primary approach to study the dynamic

behavior of the system. This can be carried out by either

utilizing the governing equations of the system component or

system identification.

Nonlinear mathematical modeling of HWPTSs, using

governing equations of system components, was introduced

in the literature. References [23] and [24] provide the linear

model of an HWPTS without the use of proportional valve.

The nonlinear model of HWPTS including a proportional valve

is derived in [25] using nonlinear state-space representation.
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In [26] a pressure loss model is introduced and added to

the HWPTS model to address the transmission efficiency.

In addition, the more detailed nonlinear mathematical model

of HWPTS is provided in [27] and [28] with experimental

verification.

System identification method is another promising way

to derive the mathematical model in various engineering

fields [29]–[32]. Similarly, wind turbine’s dynamics can be

identified by utilizing system identification methods.

Van der Veen et al. [33] proposed a methodology to

obtain a nonlinear data-driven model of a wind turbine.

The electromechanical components of wind turbines can be

identified and modeled as well [34]. In addition, a closed-loop

method is employed to identify wind turbine’s model utilizing

predictor-based system identification [35]. Finally, [36]

applies two different system identification methods on a wind

turbine to extract modal information at different operational

conditions through experimental modal analysis in which

input/output signals were measured and through operational

modal analysis in which only output signals were measured.

In this paper, the nonlinear model of HWPTSs that operate

on a wide range is linearized to construct the model bank. This

enables an accurate estimation of a highly nonlinear system

for more effective modeling and control techniques. This paper

also identifies proper operating points to obtain accurate PWA

model candidates. The experimental results are used to verify

the modeling performance and validate the simulation results.

This paper is organized as follows. A hydraulic wind

power system and its nonlinear components are discussed

in Section II. Mathematical modeling of the hydraulic wind

power system is introduced in Section III. Section IV is on

PWA system identification. Finally, validations and the results

are presented in Section V.

II. HYDRAULIC WIND POWER SYSTEM OPERATION

The HWPTS comprises various parts such as hydraulic

pumps and motors, proportional valves, check valves, and

pressure relief valves. This configuration uses a fixed displace-

ment pump driven by the prime mover (wind turbine) and one

or more fixed displacement hydraulic motors to convert the

transmitted power. The hydraulic pump converts the mechan-

ical input energy into pressurized fluid. Then, hydraulic hoses

and steel pipes are used to transfer the harvested energy to the

hydraulic motors [37].

A schematic of a hydraulic transmission system of wind

energy is shown in Fig. 1. As the figure demonstrates,

a fixed displacement pump is mechanically coupled with the

wind turbine and supplies pressurized hydraulic fluid to two

fixed displacement hydraulic motors: 1) main and 2) auxiliary.

The hydraulic motors are coupled with electric generators to

produce electric power in a central power generation unit.

Since the wind turbine generates a large amount of torque

at a relatively low angular velocity, a large displacement

hydraulic pump is required to flow a large volume of the

high-pressure hydraulics to transfer the power to the

generators. The pump might also be equipped with a

fixed internal speedup mechanism. Flexible high-pressure

Fig. 1. Schematic of the high-pressure hydraulic power transfer system. The
hydraulic pump is a distance from the central generation unit.

Fig. 2. Experimental setup of the HWPTS. Energy Systems and Power
Electronics Laboratory, Purdue School of Engineering and Technology.

pipes/hoses connect the pump to the piping toward the central

generation unit [2].

In this configuration, the pressure relief valves are

considered to protect the system components from destructive

impact of localized high-pressure fluids. In addition, check

valves force the hydraulic flow to be unidirectional. Finally,

the proportional valve distributes a controlled amount of flow

to each hydraulic motor to be converted to the electrical power

by the generators.

