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	e requirements for interpolation of scattered data are high accuracy and high e
ciency. In this paper, a piecewise bivariate
Hermite interpolant satisfying these requirements is proposed. We �rstly construct a triangulation mesh using the given scattered
point set. Based on this mesh, the computational point (�, �) is divided into two types: interior point and exterior point. 	e value
of Hermite interpolation polynomial on a triangle will be used as the approximate value if point (�, �) is an interior point, while
the value of a Hermite interpolation function with the form of weighted combination will be used if it is an exterior point. Hermite
interpolation needs the �rst-order derivatives of the interpolated function which is not directly given in scatted data, so this paper
also gives the approximate derivative at every scatted point using local radial basis function interpolation. And numerical tests
indicate that the proposed piecewise bivariate Hermite interpolations are economic and have good approximation capacity.

1. Introduction

	e approximation to higher dimensional scattered data
is one of the hot and di
cult problems in approximation
theory �eld. Due to the characteristics of scattered data, such
as the large amount, irregularity, and high dimensionality,
it is di
cult to construct the approximation methods for
them. However, the approximation method to scattered data
has been widely applied in many �elds, that is, estimat-
ing the parameter of input nonlinear system [1–3], solv-
ing partial di�erential equations, surface reconstruction in
reverse engineering, data visualization, and so on. 	e most
frequently-used approximation methods include interpola-
tion by spline, interpolation by radial basis function, and
the least square approximation. 	e interpolations by spline
have two types, which are global interpolation and local
interpolation, respectively. 	e global spline interpolation
[4] is not able to deal with large scale of scattered data,
while the local spline interpolation [5–7] needs smooth
joining between piece and piece. 	e radial basis function
interpolation [8, 9] requires solving a large scale of linear

system, and the least square approximation [10, 11] also
requires solving a certain scale of linear system. 	is is a
problem that doesnot easily work out in the computation. It
is well known that Hermite interpolation has higher approx-
imation accuracy than interpolation that only interpolates
function values. 	is is because it interpolates not only the
function value, but also the derivative value. However, how
to construct multivariate Hermite interpolation for large
sets of scattered data is an important research consideration
which is also a di
cult task. At present, some results have
been published [12–14]; however, these methods all require
solving a certain scale of linear system. 	erefore, they are
not suitable for approximating to large scale of scattered
data.

	is paper proposes two piecewise bivariate Hermite
interpolation methods for large sets of scattered data. One
of them uses exact derivative in Hermite interpolation,
and the other one does the approximate derivative. Both
methods are economic, free us from solving any linear
systems, and have better approximation capacity. 	erefore,
they are especially suitable for the approximation to large
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Figure 1: Interpolation triangle �123.
sets of scattered data. 	ese interpolation methods �rstly use
Delaunay triangulation method [15] to make a triangulation
mesh based on the given scattered point set and then divide
the computational point (�, �) into two types of interior
point and exterior outer point. If point (�, �) is an interior
point, then the value of the Hermite interpolation function
on the triangle which point (�, �) lies on is regarded as
the approximate value of the approximated function, while
if point (�, �) is an exterior point, then the value of a
Hermite interpolation with a form of weighted combination
is regarded as the approximate value. Hermite interpolation
needs the �rst-order derivatives of the interpolated function;
however, the derivative information is not directly given at
scatted data, so this paper gives the approximate derivative
at every scatted point by using local radial basis function
interpolation.

	e structure of this paper is organised as follows. 	e
Hermite interpolation on triangle is presented in Section 2.
	e construction of piecewise bivariate Hermite interpo-
lation is presented in Section 3. 	e estimation of partial
derivative at every scattered point by local radial basis func-
tion interpolation is presented in Section 4. Some numerical
tests and comparisons between constructed schemes and
other interpolation schemes in accuracy and e
ciency are
carried out in Section 5. 	is paper ends with a section of
brief conclusion.

