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Abstract  In this article we prove that for any measurable admissible control ( )w ⋅  and for any 0ε >  there exists 
piecewise constant admissible control ( )w ⋅  such that for set solutions of control set system are ε -neighbouring. 

Keywords  Set Differential Equation, Control System, Piecewise Constant Control 

1. Introduction 
In recent years the development of the calculus in metric 

spaces has attracted some attention[1-7]. Earlier, F.S. de 
Blasi, F. Iervolino[8] started the investigation of set differ-
ential equations (SDEs) in semilinear metric spaces. This has 
now evolved into the theory of SDEs as an independent 
discipline: properties of solutions[1-3,5,36], the impulse 
equations[1,2,37], control systems[38-41] and asymptotic 
methods[1-3,42-46]. On the other hand, SDEs are useful in 
other areas of mathematics. For example, SDEs are used, as 
an auxiliary tool, to prove existence results for differential 
inclusions[1,26,31,35]. Also, one can employ SDEs in the 
investigation of fuzzy differential equations[2,6,21-23, 
25,26]. Moreover, SDEs are a natural generalization of the 
usual ordinary differential equations in finite (or infinite) 
dimensional Banach spaces.  

In many engineering control systems piecewise constant 
controls, instead of measurable controls are applied. In this 
article we prove that for any measurable admissible control ( )⋅w  and for any 0ε >  there exists piecewise constant 
admissible control ( )w ⋅  such that for set solutions of con-
trol set system are ε -neighbouring. 

2. Preliminaries 
Let ( ) ( )( )n ncomp R conv R  be a set of all nonempty 

(convex) compact subsets from the space nR , 
( ) ( ) ( ){ }

0
, min ,r rr

h A B S A B S B A
≥

= ⊃ ⊃  

be Hausdorff distance between sets A  and B , ( )ASr  is 
r -neighborhood of set A . 

Let CBA ,,  be in ( )nRconv . The set C  is the Huku-
hara difference of A  and B , if ACB =+ , i.e. 

HC A B=  
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From Radstrom's Cancellation Lemma[47], it follows  
that if this difference exists, then it is unique. 

Definition 1[48]. A mapping [ ] ( ): 0, nX T conv R→  is dif-
ferentiable in the sense of Hukuhara at [ ]Tt ,0∈  if for 
some 0>δ  the Hukuhara differences  

( ) ( )HX t X t+ ∆ , ( ) ( )HX t X t − ∆  

exists in ( )nRconv  for all δ<∆<0  and there exists an 
( ) ( )nRconvtDX ∈  such that  

( ) ( ) ( )1

0
lim , 0Hh X t X t DX t

+

−

∆→

  ∆ + ∆ =  
  

 and 

( ) ( ) ( )1

0
lim , 0Hh X t X t DX t

+

−

∆→

  ∆ − ∆ =  
  

 

Here ( )tDX  is called the Hukuhara derivative of ( )tX  
at t . 

Consider the Cauchy problem with small parameter 
( ) ( ) ( ) 0, 0 ,DX A t X G t X X= + =          (1) 

where )(tA  is ( )nn× -dimensional matrix-valued function; 
( )nRconvRG →+:  is the set-valued map, ( )nRconvX ∈0 . 

Definition 2. A mapping [ ] ( )nRconvTX →,0:  is a so-
lution to the problem (1) if and only if it is continuous and 
satisfies the integral equation 

( ) ( ) ( ) ( )0
0

t

X t X A s X s G s ds= +  +  ∫  

for all [ ]Tt ,0∈ . Here the integral is understood in the 
sense of[48] (the integral exists for example if ( )⋅X  is 
measurable and the real mapping ( ) { }( )0,tXht →  is inte-
grable on +⊂ RI ). 

Theorem 1[2]. Let the following conditions are true: 
1) ( )⋅A  is measurable on [ ]T,0 ; 
2) There exists 0>a  such that ( ) atA ≤  for almost 

every [ ]Tt ,0∈ ; 
3) The set-valued map [ ] ( )nRconvTG →,0:  is meas-

urable on [ ]T,0 ; 
4) There exists ( ) [ ]TLg ,02∈⋅  such that 
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( ) { } ( )tgtGh ≤)0,(  almost everywhere on [ ]T,0 . 
Then problem (1) has on [ ]T,0  exactly one solution. 

3. The Control Set Differential Equation 
We consider following control set differential equation 

( ) ( ) 0, , (0, ) ,DX A t X F t w X w X= + =       (2) 
where mRw∈  is the control, ( )nm RconvRRF →×+:  is 
the set-valued map. 

Let )(: mRconvRW →+  be the measurable set-valued 
map. 