Consequently, the hydraulic wind power transmission

systems receive pump speed and valve position as input

variables. These two input variables generate a large operating

area. Fig. 2 shows the experimental setup as a test bed in the

Energy Systems and Power Electronics Laboratory. The test

bed includes two electric motors to emulate wind turbines. One

is a 3/4-hp dc motor run by a controllable rectifier, and one is a

2-hp ac motor controlled by an inverter. The generation side of

the setup is equipped with two hydraulic motors, which can be

separately controlled through a proportional valve. The valve is

designed to switch 5 gallon/min of fluid instantaneously. Two

induction generators are used to generate electric power from

the wind transfer system. One induction motor of 1.5 hp and

another one rated at 1/2-hp single phase. The electric load

consists of a set of excitation capacitors and electric loads

of steps 50 and 100 W. The parameters of the test bed are

listed in Table I. The hydraulic circuit components have been
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TABLE I

LIST OF EXPERIMENTAL PROTOTYPE PARAMETERS

designed according to the fluid power principles. The system

parameters such as damping, inertia, and leakage coefficients

have been obtained through standard experiments on the setup

after the system assembly. To record the system response, the

prototype was forced to a wide range of operating points. This

test bed was used to record data and validate the proposed

mathematical models.

The next section introduces the governing equations of the

hydraulic circuit.

III. MATHEMATICAL MODELING AND

PROBLEM DEFINITION

The state-space representation of the hydraulic wind power

system can be derived by considering the integrated

configuration of the hydraulic components, such as pumps,

proportional valves, and check valves. The nonlinear model

of hydraulic circuit components [38], [39] and the nonlin-

ear state-space representation of the hydraulic wind energy

transfer are introduced in [23]–[28]. Considering dynamics

of each hydraulic component, governing equations of flow

and torque are derived. Those equations are used to represent

the hydraulic transmission system in the form of nonlinear

state-space equations. The representation of the system model

with energy-storing state variables defined in vector x can be

obtained as follows:

x = [ Pp PmA PmB ωmA ωmB ]T (1)

where the Pp is the pump pressure, PmA is the main motor

inlet pressure, PmB is the auxiliary motor inlet pressure,

ωmA is the main motor, and ωmB is the auxiliary motor

speed. The input vector is defined as U = [hi ωp]T with

hi being the valve position and ωp being the pump speed.

Nonlinear state-space model of the system is represented as
{

ẋ = f (x) + g(x)U

y = h(x)
(2)

where the functions f (x) and g(x) are defined as follows [27]:
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Table I defines some symbols used in (3) and (4). Other

symbols such as CD , V , Amax, and hmax are discharge

coefficient, fluid volume, outlet maximum surface, and spool

maximum traveling, respectively.

As it can be observed from these equations, the model is

highly nonlinear as a result of nonlinear components such

as proportional valve. The proportional valve consists of one

inlet and two outlet orifices and a spool that changes the flow

passage area of the outlet orifices. The fluid enters the valve,

and based on the position of spool, the flow is distributed

between two outlets: 1) main and 2) auxiliary. The spool

is displaced by applying current to its coil. The spool-coil

valve control mechanism shows a large amount of hysteresis.

Since the generator runs under electric load at synchronous

speed, a constant speed of the hydraulic motor coupled with

the generator is required to be maintained. However, hydraulic

wind power systems are susceptible to intermittent wind speed

and range of control commands (to proportional valve). For

maintaining the flow rate specifically for the main motor,

the proportional valve must adjust the spool displacement to

compensate for disturbances. Wind speed variation changes the

pump speed since it is connected to the turbine. Consequently,

the amount of flow enters to the valve inlet varies. The

variation of inlet flow affects the outlet flow so that the valve

has to adjust the orifice to compensate for this disturbance.

Hence, the rotational speed of motor can be controlled by

utilizing a proportional valve. As mentioned earlier, operation

of such a valve imposes nonlinearities in the system dynamics.

For the purpose of system analysis or a desired state control,

a well-developed PWA model can be obtained and utilized.

However, this requires that the linearized system represents
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the nonlinear behavior of the system with a limited error on

a large domain [40]. These types of nonlinear systems with a

wide range of operating points are usually represented using

multiple linear models for the whole system.

The technique used in this paper is to identify a local linear

model for desired operating points. PWA system is therefore

developed to cover the entire operating conditions. Each model

should satisfactorily describe the plant in a specific domain.

Each linear model will have an effective range, in which the

system generates minimum deviation from the original plant.

Out of this domain, the model’s performance is reduced, hence

a new plant with shifted operating conditions is required.

The number of models in PWA systems highly affects the

stability of the modeling and control as well as the amount of

computations. This variable is often determined by the range

of disturbances on the system.