2. Hermite Interpolation Based on Triangle

Given the values and partial derivatives of a bivariate function�(�, �) at three vertices (��, ��), � = 1, 2, 3 of a triangle �123
(their vertices 1, 2, 3 are arranged counter to clockwise), that
is, ��, (��)�, (��)�, � = 1, 2, 3 (see Figure 1). A bivariate Her-
mite interpolation polynomial�123(�, �) is to be constructed
satisfying the following interpolation conditions:

�123 (��, ��) = ��, 
�123
� (��, ��) = (��)�,
�123
� (��, ��) = (��)�, � = 1, 2, 3. (1)

In order to infer the expression of Hermite interpolation
from interpolation conditions (1), the barycenter coordinate
of a triangle needs to be introduced �rst. It is assumed
that (�, �) is a point on triangle �123 and its barycentric

coordinates is denoted as (�1, �2, �3).	en the relation between
its cartesian coordinates and barycentric coordinates is

�1 = (�2�3 − �3�2) + (�2 − �3) � + (�3 − �2) �2� ,
�2 = (�3�1 − �1�3) + (�3 − �1) � + (�1 − �3) �2� ,
�3 = (�1�2 − �2�1) + (�1 − �2) � + (�2 − �1) �2� ,�1 + �2 + �3 = 1, �1, �2, �3 ≥ 0,� = �1�1 + �2�2 + �3�3,� = �1�1 + �2�2 + �3�3,

(2)

where � is the area of the triangle �123 and
� = ������������

1 �1 �11 �2 �21 �3 �3
������������ . (3)

Making use of transformation (2), the interpolation con-
ditions (1) can be changed into the following form under
barycentric coordinates:

�123 (1, 0) = �1, �123 (0, 1) = �2,�123 (0, 0) = �3,
�123
�1 (1, 0) = (�1 − �3) (��)1 + (�1 − �3) (��)1,
�123
�1 (0, 1) = (�1 − �3) (��)2 + (�1 − �3) (��)2,
�123
�1 (0, 0) = (�1 − �3) (��)3 + (�1 − �3) (��)3,
�123
�2 (1, 0) = (�2 − �3) (��)1 + (�2 − �3) (��)1,
�123
�2 (0, 1) = (�2 − �3) (��)2 + (�2 − �3) (��)2,
�123
�2 (0, 0) = (�2 − �3) (��)3 + (�2 − �3) (��)3.

(4)

A complete bivariate polynomial of three degrees�3(�, �) = ∑3�+�=0 ������� has ten undetermined coe
cients.

Under barycentric coordinate its expression is

�3 (�, �) = �1�31 + �2�32 + �3�33 + �4�21�2 + �5�21�3+ �6�22�1 + �7�22�3 + �8�23�1 + �9�23�2 + �10�1�2�3. (5)
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Figure 2: 	e exhibition of interior and exterior points.

Since the Hermite interpolation conditions (1) or (4) only
provide 9 conditions, we construct a Hermite interpolation
polynomial with nine coe
cients

�� (�1, �2)= �1�31 + �2�32 + �3�33 + �4�21�2 + �5�21�3 + �6�22�1+ �7�22�3 + �8�23�1 + �9�23�2 + 0.5 (�7 + �8 + �9) �1�2�3, (6)

which meets interpolation condition (4). 	en the values of
the coe
cients in formula (6) can be obtained:

�1 = �1, �2 = �2, �3 = �3,�4 = 3�1 − 
�123
�1 (1, 0) + 
�123
�2 (1, 0) ,�5 = 3�1 − 
�123
�1 (1, 0) ,�6 = 3�2 − 
�123
�2 (0, 1) + 
�123
�1 (0, 1) ,�7 = 3�2 − 
�123
�2 (0, 1) ,�8 = 3�3 + 
�123
�1 (0, 0) ,�9 = 3�3 + 
�123
�2 (0, 0) .