Definition 3. The set LW  of all measurable sin-
gle-valued branches of the set-valued map ( )⋅W  is the set of 
the admissible controls.  

Obviously, the control set differential equation (2) turns 
into the ordinary set differential equation 

( ) ( ) 0, (0) ,DX A t X G t X X= + =         (3) 
if the control ( ) LWw ∈⋅~  is fixed and ( ) ( ))(~, twtFtG ≡ . 

Let )(tX  denotes the set solution of the differential 
equation (3), then ),( wtX  denotes the set solution of the 
control differential equation (2) for the fixed ( ) LWw ∈⋅ . 

Definition 4. The set ( ) ( ){ }LWwwTXTY ∈⋅= :,)(  be 
called the attainable set of the system (2). 

Theorem 2[49]. Let the following conditions are true: 
1) ( )⋅A  is measurable on [ ]T,0 ; 
2) There exists 0>a  such that ( ) atA ≤  for almost 

every [ ]Tt ,0∈ ; 

3) The set-valued map [ ] ( ): 0, mW T conv R→  is meas-
urable on [ ]T,0 ; 

4) The set-valued map [ ] ( ): 0, m nF T R conv R× →  satis-
fies the conditions  

a) measurable in t ; 
b) continuous in w ; 

5) There exist ( ) [ ]2 0,v L T⋅ ∈  and ( ) [ ]2 0,l L T⋅ ∈  such 
that 

{ } ( ) { } ( )( ( ), 0 ) , ( ( , ), 0 )h W t v t h F t w l t≤ ≤  
almost everywhere on [ ]T,0  and all ( )tWw∈ ; 

6) The set ( ) ( ) ( ){ }, ( ) :Q t F t w t w LW= ⋅ ∈  is compact 
and convex for almost every [ ]0,t T∈ . 

Then for every ( ) LWw ∈⋅  there exists the set solution 
( )wX ,⋅  on [ ]T,0  and the attainable set ( )TY  is compact 

and convex. 

Let 
min max

1

,
m

i i

i

U u u
=

 =  ∏  and ( )W t U≡  on [ ]0,T . 

Now, we need to establish that for any measurable ad-
missible control ( )⋅w  and for any 0>ε  there exists 
piecewise constant admissible control ( )⋅w  such that for set 
solutions of system (2) holds for all [ ]0,t T∈  

( ) ( )( ), , ,h X t w X t w ε< . 

Theorem 3. Let the conditions of the theorem 2 are true, 
and  

7) There exists constant 0>γ  such that  

( )( ) ( )( ) ( ) ( )1 2 1 2
0 0 0 0

, , ,
t t t t

h F s w s dt F s w s ds w s ds w s dsγ
 

≤ −  
 
∫ ∫ ∫ ∫  

for all ( ) ( )1 2,w w LW⋅ ⋅ ∈  and [ ]0,t T∈ . 
Then for every ( ) LWw ∈⋅  there exists ( ) LWw ∈⋅  such 

that 

1) ( )tw  is constant on every ( )1 ,T Ti i
k k

 −  
, 1,i k= ; 

2) ( ) ( ) ( )( ){ ( ) { }1
min max,..., | , , 1, ,

Tm j j j
i i i iw t w t w t w t u u i k= ∈ =   

}1,j m=  for every [ ]Tt ,0∈ ; 

3) for all [ ]0,t T∈  

( ) ( )( ) max min, , ,
2

aT Th X t w X t w e u u
k

γ≤ − , 

where ( )1
min min min,...,

Tmu u u= , ( )1
max max max,...,

Tmu u u= . 

Proof. We have any ( )w LW⋅ ∈  and any k N∈ . Let  

( )1,..., ,
Tm

i i iW W W=  where ( )
0

Ti
k

j j
iW w s ds= ∫ , 1,i k= , 1,j m= . 

Obviously,  

( )

( )

( ) ( )

( )

∫∫∫

++

+ =−=−
k

Ti

k
iT

j
k
iT

j
k

Ti

jj
i

j
i dsswdsswdsswWW

1

0

1

0
1 , 

min 1 max
j j j j

i i
T Tu W W u
k k+≤ − ≤ , mj ,1= ,  

and  

1 max mini i
TW W u u
k+ − ≤ − . 