IV. PIECEWISE AFFINE SYSTEM IDENTIFICATION

PWA systems are those whose state and input space is

partitioned into a finite number of nonoverlapping convex

polyhedral regions and whose individual subsystem in the

different regions is linear or affine [41]–[43]. If the subsystem

in each region displays an ARX (autoregressive systems with

exogenous inputs) type of input output characteristics, then

the system is called PWA ARX (PWARX) system [42], [43].

A growing interest in the study of PWA systems has been

witnessed over the past decades because they are equivalent to

several classes of hybrid models [44]. Thus, they can be used

to obtain hybrid models from data. Typical examples of hybrid

systems include manufacturing systems, telecommunication

networks, traffic control systems, digital circuits, and logistic

systems [45]. Another advantage of PWA models is that they

can be used to approximate nonlinear dynamical systems

by switching among several linear/affine models, depending

on the operating regions [17]. Therefore, they can be used

for a simpler controller design of nonlinear system—linear

controllers for the linear subsystems can be first designed

according to any of the well-known linear control synthesis

methods. Then, based on the operating region of the nonlinear

system, the controllers would switch from one to another.

A switching system in regression form can be described [46]

as follows:

yk = ϕ′
kθσ(k) (5)

where ϕk ∈ R
d is the regression vector, (·)′ denotes transpose,

yk ∈ R is the output, σ(k) ∈ {1, . . . , s} is the discrete mode,

and s is the number of subsystems. θi ∈ R
d , i = 1, . . . , s, are

the parameter vectors defining each subsystem.

The regression vector ϕk could, for instance, be any function

of the past inputs and outputs. In the following, the focus will

be on systems (5), where ϕk is formed:

ϕk = [yk−1 . . . yk−na u′
k−1 . . . u′

k−nb
1]′ (6)

and uk ∈ R
p is the input to the system. Such systems represent

a subclass of the PWA systems in state-space form, and can be

easily transformed into that form by defining the state vector

as

xk = [yk−1 . . . yk−na u′
k−1 . . . u′

k−nb
]′. (7)

The last entry of ϕk is set equal to 1 in order to allow

for a constant term in (5). If the constant 1 is omitted in (6),

ϕk coincides with xk , and the system becomes piecewise linear.

In the following, the vector xk will be referred to as the

standard regression vector, and ϕk will be called the extended

regression vector, since it can be written as ϕk = [x ′
k 1]′.

As for the systems in state-space form, the evolution of the

discrete mode σk can be described in a variety of ways.

In PWARX systems, the switching mechanism is determined

by a polyhedral partition of the set χ ⊆ R
n , where (5) is valid.

The discrete mode σ(k) can be defined as

σ(k) = i if xk ∈ χi , i = 1, . . . , s (8)

where {χi }
s
i=1 is a complete partition of the regressor set χ, and

each region χi is a convex polyhedron represented as follows:

χi = {x ∈ R
n |H i x + gi ≤ 0} (9)

with H i ∈ R
qi×n and gi ∈ R

qi , i = 1, . . . , s. By letting

Hi = [H i gi ], i = 1, . . . , s, and by introducing the PWA map,

f : χ → R can be written as

f (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ′
kθ1 if H1ϕ ≤ 0,

...
...

ϕ′
kθs if Hsϕ ≤ 0.

ϕ = [ x ′ 1 ]′ (10)

Equation (5) can be alternatively rewritten as follows:

yk = f (xk). (11)

PWARX systems defined by (7), (10), and (11) can be

considered as a collection of ARX systems connected by

switches that are determined by a polyhedral partition of the

regressor set.

PWA system identification concerns obtaining a PWA model

of a system from the experimental data. PWA models repre-

sent an attractive model structure for identification purposes,

since they are the simplest extension of linear models but

can nevertheless describe nonlinear processes with arbitrary

accuracy. PWA models are also capable of handling hybrid

phenomena. Given the equivalence between PWA systems and

several classes of hybrid, PWA identification techniques can

be used to obtain hybrid models.

PWARX models are suitable for input–output data analysis,

since they provide an input–output description of PWA

systems. Consider a collection D data points out of N data

points from the real system as follows:

D = {(yk, xk), k = 1, . . . , N} (12)

where yk ∈ R is the measured output of the system and

xk ∈ R
n is the regression vector (7) for fixed orders na and nb.

A PWARX model is defined as follows:

yk = f (xk) + εk (13)

where εk ∈ R is an error term and f is the PWA

map (10).