(7)

Combining (4), (6), and (7), the Hermite interpolation
polynomial satisfying (4) can be written as

�123 (�, �)
= 3∑
�=1
[�� (�, �) �� + �� (�, �) (��)� + �� (�, �) (��)�] , (8)

where �1 (�, �) = �31 + 3�2�21 + 3�3�21 + 2�1�2�3,�2 (�, �) = �32 + 3�1�22 + 3�3�22 + 2�1�2�3,�3 (�, �) = �33 + 3�12�23 + 3�2�23 + 2�1�2�3,�1 = (�2 − �1) (�21�2 + 0.5�1�2�3)+ (�3 − �1) (�21�3 + 0.5�1�2�3) ,�2 = (�1 − �2) (�22�1 + 0.5�1�2�3)+ (�3 − �2) (�22�3 + 0.5�1�2�3) ,�3 = (�1 − �3) (�23�1 + 0.5�1�2�3)+ (�2 − �3) (�23�2 + 0.5�1�2�3) ,�1 = (�2 − �1) (�21�2 + 0.5�1�2�3)+ (�3 − �1) (�21�3 + 0.5�1�2�3) ,�2 = (�1 − �2) (�22�1 + 0.5�1�2�3)+ (�3 − �2) (�22�3 + 0.5�1�2�3) ,�3 = (�1 − �3) (�23�1 + 0.5�1�2�3)+ (�2 − �3) (�23�2 + 0.5�1�2�3) .

(9)

3. Bivariate Piecewise Hermite Interpolation
for Large Sets of Scattered Data

Given a set of scattered data {(��, ��, ��)}��=1 ⊂ �3, which
are assumed to be sampled from a function�(�, �),(�, �) ∈Ω. 	e partial derivatives of �(�, �) at the set of points{(��, ��)}��=1 ⊂ Ω ⊂ �2 are given as (��)�, (��)�, � = 1, . . . ,  .

Taking the scattered points as nodes, a triangulationmesh,�, is constructed in domain Ω using Delaunay triangulation

method. If point (�, �) ∈ Ω ⊂ �2 lies on a triangle of�, it is called as an interior point, otherwise, an exterior
point. For example, points !1, !2 in Figure 2 are interior
points, while point !3 is an exterior point. Next we will give
the approximate value !�(�, �) of �(�, �) according to the
category of point (�, �).
3.1. Interior Point. Suppose that point (�, �) lies on a triangle���	 ⊂ � whose vertices are (��, ��), (��, ��), (�	, �	). We now
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Figure 3: 	e local radial basis interpolation point set "� around point #�, (a) #� is a boundary point of � and (b) #� is an interior node
point of �.
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Figure 4: 300 scattered points randomly selected in [0, 1] × [0, 1].
construct a Hermite interpolation polynomial as (8) on
triangle ���	 satisfying the following conditions:

���	 (��, ��) = ��, 
���	
� (��, ��) = (��)�,
���	
� (��, ��) = (��)�, ���	 (��, ��) = ��,
���	
� (��, ��) = (��)�, 
���	
� (��, ��) = (��)�,
���	 (�	, �	) = �	, 
���	
� (�	, �	) = (��)	,
���	
� (�	, �	) = (��)	.

(10)

	en let !�(�, �) = ���	(�, �), so that !�(�, �) ≈ �(�, �).
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Figure 5: Delaunay triangulation based on Figure 4.
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Figure 6: 	e graph of Franke function.
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3.2. Exterior Point. When point (�, �) doesnot belong to any
triangle within�, we construct the following formofHermite
interpolation:

!� (�, �) = �∑
�=1
%� (�, �)��,� (�, �) , (11)

satisfying interpolation conditions

!� (��, ��) = ��, 
!�
� (��, ��) = (��)�,
!�
� (��, ��) = (��)�, � = 1, 2, . . . ,  . (12)