Now we obtain  

( ) ( ) ( )

( )



















 −

∈






 −−

∈






∈

=
−

T
k

Tktw

k
Tk

k
Tktw

k
Ttw

tw

k

k

,1,

1,2,

,0,

1

1



, 

such that 

1) ( )1
1 1 1,..., mw w w= , where  

( )

( )

max 1 max min

1

min 1 max min

,
2

,
2

j j j j

j

j j j j

Tu if W u u
kw

Tu if W u u
k

 ≥ += 
 < +


, mj ,1= ; 

2) ( )1,..., m
i i iw w w= , where  

( )

( )

1

max max min
1
1

min max min
1

,
2

,
2

i
j j j j j

i l
lj

i i
j j j j j

i l
l

T Tu if W w u u
k kw
T Tu if W w u u
k k

−

=

−

=


− ≥ += 

 − < +

∑

∑
, 
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1,j m= . 
Obviously, for 1=i  and mj ,1=  we have  

a) if 1 max
j jw u= , then  

1 1 0j j TW w
k

− ≤ , ( )2 1 max min2
j j j jT TW w u u

k k
− ≥ − , 

2 1 max
j j j TW W u

k
≤ + , ( )1 1 max min0

2
j j j jT TW w u u

k k
≥ − ≥ − − ; 

b) if jj uw min1 = , then  

1 1 0j j TW w
k

− ≥ , ( )2 1 max min2
j j j jT TW w u u

k k
− ≤ − , 

2 1 max
j j j TW W u

k
≥ + , ( )1 1 max min0

2
j j j jT TW w u u

k k
≤ − ≤ − . 

Hence we obtain  

( )1 1 max min2
j j i jT TW w u u

k k
− ≤ − ,  

and 

1 1 max min2
T TW w u u
k k

− ≤ − . 

Thus, by induction, we obtain that, for ki ,2=  and 
mj ,1=   

( )max min
1 2

i
j j i j

i l
l

T TW w u u
k k=

− ≤ −∑ , 1,j m= ,and 

max min
1 2

i

i l
l

T TW w u u
k k=

− ≤ −∑ .        (4) 

Therefore, if i
iTt
k

= , ki ,1= ; then  

( ) ( ) max min
0 2

i it t

o

Tw s ds w s ds u u
k

− ≤ −∫ ∫ . 

Now, we take ( )1
,

i T iTt
k k

 − 
∈ 
 

. Then  

( ) ( ) ( )( )
( )

1

1
1 10

t t ti

i l i
l i To

k

Tw s ds w s ds W w w s w ds
k

−

−
= −

− ≤ − + −∑∫ ∫ ∫ . 

As for all 1,j m=  

( )( )
( )

1

1
1 1 1

1

1
1

;

ti i
j j j j j

i l i l i
l l i T

k
i

j j
i l

l

T TW w W w w s w ds
k k

TW w
k

−

−
= = −

−

−
=

− ≥ − + − ≥

≥ −

∑ ∑ ∫

∑
 

then 

( ) ( )
1

1
1 10

max ,
t t i i

i l i l
l lo

T Tw s ds w s ds W w W w
k k

−

−
= =

 
− ≤ − − 

 
∑ ∑∫ ∫ .

 
By (4), we get  

( ) ( ) max min
0 0 2

t t Tw s ds w s ds u u
k

− ≤ −∫ ∫      (5) 

for all [ ]Tt ,0∈ . 

Now, applying definition 2 and condition 7 of the theorem, 

we obtain 

( ) ( )( ) ( ) ( ) ( )( )
0

, , , , , ,
t

h X t w X t w h A s X s w F s w s ds

 = +  


∫  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
0 0

, , , , ,
t t

A s X s w F s w s ds h A s X s w A s X s w


 + ≤ +  


∫ ∫

( )( ) ( )( ) ≤













+ ∫∫

tt

dsswsFdsswsFh
00

,,,  

( ) ( )( ) ( ) ( )
0 0 0

, , ,
t t t

a h X s w X s w ds w s ds w s dsγ≤ + −∫ ∫ ∫  

Using Gronwall-Bellman's inequality, we obtain 

( ) ( )( ) ( ) ( )∫∫ −≤
tt

aT dsswdsswewtXwtXh
00

,,, γ . 

By (5), we have  

( ) ( )( ) minmax2
,,, uu

k
TewtXwtXh aT −≤ γ . 

Theorem is proved. 

Remark. Obviously, if we take minmax2
uuTek aT −>

ε
γ ; 

then ( ) ( )( ) ε<wtXwtXh ,,,  for all [ ]Tt ,0∈ . 

4. Conclusions 
Here we used the approach of Hukuhara at definition of 

the derivative which has essential shortages. However the 
given approach is well investigated by many authors. Also 
in the literature exist other approaches to definition of the 
derivative[2,3,9,21,29,36], but also they have the shortages. 
It is easily possible to show that this outcome will be true 
for some other cases with little changes. 

Also we remark that this result helps to build ε -optimal 
piecewise constant controls for optimal control set system 
(Mayer problem, time-optimal problem and other). 
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