The considered identification problem consists in finding the

PWARX model that best matches the given data according to

a specified fitting criterion. It involves the estimation of the

following [46].
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1) Segmentation:

a) the number of discrete modes s;

b) the coefficients Hi = 1, . . . , s, of the hyperplanes

defining the partition of the regressor set.

2) Regression:

a) the order of submodels, na and nb;

b) the parameters θi = 1, . . . , s, of the affine

submodels.

This issue also underlies a classification problem such

that each data point is associated to one region and to the

corresponding submodel. The simultaneous optimal estimation

of all the above-mentioned quantities is hard and a computa-

tionally intractable problem. To the best of our knowledge, no

satisfactory formulation in the form of a single optimization

problem has been provided. One of the main difficulties is

the choice of the number of discrete modes s. For instance, if

a perfect fit is attained by s = N , it means one submodel

is required per data point, which is clearly an inadequate

solution. Constraints on s must hence be introduced to keep the

number of submodels minimal and to avoid overfit. Heuristic

and suboptimal approaches that are applicable, or at least

related to the identification of PWARX models, have been

proposed in the literature. Most of these approaches either

assume a fixed s or adjust s iteratively (e.g., by adding one

submodel at a time) to improve the fit [46].

V. HYDRAULIC WIND POWER SYSTEM

IDENTIFICATION AND RESULTS

Considering various disturbances in the nonlinear model of

hydraulic wind power system, operating point regions of such

a system are remarkably wide. Therefore, describing the whole

system linearly requires multiple linear models. As mentioned

earlier, one can linearize the nonlinear mathematical model

in different operating points to obtain the linear models.

However, this method requires enough knowledge about the

best operating points of the model, which is really challenging

for a wide range of operating systems such as hydraulic wind

power systems [6]. Another promising method in control

system applications is PWA system identification. This

approach searches for the best linear regions as well as

estimation of model parameters, which advances the linear

modeling of hydraulic wind power system.

To begin with the piecewise system identification approach,

the operating points of the system must be determined.

Different inputs to the system specify different operating

points [47]. Thus, the range of each input variation is

important. In the HWPTSs, the wind speed as an input is

a highly varying parameter. To compensate for this variation,

the control system adjusts the valve position to maintain a

constant generator speed under wind speed and electric load

variations. In our experimental setup, wind speed as one of

the factors to determine the operating points varies from

200 to 1000 r/min. The other input, valve position, is directly

related to the applied voltage, which ranges from 1.2 to 3.8 V.

Each combination of these values would result in a different

operating point. However, a partial group of these operating

points can be included in the domain of a single linear model.

The mathematical model shows a system with five state

variables and two inputs. One of the inputs is determined

by wind speed, and the other is to maintain a fixed speed

generator. Therefore, the output of the system is selected to

be the generator speed.

Therefore, the problem of a PWA system identification for

a five-state two-input hydraulic wind power system reduces to

a multi-input single-output system identification, which is also

graphically representable.

A. Hysteresis Compensation on Data Recording

As mentioned earlier, the proportional valve consists of one

inlet and two outlet orifices and a spool that changes the flow

passage area of the outlet orifices. The governing equation of

flow rate for each outlet is obtained in (14), which relates the

pressure differential across an orifice and the passage area to

the flow rate. Flow rate passing an orifice is obtained as

Q = CD A

√

2
P

ρ
(14)

where A is the orifice area, which is determined by applied

voltage, and 
P is the pressure differential across the orifice.

CD and ρ are the discharge coefficient and the fluid density,

respectively.

In the proportional valve, the hysteresis band is the widest

separation observed on the spool displacement when the coil

current is uniformly increasing from when it is uniformly

decreasing. In other words, hysteresis is the difference between

the valve position on the upstroke and its position on the down

stroke at any given input signal. To analyze this nonlinearity,

steady-state response of the system in all operating points is

experimentally derived for both increasing valve voltage and

decreasing valve voltage.

In the first experiment, at different pump speeds, the pro-

portional valve is gradually opening to speed up the primary

hydraulic motor. In the second experiment, the proportional

valve is gradually closing to slow down the primary hydraulic

motor. During this process, the primary hydraulic motor’s

angular velocity is being monitored along with the valve’s

applied voltage. Analyzing the motor speed and compar-

ing with valve voltage resulted in two separate velocity

envelopes suggesting the existence of a hysteresis. Fig. 3

shows the behavior of the system in each case. In addition, the

normalized difference between surfaces in Fig. 3 is shown

in Fig. 4.