In this paper, we take ��,�(�, �) as a Hermite interpo-
lation polynomial with the same form of (8) on triangle���	 with the least area among all triangles with vertex(��, ��), satisfying interpolation conditions (10). ��,�(�, �)
is called as node basis function and function %�(�, �) is
called as weighted function. In order to satisfy interpolation
conditions (12), these weighted functions are required for
satisfying conditions%� (��, ��) = &��, �, � = 1, . . . ,  , (13)

�∑
�=1
%� (�, �) ≡ 1, %� (�, �) ≥ 0, � = 1, . . . ,  , (14)


%�
� (��, ��) = 
%�
� (��, ��) = 0, �, � = 1, . . . ,  . (15)

In the paper we take the weighted functions in (11) as
those in the literature [16]:

%� (�, �) = (1/*2� )∑��=1 (1/*2�) , (16)

where 1*� = (�� − -�)+��-� ,
(�� − -�)+ = {�� − -� �� − -� ≥ 0,0 �� − -� < 0,-� = -� (�, �) = √(� − ��)2 + (� − ��)2.

(17)

	e value of �� in (17) can be selected by user properly.

It can be seen that when (�, �) → (��, ��), (1/*2� ) → + ∝,
thereby %�(�, �) → 1; when (�, �) → (��, ��), 9 ̸= � and(1/*2�) → + ∝, thereby %�(�, �) → 0. 	us %� satis�es
condition (13). %� in formula (16) satis�es condition (14)
obviously, and the proof of which can be found in literature
[16]. If 1/*� is determined by (17), then when -�(�, �) >��,%�(�, �) = 0. So in case of �� being appropriately selected
(�� is also called as in�uence radius of node basis function),

there are only several nonzero terms in sum ∑��=1%�(�, �).
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Figure 7: 	e graph of !�(�, �) based on Figure 4.
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Figure 8: 	e graph of !̃�(�, �) based on Figure 4.

	en it can be found that interpolation function (11) which
takes functions (16) and (17) as its weight functions is a
local Hermite interpolation. When applying (11), we can use
di�erent in�uence radius at every node, so we can use the
same radius �. 	e following computational formulation of
uniform in�uence radius � in (18) is from [16]:

� = ?2 √ 
 , ? = max
�,�
-� (��, ��) . (18) � is the number of points used inside a circle of radius �.

3.3. Bivariate Piecewise Hermite Interpolation. Summing up
Sections 3.1 and 3.2, a bivariate piecewise Hermite interpola-
tion function is constructed onΩ to approximate the function�(�, �)
!� (�, �) = {{{{{

���	 (�, �) , if (�, �) ∈ Γ,
�∑
�=1
%� (�, �)��,� (�, �) , if (�, �) ∈ Ω − Γ,

(19)
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Figure 9: 	e graph of WLRBF based on Figure 4.

where ���	 is a triangle within � with node (��, ��), (��, ��),(�	, �	) as its vertices and ���	 is a Hermite interpolation
polynomial on triangle ���	.

We now summarize the description of the constructed
interpolation function, written as Algorithm 1.

Algorithm 1. Consider the following.

Step 1.Generate a triangle mesh T in domainΩ using Delau-
nay triangulation method based on given scattered point set{(��, ��)}��=1 ⊂ Ω.
Step 2. Judge the category of point (�, �): interior point or
exterior point.

Step 3. If point (�, �) is an interior point, then �nd out the
triangle���	 which includes point (�, �), compute the value of
the interpolation function���	 at point (�, �) using formulas
(2), (8), and (10), and take the value as the value of !�(�, �).
Step 4. If point (�, �) is an exterior point, then compute ? =
max�,� -�(��, ��) and select � to de�ne � = (?/2)√ �/ .
	e default value of  � is set to 9, and it responds to an
uniform radius. Find out the points (��� , ���), � = 1, . . . , 9
from scattered point set {(��, ��)}��=1, which belongs to the

circle with radius � and center (�, �), compute the values%��(�, �), � = 1, . . . , 9 and ��,��(�, �), � = 1, . . . , 9, give the
sum ∑�	=1%��(�, �)��,��(�, �), and assign it to !�(�, �).
4. The Estimation of Partial Derivative

In the process of using bivariate piecewise Hermite interpo-
lation !�, it demands the �rst-order derivatives of the inter-
polated function�(�, �) at every point, but the scattered data{(��, ��, ��)}��=1 doesnot provide the derivatives. 	us we use

the �rst-order derivative of a local radial basis interpolation
to approximate the derivative of the interpolated function
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Figure 10: 	e graph of Shepard interpolation based on Figure 4.
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Figure 11: 	e error graph of !�(�, �).
�(�, �) and replace this exact derivative in (19) with the
approximate derivative.

	e Delaunay triangulation � is a convex subdomain ofΩ. Every scattered point #� = (��, ��) is either a boundary
point or an interior node point of �. We put the vertices of
all triangles with point (��, ��) as into a set, written as "� =(��, ��) ∪ {(��� , ���)}�	=1, see Figure 3.

We take the point set "� as local radial basis function
interpolation point set and multiquadric radial basis func-
tions

H� = √(� − ��)2 + (� − ��) + �2,
H�1 = √(� − ��1)2 + (� − ��1)2 + �2,

...

H�� = √(� − ���)2 + (� − ���)2 + �2
(20)

as local interpolation basis functions.
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By solving the linear system IJ = K,
I = ( H� (��, ��) H�1 (��, ��) . . . H�� (��, ��)H� (��1 , ��1) H�1 (��1 , ��1) . . . H�� (��1 , ��1). . . ⋅ ⋅ ⋅ . . . . . .H� (��� , ���) H�1 (��� , ���) . . . H�� (��� , ���)) ,

J = (�0 �1 �2 . . . ��) ,K = (�� ��1 ��2 . . . ���) ,
(21)

we obtained a local radial basis interpolation function ��(�,�) = �0H�(�, �)+�1H�1(�, �)+�2H�2(�, �)+⋅ ⋅ ⋅+��H��(�, �), and
then compute the �rst order derivatives of ��(�, �) at #� =(��, ��), that is,
��
� (��, ��)

= �1 (�� − ��1)H�1 (��, ��) + �2 (�� − ��2)H�2 (��, ��) + ⋅ ⋅ ⋅ + �� (�� − ���)H�� (��, ��) ,
��
� (��, ��)
= �1 (�� − ��1)H�1 (��, ��) + �2 (�� − ��2)H�2 (��, ��) + ⋅ ⋅ ⋅ + �� (�� − ���)H�� (��, ��) .

(22)

	e bivariate piecewise interpolation function !� using
the previous approximate derivatives is written as

!̃� (�, �) = {{{{{
�̃��	 (�, �) , if (�, �) ∈ Γ,
�∑
�=1
%� (�, �) �̃�,� (�, �) , if (�, �) ∈ Ω − Γ.

(23)

Algorithm 2 summarizes the computational process of inter-

polation !̃�(�, �).
Algorithm 2. Consider the following.

Step 1. Generate a triangle mesh � in Ω using Delaunay
triangulation method based on the given scattered point set{(��, ��)}��=1 ⊂ Ω.
Step 2. Find out the local radial basis interpolation point
set "� at every point (��, ��), and compute the approximate
derivatives (
��/
�)(��, ��), (
��/
�)(��, ��) at every point(��, ��) using interpolation formulation (21) and (22).

Step 3. Judge the category of point (�, �): interior point or
exterior point.