To compensate for this multivalued nonlinearity, an averag-

ing method can be utilized. An average of those two surfaces

(shown in Fig. 3) can provide more reliable data for system

identification. This averaged surface is shown in Fig. 5.

B. Segmentation

In a practical sense, finding a balance between the number

of model partitions and the overall accuracy of the estimation

is of interest. To explore this relationship, different methods of

partitioning are introduced, such as average [48], z-score [49],

and k-means [50]. The average method considers all observed
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Fig. 3. Experimental steady-state system response in all operating points for
increasing valve voltage and decreasing valve voltage (2187 data points).

Fig. 4. Normalized difference between increasing valve system response and
decreasing valve system response.

Fig. 5. Averaged steady-state response of the system in all operating points.

data in one region, and thus identifies one affine model for

the entire system. This approach is the base for a dynamical

system. The z-score method divides the observations into two

partitions based on the empirical likelihood of the observation.

Finally, k-means clustering aims to partition n observations

into k clusters in which each observation belongs to the cluster

with the nearest mean value. In addition, some advanced meth-

ods optimize the segmentation stage simultaneously with other

system identification stages such as regressor estimation [22].

Fig. 6. All three submodels of the system derived from steady-state response.

Fig. 7. Fitted space line and its projection on xy plane. All three clusters
of the operating points.

For convenience, heuristic approach is employed in this

paper based on system’s steady-state response surface. Careful

consideration of the averaged surface in Fig. 5, it can be con-

cluded that three linear submodels can reasonably approximate

the nonlinear system. This observation determines the number

of discrete modes s = 3. Fig. 6 shows these submodels.

The next step is segmentation, which is looking for the

coefficients Hi = 1, . . . , s, of the hyperplanes defining the

partition of the regressor set. Averaged surface in Fig. 5

embodies a fracture, which can be described by a space line

using two data points on a narrow band. Considering two

operating points (2.95, 328, 489.5) and (1.8, 904, 1566), the

space line equation can be derived as follows:

Valve Voltage (hi ) = 1.25t + 1.75

Pump Speed (ωp) = −608t + 904

Motor A Speed (ωmA) = −1149t + 1572. (15)

Projection of this space line on the xy plane results in

Hi coefficients, which is used for partitioning of submodels

described as follows:

ωp = −486.41hi + 1755.2. (16)

Fig. 7 shows the fitted space line and its projection on the

xy plane. In addition, the valve voltages higher than 3.5 V

specify the third cluster, which is shown as red solid line

in Fig. 7.
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C. Regression

Studying the nonlinear mathematical model of the proposed

hydraulic wind power system specifies the order of the

submodels. This system contains five poles and three zeros,

which determines na = 5 and nb = 4.

Once the data (operating points) are segmented, the

dynamics of each region of the observed data is estimated

using least-square technique. Here, the aim is to classify the

data points into clusters and to estimate an affine submodel for

each cluster. Assuming that N data points (yk, xk) are given,

with yk ∈ R and xk ∈ R
n, k = 1, . . . , N , for a fixed s, the

considered problem can be formulated as follows [46]:

λki =

{

1 if xk ∈ χi

0 otherwise
k = 1, . . . , N, i =, . . . , s

min
θi

1

N

N
∑

k=1

s
∑

i=1

(yk − ϕ′
kθi )

2λki . (17)

Solving (17) for θi s will result in submodels as follows:

ωmA(k) = 0.3333ωmA(k − 1) + 0.3333ωmA(k − 2)

+ 0.3333ωmA(k − 3) − 6.177ωmA(k − 4)

+ 1.666ωmA(k − 5) − 22.25hi(k)

+ 7.417hi(k − 1) + 7.417hi(k − 2)

+ 7.417hi(k − 3) + 1.769ωp(k)

− 0.5897ωp(k − 1) − 0.5897ωp(k − 2)

− 0.5897ωp(k − 3)

if ωp ≪ −486.41hi + 1755.2

ωmA(k) = 0.3333ωmA(k − 1) + 0.3333ωmA(k − 2)