Step 4. If point (�, �) is an interior point, then �nd out
the triangle ���	 which point (�, �) falls in, compute the
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Figure 12: 	e error graph of !̃�(�, �).
value of the interpolation function ���	 at point (�, �) using
formulas (2), (8), and (10), and assign the value to the function!̃�(�, �).
Step 5. If point (�, �) is an exterior point, then compute ? =
max�,� -�(��, ��) and select � to de�ne � = (?/2)√ �/ .
	e default value of  � is set to 9, it responds to an
uniform radius. Find out the points (��� , ���), � = 1, . . . , 9
from scattered point set {(��, ��)}��=1, which belongs to the

circle with radius � and center (�, �), compute the values%��(�, �), � = 1, . . . , 9 and �̃�,��(�, �), � = 1, . . . , 9, give the
sum ∑�	=1%��(�, �)�̃�,��(�, �), and assign it to !̃�(�, �).
5. Numerical Test

In this section,!�(�, �) and !̃�(�, �) are used to approximate
Franke function� (�, �)
= 0.75 exp(−(9� − 2)2 + (9� − 2)24 )
× 0.75 exp(−(9� + 1)210 − (9� + 1)10 )
− 0.2 exp (−(9� − 4)2 − (9� − 7)2)
+ 0.5 exp(−(9� − 7)2 + (9� − 3)24 ) , 0 ≤ �, � ≤ 1.

(24)

Firstly, a scattered data set {(��, ��, ��)}��=1 is sampled from�(�, �); then, the interpolation functions !�(�, �) and!̃�(�, �) are generated using the sampled data. Aiming at
di�erent sampled data sets, mean square error (MSE) and
maximum error (MME) of the two approximate functions
are computed and their approximate capacities are also
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Table 1: 	e comparison of MSE and MME of !�(�, �) and !̃�(�, �) for the same scattered points.

Number of scatter data  � In�uence radius � !�(�, �) − �(�, �) !̃�(�, �) − �(�, �)
MSE MME MSE MME

100 9 0.1818 6.3064X − 005 0.0578 1.9664X − 004 0.0951

300 9 0.1179 1.2890X − 006 0.0110 3.8058X − 006 0.0162

500 9 0.0918 1.0176X − 007 0.0030 3.0822X − 007 0.0043

800 9 0.0705 2.0574X − 008 0.0012 1.0705X − 007 0.0023

1000 9 0.0654 1.2458X − 008 0.0011 5.2834X − 008 0.0022

Table 2:	e in�uence of in�uence radius on!�(�, �) and !̃�(�, �).
Number of
scatter data

 � In�uence
radius � !�(�, �) − �(�, �) !̃�(�, �) − �(�, �)

MME MME

300 4 0.0786 0.0489 0.0906

300 9 0.1179 0.0352 0.0747

300 12 0.1361 0.0325 0.0504

300 16 0.1572 0.0307 0.0481

300 25 0.1965 0.0293 0.0447
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Figure 13: 	e error graph of WLRBF.

compared. Meanwhile, the approximate accuracy and com-

putational e
ciency of !�(�, �) and !̃�(�, �) are compared
with Shepard interpolation [17] and Weighted Local RBF
interpolant (abbr. WLRBF) [9]. Finally, the CPU time of
these four methods is compared which are devised by MAT-
LAB (7.12.0 R2011a) installed in a computer with Processor:
Intel(R) Q8400 2.66GHz, RAM: 4GB. 	e computational
results show that the methods introduced in this paper need
less CPU time and have higher accuracy.

Figure 4 shows the 300 scattered points which are ran-
domly selected from [0, 1] × [0, 1], and Figure 5 is Delaunay
triangulation based on Figure 4. Figure 6 presents the graph
of Franke function. Figures 7, 8, 9, and 10 describe the inter-
polation function graphs for the four methods of !�(�, �),!̃�(�, �), WLRBF, and Shepard which are also based on
the 300 scattered points shown in Figure 4. It can be seen
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Figure 14: 	e error graph of Shepard interpolation.

that!�(�, �), !̃�(�, �), andWLRBF can accurately approach
Franke function and are better than Shepardmethod. Figures
11, 12, 13, and 14 display the error graphs of the four methods
based on 50 ∗ 50 test points. Comparing Figure 11 with
Figure 13, we can see that !�(�, �) is much better than
WLRBFmethod. Comparing Figures 12 and 13 for the interior

points, !̃�(�, �) is obviously better than WLRBF method.
Besides, with the number of scattered data increasing, it is

found that approximation capability of !̃�(�, �) is closer
to that of !�(�, �). In case of large set of scattered points,!̃�(�, �) can be hence absolutely superior to WLRBF.

It can be seen from Table 1 that the approximation

accuracy of !�(�, �) is higher than that of !̃�(�, �) at the
same scattered points. Meanwhile, MSE and MME of the
two methods decrease with the increase of the point number.
Besides, the approximating accuracies to �(�, �) of !�(�, �)
and !̃�(�, �) get closer at the same time. 	ese results indi-
cate that the local radial function interpolation method can
be used to estimate the partial derivative when the number of

data points is large enough.	erefore, !̃�(�, �) can be used to
approximate �(�, �) when the partial derivative information
of the scattered data is unknown.

It can be seen from Table 2 that the errors of approxima-

tion functions!�(�, �) and !̃�(�, �) increase with the radius
of in�uence decreasing.

Tables 1 and 3 indicate that the approximating accuracy to�(�, �) using !�(�, �) and !̃�(�, �) is much more accurate
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Table 3: 	e comparison of MSE and MME of WLRBF method and Shepard method for the same scattered points.

Number of scatter data  � In�uence radius � WLRBF Shepard’s Method

MSE MME MSE MME

100 9 0.1818 1.9381X − 004 0.0923 1.9297X − 003 0.01842
300 9 0.1179 3.6377X − 006 0.0125 6.8555X − 004 0.1840
500 9 0.0918 9.6671X − 007 0.0088 4.2839X − 004 0.1967
800 9 0.0705 2.8995X − 007 0.0046 2.3199X − 004 0.0800
1000 9 0.0654 1.6362X − 007 0.0033 1.5849X − 008 0.0645
Table 4: 	e computing time of the four methods on the 50 × 50
grid points in the unit square.

Number of
scatter data

!�(�, �) !̃�(�, �) WLRBF
Shepard’s
method

100 5.6 15.46 185.64 52.54

300 28.59 30.35 399.38 113.99

500 42.31 13.77 586.63 180.94

800 64.21 68.04 779.32 225.97

1000 80.28 80.66 1102.64 271.22

than that using WLRBF method and Shepard method with
the same number of scattered points.

	e data in Table 4 indicates that the computation e
-

ciencies of!�(�, �) and !̃�(�, �) are much higher than those
of WLRBF and Shepard methods.

6. Conclusion

In this paper, Delaunay triangulation based on planar point
set is used to obtain the piecewise bivariate Hermite inter-
polation function in order to approximate three-dimensional
scattered data sets. When point (�, �) falls on a triangle of
the triangulation, the Hermite interpolation on the triangle is
used for approximate calculation. If point (�, �) falls outside
the triangulation area, the node basis function valueweighted
sumof the points that are closer to (�, �) is used as the approx-
imate value of �(�, �). Since the constructed interpolation
function needs the �rst derivative value of the approximated
function, however, the given scattered data set does not
provide such information, our interpolation scheme uses
local radial basis interpolation function to estimate the �rst
derivative of each scattered point. Numerical experiments
show that our methods have strong approximation ability to
scattered data and the estimation of derivatives by local radial
basis interpolation has high accuracy. Owing to no demand
for solving linear system and the weight functions with
local support, our methods are easily implemented and have
high computational e
ciency, so it is better than B-Spline
least square �tting which needs solving a big enough linear
system. 	e use of local radial basis function interpolation
to estimate the derivatives is still consuming time. 	erefore,
how to construct a simple and high-accurate numerical
di�erential formula is one of our future works. Meanwhile,
for nonuniform distributed scattered data, how to more
reasonably approximate them is another task in further work.

In addition, in the process of numerical experiments, we
found that the triangulation based on scattered point set has
a greater impact on the test results. Hence, how to construct
a triangulation more suitable for approximate schemes also
needs to be considered in the future work.
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