+ 0.3333ωmA(k − 3) + 1.722ωmA(k − 4)

− 8.598ωmA(k − 5) − 896hi(k)

+ 298.7hi(k − 1) + 298.7hi(k − 2)

+ 298.7hi(k − 3) + 0.0178ωp(k)

− 0.005933ωp(k − 1) − 0.005933ωp(k − 2)

− 0.005933ωp(k − 3)

if ωp ≥ −486.41hi + 1755.2

ωmA(k) = 0 if hi ≥ 3.5. (18)

D. Validation and Experimental Results

Obtaining submodels of the nonlinear system (18) and

their region of operation, a PWA system with switching

rule can be implemented. To verify the performance of the

identified model, several experiments have been carried out

using different input profiles at the experimental prototype.

Then, the experimentally recorded input profiles were applied

to the PWA system and the results were compared. Figs. 8–11

show the comparisons of the results. As the system had two

input variables, four cases were considered. In case 1, a fixed

valve voltage was applied. In case 2, a step valve voltage was

considered. In case 3, a triangle valve voltage was applied,

and in case 4, a sinusoidal valve voltage and a pump speed

variation were applied to mimic the practical wind speed and

valve voltage.

Fig. 8. (a) Inputs to the setup and model (constant, step). (b) Comparison
of setup output and model.

Fig. 9. (a) Inputs to the setup and model (step, step). (b) Comparison of
setup output and model.

In Fig. 8(a), the valve position is fixed and a step pump

speed disturbance is applied to the system. Fig. 8(b) shows

the experimental and the model output. As it can be observed,

piecewise linear model matched the experimental results

accurately.
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Fig. 10. (a) Inputs to the setup and model (ramp, ramp). (b) Comparison of
setup output and model.

Fig. 11. (a) Inputs to the setup and model (sinusoidal, step). (b) Comparison
of setup output and model.

For the second experiment (Fig. 9), a step valve position

profile is applied to the system, which ranges from fully

open to fully close. As the system load changed, the speed

droop caused a slight speed drop at the pump. As it can

be demonstrated from the figure, the proposed model output

matched the experiment at 92% accuracy.

To evaluate the effect of model averaging and analyze the

performance of the proposed modeling, a triangle valve voltage

was applied to the valve. The voltage uniformly increased

from 1.5 to 3.5 V and then uniformly decreased to 1.5 V.

Fig. 10 shows the valve input excitation voltage. In this case,

the valve experienced an operation cycle as a gradual closing

from fully open to fully closed and to fully open position. As a

result [shown in Fig. 10(a)], the pump speed dropped from

600 to around 500 r/min, and then increased to 600 r/min.

The motor A speed followed the same pattern and decreased

from 1000 to 200 r/min, and then increased to 1000 r/min.

The simulation results closely follow the experimental results

and validate the approach taken to model the surfaces and

the switching logic. A 93% match was observed from the

mathematical modeling and experimental results. A slight

deviation in the model output was observed when the valve

started moving from fully closed position toward fully open.

Finally, in case 3, both input variables were strongly

varying. Fig. 11 shows each of the applied inputs. A sinusoidal

voltage variation for valve voltage command and step

speed variations for wind turbine were considered.

Output comparison of the experiment and the simulation

shows a close match with an accuracy of 91%. Discrepancies

occurred in transients were the result of nonideal affine

parameter estimation.

It can be observed that the PWA system described a

highly nonlinear dynamic of a hydraulic wind power transfer.

The experimental results on different operating points and

transients verified the mathematical modeling approach pro-

posed through PWA systems. Figs. 8–11 show the accuracy

of the model, which was above %91 match. The proposed

piecewise system identification of the HWPTS validated the

proposed approach to address the need for system modeling.

The actual HWPTSs employed more hydraulic components,

which increased the nonlinearities and complicated the

modeling procedure. However, due to the beneficial properties

of system identification method, the proposed approach was

generalized to the actual HWPTS.

VI. CONCLUSION

PWA system identification of a hydraulic wind power

system was presented in this paper. Hysteresis in the propor-

tional valve was compensated using averaging method on the

response of the system on different operating points. A graphi-

cal approach of nonlinear system modeling was presented and

found to be an effective modeling tool. Experimentally derived

submodels described the nonlinear systems.
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